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ON THE 4 × 4 IRREDUCIBLE SIGN PATTERN MATRICES
THAT REQUIRE FOUR DISTINCT EIGENVALUES

by

PAUL JONGWOOK KIM

Under the Direction of Drs. Frank J. Hall and Zhongshan Li

ABSTRACT

A sign pattern matrix is a matrix whose entries are from the set {+,−, 0}.

For a real matrix B, sgn(B) is the sign pattern matrix obtained by replacing

each positive (respectively, negative, zero) entry of B by + (respectively, −,

0). For a sign pattern matrix A, the sign pattern class of A, denoted Q(A), is

defined as {B : sgn(B) = A }.

An n×n sign pattern matrix A requires all distinct eigenvalues if every real

matrix whose sign pattern is represented by A has n distinct eigenvalues. In

this thesis, a number of sufficient and/or necessary conditions for a sign pattern

to require all distinct eigenvalues are reviewed. In addition, for n = 2 and 3,

the n × n sign patterns that require all distinct eigenvalues are surveyed. We

determine most of the 4×4 irreducible sign patterns that require four distinct

eigenvalues.

INDEX WORDS: Sign pattern matrices, Distinct eigenvalues, Cycles, Per-

mutational similarity, Signature similarity, Discriminant, Nonsingular matrix,

Diagonal equivalence, Diagonalizability, Resultant
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1. Introduction and Preliminaries

In qualitative and combinatorial matrix theory, we study properties of a

matrix based on combinatorial information, such as the signs of entries in

the matrix. Such approach originated from the work in the 1940’s of the

Nobel Economics Prize winner P.A. Samuelson, as described in his original

and creative book Foundations of Economic Analysis [12] in 1947. Due to

its theoretical importance and applications in economics, biology, chemistry,

sociology and computer science, qualitative and combinatorial matrix analysis

flourished in the past few decades. R. Brualdi and B. Shader summarized and

organized some of the research in this area in their 1995 book ”Matrices of

Sign-solvable Linear Systems” [2].

A matrix whose entries come from the set {+,−, 0} is called a sign pattern

matrix. We denote the set of all n × n sign pattern matrices by Qn, and

more generally, the set of all m × n sign pattern matrices by Qm,n. For a

real matrix B, sgn(B) is the sign pattern matrix obtained by replacing each

positive (respectively, negative, zero) entry of B by + (respectively, −, 0). If

A ∈ Qm,n, then the sign pattern class of A is defined by

Q(A) = {B : sgn(B) = A}.

For A ∈ Qm,n , the minimum rank of A, denoted as mr(A), is defined by

mr(A) = min {rank B : B ∈ Q(A)}.

The maximum rank of A, MR(A), is given by

MR(A) = max {rank B : B ∈ Q(A)}.
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The minimum rank of a sign pattern is not only of interest theoretically,

it is also of practical value. For instance [3] is devoted to the question of

constructing real m × n matrices of low rank under the constraint that each

entry is nonzero and has a given sign. This problem arises from an interesting

topic in neural networks or, more specifically, multilayer perceptrons. In this

application, the rank of a realization matrix can be interpreted as the number

of elements in a hidden layer, which motivates a search for low rank solutions.

As shown in [11], there exist sign patterns A such that mr(A) cannot be

achieved by any rational matrix B ∈ Q(A).

The characterization of the mr(A) (or finding mr(A)) for a general m × n

sign pattern matrix A is difficult and is a long outstanding problem. However,

the MR(A) is easily described. Indeed, MR(A) is equal to the term rank of

A, namely,the maximum number of nonzero entries of A in distinct rows and

columns.

A sign pattern matrix S is called a permutation pattern if exactly one entry

in each row and column is equal to +, and all the other entries are 0. A product

of the form ST AS, where S is a permutation pattern, is called a permutational

similarity. We say that A and STAS are permutationally similar. Two sign

pattern matrices A1 and A2 are said to be permutationally equivalent if there

are permutation patterns S1 and S2 such that A1 = S1A2S2.

A diagonal sign pattern D is called a signature sign pattern if each of

its diagonal entries is either + or −. For a signature sign pattern D and

a sign pattern A of the same order, we say that DAD and A are signature

similar. Two sign patterns A1 and A2 are said to be signature equivalent if

A1 = D1A2D2 for some signature sign patterns matrices D1 and D2.
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If A = (aij) is an n × n sign pattern matrix, then a formal product of the

form γ = ai1i2ai2i3 . . . aiki1 , where each of the elements is nonzero and the index

set {i1, i2, . . . , ik} consists of distinct indices, is called a simple cycle of length

k, or a k-cycle, in A. A composite cycle γ in A is a product of simple cycles,

say γ = γ1γ2 . . . γm, where the index sets of the γi’s are mutually disjoint. If

the length of γi is li, then the length of γ is
∑m

i=1 li. If we say a cycle γ is

an odd (respectively even) cycle, we mean that the length of the simple or

composite cycle γ is odd (even). In this thesis, the term cycle always refers to

a composite cycle (which, as a special case, could be a simple cycle).

Let A = (aij) be an n× n sign pattern matrix. The digraph of A, denoted

D(A), is the directed graph with vertex set {1, 2, . . . , n} such that (i, j) is an

arc of D(A) iff aij 6= 0. The (undirected) graph of A, denoted G(A), is the

graph with vertex set {1, 2, . . . , n} such that {i, j} is an edge of G(A) iff at

least one of the entries aij and aji is nonzero.

An undirected graph G is a tree if it is connected and has no cycles (thus

G is minimally connected). For a symmetric n × n sign pattern A, by G(A)

we mean the undirected graph of A, with vertex set {1, . . . , n} and {i, j} is an

edge if and only if aij 6= 0. A sign pattern A is a symmetric tree sign pattern

if A is symmetric and G(A) is a tree, possibly with loops.

Suppose P is a property referring to a real matrix. A sign pattern A is said

to require P if every matrix in Q(A) has property P ; A is said to allow P if

some real matrix in Q(A) has property P. A sign pattern A ∈ Qn is said to be

sign nonsingular (SNS for short) if every matrix B ∈ Q(A) is nonsingular. It

is well known that, A is sign nonsingular if and only if det A = + or detA = −,

that is, in the standard expansion of det A into n! terms, there is at least one
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nonzero term, and all the nonzero terms have the same sign. Note that a

nonzero term in such expansion of det A corresponds to a cycle of length n in

A. It is also known that if all the diagonal entries of an n × n sign pattern A

are negative, then A is sign nonsingular if and only if every simple cycle in A

has negative weight (namely, the product of the entries of every simple cycle

in A is negative.)

For n ≥ 3, every n × n SNS sign pattern has at least
(

n−1
2

)
zero entries.

If D(A) of a sign pattern A is a k-cycle, then A is called a k-cycle sign

pattern.

Matrices all of whose eigenvalues are distinct have some nice properties,

such as diagonalizability; those matrices have been studied in a number of

papers, for instance [10],[14], and [15].

Sign patterns that allow all eigenvalues to be distinct are easily character-

ized as follows.

A sign pattern A of order n allows all eigenvalues to be distinct if and only

if the maximal composite cycle length of A is n − 1 or n ; refer to [7].

A square sign pattern matrix A is said to be reducible if

P T AP =

[
A11 A12

0 A22

]

for some permutation sign pattern matrix P , where A11 and A22 are nonempty

square matrices. A square sign pattern that is not reducible is said to be

irreducible. It is well known that A is irreducible if and only if the digraph of

A is strongly connected.

Let A be an n × n sign pattern and let AI denote the sign pattern ob-

tained from A by replacing all the diagonal entries by +. Then AI requires n

distinct eigenvalues if and only if A is permutationally similar to a symmetric
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irreducible tridiagonal sign pattern; refer to [5].

Let DE represent the set of all sign patterns that require the property of

all distinct eigenvalues. In this paper, we determine all 4 × 4 irreducible sign

patterns in DE.

Since matrices with all distinct eigenvalues have many nice properties, such

as diagonalizability, it is quite useful to be able to predict if a certain matrix

has all distinct eigenvalues by inspecting the sign pattern of the matrix.

Let F be a field and let f(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 and

g(x) = bmxm + bm−1x
m−1 + · · · + b1x + b0 be two polynomials in F[x].

A necessary and sufficient condition for f(x) and g(x) to have a common

root (or, equivalently, a common divisor of degree at least 1 in F[x]) is the

existence of a polynomial a(x) in F[x] of degree at most m−1 and a polynomial

b(x) in F[x] of degree at most n−1 with a(x)f(x) = b(x)g(x). Writing a(x) and

b(x) explicitly as polynomials and then equating coefficients in the equation

a(x)f(x) = b(x)g(x) gives a system of n+m linear equations for the coefficients

of a(x) and b(x). This system has a nontrivial solution (hence f(x) and g(x)

have a common zero) if and only if the determinant of the matrix of order

m + n displayed below

Res(f, g) = det




an an−1 . . . a0

an an−1 . . . a0

. . .
. . . . . .

. . .

an an−1 . . . a0

bm bm−1 . . . b0

bm bm−1 . . . b0

. . .
. . . . . .

. . .

bm bm−1 . . . b0




is zero. Here Res(f, g), called the resultant of the two polynomials f and g.

Let f(x) and g(x) be two polynomials over a field F with roots of f(x) being
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x1, . . . , xn and the roots of g(x) being y1, . . . , ym . The coefficients of f(x) are

an times the elementary symmetric functions in x1, x2, . . . , xn properly signed,

and the coefficients of g(x) are bm times the elementary symmetric functions

in y1, y2, . . . , ym properly signed.

By expanding the determinant, it can be seen that Res(f, g) is homoge-

neous of degree m in the coefficients ai and homogeneous of degree n in the

coefficients bj. Furthermore,

Res(f, g) = am
n bn

m

∏

1≤i≤n,1≤j≤m

(xi − yj).

The above formula for Res(f, g) can also be written as

Res(f, g) = am
n

n∏

i=1

g(xi) = (−1)nmbn
m

m∏

j=1

f(yj).

This gives an interesting reciprocity between the product of g evaluated at the

roots of f and the product of f evaluated at the roots of g.

Consider now the special case where g(x) = f ′(x) is the formal derivative

of the polynomial f(x) = xn+an−1x
n−1+· · ·+a0 and suppose the roots of f(x)

are r1, r2, . . . , rn. Using the formula Res(f, f ′) =
∏n

i=1 f ′(ri) of the previous

paragraph, one gets that

D = (−1)n(n−1)/2Res(f, f ′),

where D =
∏

i<j

(ri−rj)
2 is known as the discriminant of f(x), denoted disc(f(x)).

It is clear that f(x) and g(x) have no common zero if and only if Res(f(x), g(x)) 6=

0. It is well known that f(x) does not have a multiple root if and only if

Res(f(x), f ′(x)) 6= 0, if and only if disc(f(x)) 6= 0.

Lemma 1.1. ( [15]) The set DE is closed under the following operations:
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1. Negation,

2. Transposition,

3. Permutational similarity, and

4. Signature similarity.

We say two sign patterns are equivalent if one can be obtained from the

other by performing a sequence of operations listed on Lemma 1.1. The fol-

lowing three lemmas are useful mechanisms.

Lemma 1.2. ([5], [15]) If a sign pattern A is in DE, then A requires a fixed

number of real eigenvalues.

Lemma 1.3. ([15]) Let A ∈ Qn. Then A ∈ DE if and only if for all permissible

values of the entries of a general matrix B ∈ Q(A), Res(PB(x), P ′
B(x)) 6= 0,

where PB(x) = det(xI − B) is the characteristic polynomial of B.

Lemma 1.4. ([15]) Let A be an n-cycle sign pattern. Then for each B ∈

Q(A), the eigenvalues of B are evenly distributed on a circle in the complex

plane centered at the origin, and the arguments of the eigenvalues of B are

2kπ/n (0 ≤ k ≤ n− 1) or (2k +1)π/n, (0 ≤ k ≤ n− 1), depending on whether

the n-cycle in A is positive or negative.

Note that for a real matrix B, the nonreal eigenvalues occur in complex

conjugate pairs. By Lemma 1.2, every 4 × 4 sign pattern A ∈ DE falls into

exactly one of the following three cases:

1. A requires four distinct real eigenvalues.

2. A requires two pairs distinct conjugate non-real eigenvalues.
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3. A requires a pair of conjugate non-real eigenvalues and two distinct real

eigenvalues.

We shall consider each of these cases separately in three subsequent sec-

tions.
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2. 2 × 2 and 3 × 3 Sign Patterns Requiring All Distinct Eigenval-

ues

The following theorems provide several sufficient conditions, and one nec-

essary and sufficient condition, for a sign pattern matrix to require all distinct

eigenvalues. We begin with three fundamental results. A square sign pattern

A = (aij) is said to be symmetric (respectively, skew symmetric) if aji = aij

(respectively, aji = −aij) for all i and j. For the sake of completeness, we also

include some basic proofs.

Theorem 2.1. ([5]) If A is an n × n symmetric irreducible tridiagonal sign

pattern matrix, then A requires n distinct eigenvalues.

Proof: Assume that A is an n × n symmetric irreducible tridiagonal sign

pattern matrix. Let B be a matrix in Q(A),

B =




c1 a1

b1 c2 a2

b2
. . .

. . .
. . .

. . . an−1

bn−1 cn




.

Since B and S−1BS have the same spectrum for any signature matrix S

(namely, a diagonal matrix with diagonal entries equal to 1 or −1), we may

assume that ai > 0 and bi > 0 for all i = 1, 2, . . . , n − 1. Let

D = diag

(
1,

√
b1

a1
,

√
b1b2

a1a2
, . . . ,

√
b1b2 . . . bn−1

a1a2 . . . an−1

)
.

Then

B1 = D−1BD =




c1 γ1

γ1 c2 γ2

γ2 c3
. . .

. . .
. . . γn−1

γn−1 cn




,
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where γi =
√

aibi. Since B1 is a real symmetric matrix, it is normal and hence

diagonalizable, and all eigenvalues of B1 are real. For each λ in σ(B1), B1−λI

has a nonsingular submatrix of order n − 1 in the upper-right corner, so that

rank (B1−λI) = rank (B−λI) = n−1. Hence the geometric multiplicity of λ

is 1. Since B1 is diagonalizable, for each eigenvalue the geometric multiplicity is

equal to the algebraic multiplicity. Thus, each eigenvalue of B is algebraically

simple, and it follows that A requires all distinct real eigenvalues. �

Since the proof of the following theorem is very similar to the previous

proof, Theorem 2.2 is stated here without proof.

Theorem 2.2. ([5]) If A is an n × n skew-symmetric irreducible tridiago-

nal sign pattern matrix, then A requires n distinct pure imaginary (possibly

including zero) eigenvalues.

Theorem 2.3. ([15]) If A is an n× n sign pattern matrix such that D(A) is

an n-cycle, then A ∈ DE.

Proof: Let A be a sign pattern matrix such that D(A) is an n-cycle.

Consider the characteristic polynomial of any matrix B ∈ Q(A). Since for

k ≤ n − 1, all the k × k principal minors of B are zero, we see that the char-

acteristic polynomial of B is of the form xn − c where c 6= 0 is a constant. It

follows that B has n distinct eigenvalues, namely, the n distinct n-th roots of

c. �

An n × n sign pattern matrix such that D(A) is an n-cycle is called an

n-cycle sign pattern. It is clear from the proof of Theorem 2.3 that an n-cycle

sign pattern A requires the property that the eigenvalues of every B ∈ Q(A)

are evenly distributed on a circle in the complex plane centered at the origin,

and the arguments of the eigenvalues of B are 2kπ/n (0 ≤ k ≤ n − 1) or
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(2k + 1)π/n (0 ≤ k ≤ n − 1), depending on whether the n-cycle in A is

positive or negative. This observation may be used to construct sign patterns

in DE whose digraphs are unions of simple cycles with disjoint index sets.

Proposition 2.4. For n = 3, if every B ∈ Q(A) has precisely one real eigen-

value, then A ∈ DE .

Proof: Assume that A is a 3 × 3 sign pattern matrix such that every B ∈

Q(A) has precisely one real eigenvalue. Let B be an arbitrary matrix in Q(A).

Then B has precisely one real eigenvalue. Therefore, B has precisely two

imaginary eigenvalues. Since B is a real matrix, the two non-real eigenvalues

of B are conjugates of each other and are distinct. They are certainly distinct

from the real eigenvalue. Therefore, B has 3 distinct eigenvalues. Thus A ∈

DE. �

For a sign pattern matrix A, we may represent the non-zero entries of a

general matrix B ∈ Q(A) by variables which are permitted to assume any

positive real values, or negations of such variables. For instance, let

A =




0 + 0
− 0 −
− 0 +


 .

Then a general matrix B ∈ Q(A) may be written as

B =




0 a 0
−b 0 −c
−d 0 e


 ,

where a, b, c, d, e > 0. Thus, the characteristic polynomial of B is

PB(x) = det(xI − B) = x3 − ex2 + abx− a(cd + be).

Since a polynomial f(x) has no multiple root if and only if Res(f(x), f ′(x)) 6= 0,
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we obtain the following characterization of sign patterns in DE.

Theorem 2.5. Let A be an n × n sign pattern. Then A ∈ DE if and only

if Res(PB(x), P ′
B(x)) 6= 0 for all permissible values of the entries of a general

matrix B ∈ Q(A).

We remark that the coefficients of the polynomial PB(x) are polynomials

with integer coefficients over the positive variables that represent the nonzero

entries of B. Thus, (−1)n(n−1)/2Res(PB(x), P ′
B(x)), known as the discriminant

of PB(x), is also a polynomial with integer coefficients over the variables that

represent the nonzero entries of B. Therefore, the condition in Theorem 2.5.

amounts to testing if an integer coefficient polynomial equation has a positive

solution. Even though it is theoretically possible to determine whether a multi-

variable polynomial equation has a positive solution (refer to [13], 5.6), there

does not seem to be an efficient algorithm for this purpose.

The following theorems establish several necessary conditions for a sign

pattern matrix to be an element of DE.

Theorem 2.6. ([5], [15]) If a sign pattern matrix A is in DE, then A requires

a fixed number of real eigenvalues.

Proof: Suppose that A ∈ DE. For any B1 and B2 in Q(A), define B(t) =

B1 + t(B2 − B1) = (1 − t)B1 + B2 and SB(t) = (k(t), n − k(t)), where k(t) is

the number of real eigenvalues of B(t).

Note that if b1 = b2, then b1 + t(b2 − b1) = b1 for all t; and if b1 6= b2 and

sgn b1 = sgn b2, then b1 + t(b2 − b1) has the same sign for all t ∈ [0− δ, 1 + δ],

where

0 < δ <
1

|b2 − b1|
min{|b1|, |b2|}.
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Consequently, for sufficiently small δ1 > 0, B(t) ∈ Q(A) for all t in [0− δ1, 1 +

δ1]. Let c be in the interval [0, 1]. Then by hypothesis, B(c) has n distinct

eigenvalues, and without loss of generality, we may assume the real eigenvalues

are λ1, λ2, . . . , λk(c) and the nonreal eigenvalues are λk(c)+1, λk(c)+2, . . . , λn. Let

ε1 = min

{
|λi − λj|

2
| 1 ≤ i < j ≤ n

}
,

ε2 = min {|Im(λj)| | k(c) + 1 ≤ j ≤ n},
εc = min {ε1, ε2}, and
Di = {x ∈ C| |x − λi| < εc}.

Note that Di

⋂
Dj = φ if i 6= j.

At this point, we make use of the fact that the eigenvalues of B(t) are

continuous functions of t. We know that B(c) has n distinct eigenvalues.

Consequently, there exists a δc > 0 such that for each i, 1 ≤ i ≤ n, the disc Di

contains precisely one eigenvalue of B(t) whenever |t− c| < δc. Since B(t) is a

real matrix for any real number t, we know that the nonreal eigenvalues occur

in complex conjugate pairs, and it follows that each disc Di, 1 ≤ i ≤ k(c),

contains exactly one real eigenvalue of B(t). The other n − k(c) eigenvalues

are contained in the discs Dj , k(c) + 1 ≤ j ≤ n.

However, since εc ≤ ε2, we have Dj

⋂
R = φ for k(c) + 1 ≤ j ≤ n, and we

conclude that the n − k(c) eigenvalues contained in these discs are nonreal.

Thus, k(t) = k(c) for all t ∈ (c − δc, c + δc).

As c ranges over the interval [0, 1], {(c − δc, c + δc)}c is an open cover of

the compact set [0, 1], and it follows that there is a finite subcover of

{(c − δc, c + δc)}c.

Moreover, for any c ∈ [0, 1], k(t) is a constant function on (c − δc, c + δc), and

it follows that k(t) = k(0) on [0, 1]. Hence, SB1 = SB2 for every B1 and B2 in

Q(A), that is, A requires a fixed number of real eigenvalues. �
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Theorem 2.7. If an n×n sign pattern matrix A is in DE , then mr(A) ≥ n−1.

Proof: Suppose A is in DE . Then every B ∈ Q(A) has n distinct eigenvalues

and hence is diagonalizable. Thus, the rank of B is the same as the number of

nonzero eigenvalues of B, which is at least n−1 as B has n distinct eigenvalues.

It follows that rank(B) ≥ n − 1. Therefore, mr(A) ≥ n − 1. �

Theorem 2.8. If an n × n sign pattern matrix A has a simple odd cycle of

length k > 1 and A has at most one zero diagonal entry, then A /∈ DE .

Proof: Suppose that A has a simple odd cycle γ of length k > 1 and at most

one zero diagonal entry. By emphasizing the cycle γ ( namely, by choosing a

matrix B ∈ Q(A) such that the entries of B in the positions indicated by γ have

absolute value 1, while all the other entries of B have absolute values equal to

0 or equal to a sufficiently small ε > 0, refer to [5]), we get a matrix B ∈ Q(A)

with at least k > 1 nonreal eigenvalues. However, in view of Geřsgorin disc

theorem, by suitably emphasizing all the nonzero diagonal entries, we can get

another matrix B ∈ Q(A) such that B has n real eigenvalues (and hence B

has no nonreal eigenvalues). By Theorem 2.6, we get that A /∈ DE. �

Let γ = γ1γ2 . . . γm be a composite cycle in a sign pattern matrix A of order

n, where γ1, γ2, . . . , γm are simple cycles in A with disjoint index sets. Let m1

be the number of odd simple cycles in γ, let m2 be the number of positive even

simple cycles in γ. We define r(γ) ([15]) as follows

r(γ) =

{
m1 + 2m2, if the length of γ is not n − 1;

1 + m1 + 2m2, if the length of γ is n − 1.

By emphasizing the entries contained in γ appropriately (refer to [5]), it can

be seen that if γ is a cycle of length n−1 or n, then there is a matrix B ∈ Q(A)
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that has precisely r(γ) real eigenvalues. In view of Theorem 2.6, we arrive at

the following result.

Theorem 2.9. Suppose that an n×n sign pattern A has two composite cycles

γ1 and γ2 of lengths greater than or equal to n − 1 and r(γ1) 6= r(γ2). Then

A /∈ DE. �

If the length of γ is less than n − 1, then by emphasizing γ, we can find a

matrix B ∈ Q(A) with at least r(γ) real eigenvalues. Thus, we have

Theorem 2.10. Suppose that an n × n sign pattern A has two composite

cycles γ1 and γ2. If the length of γ2 is n − 1 or n and r(γ1) > r(γ2), then

A /∈ DE. �

We note that for n ≥ 3, A ∈ DE implies that A has a certain degree of

sparsity. For instance, if an n×n irreducible sign pattern A is in DE and A has

n positive diagonal entries, then A requires n distinct real eigenvalues, and A

is permutationally similar to a symmetric tridiagonal sign pattern (refer to [5],

Corollary 2.3). More generally, if an n×n irreducible sign pattern A is in DE

and A has a cycle γ with r(γ) = n, then A requires n distinct real eigenvalues,

and hence (refer to [5]), A is a symmetric sign pattern whose graph is a tree

(possibly with loops).

Using the results in the previous paragraphs, we will now consider specific

sign pattern matrices of orders 2 or 3 that are elements of DE .

Lemma 2.11 The set DE is closed under the following operations:

1. Negation,

2. Transposition,

3. Permutational similarity,
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4. Signature similarity.

In this paper, we say two sign patterns are equivalent if one can be obtained

from the other by performing a sequence of operations listed on Lemma 2.11.

This is indeed an equivalence relation. The above lemma says that a sign

pattern A ∈ DE if and only if all the sign patterns equivalent to A are in

DE. Thus, to determine the sign patterns in DE for a specified n, it suffices

to consider the n × n sign patterns up to equivalence.

To illustrate the terminology in the above lemma, we display some sign

patterns equivalent to A =

[
+ −
+ 0

]
:

−A =

[
− +
− 0

]

(by negation),

AT =

[
+ +
− 0

]

(by transposition),

P T AP =

[
0 +
+ 0

] [
+ −
+ 0

] [
0 +
+ 0

]
=

[
0 +
− +

]

(by permutational similarity),

SAS =

[
− 0
0 +

] [
+ −
+ 0

] [
− 0
0 +

]
=

[
+ +
− 0

]

(by signature similarity).

Since a reducible 2×2 sign pattern may be assumed to be upper triangular,

the following example is immediate.

Example 2.12. Up to equivalence, the 2 × 2 reducible matrices in DE are

[
+ 0
0 0

]
,

[
+ +
0 0

]
,

[
+ 0
0 −

]
,

[
+ +
0 −

]
.
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Example 2.13. By Theorems 2.1 and 2.2 we get

[
∗ +
+ ∗

]
∈ DE,

and [
0 +
− 0

]
∈ DE,

where (and henceforth) * indicates an arbitrary entry (+,−, or 0).

Example 2.14. [
+ +
− ∗

]
/∈ DE.

Proof: Let γ1 = a11 and γ2 = a12a21. Then r(γ1) = 2 and r(γ2) = 0. There-

fore, by Theorem 2.9, the sign pattern is not in DE. �

Examples 2.13 and 2.14 are consequences of the following result.

Proposition 2.15. ([15]) A 2×2 irreducible sign pattern requires two distinct

eigenvalues if and only if it is symmetric or skew-symmetric.

Proof: Since A is irreducible, A has the cycle γ = a12a21. If γ is a positive

cycle, then A is symmetric and A ∈ DE by Theorem 2.1. If γ is a negative cycle

and both diagonal entries are zero, then A is skew-symmetric and A ∈ DE by

Theorem 2.2. If γ is a negative cycle, and one or both diagonal entries are

nonzero, then by Theorem 2.9, we get A /∈ DE. �

We now consider 3 × 3 sign patterns. A reducible 3 × 3 sign pattern A is

permutationally similar to a sign pattern of the form

[
A1 ∗
0 a

]
or

[
a ∗
0 A1

]
,

where A1 is 2 × 2. It is clear that A ∈ DE if and only if A1 ∈ DE and A1

does not allow any eigenvalue of the sign of a. Thus, the 3 × 3 reducible sign
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patterns in DE can be easily determined. The following example displays some

3 × 3 reducible sign patterns in DE .

Example 2.16. 


+ + ∗
+ − ∗
0 0 0


 ∈ DE,




0 + ∗
− 0 ∗
0 0 +


 ∈ DE,




+ ∗ ∗
0 − ∗
0 0 0


 ∈ DE.

Then, we investigate all the 3 × 3 irreducible sign patterns (up to equiva-

lence) and identify those in DE. It is possible to generate the 3× 3 irreducible

sign patterns, up to equivalence as defined immediately after Lemma 2.11.

This yields a list of 210 sign patterns. Through extensive amount of work

involving careful constructions and applications of Theorems 2.1-2.9, all the

3 × 3 irreducible sign patterns that are in DE are determined in [15].

The main theorem of this section (Theorem 2.22) states that, up to equiv-

alence, the following sign patterns contained in Examples 2.17-2.21 are the

only 3 × 3 irreducible sign patterns in DE that cannot be obtained by using

Theorems 2.1-2.3.

Example 2.17. 


+ + 0
0 0 +
+ 0 0


 ∈ DE.

Proof: By performing a diagonal similarity on a general matrix B of the given

sign pattern if necessary, we may assume that the matrix B has the form

B =



a 1 0
0 0 1
b 0 0


 ,
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where a and b are some positive numbers.

The characteristic polynomial of B is p(x) = x3−ax− b. The discriminant

of p(x) is Res(p(x), p′(x)) = b(27b + 4a3), which is clearly positive for all

positive values of a and b. Therefore, the sign pattern of B is in DE. �

Example 2.18. 


0 + 0
− 0 +
+ − 0


 ∈ DE.

Proof: By performing a scalar multiplication and a diagonal similarity on a

general matrix B of the given sign pattern if necessary, we may assume that

the matrix B has the form

B =




0 1 0
−1 0 1
a −b 0


 ,

where a and b are some positive numbers. The characteristic polynomial of

this matrix is p(x) = x3 + (1 + b)x − a. Hence, p′(x) = 3x2 + (1 + b) has no

real zero. If p(x) = 0 has a repeated solution, then it must be a solution of

p′(x) = 0, which has only pure imaginary roots. However, p(x) has no pure

imaginary roots, since if x is pure imaginary, then x3 + (1 + b)x is also pure

imaginary and so x3 + (1 + b)x 6= a. This is a contradiction. Thus,




0 + 0
− 0 −
− + 0


 ∈ DE.

Alternatively, we may show that the discriminant of p(x), namely, Res (p(x), p′(x)),

is always nonzero. In fact, Res (p(x), p′(x)) = 27a2 + 4b3 + 12b2 + 12b + 4,

which is clearly positive for all a, b > 0. �

By a similar argument analogous to Example 2.18 ( by setting b = 0 on

the above), we can prove the following result.
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Example 2.19. 


0 + 0
− 0 +
+ 0 0


 ∈ DE.

Example 2.20. 


0 + −
− 0 +
+ − 0


 ∈ DE.

Proof: By performing a diagonal similarity on a general matrix B of the given

sign pattern if necessary, we may assume that the matrix B has the form

B =




0 1 −1
−a 0 b
c −d 0


 ,

where a, b, c, and d are some positive real numbers. The characteristic poly-

nomial of B and its derivative are:

p(x) = x3 + (a + c + bd)x + (ad − bc),

p′(x) = 3x2 + (a + c + bd).

Because p(x) is a real polynomial of degree 3, it has no repeated nonreal

zero. Assume that p(x) has a repeated real zero. Then p′(x) has a real zero.

But, p′(x) clearly has no real zero, a contradiction. Therefore, B has 3 distinct

eigenvalues. �

Example 2.21. 


+ + 0
0 0 +
+ − 0


 ∈ DE.

Proof: By performing a diagonal similarity and a scalar multiplication on a

general matrix B of the given sign pattern if necessary, we may assume that

the matrix B has the form

B =




1 1 0
0 0 1
a −b 0


 ,



21

where a and b are some positive real numbers. The characteristic polynomial

of B, and its derivative are:

p(x) = x3 − x2 + bx − (a + b),

p′(x) = 3x2 − 2x + b.

MAPLE shows that the discriminant of p(x) is

27a2 + 36ab + 8b2 + 4a + 4b + 4b3,

which is clearly positive whenever a, b > 0. So it is nonzero. An application of

Theorem 2.5 completes the proof. �

We are now ready to state and prove our main result on 3×3 sign patterns

∈ DE.

Theorem 2.22 ([15]) Up to equivalence, the 3 × 3 irreducible sign patterns

that require 3 distinct eigenvalues are the irreducible tridiagonal symmetric

sign patterns, the irreducible tridiagonal skew-symmetric sign patterns, and

the 3-cycle sign patterns, together with the following:




+ + 0
0 0 +
+ 0 0


 ,




0 + 0
− 0 +
+ − 0


 ,




0 + 0
− 0 +
+ 0 0


 ,




0 + −
− 0 +
+ − 0


 , and




+ + 0
0 0 +
+ − 0


 .

Proof: We determine the 3 × 3 irreducible sign patterns A ∈ DE by system-

atically reviewing a few cases (and subcases).

Case 1: A has no 3-cycle.

Since A is irreducible, D(A) is strongly connected. By performing a per-

mutational similarity on A if necessary, we may assume that D(A) has the
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directed path of length 2: 1 → 2 → 3. If a31 6= 0, then A would have the

3-cycle a12a23a31, contradicting the assumption that A has no 3-cycle. Thus,

a31 = 0 and it follows that a directed path in D(A) from 3 to 1 must be

3 → 2 → 1. Since A has no 3-cycle, we also get that a13 = 0. Therefore, A

can be assumed to be tridiagonal.

Subcase1.1: Suppose that both 2-cycles are positive. Then A is symmetric

and A ∈ DE by Theorem 2.1.

Subcase 1.2: Suppose that there is a positive 2-cycle γ1 and a negative 2-cycle

γ2. Then r(γ1) = 3 and r(γ2) = 1. Hence, A /∈ DE by Theorem 2.9.

Subcase 1.3: Suppose both 2-cycles are negative. If all the diagonal entries

are zero, then by Theorem 2.2, A ∈ DE. If there are at least two nonzero

diagonal entries, then an application of Theorem 2.9 with γ1 being a nega-

tive 2-cycle and γ2 being the product of two 1-cycles proves that A /∈ DE.

We now assume that A has precisely one nonzero diagonal entry. Replac-

ing A with −A if necessary, we may assume that the nonzero diagonal entry

is +. Up to equivalence, there are two sign patterns satisfying such conditions:




0 + 0
− 0 +
0 − +


 and




0 + 0
− + +
0 − 0


 .

The first sign pattern is not in DE because the matrix

B =




0 1 0
−1(5

√
5−11)

8
0 1

0 −1
4

1




has an eigenvalue (3−
√

5)
4

of multiplicity 2. This matrix B is constructed

through detailed analysis of the discriminant of the characteristic polynomial
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of a matrix of the form



0 1 0
−a 0 1
0 −b 1


 ,

where a > 0, b > 0. For the second sign pattern A =




0 + 0
− + +
0 − 0


 , we first

emphasize the 2-cycle a12a21 to get a matrix B1 ∈ Q(A) with two nonreal

eigenvalues. Note that det A = 0, so that A requires 0 to be an eigenvalue.

By emphasizing the 1-cycle γ2 = a22, we get a matrix B2 ∈ Q(A) with a real

eigenvalue close to 1. In view of 0 as a required eigenvalue, we get that B2

has 3 real eigenvalues ( since a real matrix cannot have just one nonreal

eigenvalue). By Theorem 2.6, A /∈ DE.

To summarize this case, we have shown that if a 3 × 3 irreducible sign

pattern is in DE and it does not contain a 3-cycle, then (up to equivalence) it

is either tridiagonal symmetric or tridiagonal skew-symmetric.

Case 2: A has a 3-cycle. In view of equivalence, we may assume that A has

the 3-cycle γ1 = a12a23a31, with a12 = a23 = a31 = +.

Subcase 2.1: A has no 2-cycles. If A has at least two 1-cycles, then, by

Theorem 2.9, A /∈ DE. Now assume that A has precisely one 1-cycle. Then A

is equivalent to one of the following two sign patterns:




+ + 0
0 0 +
+ 0 0


 and



− + 0
0 0 +
+ 0 0


 .

The first one is in DE by Example 2.17. By negating the (1,1) entry, it can

be seen from the proof of Example 2.17 that the second one is not in DE.

Indeed, the matrix



−1 1 0
0 0 1
4
27

0 0


 has −2

3
as an eigenvalue of multiplicity 2.
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Subcase 2.2: A has at least one 2-cycle.

If A has a positive 2-cycle γ2, then r(γ1) = 1 (where γ1 is the 3-cycle

mentioned in the beginning of Case 2) and r(γ2) = 3. Hence, by Theorem

2.9, A /∈ DE. Now suppose that every 2-cycle in A is negative. If A has at

least two 1-cycles, then, by Theorem 2.9, A /∈ DE. Thus, we may assume

that A has at most one 1-cycle. This results in the following two subcases.

Subcase 2.2.1: A has no 1-cycle.

Because A has the 3-cycle γ1 = a12a23a31 with a12 = a23 = a31 = + and every

2-cycle of A is negative, up to equivalence, there are three possibilities:




0 + 0
− 0 +
+ − 0


 ,




0 + 0
− 0 +
+ 0 0


 , and




0 + −
− 0 +
+ − 0


 .

These sign patterns require all distinct eigenvalues by Examples 2.18-2.20.

Subcase 2.2.2: A has precisely one 1-cycle. Without loss of generality, we

may assume that a11 6= 0. Because A has the 3-cycle γ1 = a12a23a31 with

a12 = a23 = a31 = + and every 2-cycle of A is negative, the sign pattern A

has the form

A =



± + ?
? 0 +
+ ? 0


 ,

where each ”?” entry can be either − or 0. If a21 = −, then the leading 2 × 2

principal submatrix

[
± +
− 0

]
allows two distinct nonzero real eigenvalues.

Indeed, B1 =

[
±3 1
−2 0

]
has two distinct nonzero real eigenvalues 1 and 2 (or

−1 and −2). By perturbing



±3 1 0
−2 0 0
0 0 0


 slightly, we can obtain a matrix

B ∈ Q(A) whose eigenvalues are sufficiently close to 0,1, and 2 (or 0, −1, and

−2). Thus, there are three disjoint discs on the complex plane with centers
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on the real axis such that each disc contains precisely one eigenvalue of B. It

follows that B has three real eigenvalues. However, by emphasizing the

negative 2-cycle a12a21, we can obtain a matrix in Q(A) with two nonreal

eigenvalues. Thus, by Theorem 2.6, A /∈ DE. Similarly, if a13 = −, then by

considering the principal submatrix obtained by deleting the second row and

column, we can prove that A /∈ DE. We may now assume that a13 = 0 and

a21 = 0. Because A is assumed to have a negative 2-cycle, we must have

a32 = −. There are two possibilities:




+ + 0
0 0 +
+ − 0


 and



− + 0
0 0 +
+ − 0


 .

The first one is in DE by Example 2.21. Since the matrix



−1 1 0
0 0 1
1
4

−1
4

0


 has

eigenvalues 0,−1
2

and −1
2

, we get that the second sign pattern is not in DE.

The proof is now complete. �

For n ≥ 4, the sign patterns in DE are not well understood. In particular, it

is an open problem to characterize the upper Hesssenberg sign patterns that

are in DE.
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3. 4 × 4 Sign Patterns Requiring Four Distinct Real Eigenvalues

Lemma 3.1. Let A ∈ Qn. If A has a negative 2-cycle or a k-cycle with k ≥ 3,

then A does not require all real eigenvalues, that is, there exists a real matrix

B ∈ Q(A) such that B has at least one pair conjugate nonreal eigenvalues.

Proof: Let γ be a negative 2-cycle or a k-cycle with k ≥ 3. By emphasizing

the cycle γ (namely, by choosing a matrix B ∈ Q(A) such that the entries of

B in the positions indicated by γ have absolute value 1, while all other

entries of B have absolute values equal to 0 or equal to a sufficiently small

ε > 0, refer to [5]), from Lemma 1.4 we get a matrix B ∈ Q(A) having at

least one pair conjugate nonreal eigenvalues. �

Lemma 3.1 immediately yields the following two results.

Lemma 3.2. Let A = (aij) ∈ Q4 require four distinct real eigenvalues. Then

the following conditions hold.

(1) For 1 ≤ i, j ≤ 4, aijaji ≥ 0.

(2) A has no k-cycles for k ≥ 3.

Theorem 3.3 Let A ∈ Q4 be irreducible and require four distinct real

eigenvalues. Then A is a symmetric tree sign pattern, and up to equivalence,

A is one of the following forms

A1 =




∗ 1 0 0
1 ∗ 1 0
0 1 ∗ 1
0 0 1 ∗


 , A2 =




∗ 1 1 1
1 ∗ 0 0
1 0 ∗ 0
1 0 0 ∗


 ,

where ∗ may be 1, −1 or 0.

Lemma 3.4 ( [5],[15] ) If A is an n × n symmetric irreducible tridiagonal

sign pattern, then A requires n distinct real eigenvalues.
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Lemma 3.5. Let A ∈ Q4 be a symmetric star sign pattern having the form

A =




a1 1 1 1
1 a2 0 0
1 0 a3 0
1 0 0 a4


 ,

where ai may be 1, −1 or 0 for i = 1, 2, 3, 4. Then A requires four distinct

real eigenvalues if and only if a2, a3 and a4 are not the same.

Proof: Let

B =




b11 b12 b13 b14

b21 b22 0 0
b31 0 b33 0
b41 0 0 b44


 ∈ Q(A).

Take a nonsingular diagonal matrix

D = diag

[
1,

√
b21

b12
,

√
b21b31

b12b13
,

√
b21b31b41

b12b13b14

]
.

Then

B1 = D−1BD =




b11 b2 b3 b4

b2 b22 0 0
b3 0 b33 0
b4 0 0 b44


 ∈ Q(A),

where bi =
√

b1ibi1 for i = 2, 3, 4. It implies that B can be similar to the

symmetric matrix B1 in Q(A). Thus, we only need to consider all real

symmetric matrices in Q(A).

For any real symmetric matrix B ∈ Q(A), all eigenvalues of B are real, and

B is diagonalizable. Thus, for each eigenvalue of B, the geometric

multiplicity is equal to the algebraic multiplicity.

We consider the following five cases.

Case 1: a2 = a3 = a4 = 0.
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For any real symmetric matrix B ∈ Q(A), it is clear that rank(B) = 2, and

B has the zero eigenvalue with the algebraic multiplicity 2. Thus, A does not

require four distinct real eigenvalues.

Case 2: a2, a3 and a4 have exactly one nonzero element.

Up to equivalence, we may assume that a2 6= 0 and a3 = a4 = 0. Let

B ∈ Q(A) be a real symmetric matrix, and λ be an eigenvalue of B. It is easy

to see that rank(λI −B) = 3, and so λ is algebraically simple. Then B has

four distinct real eigenvalues, and A requires four distinct real eigenvalues.

Case 3: a2, a3 and a4 have exactly two nonzero elements.

By the similar method to Case 2, we may prove that in this case, A requires

four distinct real eigenvalues.

Case 4: a2 = a3 = a4 6= 0.

Take a real symmetric matrix B = (bij) ∈ Q(A) such that b22 = b33 = b44 = b.

It is clear that rank(bI − B) = 2. Then λ = b is an eigenvalue of B, and the

geometric multiplicity (thus, the algebraic multiplicity) of λ = b is 2. It

implies that A does not require four distinct real eigenvalues.

Case 5: a2, a3 and a4 are all nonzero, and have different signs. (The signs

are not all the same.)

Let B ∈ Q(A) be any real symmetric matrix. Let λ be an eigenvalue of B. It

is easy to see that rank(λI − B) = 3, and so λ is algebraically simple. Then

B has four distinct real eigenvalues, and A requires four distinct real

eigenvalues.

Combining the above five cases, the lemma follows. �

From Theorem 3.3 and Lemmas 3.4 and 3.5, we now have the following.

Theorem 3.6. Let A ∈ Q4 be irreducible. Then A requires four distinct real
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eigenvalues if and only if up to equivalence,

(1) A is a symmetric tridiagonal sign pattern having the form

A =




∗ + 0 0
+ ∗ + 0
0 + ∗ +
0 0 + ∗


 ,

where ∗ may be 1, −1 or 0; or

(2) A is a symmetric star sign pattern having the form

A =




a1 + + +
+ a2 0 0
+ 0 a3 0
+ 0 0 a4


 ,

where ai may be +, − or 0 for i = 1, 2, 3, 4, and a2, a3 and a4 are not the

same.
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4. 4 × 4 Sign Patterns Requiring Four Distinct Non-Real

Eigenvalues

Lemma 4.1. Let A ∈ Qn. If A has a positive even cycle or an odd cycle,

then A does not require all nonreal eigenvalues, that is, there exists a real

matrix B ∈ Q(A) such that B has at least one real eigenvalues.

Proof: Let γ be a positive even cycle or an odd cycle. By emphasizing the

cycle γ, from Lemma 1.4 we get a matrix B ∈ Q(A) having at least one real

eigenvalue. �

Lemma 4.1 immediately yield the following two results.

Lemma 4.2. Suppose that A = (aij) ∈ Q4 requires four distinct nonreal

eigenvalues. Then the following conditions hold.

(1) MR(A) = mr(A) = 4, that is, A is sign nonsingular.

(2) All diagonal entries of A are zero.

(3) A has no positive 2-cycles and positive 4-cycles.

(4) A has no 3-cycles.

Theorem 4.3. Let A ∈ Q4 be irreducible and require four distinct nonreal

eigenvalues. Then, up to equivalence,

A =




0 + 0 0
− 0 + 0
0 − 0 +
0 0 − 0


 , (4.1)

or A has the following form

A =




0 + 0 a1

−a2 0 + 0
0 −a3 0 +
− 0 −a4 0


 , (4.2)
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where ai may be + or 0 for i = 1, 2, 3, 4.

Lemma 4.4. ([5, 15]) If A is an n × n skew-symmetric irreducible

tri-diagonal sign pattern, then A requires n distinct pure imaginary (possibly

including zero) eigenvalues.

Lemma 4.5. Let A ∈ Q4 be irreducible and have the form (4.2). Then A

requires four distinct nonreal eigenvalues if and only if

a1 = a2 = a3 = a4 = 0.

Proof: Sufficiency. Let a1 = a2 = a3 = a4 = 0. By Lemma 5.1, it is clear

that the sufficiency holds.

Necessity. Let A require four distinct nonreal eigenvalues. Contradicting

a1 = a2 = a3 = a4 = 0, we assume that at least one of a1, a2, a3 and a4 is

nonzero.

Case 1: a1, a2, a3 and a4 have exactly one nonzero.

Up to equivalence, we may assume that a1 6= 0 and a2 = a3 = a4 = 0. Take

B =




0 1 0 2
0 0 1 0
0 0 0 1
−1 0 0 0


 ∈ Q(A).

We have that σ(B) = {−i,−i, i, i}, it is a contradiction.

Case 2: a1, a2, a3 and a4 have exactly two nonzeros.

Up to equivalence, A has two forms, one is that a1 6= 0, a2 6= 0 and

a3 = a4 = 0, and the other is that a1 6= 0, a3 6= 0 and a2 = a4 = 0.

For the first form, take

B =




0 1 0 1
−1 0 1 0
0 0 0 1
−1 0 0 0


 ∈ Q(A).
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We have that σ(B) = {−i,−i, i, i}, it is a contradiction.

For the second form, take

B =




0 1 0 2
0 0 2 0
0 −4 0 1
−2 0 0 0


 ∈ Q(A).

We have that σ(B) = {−i
√

6,−i
√

6, i
√

6, i
√

6}, it is a contradiction.

Case 3: a1, a2, a3 and a4 have exactly three nonzero.

Up to equivalence, we may assume that a1 6= 0, a2 6= 0, a3 6= 0 and a4 = 0.

Take

B =




0 1 0 2
−2 0 2 0
0 −4 0 17

4

−2 0 0 0


 ∈ Q(A).

We have that σ(B) = {−i
√

7,−i
√

7, i
√

7, i
√

7}, it is a contradiction.

Case 4: All a1, a2, a3 and a4 are nonzero.

Take

B =




0 2 0 2
−1 0 2 0
0 −1 0 2
−2 0 −2 0


 ∈ Q(A).

We have that σ(B) = {−i
√

6,−i
√

6, i
√

6, i
√

6}, it is a contradiction.

Combining the above four cases, we see that the necessity follows. �

From Theorem 4.3 and Lemmas 4.4 and 4.5, we now have the following.

Theorem 4.6. Let A ∈ Q4 be irreducible. Then A requires four distinct

nonreal eigenvalues if and only if up to equivalence,

A =




0 + 0 0
− 0 + 0
0 − 0 +
0 0 − 0


 , or A =




0 + 0 0
0 0 + 0
0 0 0 +
− 0 0 0


 .
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5. 4 × 4 Sign Patterns Requiring Precisely Two Distinct Real

Eigenvalues

Lemma 5.1. Suppose that A ∈ Q4 is irreducible and A requires a pair of

conjugate nonreal eigenvalues and two distinct real eigenvalues. Then

(1) MR(A) ≥ mr(A) ≥ 3.

(2) A has at most two nonzero diagonal entries.

(3) A is not symmetric.

(4) A has no negative 4-cycles.

(5) If γ is a composite 4-cycle in A consisting of two 2-cycles, then both

2-cycles have different signs.

Proof: (1)–(3) are clear. We only prove (4) and (5).

For (4), let γ be a negative 4-cycle in A. By emphasizing the cycle γ, we get

a matrix B ∈ Q(A) with two pairs conjugate nonreal eigenvalues, which is a

contradiction. Thus, (4) follows.

For (5), let Γ = γ1γ2 be a composite 4-cycle in A, where both γ1 and γ2 are

2-cycles. If both γ1 and γ2 are negative (respectively, positive), then by

emphasizing the cycle Γ, we get a matrix B ∈ Q(A) with two pairs conjugate

nonreal eigenvalues (respectively, four real eigenvalues), which is a

contradiction. Thus, γ1 and γ2 have different signs, so (5) follows. �

Lemma 5.2. Let A = (aij) ∈ Q4 be irreducible with MR(A) = 3. Then A

requires a pair conjugate nonreal eigenvalues and two distinct real

eigenvalues if and only if up to equivalence,

(1) A has no (simple or composite) 4-cycles;

(2) A has at least one 3-cycle, and all 3-cycles in A are negative;
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(3) A has no positive 2-cycles;

(4) A has at most one nonzero diagonal entry, and if aii 6= 0, then aii = −

and aijaji = 0 for any i 6= j.

Proof: Let B ∈ Q(A), and the characteristic polynomial of B be

PB(x) = det(xI −B) = x4 + ax3 + bx2 + cx + d, (5.1)

where a, b, c, d are real constants. Because MR(A) = 3, it is clear that d = 0.

Thus,

Res(PB(x), P ′
B(x)) = (a2b2 − 4b3 − 4a3c + 18abc − 27c2)c2. (5.2)

Sufficiency. Let (1)–(5) hold. Then a ≥ 0, b ≥ 0, c > 0, and ab ≤ c. Thus by

(5.2), Res(PB(x), P ′
B(x)) ≤ (c2 − 4b3 − 4a3c + 18c2 − 27c2)c2 =

(−4b3 − 4a3c− 8c2)c2 < 0. By Lemma 1.3, A requires all distinct eigenvalues.

On the other hand, let γ be a 3-cycle. By emphasizing the cycle γ, we get a

matrix B ∈ Q(A) with a pair conjugate nonreal eigenvalues and two distinct

real eigenvalues. From Lemma 1.2, the sufficiency follows.

Necessity. Let A require a pair conjugate nonreal eigenvalues and two

distinct real eigenvalues. Since MR(A) = 3, it is clear that (1) holds, and

there is a (simple or composite) 3-cycle in A.

If there is no simple 3-cycle in A, then A is a star sign pattern with at most

two nonzero diagonal entries. Without loss of generality, we assume that

a11 6= 0 and a12a21 6= 0. Take a matrix B1 = (bij) ∈ Q(A) such that

|b12| = |b21| = 1, |b11| is sufficiently large, and the absolute values of other

nonzero entries are sufficiently small, thus, Res(PB1(x), P ′
B1

(x)) > 0 from

(5.2). On the other hand, by Lemma 5.1(3), A is not symmetric. Thus, there
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is a negative 2-cycle. By emphasizing this negative 2-cycle, we can get a

matrix B2 ∈ Q(A) with Res(PB2(x), P ′
B2

(x)) < 0 from (5.2). Note the fact

that Res(PB(x), P ′
B(x)) is a continuous function of entries of B. There is

B ∈ Q(A) such that Res(PB(x), P ′
B(x)) = 0. By Lemma 1.3, it is a

contradiction. Therefore there is a simple 3-cycle in A.

We now have that all the 3-cycles have the same sign. If not, it is not

difficult to verify that there is B ∈ Q(A) such that Res(PB(x), P ′
B(x)) = 0

from (5.2). By Lemma 1.3, it is a contradiction. Up to equivalence, we may

assume that each 3-cycle is negative. Thus, (2) holds.

For (3), let γ1 be a positive 2-cycle in A. Since MR(A) = 3, each real matrix

in Q(A) has a zero eigenvalue. By emphasizing γ1, we may get a matrix

B ∈ Q(A) such that B has three real eigenvalues, it is a contradiction. Thus,

(3) follows.

For (4), let A have two nonzero diagonal entries. By emphasizing two

nonzero diagonal entries, we may get a matrix B ∈ Q(A) such that B has

two nonzero real eigenvalues and one zero eigenvalue, it is a contradiction.

Thus, A has at most one nonzero diagonal entry.

We now let A have exactly one nonzero diagonal entry, without loss of

generality, we assume that a11 6= 0 and aii = 0 for i = 2, 3, 4. If a1iai1 6= 0 for

some 2 ≤ i ≤ 4, then we take a matrix B1 = (bij) ∈ Q(A) such that

|b1i| = |bi1| = 1, |b11| is sufficiently large, and the absolute values of other

nonzero entries are sufficiently small. It implies that there is a matrix

B1 ∈ Q(A) such that Res(PB1(x), P ′
B1

(x)) > 0. On the other hand, by

emphasizing a 3-cycle, we get a matrix B ∈ Q(A) such that

Res(PB(x), P ′
B(x)) < 0. Note the fact that Res(PB(x), P ′

B(x)) is a continuous
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function of entries of B. Then there is B ∈ Q(A) such that

Res(PB(x), P ′
B(x)) = 0. By Lemma 1.3, it is a contradiction. Thus, a1iai1 = 0

for all 2 ≤ i ≤ 4, so (4) follows.

The lemma now follows. �

Lemma 5.3. Let A = (aij) ∈ Q4 be irreducible, MR(A) = 4, and all

diagonal entries of A be zero. If A has a 4-cycle, then A requires a pair

conjugate nonreal eigenvalues and two distinct real eigenvalues if and only if

(1) Each 4-cycle in A is positive;

(2) If there is a 3-cycle in A, then each 2-cycle is negative (if there is); and

(3) If there is a composite 4-cycle in A consisting of two 2-cycles, then both

2-cycles have different signs.

Proof: Sufficiency. Let B ∈ Q(A), and the characteristic polynomial of B be

PB(x) = det(xI −B) = x4 + ax3 + bx2 + cx + d,

where a, b, c, d are real constants. Since that all diagonal entries of A are

zero, it is clear that a = 0. Thus,

Res(PB(x), P ′
B(x)) = −4b3c2 − 27c4 + 16b4d + 144bc2d − 128b2d2 + 256d3

= 16d(b2 − 4d)2 − 27c4 + c2(144bd − 4b3).

From (1) and (3), we have d = det(B) < 0. If there is no 3-cycle in A, then

c = 0, and so

Res(PB(x), P ′
B(x)) = 16d(b2 − 4d)2 < 0.

By Lemma 1.3, A requires all distinct eigenvalues. If there is a 3-cycle in A,

then from (2), each 2-cycle is negative (if there is), and so b ≥ 0. Thus,

Res(PB(x), P ′
B(x)) < 0, and A requires all distinct eigenvalues.
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On the other hand, let Γ be a positive 4-cycle. By emphasizing the cycle Γ,

we get a matrix B ∈ Q(A) with a pair conjugate nonreal eigenvalues and two

real eigenvalues. From Lemma 1.2, the sufficiency follows.

Necessity. Let A require a pair conjugate nonreal eigenvalues and two

distinct real eigenvalues. Then (1) and (3) hold from Lemma 5.1. In order to

prove (2), we assume that γ1 is a 3-cycle and γ2 is a positive 2-cycle in A.

Let B ∈ Q(A), and the characteristic polynomial of B be

PB(x) = det(xI −B) = x4 + ax3 + bx2 + cx + d,

where a, b, c, d are real constants. Clearly, a = 0 and d = det(B) < 0. Thus,

Res(PB(x), P ′
B(x)) = −4b3c2 − 27c4 + 16b4d + 144bc2d − 128b2d2 + 256d3

= 16d(b2 − 4d)2 − 27c4 + c2(144bd − 4b3).

It is not difficult to verify that by emphasizing both γ1 and γ2, respectively, a

simple 4-cycle, we can get two matrices B1 and B2 in Q(A) such that

Res(PB1(x), P ′
B1

(x)) > 0, respectively, Res(PB1(x), P ′
B1

(x)) < 0. Note the fact

that Res(PB1(x), P ′
B1

(x)) is a continuous function of entries of B. There is

B ∈ Q(A) such that Res(PB(x), P ′
B(x)) = 0. By Lemma 1.3, it is a

contradiction. Thus, (2) holds. �

Lemma 5.4. Let A = (aij) ∈ Q4 be irreducible, MR(A) = 4, and all

diagonal entries of A be zero. If A has no 4-cycle, then A requires a pair

conjugate nonreal eigenvalues and two distinct real eigenvalues if and only if

(1) A has a composite 4-cycle, and each composite 4-cycle in A consists of

one positive 2-cycle and one negative 2-cycle; and

(2) A has no 3-cycles.
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Proof: Sufficiency. Let B ∈ Q(A), and the characteristic polynomial of B be

PB(x) = det(xI −B) = x4 + ax3 + bx2 + cx + d,

where a, b, c, d are real constants. Because all the diagonal entries of A are

zero, it is clear that a = 0. From (1) and (2), we have that d = det(B) < 0

and c = 0. Thus,

Res(PB(x), P ′
B(x)) = 16b4d − 128b2d2 + 256d3 = 16d(b2 − 4d)2 < 0.

By Lemma 1.3, A requires all distinct eigenvalues.

On the other hand, let γ = γ1γ2 be a composite 4-cycle, where γ1 is a

positive 2-cycle and γ2 is a negative 2-cycle. By emphasizing the cycle γ, we

get a matrix B ∈ Q(A) with a pair conjugate nonreal eigenvalues and two

distinct real eigenvalues. From Lemma 1.2, the sufficiency follows.

Necessity. Since MR(A) = 4, from the hypotheses and Lemma 5.1(5), we

have that A has a composite 4-cycle, and each composite 4-cycle consists of

two 2-cycles that have different signs. Thus (1) follows. In order to prove (2),

we assume that Γ is a 3-cycle in A.

Let B ∈ Q(A), and the characteristic polynomial of B be

PB(x) = det(xI −B) = x4 + ax3 + bx2 + cx + d,

where a, b, c, d are real constants. Clearly, a = 0 and d = det(B) < 0 from the

hypotheses and Lemma 5.1(5). Thus,

Res(PB(x), P ′
B(x)) = −4b3c2 − 27c4 + 16b4d + 144bc2d − 128b2d2 + 256d3

= 16d(b2 − 4d)2 − 27c4 + c2(144bd − 4b3).

It is not difficult to verify that by emphasizing both Γ and one positive

2-cycle, respectively, both Γ and one negative 2-cycle, we can get two
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matrices B1 and B2 in Q(A) such that Res(PB1(x), P ′
B1

(x)) > 0, and,

Res(PB2(x), P ′
B2

(x)) < 0, respectively. Note the fact that Res(PB(x), P ′
B(x))

is a continuous function of the entries of B. There is B ∈ Q(A) such that

Res(PB(x), P ′
B(x)) = 0. By Lemma 1.3, it is a contradiction. Thus, (2) holds.

�

We as of yet do not have a characterization of the 4 × 4 irreducible sign

patterns A that require precisely two distinct real eigenvalues when

MR(A) = 4 and when A has at least one nonzero diagonal entry. We do

know, however,that in this case, detA = −.
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6. Some Questions and Open Problems

The problem of characterizing the sign pattern matrices that require distinct

eigenvalues is in general a very difficult problem. In this thesis we have given

the solution for order 2 and order 3 matrices, and most of the solution for

order 4. Future research will concentrate on completing the order 4 case, and

also work on sign patterns of order greater than 4.

Question 1. Suppose that A ∈ Q4 is irreducible, MR(A) = 4, and A has

some nonzero diagonal entries. What are the necessary and sufficient

conditions for A to require a pair of conjugate nonreal eigenvalues and two

distinct real eigenvalues? We have shown that in this case, detA = −.

Question 2. Suppose that A ∈ DE ∩ Qn. What is the maximum number of

nonzero entries in A? (Equivalently, what is the minimum number of zero

entries in A?)

We note that for n ≥ 2, the minimum number of nonzero entries of an n × n

sign pattern that requires n distinct eigenvalues can be easily seen to be

n − 1, which is achieved by an (n − 1)-cycle sign pattern.

Question 3. Find some new sufficient and/or necessary conditions for an

irreducible n × n sign pattern to be in DE.
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