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network finds its use in recommender systems, a tree-based format is useful in hierarchical

data representation. Graph traversal also has several use cases such as edit-distance, sorting,

parentheses matching etc.,. Hence, modeling data as a graph lets us tap into the vast

collection of graph algorithms and theorems that find practical uses with inter-related data.

1.5 Path Queries

In this dissertation, we focus on simple graph path queries of the type shown in Figure

1.1. Such path queries find applications in several areas including Internet of Things (IoT)

systems and Social Networks. Consider the sample graph G and the query graph Q shown

in Figure 1.3. It could be used to represent the friendship structure of users in a Social

Network or could also be used to represent the running route of a user in an Internet of

Things system, depending on how the vertices and edges are modeled.

Figure (1.3) Sample Graph G and Path Query Q

We define a path query as consisting of a set of blocks, each block defined by a vertex
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label, direction and edge label. A query Q of length n can be defined as

X =


(si, di, li), if i = 0, 1, ...n− 2

si, if i = n− 1

(1.1)

where si ∈ Σ is the vertex label, di ∈ {o, i} is the edge direction and li ∈ Φ is the edge label.

For brevity, we represent each query block as qi.

For example, the path in Figure 3(b) can be divided into 4 blocks as follows:

block 0 - (A,o,a)

block 1 - (B,o,c)

block 2 - (D,o,a)

block 3 - (C)

Notice that block 3 is defined only in terms of the vertex label as it forms the last block

of the path query.

1.6 Distributed Path Queries

A graph is considered to be distributed across the processors, if the data is split into

several partitions, with each of the partitions stored in multiple processing units. The major

difficulty in partitioning the graph results from the interconnected structure of the graph. For

optimal distributions, it is desirable to have fewer edges that crossover between the partitions,

so that the information contained in a partition is maximal with respect to answer queries

related to the data contained in it.

The partitioning strategy used dictates the performance of the distributed graph appli-

cation, as it is crucial to maintain the computation to communication balance. While a single

hash partitioning, where the vertices are distributed based on the hash-index of their vertex

is sufficient, typically, graph partitioning algorithms are utilized to form optimal segments

of the graph that minimize edge crossovers between processing nodes.
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Figure (1.4) Path Query

DEFINITION 1 (DISTRIBUTED PATH QUERY) Given a network G distributed

over a cluster, and a query path Q, the distributed graph path query problem is to find all the

distinct matchings of Q in G, that may or may not span multiple processing nodes.

EXAMPLE 1 Figure 1.4(a) represents a network graph that is stored across a cluster, with

the partitioning indicated by dotted lines. Figure 1.4(b) represents a query graph. Numerical

identifiers are used to represent vertex ids and the vertex labeling is indicated by capital

alphabets and edge labeling by small alphabets. The subgraph with V (G′) = {6, 8, 9, 10},

highlighted in blue, matches Q and is hence returned as a matching path.

1.7 Applications

Graphs find their uses in a variety of fields. Social Networks, Internet of Things, Bio-

Chemical networks, Network analysis, Recommendation Systems etc.,. are a few of those.

Since in this dissertation, we focus on graph exploration using path queries, in this section

we site some examples for graph path queries in two different application fields.
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1.7.1 In an Internet of Things system

Consider the network graph representing a users running behavior shown in Figure

1.3(a). Let us assume the data is gathered from the wearable fitness tracker used by the

user. Let the vertices represent specific landmarks along the running route and the edges

represent the path taken to reach one landmark from the other. Let the vertex labels,

denoted by capital alphabets represent the elevation range at each landmark and let the

edge labels, represented by small letters represent the average speed of the user to run along

that edge. The legend in Figure 1.5 gives the description of the vertex and edge label types.

Representing this data in a graph form gives a visual representation of the data and also lets

us uncover relationships through efficient graph traversals. Here, the query in Figure 1.3(b)

Figure (1.5) Graph in Figure 1.3 as an IoT system

helps identify frequent running patterns of the user with respect to the elevation of the place

and the running speed. Such queries may be used to find the running routes that maximize

a person’s performance and suggest similar alternate routes.

1.7.2 In a Social Network

The graph and the query path in Figure 1.3 can also be used to represent a Social

network, based on how the graph is modeled. Let the graph G represent a social network

depicting interactions between people with different occupations. Let the vertex labels denote
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occupations and edge labels denote the relationships between the people. The legend table

in Figure 1.6 gives the descriptions of the vertex and edge labels.

Figure (1.6) Graph in Figure 1.3 as a Social Network system

In this context, the query graph in Figure 1.3(b) traces “All Engineers who know a

Doctor who treat a driver who knows a Teacher”.

Such paths are also applicable in identifying network traces, user behavior in a smart

environment, traffic cause-effect analysis etc., We represent path queries to start and end with

a vertex type, connected in-between by a sequence of alternating edge and vertex types. A

path of length thus contains different segments. Though we do not use the syntax for regular

path queries, our model can be easily extended to suit them.

Graph path querying involves identifying all matching graph substructures that satisfy

the issued query. Consider the graph shown in Figure 1.3(a) and the query given in Figure

1.3(b). The graph substructure matching the query is highlighted in blue in Figure 1.3(a).

Since the entire graph data can be huge, in order to restrict the search space, a few seed

vertices are identified and the path is grown by following the conforming edges starting from

the seed vertices. The seed vertices restrict the search space to a few likely points on the

graph and the path is grown either by a traversal operation or by a series of join operations,

depending on the data representation format. In either case, for a query of length n there

are at least n − 1 iterations of examining if a certain path is viable and then growing the

feasible path.
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PART 2

RELATED RESEARCH

The origin of graphs as a significant data structure can be traced to the days of Euler.

He famously demonstrated a route through the city by visiting each of the bridges only

once [6], by modeling the bridges and the route connecting them as vertices and edges of

a graph. However, after a period of inactiveness, graphs started gaining prominence with

the development of World Wide Web in the early 80s-90s. With more and more data being

collected, people started analyzing this data to predict patterns and infer knowledge and

more work was done towards graph data analysis. Several algorithms were developed for

graph analytics such as mining frequent sub graphs [7] [8], graph clustering [9], [10] and

similarity searches [11] . Most of these were in-memory algorithms that operated on small

datasets. Persistence of graph data was not generally required as these algorithms were

typically run on the intermediate result of a larger analysis engine.

2.1 Graph Representations

As the size of data increased and graph-like data continued to gain importance, persis-

tence of graph data became necessary. Data storage formats started out from simple XML

files to traditional relational databases. This led to research about the storage representa-

tions for graph data. The simplest form to store graph information was through adjacency

lists and matrices.

An adjacency list stores the unique ids of all the connecting vertices for each vertex

in the graph in the form of a list. This was a simple enough data structure to store the

graph information as it captured the essence of the graph by storing the neighborhood of

each vertex as a list and also accounted for easy graph inserts, deletions and modifications.

However, it could not handle properties for both vertices as well as edges. An adjacency
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matrix on the other hand was more inclusive in that, it allowed us to store weighted graphs.

An adjacency matrix is a square matrix whose size was equal to the total number of vertices

in the graph. The presence or absence of an edge between two given vertices was represented

by a non-zero entity in the matrix position given by the corresponding vertices. However, it

was not possible to store multiple properties for the graph objects and also, the size of the

matrix was a prohibitive factor, especially for sparse matrices. Both these forms of repre-

sentation required additional storage mechanisms to store vertex properties. The adjacency

list/matrix representation was merely an index system built on the original information

about the vertices to account for the edges between them. The other disadvantage of such

a representation was that for directed graphs, navigating the edges in the opposite direction

was not readily possible. A complete database scan was required to traverse the edges in

the inverse direction. In a graph database, such inversed path queries are far too common

to adopt this approach to storing edges.

Research was also made to reduce the memory footprint by trying to compress the

graph data. Though graph data is generally not homogenous, several characteristics like the

degree, density follow a standard power law distribution [12] that can be exploited while

compressing the data. Boldi ang Vigna [13] developed several compression techniques on

web graphs including compression by gap encoding, interval representation and reference

compressions. These techniques were especially effective on web graphs because most web

graphs share a common vertex and exhibit community behaviors, both of which are useful

characteristics while trying to compress data. This way, the information regarding a specific

node or a community can be encoded in a smaller amount of data and this data can be used

to represent the.

While such compression techniques helped in reducing the total size of the graph data,

the issue of data locality was still present. Especially for navigation-intensive applications, it

was desired that the graph vertex along with all its neighbors be represented together such

that it can be retrieved in as many less disk reads as possible. For graph applications that

used a breadth first navigation technique, Al-Furaih and Ranka [14] suggested storing the
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graph by labeling the vertices in a breadth-first format. However, this technique would only

work if the traversal always started from the origin vertex and performance decreased with

the distance of the start vertex from the origin. Since graphs can be efficiently expressed as

matrices, several matrix algorithms including bandwidth minimization techniques [15] were

used to order graph objects for storage. GSpan [16] utilized a discovery based depth-first

technique for graph storage. Both of these techniques do not fare well for updates, in which

case the entire structure has to be re-written.

Most of these storage representations were dependent on the target application. While

graphs themselves are generalized structures that could be adapted for several disciplines, the

storage and retrieval methods need varied optimizations depending on the usage. STINGER

[17] is a generalized graph representation format which was aimed to be universally applica-

ble for several disciplines. The data model was developed to be portable between multiple

languages and frameworks without compromising on performance and scalability. The stor-

age structure comprised of an in-memory component and a disk-resident component with the

in-memory component acting as an index for the graph structure. However, this model did

not provide much optimizations for type-intensive graphs whose queries depended heavily

on type-based constraints.

The graph model utilized also directly impacts the choice of graph representation.

GraphGrep [18] assumes only vertices to have labels. The storage in GraphGrep consists of

two tables, the label paths and a fingerprint table. The label paths stores the set of vertices

belonging to specified types that have a path between them. The fingerprint table serves

as an index for the entire graph, storing the number of paths that exist for a given label

sequence.

2.2 RDF Databases

The development of the World Wide Web and semantic engineering also resulted in the

large scale development of RDF data. RDF, short form for Resource Description Framework

is a standard format for data interchange on the web. The data model consists of a set of
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triples (subject, object, predicate) that tie objects with their references. The structure of

RDF data forms a directed, labeled graph where the vertices represented resources and the

edges represented the links between the resources. Using this simplified data model, RDF

evolved as a primary model for storing unstructured data due to its flexible architecture and

ease in merging and adapting to different schemas

RDF data storage and retrieval is a very active research field complete with specialized

storage formats and dedicated access methods. SPARQL [19] has been adopted as the

de-facto standard for querying RDF databases. The structure of SPARQL allows a direct

mapping from SQL queries and hence has facilitated relational databases to be used as

storage mediums for RDF data. Several storage systems were created that were optimized

for storing and retrieving triple data structures. Some of the systems [20], [21] were built

upon traditional relational stores that were optimized for RDF, while some others like [22],

[23] were built from scratch especially for RDF data. RDF was marked by the huge volume

of data it generated and hence scalability was an important part of RDF systems. Many

systems like [24], [25] supported distributed architectures in which both the data storage as

well as processing was distributed over a cluster.

It might seem natural to adopt the techniques on RDF systems and apply them into

graph databases, given that RDF data is also graph-like. But there are quite some differences

between RDF and graph data that prevent us from doing so. RDF can be considered as a

simplified form of graph data that links up different resources. There is a regular pattern

to the structure and to the queries. An RDF data does not support properties for its edges

the way regular graph does. Hence, if we were to convert a general purpose graph into

RDF, the attributes of objects are masked into separate relationships between the object

and the attribute value. This prevents us from making deep, meaningful queries involving

attributes, as is the usual case in a typical graph ecosystem. Also most indexing techniques

for RDF data relies on the uniformity of the structure and hence do not apply well towards

general purpose graphs. Hence, it is not possible to directly use RDF technologies for general

purpose graphs.
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RDF databases also distribute their data based on “predicate” values. However, such

a distribution is not possible for general purpose graphs due to the imbalance in the type

and number of predicates and the kinds of queries that would be made in a general purpose

graph. The relationship structure in general purpose graphs also do not permit distribution

based on predicates.

2.3 NoSQL Databases

The development of NoSQL databases helped address schema-less architectures and

thereby created alternative methods to store graph data. Column based databases were and

still are the primary storage back ends for high scale graph data including RDFs. Especially

the BigTable databases like Cassandra [26], HBase [27] offered massive scalability and dis-

tributed processing support. Column databases differ from relational databases in that the

data is stored in a columnar manner. This resulted in reduced seek time for queries since

the locality of reference allows data to be found using minimal number of disk scans. Never-

theless, they were ill suited for traversal-intensive queries due to their logical representation.

Object oriented databases like Db4O [28] offered a storage representation as close as

possible to the logical layout. For small to medium sized graphs whose entire data could be

loaded into memory, these databases provided the best solution to store graphs. The logical

representation was exactly the same as the physical storage representation and eliminated

the need for any conversions in data for storage and performance reasons. However, for

large data, the serialization and deserialization required multiple run time object packing

and unpacking, and hence was not efficient even with advanced object mapping techniques.

Several other NoSQL systems including key-value stores like the BerkeleyDB [29] and

document stores like MongoDB [30] were experimented as graph stores with limited benefit.

The key factor affecting performance was the un-optimized data storage structure employed,

which prevented graph-intensive queries from achieving better performance. Indexes were

heavily relied upon which added to additional storage space and added additional overheads,

especially during data inserts.
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2.4 Graph Databases

Neo4J [31] was one of the leaders in developing a true graph database engine optimized

to support storage and retrieval of graph data. Branded as a “native graph database”, Neo4J

developed a data model that stored each vertex, the data associated with the vertex and

the edges associated with a vertex as a series of pointer connections. The model supported

a full property graph with multiple edge types and multiple edges between its vertices.

The database was divided into three main regions, one to store the vertices, one for the

relationships and one for the properties. It attempted to provide a continuity between the

logical and physical representations of the graph by combining the details of the vertex and

the edge as a series of pointer directions.

The concept was to model the details of every graph object in an unbroken chain,

in which each link is formed by a specific detail about the object. Each vertex record

pointed to a property record and a relationship record if present. The relationship record

in turn points to the previous and the next relationships of both the vertices involved in

the relationship. Thus, to navigate a path in the graph in Neo4J, one would only have to

narrow down the starting vertex. From then on, it would be a simple matter of following

the pointer connections, alternating between a relationship record and a vertex record. Each

record is of a fixed length and directly pointed to the physical location in the disk of the

connecting record, rendering a constant time access O(1) to reach any record. Thus, the

database adopted a completely index-free adjacency structure to store the graph, rendering

even inverse queries straightforward. Once a specific relationship record is reached, the user

can navigate either towards the head node or the tail node with no reduction in performance.

A similar concept is adopted for properties too, where one property would lead to the next

property of the graph object. Properties could be indexed by third party indexing systems

like Lucene for improved performance.

The primary issue in this design was that it was not possible to obtain all the details

of a given vertex in one consolidated place. Each additional edge or property required one
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pointer reference and hence the time taken to collect all the information about any vertex

in a graph with max degree ∆ was O(∆). This poses serious performance concerns in real

world graphs with larger degrees. This was because, it was impossible to even know if a

given vertex contained an edge of a certain type without going through all the relationship

records that are associated with the vertex. Also, Neo4J heavily relied on cache performance

to efficiently handle large scale data. Three levels of caching were utilized to limit disk

access. However, due to edge-localization issues, it cannot be guaranteed that all the related

information about a vertex can be obtained and stored in the cache beforehand. Hence, this

posed a serious limitation on the DRAM space required for optimal performance.

Though Neo4J supported a distributed processing environment, the parallel processing

was achieved through data replication instead of data partitioning in the true distributed

sense. Simultaneous query processing was provided using multiple high availability clusters

where the same data was replicated in multiple processors for simultaneous access. While

this helped serving multiple user requests, it was not primarily aimed at processing a single

query in a distributed fashion.

Dex [32] is another high performance graph database that uses a series of bitmaps to

store graph data. The idea is to partition the entire graph into different segments such that

each segment can be loaded into memory based on need. The storage model for DEX can

be split up into three main sections, one for the graph objects, one for the relationships and

the other for the attributes. The graph object section assigns unique identifiers to vertices

and edges and uses a bitmap structure to group the objects by their types. The relationship

segment utilizes two bitmap structures, one to store all the edges that have a particular

vertex as their head vertex and the other one to group vertices at their tail. The attribute

bitmap stores the graph objects that share the same value for the same attribute.

This way, the entire graph need not be in memory at all times. Depending on the query,

parts of the graph can be loaded and accessed from memory. This method also voids the

use of indices since the bitmap structures themselves serve as efficient indices for the graph.

By grouping all the vertices that are the head/tail vertices for any given vertex together, the
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system greatly improves path queries in both directions. In order to follow a path from the

vertex, all we have to do is to reach the bitmap record pointed by the relationship bitmap

corresponding to a given vertex. So, if we need to continue along the head node of a given

edge, we examine the head bitmap and look up the vertex which is at the head node for the

given edge. Now, to go to the next vertex in the path, we have the entire neighborhood of

the head vertex to choose from. A similar approach can be obtained for the other direction

too making the graph traversable in all directions. The other advantage of DEX was that

joins could now be replaced by simpler set operations due to the use of bitmaps. Complex

filtering operations could be done by set intersections between bitmaps, which are more basic

operations.

Examining the data structure of DEX, we find that in order to navigate the entire graph,

we need to move back and forth between the different bitmap structures. So, though the

aim of segmenting the graph into smaller units is to create better memory occupancy, due

to the need to alternate between the different graph segments, there is an additional time

required for memory loading and unloading. Therefore, while DEX is extremely efficient

in shallow search queries where the neighborhood of the query examined is small, for deep

queries involving longer paths, the extensive memory allocations and de-allocations cause

additional overheads. There is also the issue with the bitmap structures. As the size of the

graph increases, it would be impossible to use an absolute bitmap reference for each graph

object. Hence, it would be necessary to pack the bitmaps in a compact representation format.

This conversion also creates additional overheads. Insertions and deletions also become

cumbersome as it involves unpacking and repacking all of the bitmap objects involved.

OrientDB [33] is a hybrid NoSQL database that serves as a multipurpose document

and graph database. It uses a JSON based structure to store information about the vertices

and edges. The concept here is to treat the entire graph as a document, with the edges and

vertices forming the individual items. There are two basic JSON structures, one to the store

the vertices and the other to store the edges. The vertices document lists all the vertices

in the graph along with their properties and connecting edges, both incoming as well as
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outgoing separately as fields for the document. The edges referenced here are contained in

another document housing the edges, where each edge lists down its head and tail node along

with its properties.

So, in order to navigate the graph, the user would have to find the starting vertex,

follow the edge to the edge document and find the vertex forming the other end of the edge

and so on. One advantage of OrientDB is that unlike Neo4J and DEX, the properties of

the graph are stored along with the graph objects to which they belong. In that sense, it

stays true to the graph structure in which all the details about the graph object, be it the

vertex or the edge, are stored together. Since it stores both the incoming as well as outgoing

edges, it supports both forward as well as reverse traversals. However, there is a lot of back

and forth that is required between the vertex and edge documents to navigate even a single

path. Separate indexes are required to store the vertex and edge types and there is no way

to directly find if the vertex has an edge of a certain type. Hence, additional overheads in

terms of maintaining indexes becomes essential. So, a high performance degradation can be

observed in the case of deep queries and also for graph related algorithmic operations like

the shortest path and clustering.

2.5 Graph Indexing Techniques

Several innovative indexing models have been proposed for managing large graphs.

Graphs are unique in that they are as much about the data contained as they are about

the structure of relationships and without the structure, the data has no meaning. Rela-

tional databases have been around for a very long time and have developed efficient indexing

methods to retrieve data. But the concept of relational indices are built around the idea that

all the information associated with a given object is contained within the same table. Struc-

tural queries are usually performed through joins. Since the concept of a graph database was

to eliminate the need for joins, much more specialized indexing methodologies are needed.

Structural queries come in many forms and most algorithms concerning graph struc-

tures are intractable. A good example is the subgraph isomorphism problem, which is NP
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complete. To address this, a variety of structural indices have been proposed. The idea is to

capture some information about the structure of the graph during graph creation time and

later use this as a filtering criteria during query evaluation.

The most common type of graph structure indices are the path based indices. Some

path information is extracted from the graph, which could be then used to solve frequent

queries like the shortest-path and structure similarity. The fingerprint table used in [18]

is an example of path-based index. Storing the labeled walk of the graph is yet another

indexing technique as used in GRACE [34]. While these two techniques can efficiently index

a large collection of small graphs, several indexing techniques were also developed to address

a single large graph. Jin et al [35] used an edge-label based indexing technique to determine

if there existed a path between two vertices such that the edge labels are totally contained

within a set A.

The other way of indexing a graph structure is to extract substructures from the graph.

Common data mining techniques such as frequent subgraph mining are used and combined

together in a global indexing structure which are then used to filter candidates during query

evaluation. gIndex [36] is a graph substructure indexing technique used for maintaining

frequently occurring substructures in a database of labeled, undirected graphs. The concept

of a graph closure was used in [37] to group vertices and attributes of a graph as a set of the

vertices and attributes involved whereas [38] indexed frequently occurring tree structures.

Spectral indexing methods were also employed for multi-dimensional and hierarchical graph

databases [39], [40] by representing graph structures as vectors in a hypothetical space.

GString [41] builds a structural index considering the semantics of the graph. Mainly aimed

at graphs in the context of organic chemistry, it uses semantically meaningful structures like

the Line, Star and Cycle to index the graph.

2.6 Distributed Graph Databases

As the scale of the data concerned grows, traditional single processor systems become

obsolete, and it is imperative to adopt a distributed approach to data handling and process-
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ing. Several attempts have been made to develop a completely distributed solution to graph

data processing. NoSQL databases like Titan [42], OrientDB [33], Infinitegraph [43] have

provided distributed capability for graph processing. Titan uses existing BigTable structures

like Cassandra [26], BerkeleyDB [29], HBase [27] that are already equipped for distributed

processing, as its storage backend. Thus, while Titan provides graph specific optimizations

for querying, it is not a truly graph-oriented database and relies on off the shelf utilities for

scalability. Infinitegraph builds upon its own distributed database engine ObjectivityDB to

provide distributed support.

SPIDER [44] is a distributed system for evaluation of large scale RDF data. It uses the

MapReduce framework of Hadoop [27] to distribute the data and well as the processing over

a distributed environment. The RDF data is partitioned based on the URLs to preserve

graph locality and reduce communication costs. Each graph partition holds a subgraph of

the entire graph and queries are performed only against the subgraph contained. A further

refinement step combines the results of all the partitions to produce the final result.

Gbase [45] also used Hadoop Mapreduce to distribute the storage and processing of large

scale graph data. However, it attempted to use a unique storage representation by adopting

“block compression” to store homogeneous sections of graphs together. It also used a special

block placement strategy such that disk reads are optimized for the most common graph

queries.

While these are persistence-based distributed solutions, other memory-based distributed

solutions have also been developed. Trinity [46] is a distributed graph engine based on a

memory cloud. It combines a shared memory cloud by combining the DRAM memories of

several machines and utilizes a global index along with optimized memory management and

network communication techniques to efficiently support online query processing and offline

analytics on large graphs.
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2.7 Distributed Graph Processing

While the above approaches aimed at developing the storage side of graph data, there

are yet others that seek to improve query processing on graph-like data. These are techniques

that shifted their focus from the data structure used as storage back end and instead seek

to optimize querying methodologies for graph related queries, irrespective of the underlying

storage format. Several techniques were used including dedicated distributed architectures

like Trinity [46]. However, Hadoop and MapReduce opened up big graph processing to

commodity architectures that were scalable and efficient. Several graph processing systems

used the MapReduce strategy to define several Map and Reduce functions on the graph data

to process and query the graph.

Surfer [47] and GBASE [45] are examples of systems that extend on MapReduce to

process graphs more efficiently. Surfer used a propagation-based implementation model that

shows good promise in edge-oriented graph tasks, but failed to perform well for vertex-

oriented tasks. GBASE adopts a matrix-based processing of graphs with heavy dependence

on I/O access.It relies on a vertex-centric approach and utilizes the Bulk Synchronous Parallel

model. GraphLab [48] is yet another popular distributed graph framework that was written

in C++. It follows an asynchronous distributed shared-memory abstraction which makes

use of a multi-threaded execution model.

However, MapReduce is an I/O heavy architecture that relies on disk persistence after

a map or reduce action. Therefore, natural implementations of iterative tasks like graph

path queries were less efficient and, batch mode equivalents like joins were used to extract

matching paths [49] [50]. Since joins are expensive operations, efficient indexing mechanisms

[51] were required to speedup path queries.

The other option to reduce iterative communication in a MapReduce environment was

to rely on extensive driver side aggregations [52] [53] Each partition computed a partial

result based on the localized data and these partial results were aggregated together in the

driver node. While this method reduced the need for extensive joins and eliminated the need
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for frequent I/O, the heavy driver-dependence reduced parallelism and throttled the driver

due to the high number of intermediate results that need to be processed. [54] implements

regular path queries by partitioning the graph but not decomposing the query.

Google developed Pregel [55] as a vertex-centric parallel graph processing platform.

It decomposed the operations into a sequence of steps, each of which can be carried out

by a vertex independent of each other. Communication between vertices happened at the

end of each super step. This model prevented race conditions and reduced inter-processor

communication by restricting data flow between processors to a specific time period. Horton

[56] is a distributed interactive query engine for large graphs. It comes with its own graph

query language which provides better expression for reachability queries and provides a query

execution engine that allows query execution in parallel. Giraph [57] was developed based

on Pregel [55] introduced by Google. It relies on a vertex-centric approach and utilizes the

Bulk Synchronous Parallel model. GraphLab [48] is yet another popular distributed graph

framework that was written in C++. It follows an asynchronous distributed shared-memory

abstraction which makes use of a multi-threaded execution model.

However, all of these systems either use specialized architectures or depend on the

MapReduce paradigm to process graphs. Spark [58] is yet another distributed processing

paradigm that provides an alternate solution to the disk persistence problems of MapReduce.

Parallel programming libraries like PBGL [59], STAPL [60] provide generalized APIs

for performing popular graph operations like clustering, shortest path, centrality analysis,

in a parallel fashion. Graph partitioning is yet another field that has seem sudden interest

due to the rise in distributed computing. Graph Partitioning algorithms like the METIS [61]

helped partition the graph data according to user defined functions to enable distributed

processing approach. Several strategies like Vertex Cut and Edge cut partitioning are used

in state of the art distributed graph processing systems to segment the input graph into

several segments to reduce the number of edge crossovers.
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PART 3

PROBLEM STATEMENT

The purpose of this research is to develop a graph database that scales well with graph

size without compromising on performance. We propose to improve the performance of large

graph databases by reducing the number of disk reads required for query processing. We

also show that our unique solution can be extended to reduce communication overheads in

a distributed graph setting and aim to develop a distributed model for graph querying.

As the size of the graph grows, a completely memory based system becomes impossible

and disk based persistence and access becomes imperative. But, frequent visits to the storage

device are major culprits in affecting performance, due to the cost of I/O operations involved.

While significantly faster algorithms are being developed to process and analyze graph data,

disk access time serves as the primary bottleneck in achieving good performance. Disk

based access is prevalent and successfully used in all kinds of databases dealing in the scale

of BigData. However, the techniques used to reduce latency due to disk access in the other

databases cannot be directly applied to graph data. In all the other systems, latency is

reduced by following two main techniques data locality and indexing. In all the other

databases other than graphs, the data involved are the primary units of concern. Be it a

relational database or a document database or a key value database, a query is often specified

by introducing a few constraints on the target data.

Now consider the storage principles for these other databases. In most databases except

the graph database, all the required information about the data can be stored together.

Segments of data that are related to each other this can mean data with similar values for

common fields are also stored close by in the physical disk through indexing mechanisms

like hash index [62], B-Trees [63] and R-Trees [64]. Advanced methods are also developed

for indexing textual data [65]. So, when a disk read is performed, most of the concerned
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data is obtained in a single disk scan. Subsequent references to related data are therefore

directly obtained from the cache storage, thereby reducing latency.

Such indexing methods are not possible in the case of graph data, the reason for this

being the unique structure of graphs and graph queries in which the relationship between

the data carries more significance than the data itself. Traditional indexing mechanisms

are highly suitable for indexing value-based characteristics of data. However, these methods

are not suitable for indexing graph data as there is no way to incorporate the structure of

the graph within the index. The graph indexing methods discussed earlier try to handle

a specific subset of the structure designed for the end application in mind. However, it

cannot be considered as a generalized method for indexing graph structures in all scenarios.

Moreover, most structural indices are bulky and building such extensive structure based

indices adds additional overheads in data management.

Graphs can also not benefit from the locality of storage because they are three dimen-

sional structures, where in, there exists no planar embedding for most large graphs. There

is no way a vertex can be stored in a one dimensional plane such that all of its neighbors are

equidistant from it. Consider the property graph shown in Figure 1.1. Vertex 2 has three

neighbors Vertices 1, 2 and 4 connected by edges e1, e5 and e4 respectively. If we were to

capture this exact model in our storage system, then the edges e1, e5 and e4 all have to be

stored equidistant from Vertex 2. But this is not possible, since while representing this graph

in one-dimensional file storage, the best we can do is to store two edges equidistant from

any given vertex. This problem is exemplified as the size and density of the graph grows.

Hence, it is neither possible to store the elements of the graph such that all associated data

be retrieved in a single disk span, nor is it feasible to build comprehensive indices for every

possible structural configuration.

The ultimate benefit of using a graph structure is to exploit the graph-like properties,

wherein accessing a vertex’s neighbors should be as instantaneous as accessing the vertex of

question. A completely in-memory representation of the graph can provide such fast access

due to register access. But, for large graphs with disk-based access, it is not possible to store
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the entire graph in memory. In disk based systems, the concepts of pagination and caching

play a great role in determining the performance. As discussed earlier, the peculiar structure

of graphs causes edge-localization issues and prevent us from storing all required data about

a vertex close to the source. Therefore, part of data is going to be stored all over the disk.

This means, when a vertex is retrieved from the disk, not all the information associated with

it is also going to be retrieved in one go. Hence, multiple disk accesses become necessary,

leading to increased turnaround time for the query.

One possible method to overcome this is to distribute the storage and processing across

several machines such that the entire graph segment contained within a processing unit can

be completely stored in memory. This way, disk reads are eliminated, thereby improving

performance. However, current distributed solutions pay heavily in terms of inter-processor

communication time mainly due to the data structure and the distributed model involved.

For graph queries, this is an especially limiting feature because, a graph query is both struc-

ture as well as data dependent. So, while parallelizing the graph across the cluster, without

collective information about the entire graph structure in a centralized location, multiple

shuffles are required between the processing nodes to completely gather all associated data

about a vertex/edge. These extra shuffles cause additional delays in processing queries due

to the serialization/de-serialization and network access that is required to communicate with

the neighbors to and fro about the graph structures.

Also, graph queries are exploratory in nature. This means that, the continuation of a

certain path along the graph is determined at run time depending on the structure and data

properties of the graph object. Since not all communication can lead to successful query

completion, it is imperative to identify and prune non-viable paths early on in the querying

process. This saves significant time for deep queries involving large datasets by preventing

unnecessary communication overheads.

However, graphs are traditionally considered as indivisible structures and hence there is

no high level structure that can efficiently capture the critical details of the graph in a com-

pact form. Having such an index structure would provide an abstracted graph representation
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that can be examined to determine path continuation ahead of time.

In this research, we propose a novel data storage model for graphs that partitions the

graphs into different segments, with each segment representing a different characteristic of

the graph. We make the most critical segment lightweight enough that it can act as a generic

index for the graph structure. Our model is extensible and generalized to most graph sit-

uations and would also be applicable in a distributed processing environment. With the

proposed data storage format as the basis, we aim to build a completely distributed graph

database that can store as well as process data in a distributed fashion without compromising

on performance by reducing latency due to disk access time and inter-processor communi-

cation.
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PART 4

A SCALABLE STORAGE STRUCTURE FOR BIG GRAPH DATA

Graph databases offer an efficient way to store and access graph like data. Their index-

free traversal patterns make them suitable options for performing a variety of graph related

operations. However, the unique structure of graphs poses challenges in designing efficient

storage and retrieval mechanisms. This difficulty is highlighted for large graphs containing

vertices and edges in the scale of big data. Existing methods either compromise on speed or

resort to distributed environments to achieve scalability in size. In this paper, we propose a

unique solution for a graph database that decomposes the graph data into three dimensions

and adopts different storage mechanisms for each dimension to effectively store and perform

graph operations.

4.1 Introduction

Graphs derive their importance from the representation of connected data, where the

relationships are represented in a visual format. A graph database will not be as effective if

this basic structure is not captured in its storage format. As long as the graphs are stored

completely in memory, advanced object mapping techniques help preserve the fundamental

structure of the graph. This, along with the fact that in-memory access is significantly faster

than disk-based access speeds up graph queries.

But it is unrealistic to use a memory-based storage mechanism for large graphs due to

prohibitive main memory costs. So, as the size of the graph grows, it becomes necessary to

resort to disk-based storage for scalability and persistence. Now, in addition to incurring

performance degradation due to frequent disk-access, there is also an impact due to the

unique structure of graphs that prevent us from capturing the entire structural information

as is, in a one-dimensional storage space.
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Graphs have always been considered as consisting of two logical units the topology and

the data. The topology region defines the connections between the graph vertices and edges

and the data region defines additional attributes to the graph objects. If we examine the

most commonly used graph queries, they are as much about the topology as they are about

the data. Graphs have traditionally been viewed as indivisible structures and hence are not

readily distributed unlike other tabular storage formats.

The other problem in designing a data model comes in the form of speeding up graph

queries. If we consider the relationship between entities in a graph as its topology, and the

entities themselves along with their properties as the data, then most queries in a graph

databased are as much about the topology as they are about the data. A typical graph

query in a Social Network system could be of the form “find me all friends of a person

named john who went to the same school as john”. This is a representative of both a Pat-

tern Matching and Reachability query. If you want to translate this query in graph terms,

you would say, “find me all vertices of type person, who are connected by an edge of type

friend to a vertex of type person having the property name as john and who have the

same value for property school”. The graph components are highlighted in bold. This

query can be divided into its data and structural components. The data component of

this query are given by {name:john,school:same}, and the topology component is given

by {vertex_type:person, edge_type:friends}. More succinctly, this query can be rep-

resented as Person [name:john,school:x] -- Friend--> Person[school:x], where the

data components are enclosed within ’[’ and ’]’ and the rest of the query forms the topology

region. We consider the type of the edges and vertices to be integral components of the

entities themselves and do not view them as properties and hence are parts of the structural

component.

Another query can be “give me all vertices of type Person that have at least five friends”.

This is a typical structural query, which finds more use in biological and chemical networks,

where searching for a specific structure in the graph is the most common query (e.g. find

me all carbon atoms that are connected to two oxygen atoms). In order to perform these
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queries, it is essential to have simultaneous access to both the data and topology regions

of the graph. If the graph is small enough, the entire data could be stored in memory and

the problem is solved. But with substantially large graphs, which is becoming the norm

for most applications, this is not a viable solution. Resorting to disk-based access means

multiple calls are made to the system I/O to repeatedly extract information, which slows

down the response time.

Graph have traditionally been considered to be indivisible units. Some solutions split

the topology region from the property and use a disk based access for the properties, while

the topology region resides completely in memory. This works because the structural region

forms the first line of defense in answering graph queries and can eliminate most I/O calls

to the properties [66]. But, this system also breaks when the graph is too large that the

structural region could not be completely fit in memory. STINGER [17] developed a graph

representation that encapsulated the in degree and out degree of a vertex as a separate

logical entity that can aid in the filtering process. But it was not suited for label based

queries which are the norm in most practical databases. In our work, instead of splitting

the graph into two, we go one step further and partition the graph into three parts by

dividing the topology region into two further parts. We strip the structural parts of the

graph from the topology, creating two layers - the topology structure and the topology

data. Now essentially, the graph is split into three regions the topology structure (TS),

the topology data (TD) and the properties region. The TS region is kept bare bones and

minimum so that it can completely be fit in memory. The TD and the property segments

are stored on-disk, the property region using a traditional RDBMS store and the TD region

using a special data model that we developed. The TS region forms the first filtering layer

and greatly limits further I/O calls to the TD and property regions. Our system caters

to attribute graphs where both edges and vertices can have properties. Our storage model

is geared towards speeding most graph queries. Since only a part of the graph is stored

in memory, it also improves scalability for large graph sizes. We propose that our method

helps improve processing speeds for large graphs without sacrificing scalability. The initial
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experiments conducted against the Neo4J database [31], a popular graph database explained

earlier, prove that our method yields superior results in a variety of queries.

4.2 Data Storage Format

The key to fast query performance for any disk-based database, setting aside querying

techniques and improved algorithms, is to limit the number of I/O calls. In spite of improve-

ments in disk storage and access, access to secondary storage devices serves as the primary

bottlenecks in data-induced latency.

One way to solve this problem would be to implement efficient caching and pagination

mechanisms such that when data is accessed, most of the data that would be accessed

in subsequent calls are also retrieved and stored in the cache. This way, during future

calls to related data, it would be obtained from the cache instead of an I/O call. For a

graph database, this would mean storing a vertex’s neighbors and their neighbors along

with their properties in memory locations closer to the target vertex. But, the inherent

three-dimensional nature of graphs prevent us from localizing a vertex with its neighbors.

That being said, the other way to improve performance is through extensive use of

indexes. Indexes can be built and optimized for a variety of needs and extensive research

has been made in this field that can be tapped into. Considering the difficulty in building

comprehensive indices for the entire graph structure, they are generally optimized towards a

specific query and would not work in a generalized database where the range of queries are

large. Also, as the size of the graph grows, the memory limits pose a check on the amount

of indexes that can be had on memory.

In our research, we wish to improve query performance without trying to rely on cache

performance and without the extensive use of indexes. We wish to preserve the actual

structure of the graph as close as possible in the data storage model. Accordingly, we divide

the entire graph into three parts the Topological Structure (TS), the Topological Data (TD)

and the properties region. We consider the TS to be the backbone skeleton of the graph and

hence offer it the highest position in order of importance. The properties region come next
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and finally the TD region is accessed once the query clears through the top two regions.

The three segments of the graph the TD, TS and property define the three key di-

mensions of graph data. The property segment contains all the attributes associated with

a graph entity. The TD segment gives information about the neighbors of a vertex and

hence defines the relationship between the graph entities. We introduce a third dimension

- the TS -which describes the structure of the graph without giving details about the ac-

tual neighbors. The graph topology is stripped of any information about the actual objects

defining the relationship and a third dimension - the structure, that serves as the skeleton

and placeholder for the actual objects is created. In essence we have normalized the graph

data akin to a relational database. The three segments are explained in detail below.

4.2.1 Topological Structure (TS)

The topological structure forms the first line of defense for our query. It extracts the

structure of the graph on a higher level of abstraction without going into details about the

actual data elements. The data in the TS part gives you the overall skeleton of the graph

without any information or reference to the graph entities. Passing a query through the TS

eliminates most next level fetches to the properties and TD regions, both of which involve

I/O access.

When we look at a graph from a human standpoint, the things that capture our attention

are the vertex type, the type and number of edge of different types connected to the vertex

and the presence or absence of properties without actual concerns about the exact vertex

object or edge object. This gives a very high level perspective of the graph. This structural

information is encapsulated in the TS region of our system. To describe the structure

information of Vertex 1 in the graph given in Figure 1.1, we would say “Vertex 1 has property

“name”, has one outgoing edge of type “Works For” with property “years”, one outgoing

edge of type “Works With” and one incoming edge of type “Knows”. This information is

captured into the TS part of Vertex 1. Each TS entry is of the form shown in Figure 4.1

The first byte represents whether the vertex is deleted or active. The next bytes gives
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Figure (4.1) Topology Structure Region

information about the type of the vertex. This allows our system to represent up to 28

different vertex types. The next two fields are bitmaps that represent the presence or absence

of an edge type by a 1 or 0 respectively. The next field gives a count of the number of outgoing

edges of each type connected to the given vertex. Each count is represented using 2 bytes.

The next field gives a count of the number of incoming edges of each type connected to the

vertex. This again uses 2 bytes per count. So, the total number of edges that are supported

by our system for each type are 216 each for incoming and outgoing for every edge type. The

counts are placed in the same order as the edge types.

Figure (4.2) Topology Structure Example

The size of the last three fields of the TS vary with the number of different types of

edges the system can support. We believe, these parameters are design time decisions and

have to be set before creation of the database. However, since the size of our TS region is

quite small, it wouldnt take long to update the fields for all the vertices if required. That

way, additional edge types can easily be incorporated into our system.

For the number of edge types fixed at 8, the structure record for vertex 2 is given in

Figure 7.1. Note that the incoming and outgoing edge counts are expressed as words (4 bits)
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for brevity. The node and edge types for Figure 1.1 are given in the tables by the side. The

same order of edge types is maintained throughout the database for proper correlation with

the topology data.

The TS data resides completely in memory. Consider a graph with n vertices, ne different

edge types and np different property types for the vertices. The total size for each record in

the TS region in bytes is given by:

size =1 + 1 +
ne

8
+
ne

8
+ 2ne + 2ne

=2 +
17

4
ne

So, for a system with ne = 8, the size of each record in the TS region is 36 bytes. So, for

1 million vertices, this is only going to take 36MB of data to store the TS region of all the

vertices, which is quite a small size. The other interesting aspect of our TS system is that

the total size only depends on the number of vertices and the number of edge types, and is

agnostic of the number of edges. In any typical graph, the number of edges is significantly

higher than the number of vertices and in this way, our system performance is independent

of the density of the graph.

4.2.2 Topology Data

The TS region is incomplete without knowledge about the actual vertices and edges of

the graph. This is provided by the TD region. The TD region works in conjunction with the

TS region to decipher the complete topology of the graph. Each record in the TD section

describes the neighborhood of a vertex and contains a pointer to the physical position of the

neighboring vertices.

The order of the neighboring vertices follow the same sequence as described in the TS

file. That is all the outgoing vertices are stored first, again following the sequence given in

the TS record, followed by all the incoming vertices, again in the same order.
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In order to enable fast lookups in the database file, we make each record size a constant

in the TD file. The position of each record in the TD file corresponds to the id of the vertex.

So, the record for vertex with id=5, for example, is stored at position 5 in the TD file. This

way, navigating to any vertex record is made easier as it corresponds to the id. Now the

actual position of a vertex can be calculated by multiplying the position with the record size.

Hence record position calculation takes O(1) time instead of the O(logn) time that would

be required for performing a search.

But, maintaining a fixed record size for each vertex is not straightforward as the number

of neighbors for any given vertex can vary hugely with each other. In real graphs, we have

seen this variation to be from 0 to thousands of neighbors. In order to fix this, we set a limit

on the maximum number of neighbors each TD file can handle. If, for a vertex this limit is

exceeded, then we create another TD file to contain the spillover neighbors.

The newly created TD file also follows the same structure as the initial TD file. The

spillover neighbors of vertex with say, id=x, will still be stored at position x of the new TD

file. So access of neighbors does not differ from the original file to the newly created files as

the record to be obtained is located at the same position.

Now, if another vertex, with id=y, wants to store additional neighbors, it can store at

position y of the TD file that was already created to store the extra vertices of vertex with

id=x. Therefore, if the max degree of the graph is, and if the threshold for the number of

neighbors in each TD file is, then the total number of TD files created would be.

In order to properly access the neighbors in all the overflow files, the correlation with

the TS file is maintained for each record across its entries in all the TD files. That is, the

records for the vertex across all the TD files are treated as one large record. This way, the

order of vertices is matched with that of the TS file. Therefore, in case of an insert of a

neighbor later on, the neighbor vertex is inserted at the position that corresponds to the

edge sequence and the rest of the neighbors are pushed on to the next TD files.

We use 4 bytes to store each neighbor. Which means, right now our system can handle

up to 232 different vertices. The type and direction of the edge are determined from the
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TS file as the records of the TD file directly correspond to the TS file. So, we do not have

any detail about the neighbor vertex stored in the TD file. As mentioned above, in order to

decode the topology of the graph, the TD and the TS files work in tandem.

Figure (4.3) Topology Data

The topology structure record for Vertex 2 of Figure 1.1 is shown in Figure 4.3. The

structural information of Vertex 2 is required in order to decode the structural region entry.

The TS data for Vertex 2 gives us the information that this vertex has no outgoing edges

and has 3 incoming edges, of which 2 belong to edge type 0 and 1 belongs to edge type 1.

Hence in the given TD record, the first two entries belong to vertices connected to Vertex 2

by an incoming edge of type 0 and the last entry indicates that the vertex is connected to

Vertex 2 by an incoming edge of type 1. If the max number of neighbors in in each TD file

is set to be 32, then the size of each TD record ∆, is 128 bytes. So, in the case of Vertex

2, since it has only 3 neighbors, the first 12 bytes are used to store the neighbor positions

and the last 116 bytes are left empty. This space can be used up if additional neighbors are

added to Vertex 2 in future before spilling over to additional TD files.

4.2.3 Properties Region

The property region forms the third segment of the graph. Both vertices as well as

edges can have properties. The property information is stored in an RDBMS system with

separate tables for the vertices and edges. RDBMS has been around for decades and lot of

research has been put into making the system as efficient as possible. While we can argue

that an RDBMS is not the most efficient structure for storing graph databases due to the
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number of joins required to uncover relationships, it is optimized for storing tabular data.

Consider the properties of a graph entity, be it a vertex or an edge. These are inherent

attributes of the entity and have no relationship between other entities in the graph. When

we try to extract all the properties of an entity, which is a very common query in a graph

database, we would want all the properties of an entity to be stored along with the entity

itself. This is the ideal scenario of an RDBMS that follows a Row-Major order.

The other kind of query on properties could be to extract all the vertices that satisfy a

given set of properties. This is also easily done in an RDBMS by making use of the efficient

indexing and optimization techniques developed for RDBMS. Hence we justify our use of an

RDBMS to store the properties of the vertices and edges of our graph.

Figure (4.4) Sample RDBMS to store properties

We have two separate tables to store the properties for vertices and edges. The VProp

table contains the id of the vertex as its primary key, along with all the properties as

individual columns. We adopted this approach as opposed to normalizing the properties

across different tables to eliminate joins in the database. Since our queries to the RDBMS

are only to extract the properties given the id and the id given the key-value pair of the

properties, this approach works fine for us. The only time this system suffers is when a

new property has to be added in which case the entire database has to be updated. Also,

this way of storing does generate a sparse matrix structure and increases storage size. But

at this point, we are not worried about storage and are more concerned about querying

performance. We are also experimenting with adopting a normalized approach to manage
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these problems.

A similar approach is adopted for the edge properties. The EProp table contains the

columns fromId and toId, which together form the primary key of the table. They denote

the tail and head vertex for each edge. This way, edges do not have separate ids to identify

themselves. Instead they are identified by the two vertices involved in the edge. The prop-

erties for the edge are stored as individual columns. The structure of our RDBMS is shown

in Figure 4.4.

4.3 Query Evaluation

The reason towards splitting the graph data into three parts is to speed up query

evaluation for a range of graph queries. Let us consider the basic structure of a graph

query. A typical graph query, be it a path query, reachability queries, k-hop queries can be

abstracted to be of the form given in Figure 1.2. Each entry contains the type of the graph

entity (vertex/edge), the edge direction and the optional properties that the entity has to

satisfy.

Splitting the graph into its properties and topology as done by Sakr et al [66] lets us

first check the in-memory component, which is the topology of the graph. If this test passes,

then the property region is accessed to further extract relevant elements. This approach

works well if the entire topology data can be loaded into memory as was the case of by Sakr

et al [66]. But when this is not possible, which happens to be the case for large graphs,

the secondary storage unit has to be accessed to perform the query, which causes serious

performance drops due to the multiple I/O calls. Our method of splitting the topology data

into the TD and the TS parts helps eliminate this problem. The TS data, which captures

the high level abstraction of the structure of neighbors of a vertex is always on memory

and hence can be checked first to ensure if a certain path down the graph has to traversed

at all. This sort of creates an exploratory querying in which only those paths that have

a high probability of reaching the result are pursued while the others are dropped. For

example, suppose we want to query all the neighbors of a vertex connected by a given edge,
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knowing that the vertex has no edge of the given type stops the query right there. This

saves significant time in terms of unwanted calls to the storage unit. In our experiments, we

found that this resulted in significant gains in query performance.

At the start of the execution, the Topology Structure region is loaded into memory,

using the following data structure for each record:

{

byte d e l e t e d ;

by te ve r t exType ;

by te incomingEdgeBitmap ;

by te outgoingEdgeBitmap ;

s h o r t [ ] outgo ingEdgeCount ;

s h o r t [ ] incomingEdgeCount ;

by te p r op e r t i e sB i tmap

}

We used a bitmap to store the presence or absence of an edge type to obtain improved

performance in two fronts. First, it becomes a constant time access to check for the presence

of edges for each edge type. Second, this allows only those edge types which are connected

to the vertex to be loaded in memory in a packed array format. This saves a lot of space

on memory because not all vertices have all types of edges connected to them. So, an edge

count is loaded onto memory for a vertex only if it has at least one edge of that type. The

edge count of those edge types that are absent for a vertex are not loaded into memory. This

way, even though the size of each Topology Structure record is 37 bytes, it is the maximum

value and in reality takes up much less space when stored in memory.

When a graph query is encountered, the Topology Structure region is first queried to

retrieve a set of vertices that satisfy the vertex type and the edge types. The Topology

Structure region stores the number of edges of each type that the vertex is connected to. An

additional index stores the vertex numbers corresponding to each Vertex type. The execution

plan for all graph queries is as follows:

1. Query the Topology Structure region to get the list of vertices that satisfy the first
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Vertex, Edge Type and Properties in the query

2. If the query contains properties, query the RDBMS on the set of vertices obtained

from Step 1 and obtain a subset of the input vertices that satisfy the properties

3. Return the neighbours from the Topology Data section for those vertices returned by

Step 2.

4. Return to Step 1 for the next Vertex-Edge branch in the query

As we see, Steps 2 and 3, which access the secondary storage unit, only work with a subset

of vertices obtained from the previous step, as opposed to the entire graph. Also, due to our

implementation of random access methods in the Topology Data section, retrieval of edges

in Step 3 is also accelerated, resulting in a shorter turnaround time. This query evaluation

method remains the same for different kinds of queries like the path queries, k-hop queries and

structural queries. Accesses to the secondary storage unit to retrieve the TD and property

sections were limited to the queries listed in Figure 4.4 and Figure 4.6.

Figure (4.5) Queries to the RDBMS

4.4 Experimental Results

We tested our method on an i3 processor with 6GB RAM and 256GB Secondary Storage.

The entire experiment was programmed in Java 7 and MySQL 5.5 was used as the RDBMS.
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Figure (4.6) Queries to the TD region

We used the GPlus dataset from the SNAP [12] website. This dataset consists of 107614

vertices and 13673453 edges. The vertices and edges did not have specific types. So we

randomly generated vertex and edge types using a maximum of 8 vertex types and 8 edge

types.

4.4.1 Memory Utilization

In order to measure the relative performance of our system with established methods, we

tested our system against the popular Neo4j [31] database. We did not compare our system

against G-SPARQL [66] because G-SPARQL used an in-memory execution technique for

the entire topology region, whereas ours only used a portion of the graph on memory while

most part of the graph resided in the hard disk. However, we easily prove that our system is

more scalable than G-SPARQL by calculating the memory requirements. G-SPARQL used a

pointer based representation to store the topology information. We were not able to get the

exact implementation details. But assuming the lowest values possible, at least 4 bytes are

required to store the actual vertex. Edges can be stored as pointers to the node objects using

5 bytes each (4 bytes for the vertex, 5 bytes each for the previous and next pointers. 5 bytes

are needed at the minimum because 4 bytes will be required for the pointer information and

1 byte will be required for storing the edge connection type). This is again a stripped down

version to calculate the minimum costs. Since we are concerned only with the online query

performance, we did not compare our system with offline analytical engines like Pregel [67],

Boost Graph Library [68] and GraphLab [69]
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The size of the TS entry in our case is 36 bytes at its maximum. It might seem that

our implementation is less memory efficient than G-SPARQL. But there are two factors that

are to be considered. First, even though our TS entry is 36 bytes, it is the max value and

most of the entries are much lesser than this. Second, our implementation is independent

of the number of edges, whereas the number of pointers required in G-SPARQL is equal to

the number of edges. So, as long as the edge to node ratio is less than 3, our method has

a higher memory consumption than G-SPARQL. But once that threshold is crossed, our

system significantly outperforms G-SPARQL in terms of memory usage.

Most real world graphs are dense in the sense that there are significantly more number

of edges than there are vertices. Especially, graphs in the social network space have edge to

node ratios in the scale of 10-100 [12]. Consider for example the dataset used in this experi-

ment. The GPlus dataset has 107614 vertices and 13673453 edges. Calculating the memory

requirement for the in-memory portion of both the graphs, our system takes (107614*37)

3981718 3.98 MB. G-SPARQL on the other hand takes (107614*4) + (13673453*10) =

137164986 = 137.2 MB. This stark difference in performance continues as the density of the

graph increases. In general, our scalability only depends on the number of vertices whereas

G-SPARQL depends on both the number of vertices as well as the edges. The difference in

memory utilization is given in Table 4.1.

4.4.2 Query Performance

We compared our system performance using 4 different types of queries.

1. Q1 is a typical sub graph pattern matching query of the form

V1Type [V1Props ]−−E1Type [E1Props ]

↓

V2Type [V2Props]−−E2Type [E2Props ]

↓

.

.

VnType [VnProps]−−EnType [EnProps ]
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Here, each vertex-edge branch has a vertex and edge type with optional properties.

We varied the path length from 2-6. We were able to generate many different kinds

of paths with this template by varying the ordering of the properties and connection

type. We also generated a few queries to represent cycles, triangles, rectangles and

other common shapes. An example application of a pattern matching query in a

recommendation system can be “Find all people who know John and also watched the

movie Titanic and listen to Heavy Metal”. Such queries can easily be simulated

using the path structure given above.

2. Q2 is a k-hop query that gets the k-hop neighborhood of a given vertex. It is of the

form

V1−−EType−

↓

V2−−EType

↓

.

.

Vk−1−−EType−−>Vk

We varied the path length from 2-6. K-hop queries are common in social networks to

find the friends of friends of a person.

3. Q3 is a reachability query which tests for a path between two vertices. A reachability

query can be denoted by

V1

↓

( EType−VTemp−−EType ) k

↓

V2

where V1 is the starting vertex and V2 the end vertex. An example of the reachability

query is “is there a path between vertices v1 and v2 of length k such that they are
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only connected by edges of type EType”.

4. Q4 is a structural query which tries to find vertices that belong to a specific pattern.

An example is of the form

VType−−{E1Type=n1 ,E2Type=n2 . . . EkType=nk}

Structural queries are crucial to mine star patterns in a graph with restrictions on

the number and type of vertices connected to the center. These are key queries to

answer the structural properties of the graph like the maximum degree, identifying

leaf vertices, etc.,. These queries are especially handy in bio-chemical networks to

identify molecular patterns.

These queries were instantiated 20 times with random values. The values were recorded in a

log file and the each database was queried with the same values to maintain uniformity while

testing. The cache was also cleared for each of the systems using random values to remove

bias while running the queries. Figure 4.7 shows the comparison of our system against Neo4J.

Note that the time is represented using logarithmic scale.

Table (4.1) Memory Utilization

Our System SPARQL

3.98 MB 137.2 MB

As expected our system outperforms all the other systems in all these different kinds of

queries. Figure 4.8, which gives the average trips to the secondary storage device explains

the reason for our improved performance. Our efficient use of the graph structure in query

evaluations prevents most trips to the hard disk, thereby reducing as many I/O calls and

hence the improved performance. Q4 shows the most gain in performance for our system

because the entire query is answered from the main memory without ever having to access

the storage device. However, our solution does not truly scale well for big data consisting of

billions of graph objects. Our in-memory TS region poses a limit on the maximum number of
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Figure (4.7) Query Performance comparison with Neo4J

Figure (4.8) Total Number of visits to Storage Device

vertices that could be handled. Hence, we are working on advanced caching and replacement

methods that lets us keep only a part of the TS region in memory while the rest can stay on

disk.

4.5 Conclusion

In this section, we presented the design of a high performance graph database that

efficiently stores and processes graph data in a larger scale. We are still implementing this

design and are working on fine tuning the querying process for a large graph setting. We

believe, segmenting the data into structural skeleton, structural data and property regions

helps for three separate layers of abstraction, which work together in reducing the number
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of I/O calls to the disk. By maintaining fixed length records for the structural data region,

we convert all data reads to random access reads which further improves efficiency.



48

PART 5

SCALABLE CACHING FRAMEWORK

In our previous section, we described a graph storage structure that splits the graph

into three logical components to improve performance of online pattern matching queries.

One of the graph components was, however, maintained completely in memory to reduce

I/O access. However, by keeping this structure memory-resident, our structure was able to

support only mid sized graphs.

In this section, we eliminate the memory constraints and develop a scalable storage

structure for large graphs. Our data model divides the entire graph into three logical layers,

with the first layer forming the structural abstraction for the entire graph. Instead of main-

taining this structure completely in memory, we use an adaptive caching process to maintain

only those parts that are integral to the query in memory while the remaining are stored

on the disk. The caching scheme ensures that our storage model is theoretically scalable

for any graph size, while also ensuring that information most relevant to the query stays on

memory. We compared our system with Neo4J and were able to maintain our performance

improvements from [70] without compromising on scalability.

5.1 Caching Strategy

The reason behind splitting the graph into three layers is to better position them in

memory and restrict access to the on-disk components. The Properties and the Topology

Data region form the secondary bulk of data describing the graph and are hence stored

completely on disk. The Topology Structure region on the other hand is designed to be

as minimalistic as possible and serves as the first line of defense to answer queries. In the

previous section, in order to completely eliminate disk access for the Topology Structure

region, we stored this component completely in memory. But this posed a limit on the
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maximum number of vertices the system can hold. Assuming the number of edge types to

be 8 and the number of property types to be 8, each record of the Topology Structure region

requires 37 bytes of data. So, to store the Topology Structure information for a million

vertices, we would need 37MB of data and 37GB for a billion vertices, which is not an

acceptable memory requirement. Therefore, in order to achieve true scalability, we adopted

a hybrid disk-memory architecture to store the Topology Structure region. Only those parts

of the Topology Structure region that have a higher probability to be used in the query are

stored in memory and the rest remain on-disk to be obtained on an on-demand basis. Since

graph exploration is memory-intensive, we allocated 35% of the available main memory to

store the in-memory portion of the Topology Structure data, leaving enough free memory

for the other graph operations. Since the Topology Structure is designed to prune paths

that will not satisfy a given query, those vertices that have a higher probability to succeed,

are preloaded onto memory. We used the degree of the vertex as the initial heuristic to

accomplish this. We ordered the vertices in descending order of their degree and loaded the

Topology Structure records of the vertices with higher degrees in memory until the memory

limit of 35% is reached. We used a hash map structure to store the records in order to

achieve O(1) lookup.

Now, when a query is issued, the caching algorithm updates the hash structure by

flagging those preloaded vertices that do not conform to the query. When a vertex required

for the query is not found in the cache structure, it is read from the disk and swapped with

one of the vertices flagged for swapping. The decision to flag a vertex for a swap is as follows:

1. Priority 1 : All vertices whose vertex type does not form part of the query

2. Priority 2 : All vertices whose vertex type forms part of the query but whose neigh-

bourhood does not conform to the query

3. Priority 3 : The least recently used vertices

Graph path queries typically contain constraints about the vertex and edge types. Since

we look for exact matches and not approximate matches, if a vertex type is not mentioned
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in a query, those vertices belonging to the said type can be safely eliminated from the search

space. Similarly, those vertices whose structural definition does not match the query can

also be marked as unnecessary.

As a last strategy, the vertices that have not yet been part of the result are marked for

swapping. The idea here is, if a vertex did not satisfy the conditions of a query the first

time, it is not going to satisfy the conditions during the further rounds. When a substructure

query is issued to a graph, the result graph is grown from many viable seed vertices. Since,

our execution model is sequential and we follow a Breadth First Search(BFS) approach for

growing the subgraph, a second seed is not grown until the current one is explored. Hence,

if a graph vertex is not requested in the initial few seed growths, the probability of it being

used in later rounds diminishes with every seed vertex that it is not a part of. The Least

Recently Used(LRU) heuristic is ideal for such situations, since it constantly replaces the

least used vertices with ones that are more viable for the given query.

In order to prevent unnecessary scans, a vertex from the hashmap is marked for swap

as and when it is deemed unnecessary in the course of the query. This cache replacement

strategy is adaptive to the query and ensures that the vertices that are more likely to be part

of the result are directly available in memory. The model follows an “eventually complete”

paradigm where the index is optimized with every new seed branch of query computation.

Each initial path computation for the query brings the Topology Structure closer to its

stable form. The initial latency due to I/O reads to update the hashmap are balanced by

the broader reduction in latency for the rest of the queries.

5.2 Query Execution Plan

Our query starts with the Topology Structure Region that is stored as a hash map

within the main memory, with vertex id as the key and Topology Structure record as the

value. The Topology Structure region is kept partially in memory and hence can be checked

first to ensure if a certain path down the graph has to be traversed at all. This creates an

exploratory querying structure, in which, only those paths that have a high probability of
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reaching the result are pursued while the others are dropped. For example, suppose we want

to query all the neighbors of a vertex connected by a given edge type, knowing that the

vertex has no edge of the given type stops the query right there. This saves serious time in

terms of unwanted calls to the storage unit. In our experiments, we found that this resulted

in significant gains in query performance. When a graph query is encountered, the Topology

Structure region is first queried to retrieve a set of vertices that satisfy the vertex type and

the edge types. The Topology Structure region stores the number of edges of each type that

the vertex is connected to. An additional index stores the vertex numbers corresponding to

each Vertex type. The execution plan for all graph queries is as follows:

1. Query the Topology Structure region to get the list of vertices that satisfy the first

Vertex, Edge Type and Properties in the query

2. If the query contains properties, query the RDBMS on the set of vertices obtained

from Step 1 and obtain a subset of the input vertices that satisfy the properties

3. Return the neighbours from the Topology Data section for those vertices returned by

Step 2.

4. Return to Step 1 for the next Vertex-Edge branch in the query

As we see, Steps 2 and 3, which access the secondary storage unit, only work with a subset

of vertices obtained from the previous step, as opposed to the entire graph. Also, due to our

implementation of random access methods in the Topology Data section, retrieval of edges

in Step 3 is also accelerated, resulting in a shorter turnaround time. This query evaluation

method remains the same for different kinds of queries like the path queries, k-hop queries

and structural queries.

5.3 Experimental Results

We tested our method on an i3 processor with 6GB RAM and 256GB Secondary Storage.

The entire experiment was programmed in Java 7 and MySQL 5.5 was used as the RDBMS.
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We used the LiveJournal dataset from the SNAP [12] website. This dataset consists of

4848571 vertices and 68993773 edges. The vertices and edges did not have specific types.

So we randomly generated vertex and edge types using a maximum of 8 vertex types and 8

edge types.

In order to measure the relative performance of our system with established methods,

we tested our system against the popular Neo4j [31] database. We did not compare our

system against G-SPARQL [66] because G-SPARQL uses an in-memory execution technique

for the entire topology region, and hence is not scalable. Due to the hybrid memory storage

of the Topology Structure region, our system is theoretically able to handle larger graph

sizes. Since we are concerned only with the online query performance, we did not compare

our system with offline analytical engines like Pregel [67], Boost Graph Library [68] and

GraphLab [69]

5.3.1 Data Ingestion

Since our storage structures rely on a methodical ordering of the entire neighborhood

of each vertex, data ingestion is faster for bulk loads rather than incremental updates. The

data load time comparison for the LiveJournal dataset is given in Figure 5.1.

5.3.2 Performance Measurements

We compared our system performance using 3 different types of queries.

1. Q1 is a typical sub graph pattern matching query of the form

V1Type [V1Props ]−−E1Type [E1Props ]

↓

V2Type [V2Props]−−E2Type [E2Props ]

↓

.

.

VnType [VnProps]−−EnType [EnProps ]



53

Here, each vertex-edge branch has a vertex and edge type with optional properties.

We varied the path length from 2-6. We were able to generate many different kinds

of paths with this template by varying the ordering of the properties and connection

type. We also generated a few queries to represent cycles, triangles, rectangles and

other common shapes. An example application of a pattern matching query in a

recommendation system can be “Find all people who know John and also watched the

movie Titanic and listen to Heavy Metal”. Such queries can easily be simulated

using the path structure given above.

Table (5.1) Data Ingestion Time

Neo4J Our System

3795.6 ms 474.4 ms

2. Q2 is a k-hop query that gets the k-hop neighborhood of a given vertex. It is of the

form

V1−−EType−

↓

V2−−EType

↓

.

.

Vk−1−−EType−−>Vk

We varied the path length from 2-6. K-hop queries are common in social networks to

find the friends of friends of a person.

3. Q3 is a structural query which tries to find vertices that belong to a specific pattern.

An example is of the form

VType−−{E1Type=n1 ,E2Type=n2 . . . EkType=nk}
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Structural queries are crucial to mine star patterns in a graph with restrictions on

the number and type of vertices connected to the center. These are key queries to

answer the structural properties of the graph like the maximum degree, identifying

leaf vertices, etc.,. These queries are especially handy in bio-chemical networks to

identify molecular patterns.

These queries were instantiated 20 times with random values. The values were recorded in a

log file and the each database was queried with the same values to maintain uniformity while

testing. The cache was also cleared for each of the systems using random values to remove

bias while running the queries. Figure 5.1 shows the comparison of our system against Neo4J.

Note that the time is represented using logarithmic scale.

As expected, our system outperforms Neo4J in all these different kinds of queries. Figure

5.2, which gives the average trips to the secondary storage device explains the reason for

our improved performance. Efficient use of the graph structure in query evaluations using

the Topology Structure, prevents most trips to the hard disk, thereby reducing as many I/O

calls and hence the improved performance. Q3 shows the most gain in performance for our

system because the query is answered entirely from the Topology Structure region without

ever having to access the storage device.

Figure (5.1) Query Performance
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Figure (5.2) Average trips to secondary storage

5.4 Conclusion

In this section, we presented an optimized storage system that uses an adaptive caching

technique to improve querying time for big graphs without compromising on scalability.

We presented a three-pronged storage approach where the graph data is divided into three

parts- the Topology Structure, the Topology Data and the Property. The Topology Structure

helped improve query performance by limiting the number of trips made to the storage unit.

The adaptive caching strategy helps utilize the benefits of in-memory access while at the

same time maintaining scalability. Hence, our system is virtually scalable for graphs of any

size without constraints on main memory. Our comparisons with Neo4J also show that our

system does not lose performance while trying to address scalability concerns.
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PART 6

DISTRIBUTED GRAPH PATH QUERIES USING SPARK

Graphs are increasingly being used as the data structure of choice to represent inter-

actions between heterogeneous entities. Graph path querying is a primary operation in the

network graph space, for both real time querying and inferential analysis. The rate and

volume of interconnected data being generated warrants efficient distributed solutions to

manage and query network graphs in a scalable fashion. Existing distributed solutions have

proposed several optimization techniques, including intelligent joins and partial evaluations

to process path queries. However, the former relies on comprehensive indices while the latter

involves extensive driver-side processing to combine the partial results, neither of which is

efficient for processing large graphs. In this section, we propose a novel distributed graph

path query processing system using the Apache Spark framework.

6.1 Introduction

Most graph processing frameworks adopt a “triple-based” storage structure”, where

the graph is represented as individual tuples of the form < subject, predicate, object >.

However, this is a highly compartmentalized representation of graph, where the collective

graph information can only be obtained by combining individual tuples through a series of

joins. Hence, extensive indexing is required to restrict the search space for graph traversal.

In this section, we describe a novel distributed graph path querying framework that

works without the need to build extensive indices. To the best of our knowledge, this is the

first Spark-based implementation of graph path queries.
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6.1.1 Spark

Spark is a distributed data processing framework developed by the University of Cali-

fornia, Berkeley. It was developed to address the shortcomings of the popular MapReduce

model to handle iterative tasks. Although MapReduce is proven to be widely efficient in

processing batch-mode tasks, it performs poorly on applications that reuse the same work-

ing data on several parallel operations. This is because, with MapReduce, each task runs as

a separate job and hence has to read and write data from and to the disk. Hence, iterative

jobs like graph query processing incur serious latency due to increased I/O usage.

Spark, on the other hand introduced the Resilient Distributed Dataset (RDD) abstrac-

tion of the data, through which data, once loaded can stay in memory until the application

exits. The RDDs represent a read-only collection of objects that are partitioned across a

given number of machines. Intermediate results generated can also be persisted in memory

in the form of RDDs to be reused later. Spark also has a excellent dependency management

that traces the lineage of RDDs and prevents unnecessary re-computations. These features

make Spark an ideal framework for processing iterative jobs.

The potential for Spark in processing iterative graph operations has already been estab-

lished. GraphX [71] is a graph processing framework developed on top of Spark with efficient

implementations for common graph operations like PageRank and Connected Components.

However, there is no known implementation that leverages the benefits of Spark to process

graph path queries.

In this section, we introduce an iterative graph path querying framework utilizing the

Apache Spark framework, that eliminates the need to construct heavy graph-level indexes.

We also introduce a novel graph storage model that is memory and computation efficient to

work in a distributed setting.
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6.2 Proposed Solution

In our approach, we propose a new querying model that eliminates driver-based aggre-

gations and data shuffles from joins, by utilizing the iterative benefits of Spark. We follow a

“bi-directional structural” filtering mechanism, to prune the path at each level.

6.2.1 Data Model

The most discerning components for querying a labeled graph are the edge and vertex

labels that identify the neighborhood of a vertex. By storing the graph data in a < s, p, o >

format, which is more popular with RDF data, the collective neighborhood information of

the vertex is lost. Splitting the graph into its vertex and edge components, again, does not

offer a unified representation of the neighborhood. An adjacency list format, on the other

hand, successfully collects the neighborhood of the vertex. In our implementation, we use

a modified adjacency list format, that stores the neighborhood of a vertex, sorted in the

order of the edge labels. Though a property graph has both edge and vertex labels, we chose

to organize the neighborhood by the edge labels, as they form the first point of connection

between two vertices. For those graphs without an edge label, our implementation can be

easily modified to sort the neighborhood by vertex type.

Each vertex is identified by a unique id. We do not consider edges as first class objects,

since our aim is to assimilate the neighborhood information into one cohesive structure. The

graph structure is stored as an RDD of the form

RDD[(Int,Byte,Map[(Byte,Byte),Array[Int]])]

Here, the first ‘Int’ value gives the vertex id of the vertex, the next ‘Byte’ value gives the

vertex type and the Map object gives the neighborhood of the vertex, sorted by edge type

and direction. The (Byte,Byte) serves as the key to the map object, where the first ‘Byte’

refers to the edge type and the second ‘Byte’ refers to the direction indicated by ‘o’ for

outgoing and ‘i’ for incoming. The value for each map key is an array of neighbor vertex

ids that belongs to the given edge type and direction. An example vertex record for Vertex
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6 of Figure 1.3(a) is given below:

( 6,

‘A’,

Map((‘a’,‘o’)->Array(8,9),

(‘b’,‘i’)->Array(7),

(‘d’,‘i’)->Array(5)

)

)

Where, the 6 represents the vertex id, ‘A’ represents the vertex type of Vertex 6. Now,

looking at the neighborhood of Vertex 6, we see that it has two outgoing edges of type ‘a’

connecting Vertices 8 and 9, one incoming edge of type ‘b’ from Vertex 7 and one incoming

edge of type ‘d’ from Vertex 5. Though we have currently not included properties for edges

and vertices, they can be easily incorporated in the storage model in a Map format.

Each vertex contains such a record and the graph is represented by the vertex records of

all the vertices, stored as an RDD. Let us call this graphRDD. Once loaded and partitioned,

this structure can be used to process a number of queries without having to re-read from

the disk. Also, Spark’s intelligent lineage handling prevents unnecessary re-calculations by

keeping track of the descent tree for each RDD. We distribute the vertex information across

the cluster by hashing on the vertex id. Since the vertex ids are continuous numbers, this

gives us fairly balanced partition.

6.2.2 Query Processing

Building indexes for property graphs is both space and time expensive as we would

need an index structure to represent each property type used. If we were to also index the

graph structure, it becomes even more prohibitive as there does not exist a single compact

structural index that can comprehensively answer a variety of graph queries. Our model

does not require building indexes for the whole graph, and instead makes a single scan
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across the graph to retrieve the set of likely candidates for each segment of the query. These

vertices, the ‘prune set’, will be used to grow the path further and prune non-viable paths.

Prune Set:

The prune set is closely tied with the structure of the query. The query is divided into

individual blocks and the prune set contains the set of vertices that satisfy the query re-

quirements for each block. Let us first look into the structure of the query. We divide a

query of length n into three different segments as follows:

1. 1 head segment of the form (VL, EL, ED)

2. n-2 middle segments of the form

(LEL, LED, VL, REL, RED)

3. 1 tail segment of the form (EL, ED, VL)

where, V L denotes the vertex label, EL denotes the edge label, ED, the edge direction, LEL

the left edge label, LED the left edge direction, REL the right edge label and RED the

right edge direction. For example, the query in Figure 1.3(b) can be divided into 4 segments

as follows:

Segment 0 - (A,o,a)

Segment 1 - (a,i,B,o,c)

Segment 2 - (c,i,D,o,a)

Segment 3 - (a,i,C)

The querying process begins by retrieving the prune set, i.e., the set of vertex ids that satisfy

the structural requirements for each query segment. The head and tail segments look for

vertices that match the vertex label V L and also has at least one edge of type EL in the

direction ED. The middle segments however take advantage of the bi-directional information

available in the neighborhood map and filter out only those vertices that match the label

V L and have at least one edge of type LEL in direction LED and at least one edge of

type REL in direction RED. The vertices thus identified are returned in the format of a



61

key-value pair identified by their matching query segment. Therefore, in the pre-querying

phase, each segment of the query is associated with a set of vertex ids, the prune set, that

satisfy the structural requirement of that section.

Let us look at an example for the network graph G and query graph Q given in Figure

1.3. The head segment of Q specifies that the vertex label should be A and should be

connected to an outgoing edge of type a. The only vertices that satisfy this structural

requirement are Vertices 3 and 6. Accordingly, these vertices are returned as matching sets

for the head segment (segment-0) in the form [(0,3),(0,6)]. Similarly, segment 1 requires

the vertex to be of label B, with one incoming edge of type a and one outgoing edge of type

c. Clearly, only Vertex 6 matches this and hence the result for segment 1 will be returned

as [(1,6)]. If a vertex satisfies more than one segment of the query, each match is returned

as a key-value pair identified by the query segment.

The prune set is stored as an RDD of form RDD[(Int,Int)], with the first ‘Int’ rep-

resenting the query segment and the second ‘Int’ representing the vertex id. We avoid

grouping the vertex ids by the query segment to prevent an extra shuffle.

Path Growth:

Once the prune set is computed, the querying process repeats itself iteratively for each query

segment as follows:

Step1 : Collect the prune set for query segment i. Let us call this vList. Every vertex in

vList satisfies query segment i and hence has at least one neighbor that matches the edge

type of query segment i. Distribute vList among the partitions using a hash partitioning

on the vertex ids.

Step2 : For each vertex v in the prune set, retrieve the neighbors of v, Ni(v), that match the

edge type of query segment i from graphRDD. Since both the prune set and the graphRDD

are distributed using the same hashing mechanism, they are co-located in the same partition

and hence no additional data shuffles are required.

Step3 : The vertices in Ni(v) form the next level of vertices that need to be examined. How-
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Figure (6.1) Query Time vs Query Length

ever, instead of using all the vertices in Ni(V ) for the next round of processing, we retrieve

the prune set for query segment i+1 to restrict Ni(V ) to only those vertices that satisfy the

structural requirements for query segment i+1. Now the pruned neighbors NPi(V ) becomes

the next vList

Step4 : Repeat the process from Step 2, for the new vList

This process continues until the end of the query is reached or until vList is empty. The

advantage with this method is that, the larger portion of the data, namely the graphRDD

is never shuffled throughout the querying process. The intermediate results obtained are

collected and shuffled across the partitions to match the vertices with the respective graphRDD

partitions. The prune set helps reduce this intermediate result and thereby further reduces

the total amount of data transferred across the cluster. Also, by generating the prune set at

the start of query execution, we perform one data scan to obtain the seed vertices for all the

query segments.

6.3 Experimental Evaluation

We implemented our method in Apache Spark version 1.5.1 using scala. Experiments

were performed on a 30-node cluster with commodity hardware with 4gb driver memory and

4gb executor memory. We used a hash partitioning strategy to partition the vertices. For

the dataset, we used the LiveJournal dataset [72] obtained from the SNAP project [12] with
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4.8M Nodes and 68.9M edges. The dataset is directed, but unlabeled. So, we randomly

assigned vertex and edge labels. For this experiment, we used 8 edge and 8 vertex labels.

We also randomly generated path queries of size ranging from 3 to 6.

6.3.1 Compared Methods

The motivation behind this work is to demonstrate the usage of Spark in processing

graph path queries. Spark is known to provide 10x performance gains over MapReduce on

iterative jobs due to eliminated disk reads and writes. Hence, we do not compare our method

with existing MapReduce implementations, as the two operate on different paradigms. In-

stead, we compare our implementation against several Spark-based variations. The different

implementations tested are listed down as follows:

1. S-PruneSet - This is our primary implementation described in Section 6.2

2. S-Index - This is a Spark based implementation wherein we created indexes for the

graph structure. We created a separate index structure that organized the vertex ids

based on the vertex type, and edge type. The structure of the index was of the form

RDD[(VL,ED,EL),Int], where ‘VL’ denotes the vertex label, ‘ED’ denotes the edge

direction and ‘EL’, the edge label and ‘Int’ denotes the vertex id. While the Prune

Set is specific to the query and has to be calculated for each query, the index is created

once for the graph and used for all the queries executed on it. This index structure is

used similar to Prune Set to restrict the vertex ids for each query segment.

3. S-Full - This Spark implementation uses the entire graph and does not use either a

prune set or an index.

4. S-Pregel - Spark comes with a graph processing library named GraphX, that provides

an implementation of the popular Pregel model. We implemented a Pregel based path

query model and used it as a test implementation.
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Figure (6.2) Query Time vs Num of Processors

6.3.2 Query Response Time

Figure 6.1 gives the query response time when running path queries of lengths ranging

from 3 to 6. The experiments show an average of 20 queries instantiated on each imple-

mentation. We see that the S-PruneSet method outperforms all other implementations in

terms of running time. the S-Pregel provided the slowest response and could not process

path queries after length 6 due to memory limitations. This is because, the Pregel imple-

mentation of GraphX is based on an edge-based storage model, resembling a triple structure.

Therefore, computation is defined in terms of the number of edges rather than on the number

of vertices. Since, in a typical real world graph, the number of edges is many times larger

than the number of vertices, this results in increased computation and data movement.The

S-Index version comes a very close second to the S-PruneSet method. This is due to the

fact that the S-PruneSet prunes the path using a bidirectional edge structuring, whereas the

S-Index method considers only the uni-directional edge of the vertex. This also shows that

Prune Set generation time is very negligible and has very little overhead in repeating it for

each query. Notice that the S-Full method starts off being the fastest, but shows a very

sharp rise in processing time at query length 5. This is because, with no pruning in place,

the number of paths grows exponentially with increasing length. So, for shorter paths, the

prune set/index generation time outweight the processing time, whereas, as the path length

grows, this results in a significant raise. The S-PruneSet and S-Index methods on the other

hand have a very linear increase in querying time.
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We also observed the response time by varying the number of processors to measure

the computation to communication ratio. The holy grail of distributed processing is to main

the balance between distributing the processing and transferring data to and forth across

the cluster. We noticed an interesting trend in the plot for implementations S-Full and S-

Pregel. While the processing time reduced with increasing the processors, the trend started

to reverse while continuing to increase the number of processors beyond a threshold for the

same payload. This is because, with more number of processors, data gets split into smaller

chunks, resulting in an increased communication overhead. S-PruneSet and S-Index showed

very little variation to the number of processors. This is because the total amount of data

processed is pruned at each stage and hence the amount of data transferred is small to

cause an impact on the speedup factor. Figure 6.2 shows response time against number of

processors using a query of length 5.

6.4 Conclusion

In this section, we demonstrated the use of Spark for iterative graph path queries.

The RDD abstraction of Spark opens new possibilities by providing a persistent storage

platform for repeated processing of data. Given the proven performance gains of Spark over

MapReduce, to the best of our knowledge, there was yet no Spark based implementation for

graph path query processing. We also showed several variations for path query processing

using Spark.
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PART 7

GRAPH TOPOLOGY ABSTRACTION FOR DISTRIBUTED PATH

QUERIES

Querying graph data often involves identifying matching paths, either as an end prod-

uct, or as an intermediate step for further graph analysis. Distributed graph querying, suffers

from high communication to computation costs, due to challenges in constructing compre-

hensive structural indexes. This could result in severe performance degradation in terms of

turnaround time, which often worsens with increasing graph size and density. In this section,

we propose a novel topology abstraction layer, that helps improve query response time by

reducing the communication overhead for selective exploration of large distributed graphs.

We demonstrate the effectiveness of our model and also go on to show that our abstraction

layer works well in both data-parallel and graph-parallel paradigms.

7.1 Introduction

Recent years have witnessed a rapid proliferation of sophisticated networks and a grow-

ing emphasis on inferring related properties. Graphs are ideal for representing relationships

and, consequently, are used as the primary data structures in various fields such as So-

cial Networks, Machine Learning, Semantic Web, Bio-informatics, Internet of Things etc.,.

There is a wealth of information that could be mined from examining relationship structures

between disparate entities. Adopting a property graph model, where vertices and edges

can belong to specific types and can have a range of properties, caters well to describing

unstructured and semi-structured data.

However, due to the absence of an optimal partitioning, distributed graph querying

suffers from a high communication (Tcomm) to computation (Tcomp) cost. Analytical queries

like PageRank [73], Connected Components [74] etc.,. are batch-mode queries and generally
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involve accessing and processing the entire graph. These queries result in actions and mod-

ifications of the graph that are carried over in an iterative manner, i.e., the actions of step

i directly affect the actions of step i+ 1. For such iterative batch processing, the communi-

cation to computation ratio is balanced since each communication step contributes towards

the final result.

On the other hand, path queries are more selective in nature, where, the focus is on

retrieving a subset of the graph that matches the query pattern. Most of the processing

is dedicated towards locating the actual working set - a very small section of the graph -

by pruning the non-matching components - which are generally much larger. So, not every

communication contributes towards the result closure and much of the time is wasted in

processing and shipping potentially inconsequential information across the cluster. In this

section, we focus on improving the response time of interactive path queries in large labeled

distributed graphs.

Significant improvements can be made in the response time of path queries, if the

pruning of unrelated vertices could be done much ahead of time so that the payload for each

round of processing is kept at a minimum. However, the unique nature of graphs, which

inherently implicates tight coupling between the data and the structure, makes this difficult

in a distributed environment. When a graph is partitioned, the neighborhood information

gets distributed across various computing cores and hence, pruning of unrelated data is often

not possible until a given vertex is accessed. In real time graphs, this causes increased data

movement to determine connectivity and hence results in increased query latency.

In this section, we propose a novel structural abstraction layer, that helps create a

topological coverage which could be used to prune unnecessary paths in distributed graph

queries. We also introduce a distributed graph querying model based on Apache Spark[58]

that eliminates data movement for distributed exploratory graph queries. The querying

paradigm can be extended to any graph operation that includes selective querying - like

regular path queries, structural queries and pattern matching queries. The abstraction layer

is kept as light weight as possible and the entire structure is made locally available to
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all the processors through broadcasting. With global information about the entire graph

available locally, pruning can be done by the individual processors with a small amount of

transportation.

7.2 K-Closure

Given a network G distributed over a cluster, and a query Q of length n, we define

the k-closure of the vertex vi encountered at length i + k <= n of the query as the set

{V Lk, ELk}, where V Lj = svk and ELj = lvk ,∀vk ∈ V (G), that are k hops from vi. The

k − closure gives information about the vertex label and the edge labels of all the vertices

that are k hops from it.

EXAMPLE 1 Referring to Figure 1.3(a), the 1-closure for vertex 6, would include the the

vertex labels and edge labels for vertices 8, 9, 7 and 5.

In that regard, we define k-closure of a vertex as all the information that is required to

determine if the vertex would contribute towards continuing the query for k more lengths.

7.3 Proposed Solution

In any distributed model, the graph itself is split and saved in a disjoint fashion among

the processors, leaving no comprehensive detail about the graph that can help extend the

visibility of a vertex beyond its local data. For batch mode queries like the PageRank,

Connected Components etc.,. this does not cause a severe disadvantage since there is no

decision making that goes beyond the localized vertex data at each stage. The working set

comprises of the entire graph, and the only bottle neck is to transfer the changes from the

one stage to the next.

However, for online graph queries, much of the processing involves deciding whether

a vertex is going to contribute to the extension of the current path. While querying any

decent sized graph, the working set, comprising of the number of potential matching paths,

can grow exponentially with the size of the query. Effective pruning of non-viable paths,
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early on in the querying framework, helps remove the communication bottleneck, as well as

the processing time required to ship and compute the unfeasible paths across processors.

A global availability of the k − closure of a vertex extends the visibility of the vertex

contributing to the path well beyond its local data. This helps evaluate if a neighbor, k

hops away, is going to satisfy the path k lengths from now, and help prune the path from

growing further on. With a larger value of k, the time and space complexity of computing

the k− closure of a vertex becomes huge. A smaller k would provide the benefits of a look-

ahead coverage, without impacting the storage and processing costs. The rest of the section

describes our proposed solution that aims to promote early pruning of non-matching paths

by making use of a topology abstraction layer that defines the 1− closure of each vertex.

The increased difficulty in distributed graph processing can be attributed towards a

lack of comprehensive indexing schemes to address a variety of querying patterns. Graph

structural indexes are hard to build and are both memory and computation expensive oper-

ations. Typically, distributed graph path queries, follow either a partition based approach

or a cloud based approach [54]. In the partition based approach, the query is partitioned

into individual chunks tailored for each partition [49][50]. In the cloud based approach, the

output pattern if formed by a series of join operations [75] [76]. The former methods rely

on driver-based aggregations and hence suffer from performance bottlenecks while the latter

use extensive joins to reach the output, thereby increasing data movement across the cluster.

In our approach, we propose a new querying model that eliminates driver-based aggre-

gations as well as data shuffles from joins by making constructing the 1 − closure for each

vertex. We adopt a simple iterative Breadth First Search pattern that builds the matching

paths one query level at a time. In the first step, all vertices conforming to the first query

block q0 - the vertex label s0 and edge label l0 in direction d0 - will be identified as seed

vertices. In the subsequent steps, the graph is traversed along the edges and vertices that

satisfy the query structure until query completion is achieved or there are no vertices/edges

left to traverse. Any traversal that encounters a non-conforming vertex/edge is abandoned.

In our proposed model, we split the graph into two constituent regions - the Topology
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Abstraction layer and the Neighborhood layer.

7.3.1 Topology Abstraction Layer

We propose the Topology Abstraction Layer layer to serve as the structural index for

handling path queries in large distributed graphs. The abstraction layer, combined with the

vertex neighborhood offers a compact representation of the 1 − closure of each vertex and

mimics the human thought process in answering pattern matching queries. The 1− closure

of a vertex offers a 1-hop insight into the structure of a graph, since it represents the edge

and vertex labels of all the immediate neighbors of the vertex. We expand on the concept

of 1− closure to design a Topolology Abstraction for the graph, that can act as a look-

ahead structural representation and help prune nonviable paths early on. The Topology

Abstraction structure follows the same pattern as given in Figure 4.1. The first byte specifies

if the vertex is deleted or not. This can be useful in online graph databases with active

updates and deletions. The next log(θ) bytes represent the vertex label, where θ refers to

the number of vertex types. The following 4∗ω bytes indicate the cardinality of the incoming

and outgoing edges with two bytes each, arranged in increasing order of edge labels, where

ω refers to the number of edge types used in the graph. An example Topology Abstraction

record for vertex 6 in Figure 1.3(a), with θ = 4 and ω = 4 is shown in Figure 7.1. The

reason for choosing a 1 − closure instead of a larger number was to reduce preprocessing

costs. A 0− closure would represent the vertex type and edge labels for the current vertex,

while the 1− closure gives the structural information of all its immediate neighbors. While

each record in the Topology Abstraction layer gives the 0 − closure of a vertex, making

this abstraction layer global helps define the 1 − closure of the vertex in conjunction with

the neighborhood record that is explained in the following section. So, essentially we reuse

existing information and create an abstraction layer without additional processing or storage

overhead. SPath[77] proposed to include the k-distance shortest paths for each vertex as the

index for answering graph path queries. But, constructing such extensive indices would be

computationally taxing and also reduce memory efficiency. A 1-closure, on the other hand,
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Figure (7.1) Topology Abstraction Record for Vertex 6

is easy to calculate and can be done during graph ingestion with O(∆) computations for

each vertex, ∆ being the degree of the graph. However, the computation time and storage

costs become exponential for any value of k > 1.

The storage structure is also simplified by using a 1 − closure, whereas, a larger k

value would require a two-dimensional structure like a HashMap to store the structural

information. For ease of serialization/de-serialization, this layer is represented as a constant-

sized byte array consisting of 1 + log(θ) + (4 ∗ ω) bytes each. So, for θ = 8 and ω = 8, each

record occupies 34 bytes of data. This layer grows with the vertex size of the graph and is

agnostic of the edge size, as the Topology Abstraction layer only stores the cardinality of

the vertex, not the entire neighborhood list. So, the total size of the Topology Abstraction

layer ∝ |V | and is independent of graph density. Due to the compact representation, the

Topology Abstraction layer has a very small memory footprint and fits in memory for most

small-midsized graphs.

7.3.2 Neighborhood Layer

For the neighborhood record, we again choose a simplified model of an integer array

containing the vertex ids of the neighboring vertices. The ordering of the vertices is main-
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Figure (7.2) Data Distribution Strategy

tained in correlation with the ordering of edges given in the topology structure. This way,

the topology abstraction layer serves as a decoder for the neighborhood structure and there is

no need of a separate indicator to differentiate between neighbor types. This also facilitates

easy access to neighbors connected by a particular edge type without having to iterate over

the entire array. Having a map-based structure, that organizes the neighboring vertices by

edge type would also work. But, it would require additional bytes to store the edge types

(2 ∗ ω) and would also lead to increased time in serializing it. A sample neighbor record for

vertex 6 of graph G given in Figure ?? is shown in Figure 7.3. It has two outgoing neighbors

(vertex8, vertex9) connected by edge type 0, one incoming neighbor (vertex7) connected

by edge type 1, no incoming/outgoing neighbors of edge type 2 and 1 incoming neighbor

(vertex5) of edge type 3. The topology record for Vertex 6, given in Figure 7.1 is required to

decode this information. The neighborhood layer is partitioned among the processors such

that each processor stores the neighborhood records of a subset of vertices.

Figure (7.3) Neighborhood Record for Vertex 6

7.3.3 Data Parallel Implementation

Our distributed implementation splits the graph into two structures - the Topology -

which encodes the Topology abstraction layer - and the Neighborhood - which contains the

actual neighborhood of the graph. We propose to make the topology structure globally
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available to all the processors across the cluster. This way, combined with the neighborhood

record, each vertex has visibility on the neighborhood signature of the next level vertices and

hence non-matching paths can be pruned without having to physically access the partition

containing the next neighbor vertex. The advantages are two fold. Firstly, it eliminates an

entire round of iteration, since the nth iteration retrieves the results of stage n + 1 of the

query. Secondly, it reduces the number of messages passed in each round. In the absence

of the Topology Abstraction, all neighbors of a vertex vi that are connected by edge label

li will be included for processing in the i + 1th stage. The 1 − closure of the vertex on the

other hand helps examine the neighborhood structure and the vertex label of the neighboring

vertex to determine if it would contribute to query continuation. If the neighbor vertex vi+1

of vertex vi is found to be non-conforming to query block qi+1, this path can be stopped

in stage i instead of proceeding to stage i + 1. For large dense graphs with high degree of

neighbors, this greatly reduces the amount of data shipped across the cluster.

Listing 7.1: Vertex Filter Function

def filterVertex(vid:Int, qi:QueryItem) = {

get topoTopIndex:Array[Byte] = broadCastTopology.get(vid).get

if( vTop(1)==qi.vertexLabel && // vertex label check

vTop(qi.edgeLabel) > 0) // edge structure check

true

else

false

}

EXAMPLE 2 Referring to Figure 1.3, vertex 3 satisfies q0 since it is of type A and has

an outgoing vertex of type B (Vertex 5). The next block, q1, requires the vertex to have a

label “B” and have an outgoing edge with label “c”, which is clearly not satisfied by Vertex

5. Examining the 1-closure of Vertex 3 would have indicated that Vertex 5 does not lead to

query continuation and hence would have not included Vertex 3 as a possible candidate. So,
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instead of physically accessing Vertex 5 to determine its inclusion in the path, this decision

can be made one step ahead at Vertex 3.

The Topology Abstraction layer can be pre-computed for the graph and hence does not

affect response time during actual querying. Also, the Topology Abstraction and Neighbor-

hood structures together define the graph. Hence there is no additional storage cost for the

1− closure representation. The flow of the query execution is given as follows:

Step1: Broadcast the topology abstraction across the cluster. It is of constant size and

is designed to be compact to reduce the memory footprint.

Step2: Partition the neighborhood structure using a partitioning scheme. We persist the

partitioning to avoid re-computation for further rounds.

Step3: Select the seed vertices, sv0, conforming to the 0th query block. This step is done in

the master node and forms the 0th iteration of the query.

Step4: Partition the seed vertices sv0 using the same partitioning strategy used for parti-

tioning the topology structure so that they are in the same partition. Now each partition

has access to three critical regions

1. The vertex list vi that passed the previous query round qi. These vertices are guaran-

teed to extend the query at least by one more edge.

2. The neighbor vertices of each vi. This information is obtained from the neighborhood

structure of the vertex

3. The topology abstraction information for the next level neighbors vi+1 of each vi, which

is available through the broadcasted topology structure array in conjunction with the

neighborhood structure

Step5: Retrieve the next level neighborhood vertices vi+1 for each vertex vi

Step6: Using the topology abstraction information, filter vertices from vi+1 that satisfy

query block qi+1. These become the seed vertices svi+1, for block qi+1
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Step7: Send filtered vertices svi+1 to STEP 4 for the next round of processing

Listing 7.2: Path Query for Generic Data-Parallel Paradigm

def PathQuery1(query:Query, bTop:BroadCast[Array[Byte]],

tPart:RDD[Array[Int]]) = {

//seed vertices with empty queue

var vList = topology.filter(x=>filterVertex(x,query.head))

.map((_,Queue())) // in driver

// parallel computation starts

for(i=1; i< query.size-1 && !vList.isEmpty, i++){

val currentIndex = i

def getNextVList(vList:Iterator[(Int,Queue[Int])],

vTop:Iterator[(Int,Array[Int])])= {

val vMap = vTop.toMap

vList.map(x=>{

vMap .get(x._1) //get neighborhood

//filter next query level

.filter(x=>filverVertex(x,query.get(i+1)))

.flatMap((_,x._2.push(x._1))) //add to queue

})

}

//get next level vertices (done in parallel)

vList = sc.parallelize(vList)

.join(tPart)(getNextVlist)

}

}

Since the seed vertices and the neighborhood records are partitioned using the same strategy,

they are co-located in the same partition. This eliminates shuffles during the following
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“join” operation. The topology and neighborhood structures are persisted in memory for the

duration of the query. The only data movement in the entire algorithm is from partitioning

the result from each iteration. The Topology Abstraction layer helps reduce the result

set size in each iteration, thereby directly contributing to improved query performance.

The filterV ertex function given in Listing 7.1 checks the neighborhood of each vertex to

determine if it satisfies the vertex and edge types of the query. This function is called in

STEP 6 of the query evaluation process. Note that this function checks the neighborhood

structure of the next level vertices by utilizing the Topology Abstraction layer. The actual

algorithm is given in Listing 7.2. Note that the algorithms follow a scala style syntax.

7.3.4 Graph-Parallel Implementation

We show that our Topology Abstraction layer can also be used in a graph-parallel

paradigm. We implemented our Topology Abstraction layer using a Pregel-based framweork

for graph computation. Pregel[55] works on the model of individual vertex mutations that

get passed on to the neighboring vertices in a sequence of supersteps.

The path information is propagated across the graph in the form of a queue. Each

vertex is initialized with an empty queue. When a vertex receives a message from any of

its neighbors, it checks the neighborhood of its next level neighbors (through the Topology

Abstraction layer) to determine if any of them satisfy the query predicate. If a matching

neighbor vertex is found, it adds itself to the message queue and propagates the message

to all the satisfiying neighbors. Those neighboring vertices that received a message in the

previous round now check the neighborhood of their next level vertices, and upon finding

a conforming neighbor, add themselves to the queue and propagate the message to all the

conforming neighbors. This process continues until the query is fulfilled or until there are

no active vertices that can contribute to the query. Keeping in structure with Pregel, we

define four elements - the initial message, vertex program, send message and gather message.

Listing 37.3 gives the scala algorithm for the pregel based implementation.

Listing 7.3: Path Query for Pregel Implementation
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def PathQuery2(g:Graph[V,E], query:Query) = {

g = g.subgraph(vpred=id=> filterVertex(id,query.head))//filter

.mapV(v=>(List(Queue()),0)) //initialize

initMsg = (List(Queue()),0)

def vProg(v:Id, m:List[Queue[Id]]) = {

//add itself to path

val newMsg = m.foreach(_._1.push(v))

return(newMsg,m._2+1)//increase query index

}

def sendMsg(t:Triplet)={

val queryIndex = t.src.msg._2

if(queryIndex<query.size && filterVertex(t.destId,query.get(queryIndex)))

t.src.msg //send msg

else

None //no message sent

}

def gatherMsg(a:List[Queue[Id]], b:List[Queue[Id]]) =

a ++ b //concatenate all msgs

return Pregel(g,vProg,initMsg,sendMsg,gatherMsg)

}

7.4 Experimental Evaluation

We implemented both of the above mentioned algorithms using the Spark framework in

scala. Experiments were performed on a 30-node cluster with commodity hardware with 4gb

driver memory and 2gb executor memory. We used a hash partitioning strategy to partition

the vertices. For the dataset, we used the LiveJournal dataset [72] obtained from the SNAP

project [12] with 4.8M Nodes and 68.9M edges. The dataset is directed, but unlabeled. So,
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we randomly assigned vertex and edge labels. For this experiment, we used 8 edge and 8

vertex labels. We also randomly generated path queries of the type given in Figure ??(b)

with size ranging from 3 to 6.

7.4.1 Performance Analysis

The motivation behind this paper is to introduce the Topology Abstraction layer and

the usage of Spark for graph processing in the distributed scenario. We are aware of several

distributed path query processing methods like [78] [56]. However, our aim is to demonstrate

the use of a Topology Abstraction layer in processing graph queries. We do not claim that our

path query processing model outperforms existing ones, but merely suggest that introducing

a globally available abstraction layer can help speedup path queries in a variety of distributed

paradigms. The suggested abstraction framework can be easily tailored to fit in any selective

graph exploration framework. Accordingly, we tested our abstraction layer in two different

graph processing paradigms - the data-parallel and graph-parallel models.

For the data-parallel model, we used our distributed querying model described in Sec-

tion 4.3 and for the graph-parallel model, we built our framework described in Section 4.4

over GraphX’s Pregel implementation. GraphX is a graph parallel engine built on top of

Spark to enable efficient computation of graph-specific algorithms. We do not compare our

Spark implementation with existing MapReduce implementations since our primary aim is

to showcase the benefits of a structural abstraction and hence only compare the implemen-

tations with the Topological Abstraction against those without it. Also, comparing it with

MapReduce implementations would be unfair as MapReduce and Spark operate on different

paradigms and Spark has been shown to produce a speedup of more than 10x when compared

to MapReduce [58] due to its reduced dependency on I/O operations.

Our results show that adding a topological abstraction layer helps significantly improve

query results. For the LiveJournal dataset, the total size of the Topology Abstraction layer

was 163MB. The compact size of the Topology layer enabled us to store it in a broad-

cast fashion and use it as a lookup table to help prune non-feasible paths. We refer to
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Figure (7.4) Query Time vs Path Length

the data parallel implementation with and without the Topology Abstraction layer as Data-

Parallel TS and DataParallel No TS respectively, whereas the corresponding graph parallel

implementations are referred to as Pregel TS and Pregel respectively.

Query Response Time Figure 7.4 gives the query response time when running path

queries of lengths ranging from 3 to 6 using 10 processors. The experiments show an average

of 20 queries instantiated on each implementation. We see that the Topology Abstraction

reduces turnaround time in both the data-parallel and graph-parallel frameworks. This

happens partly because the abstraction layer reduces the total computation time by reducing

the set of vertices in each stage. However, the real benefit of the Topology Abstraction is in

the reduction of communication time. The amount of nonviable data transfered across the

cluster is greatly reduced leading to an improvement in response time.This is especially true

in the case of the graph-parallel model, since one-on-one communication between vertices is

heavier here than in our data-parallel case. As we varied the size of the query, we see that the

difference in processing time increases substantially in the non-abstraction implementations,

while it remains almost constant for the data-parallel case. Traditional GraphX, without

the Topology Abstraction layer failed to return a result for a query size greater than 5 due

to memory overhead issues with the executors.

We also observed the response time by varying the number of processors to measure the

computation to communication ratio. The holy grail of distributed processing is to main the

balance between distributing the processing and transferring data to and forth across the
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Figure (7.5) Query Time vs Num of Processors

cluster. We noticed an interesting trend in the plot for the non-TS implementations, given

in Figure 7.5. While the processing time reduced with increasing the processors, the trend

started to reverse while continuing to increase the number of processors beyond a threshold

for the same payload. This is because, with more number of processors, data gets split into

smaller chunks, resulting in an increased communication overhead. This threshold was higher

for the TS implementations than the non-TS ones. The Pregel implementation with the TS

layer showed a more obvious improvement over the non-TS Pregel version in sensitivity to

increased parallelism. This is due to the fact that, with a higher number of partitions, the

graph is split into more fine grained sections. So, there is far greater data movement across

the cluster. Our abstraction layer helps reduce the amount of data transferred across the

network by pruning paths early on.

Memory Characteristics We also measured the amount of memory consumed and

shuffled across the cluster. Figure 7.6 shows the total input size, the read shuffle size and

write shuffle size for each of the four methods. These experiments belong to a query of

length 4 run using 10 executors. Note that the Y-axis denotes the data size in MB using

the logarithmic scale. As expected, our Topology Abstraction layer helps reduce the total

amount of data moved across the processors, in both the data-parallel and graph-parallel

implementations. We also observed an interesting characteristic with the input size. The

data-parallel implementation operated on a relatively smaller input size than the graph-

parallel case. This is because, our data model used in the data-parallel method used a storage
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Figure (7.6) Memory Characteristics

format optimized for path queries, whereas the graph-parallel implementation operated on

edge triples. Since the number of edges is many times larger than the vertex size for the

given dataset, the data-parallel implementation shows reduced data sizes.

However, the shuffle size is lesser for the graph-parallel implementation. This is be-

cause, in the GraphX implementation, messages to the same vertex are aggregated into one

structure, whereas in our data-parallel method, we treat each message individually. This is

an area where further optimization could be done.

7.5 Conclusion

In this section, we presented a Topology Abstraction layer for graphs that can help

speedup distributed graph query processing. We defined a compact structural layer that can

comprehensively answer the 1-closure for a vertex. Making the abstraction layer globally

available across the cluster creates a global lookup that can help prune non-matching paths

early on. In this research, we aim to present a generalized data abstraction layer for graphs

that could be used in multiple scenarios to improve response time. We also presented a Spark-

based distributed model to implement path queries that used our Topological Abstraction

layer. We also demonstrated that our Topological Abstraction layer can be used in both

data-parallel and graph-parallel paradigms.
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PART 8

CONCLUSIONS

At the end of this dissertation, we have developed a graph storage structure that can

efficiently store and process labeled graphs. We also improved the scalability of our method

by developing an adaptive caching framework that allows us to use larger graphs in a single

processor environment. In addition, we also explored the usage of Spark for interactive

graph queries. In doing so, we observe that adding a Topology Abstraction for the graph

significantly reduced the querying speed for most path queries.

We identified two major kinds of big data applications possible with graphs. The first

is to use graphs to represent connected entities and use them for point querying. Here, the

operational model is largely random and the graph is explored in a selective format. For these

kinds of applications, a NoSQL system, including ours, is the best way to go, since response

time is a major factor. Since these involve frequent updates and modifications, a complete

persistent structure that supports transactional access and a closer coupling between the

physical and logical representation of the data would be beneficial. The other kinds of

applications are analytical applications that are held offline. These kinds of operations

involve applying complex graph operations on the entire graph. These applications look to

leverage the connected nature of the data by inferring and mining information that is not

evidently seen. For these kinds of applications, a system with large processing capability

that can smoothly scale with the volume of data is essential. These kinds of systems do

not have the persistence or transaction abilities required in a full fledged graph database.

The first half of our dissertation focused on developing an online graph database that could

be used in multi-disciplinary scenarios. The second half on the other hand tried to use a

common analytics framework for a query processing scenario.

The biggest takeaway from this dissertation is the impact of the storage representation
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format on performance. We studied several data storage formats including adjacency ma-

trices, columnar representations, encoded bitmaps, linked list structures, etc., But we found

that the storage format is closely tied with the graph application it is used for. Analytical

tasks like PageRank, Connected Components etc., are mostly memory based operations.

Due to the size of the data involved, for mid-large sized graphs, these operations have to

performed in a distributed setting. This scenario takes away the dependencies from the data

structure. However, for online graphs, the performance of the database is closely tied to

the data structure used. We saw huge differences when the same operation used different

storage formats, since we were able to leverage and adapt the physical representation to suit

the application.

Though much of the dissertation has been focused on path queries, the techniques can be

extended to a generalized motif matching problem with relatively few changes. We also ob-

served that more complex techniques do not necessarily translate to improved performance,

but rather adapting the technique to suit the basic representation of the data helped im-

prove overall performance. Basic graph traversals outweigh the costs due to joins and hence

simplified traversal operations can obtain better performance than other complex algorithms

for graph exploration.
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