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JACKKNIFE EMPIRICAL LIKELIHOOD FOR THE ACCELERATED FAILURE TIME 

MODEL WITH CENSORED DATA 

 

by 

    

 MAXIME BOUADOUMOU 

   

        Under the Direction of Dr. Yichuan Zhao 

 

ABSTRACT 

Kendall and Gehan estimating functions are used to estimate the regression parameter in 

accelerated failure time (AFT) model with censored observations. The accelerated failure time model is 

the preferred survival analysis method because it maintains a consistent association between the covariate 

and the survival time. The jackknife empirical likelihood method is used because it overcomes 

computation difficulty by circumventing the construction of the nonlinear constraint. Jackknife empirical 

likelihood turns the statistic of interest into a sample mean based on jackknife pseudo-values.  U-statistic 

approach is used to construct the confidence intervals for the regression parameter. We conduct a 

simulation study to compare the Wald-type procedure, the empirical likelihood, and the jackknife 

empirical likelihood in terms of coverage probability and average length of confidence intervals. 

Jackknife empirical likelihood method has a better performance and overcomes the under-coverage 

problem of the Wald-type method. A real data is also used to illustrate the proposed methods. 

 

INDEX WORDS: Confidence interval, Coverage probability, Jackknife empirical likelihood, Right-

censoring, U-statistic, Kendall’s estimating equation Gehan, Logrank 
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Chapter 1 

 

INTRODUCTION 

1.1 Accelerated Failure Time Model 

  The Cox (1972) proportional hazards model is a popular survival analysis method used to 

establish a relationship between the covariate and the survival time in censored data. But in many cases, 

the Cox (1972) proportional hazards model does not always lead to a consistent estimate of the variance 

and the parameter when the assumptions are not satisfied. To maintain the consistency between the 

survival time and the covariates, an alternative method called accelerated failure time (AFT) model is 

quite popularly used. The AFT model assumes that the effect of a covariate is to multiply the predicted 

event time by some constant. AFT models can be therefore framed as linear models for the logarithm of 

the survival time. In recent years, many statisticians proposed different estimating methods for the 

accelerated failure time (AFT); among them, Tsiatis (1990), Ying (1993), and Ritov (1990). These 

researchers developed an estimating equation based on the linear rank test. Although in theory this 

method is useful in determining some statistics, it encountered some difficulties when the rank estimation 

equation is not monotone or continuous. Other researchers such as Lin et al. (1998) developed a root-

finding technique called the linear programming method used to estimate the parameters.  To estimate the 

variance, Tsiatis (1990) developed the nonparametric density function. Wei et al. (1990) also developed a 

method to estimate a consistent variance under certain conditions. Parzen et al. (1994) estimate the 

limiting covariance matrices by using a re-sampling method. Although these methods are useful to 

estimate the variance, they still fail to overcome the under-coverage problem of traditional method. 

Monotone estimating functions based on Kendall and Gehan estimating equations are used in this thesis. 
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1.2  Monotone Gehan estimating equation 

Fygenson and Ritov (1994) originally developed the rank-based estimating equation for right 

censoring data. Statisticians such as Lin et al. (1998), inspired by Fygenson and Ritov (1994) estimating 

equation, used the linear programming technique to find a consistent root. Although the latest method is 

theoretically useful in some cases, in practice it generally fails to estimate the variance of estimator 

because the equation is not differentiable. In order to overcome the problems mentioned above, Zhao 

(2011) proposed EL method. We will apply the jackknife empirical likelihood (JEL) developed by Jing, 

Yuan, and Zhou (2009) to the monotone Gehan estimating equation used in Zhao (2011) to get a better 

interval estimation of regression parameters. 

1.3 Kendall estimating equation 

The Kendall’s rank regression estimate is defined as follows 

 

where  

Kendall estimate is robust against the covariate outliers, as is the Gehan estimating equation, but it is not 

differentiable in β and required a new method to estimate the asymptotic variance of the regression 

estimate. Lu (2009) developed EL for the AFT model based on Kendall’s estimating equation. In this 

thesis, we will use the jackknife empirical likelihood to construct the confidence regions for the 

regression parameter based on the Kendall estimating equation. 

1.4 Empirical Likelihood 

Empirical likelihood (EL) method was first introduced by Owen (1988, 1990) to determine the shape 

of the confidence regions without having to estimate the variance. The empirical likelihood does not  
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assume a parametric family of distributions for the data. The empirical likelihood method has been 

extended in different fields such as on the two-sample problems (Liu, Zou and Zhang (2008), Shen and 

He (2007)), censored median regression model (Zhao and Chen (2008), Zhao and Yang (2008)) etc. For 

censored linear regression model including AFT models, recent work of EL includes Zhou (2005), Zhao 

and Huang (2007), and Zhou and Li (2008), Zhao (2011) etc. For a more thorough review of EL before 

2001, you may read Owen (2001). 

Based on Fygenson and Ritov (1994) estimating equation, Zhao (2011) developed an EL method for 

the AFT model.  Zhao (2011) developed a procedure that avoids the estimation of the variance for normal 

approximation based method. Motivated by Subramanian (2007), a profile EL for any specified q 

components of regression parameters is proposed and by using EL, the limiting distribution of the 

proposed profile El ratio is obtained accordingly. For more discussions on the EL ratio for p-dimension 

regression analysis, please see Zhao (2011).   

1.5 Jackknife Empirical Likelihood 

Empirical likelihood is very useful in many different occasions, particularly when data subjects to 

constraints are linear. However, when applied to more complicated statistics such as U-statistics, it runs 

into serious computational difficulties. To overcome these difficulties, Jing, Yuan and Zhou (2009) 

proposed the jackknife empirical likelihood (JEL) for a U-statistic. The method combines two of the 

popular nonparametric approaches: the jackknife and the empirical likelihood. The key idea of the JEL is 

to turn the statistic of interest into a sample mean based on jackknife pseudo-values (Quenouille, 1956). If 

we can show that these pseudo-values are asymptotically independent, we can apply Owen’s empirical 

likelihood for the mean of the jackknife pseudo-values. The most attractive feature with the JEL method 

is its simplicity, as it is merely a simple application of Owen’s empirical likelihood to the “sample” mean  
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of jackknife pseudo-values. Theoretically, we will establish Wilks’ theorem for one and two-sample U-

statistics alike. This indicates that the JEL might be potentially useful in handling more general class of 

statistics than U-statistics. Finally, the simulation studies indicate that the JEL compares favorably with 

other alternatives, and is worthy of serious considerations in statistical inference due to its simplicity. 

1.6 Brief History 

Jackknife empirical likelihood (JEL) is based on both the jackknife and empirical likelihood methods, 

and can work in rather general settings beyond the simple i.i.d. settings. JEL can also work under weak 

assumptions so as to make it as widely applicable as possible. JEL works for one and two-sample U-

statistics. The two samples can be independent but not identically distributed. For other nonlinear 

statistics, the validity of the JEL has to be checked case by case. The procedure is as follows. For a 

defined U-statistic, we construct a jackknife sample (see, e.g., Shao and Tu (1995)) first, and then treat 

this jackknife pseudo sample as a sample of i.i.d. observations and apply the standard empirical likelihood 

method for the mean of i.i.d. observations to obtain the empirical likelihood ratio statistic for the U-

statistic. 

The empirical likelihood method is one of the most famous methodologies for nonparametric 

statistical inference procedure which has excellent properties. The deployment of empirical likelihood 

method with respect to survival analysis can be traced back to Thomas and Grunkemeier (1975). The 

empirical likelihood method was summarized and discussed in Owen (1988, 1990, 1991), by introducing 

many great applications and extensions such as constructing nonparametric confidence intervals.  

Subsequently, Owen and many other statisticians developed this method into a general methodology.  
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Jackknife techniques have a long history in statistics. The jackknife method of bias reduction was 

originally proposed by Quenouille (1956), and then Tukey (1958) subsequently demonstrated how the 

method could be used to construct a nonparametric estimator of variance. As result, it is often referred to 

as the Quenouille-Tukey jackknife; see, for example, Efron (1982, p.1). According to Miller (1964, 

p.1594) the procedure was named the jackknife by Tukey because “a boy scout's jackknife is symbolic of 

a rough-and-ready instrument capable of being utilized in all contingencies and emergencies." The idea 

behind the jackknife method of bias reduction is to combine a statistic based on a full sample of data with 

a set of statistics based on sub-samples in a way that eliminates the first-order bias term from its 

expectation. The interest is often an estimator of a parameter or parameter vector although functions of 

model parameters and test statistics can also be considered provided they satisfy (or are assumed to 

satisfy) certain properties. In the case of a random sample of (i.i.d.) variables the sub-samples are usually 

obtained by deleting observation i from the full sample. This is sometimes known as the delete-1 

jackknife because each sub-sample deletes one observation at a time. 

The rest of the thesis is organized as follows. The jackknife empirical likelihood is proposed in 

Chapter 2 and we also present the procedure related to the methods. Three simulation scenarios 

performances are presented in Chapter 3:  the jackknife empirical likelihood confidence intervals, the 

empirical likelihood and the traditional normal approximation confidence intervals. We then compare the 

JEL for Gehan and the Kendall’s estimating equations to EL based on Buckley-James, logrank and Gehan 

estimators, by Zhou (2005) and Zhou and Li (2008). In Chapter 4, we present a real data application. In 

Chapter 5, a discussion is made and all the technical derivations such as the tables of simulation results 

and the table of the real application results are presented. The Matlab codes are provided in the Appendix. 
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Chapter 2 

    

INFERENCE PROCEDURE 

2.1 Preliminaries 

In this sequel, we use the same notations as those in Lu (2009).  The setting of the AFT model is 

as follows. For i = 1,…,n, let  be the failure time for ith patient and let ’s be the associated    

vectors of covariates sequence. , representing the time to event in survival analysis. The AFT 

model is to relate the regression of the logarithm of survival times, , to their p covariates through a 

standard linear regression equations,  

 

where the stochastic errors  are independent identically distributed with unknown distribution function 

F and the covariate vector  is independent of  . Since F is unknown, an estimating equation is a 

natural approach for estimation and inference on .  We assume that  is the censoring times for  . 

Assuming that  and  are independent conditionally on , we can only observe 

 and  where  is an indicator function. We assume 

that  is independent of  as was in Fygenson and Ritov (1994). For the regularity conditions, see 

p.735 of Fygenson and Ritov (1994) and Zhao (2011). 

Using the AFT model, we apply the Kendall and Fygenson-Ritov estimating equations to build a 

confidence region. We use an estimator introduced by Fygenson and Ritov as a solution of a monotone  
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estimating equation. Assume that is the true value of β, we obtain the following equation  

  . The Kendall estimating equation is written as     

 

where sgn (⋅) is a sign function defined as  

The Kendall estimate is robust against outliers (see Heller, 2007). Based on this method, for any fixed β, 

U (β) becomes a simple U-statistic; we can rewrite it as a U-statistic with symmetric kernel, 

 

Assume the same conditions as above, the Gehan estimating equation is written as follows 

 

Based on this method, for any fixed β, U (β) is a simple U-statistic; we can rewrite it as a U-statistic with 

symmetric kernel, 

 

Please refer to Zhao (2011) for more discussions on how to determine the asymptotic variance and the 

confidence interval of the Wald-type procedure. 

As stated in Zhao (2011), although the Wald-type estimation method has its excellent properties, it suffers 

a serious under-coverage problem for a small sample. Empirical likelihood is therefore used to fix the  
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under-coverage problem for linear constraints but when the applications involve nonlinear statistics, EL 

loses its computational appeals. Jing, Yuan, and Zhou (2009) proposed a new method called jackknife 

empirical likelihood to overcome the computational burdens. 

2.2 The JEL confidence region/interval 

  Let us consider the jackknife empirical likelihood approach in order to make the computation 

more appealing. By using the Kendall estimating equation, we have the following   

  and   

A U-statistic of degree 2 with a symmetric kernel h is defined to be 

 

Applying the JEL of Jing et al. (2009) to the above equations, we obtain , and the 

jackknife pseudo-values is defined as 

 

where   := U (  , which is obtained from the original data set by removing  

the ith data value. 

Also, similarly, from p.736 of Fygenson and Ritov (1994), , hence the sample mean is as follows  

 

Furthermore, the jackknife estimator is defined as 
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Generally, the jackknife pseudo values are r.v.’s, but asymptotically independent under weak or mild 

conditions (see Shi, 1984). We can then apply the JEL to the jackknife pseudo values. Let p = ( ,…., ) 

be a probability vector. Then the empirical likelihood function at the value β is given by 

 

Note that  attains its maximum at 1/n.  Thus, the jackknife empirical likelihood ratio at β is 

defined by           

 

and its logarithm form is  

 

By using the Lagrange multipliers method,  

we have 

 

where   satisfies 
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Then, by plugging  into the logarithm transformation of , we obtain 

 

The following theorems establish how Wilks’ theorem holds and state how the result can be used to 

construct confidence region for β. 

Theorem 1 Under the above conditions  converges in distribution to , where  is a chi-square 

random variable with p degrees of freedom. 

With Theorem 1, an asymptotic 100(1-α) % confidence region for  is given by 

 

where  is the upper α-quantile of the distribution of  

The confidence region for the full set of parameter provides less information in multi-dimensional 

setting. Regarding the P-values and the confidence intervals for the components of the regression 

parameters, statisticians make inferences about each element of β. In this thesis what we want to construct 

is the EL confidence region for the q sub-vector  of . Based on Subramanian (2007) 

profile empirical likelihood for censored median regression models, Zhao (2011) proposed the profile EL 

for single components by profiling out the nuisance parameters from the full EL. Thus, we will adapt 

these methods to our settings.  
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Define  and . The profile EL ratio 

at  is defined as . The corresponding theorem for the full 

EL is therefore obtained. 

 

Theorem 2: Under the above conditions,  converges in distribution to , where  is a chi-

square random variable with q degrees of freedom.  

 Using this Theorem, an asymptotic 100(1-α) % confidence region for  is given by 

 

where  is the upper α-quintile of the distribution of . 

             For Fygenson-Ritov estimating equation, similarly we can obtain the profile jackknife EL 

  by eliminating the nuisance parameters from the full JEL.  The resulting JEL confidence 

intervals for  is obtained, which is consistent with Theorem 1 and Theorem 2.  
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Chapter 3     

 

SIMULATION STUDY 

3.1 JEL, and EL vs. Wald-type based on Gehan and Kendall estimating equations 

 Based on the Gehan and Kendall estimating equations, extensive simulation studies are 

conducted to compare the performances of the confidence intervals of jackknife empirical likelihood, 

empirical likelihood method and the Wald-type based approach. The performances of the proposed 

procedures are compared in terms of coverage probability and average length of confidence intervals in 

different settings. We use the same settings as those in Lu (2009).  

 Assuming there are only one covariate Z and a true parameter   , skewed error distribution 

and the symmetric error distribution are the two models considered to conduct the simulation runs.  

Model 1 has a covariate  and is uniformly distributed in [-1, 1]. The censoring time C follows uniform 

distribution in [0, c], where c controls the censoring rate. The error term has a standard Gumbel 

distribution when µ = 0 and β = 1, and the cumulative distribution function skewed to the right is defined 

as follows 

 

We generated the error term as the following , where U is a uniform variable in  

 [0, 1]. Thus, the survival time can be obtained by , where . 

Model 2 has a covariate Z and is uniformly distributed in [0.5, 1.5].The censoring time C is distributed as 

2 exp (1) +c, where exp (1) is a standard exponential distribution, and c controls the censoring rate. The 

symmetric error distribution is similar to that of the standard Normal distribution N (0, 1). 
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The censoring time C can be generated as follows , where U is a uniform variable in 

[0, 1] and c is a constant. 

             Assuming a true value , four different censoring rates with approximately 15%, 30% and 

45%, and 60% respectively, which represent light censoring, medium censoring and moderate heavy 

censoring, and very heavy censoring rate. The sample sizes are 30, 50, 75 and 100, representing very 

small, relatively small, moderate and large samples respectively. Therefore, we have 16 data settings in 

total for each of the two models. Each data set is simulated 10000 times and the results are displayed in 

Table 1 and Table 2. 

             Table 1 and Table 2 displayed the results of the Wald-type, the empirical likelihood, and the  

jackknife empirical likelihood methods. The censoring rates are approximately 15%, 30%, 45%, and the 

sample size, based on 10,000 simulated data sets, is 30, 50, 75, and 100. The three methods have better 

performances in term of coverage probabilities and average lengths when the total sample size increases.  

The coverage probability for large sample, that is n=100, works well with right coverage probability of 

90%, 95%. The Wald-type method has greater under-coverage when the sample size is small, while the 

empirical likelihood and the jackknife empirical likelihood methods have a better coverage probability for 

all the nominal levels. The three methods have a better accuracy of the coverage probabilities when the 

censoring rate decreases because there are fewer information losses.  
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Table 1: Coverage probability and average lengths of confidence intervals for the regression 

parameter β with model 1.  

          1-α=0.90     1-α=0.95     

CR n 

 

Wald EL1 JEL1                                        JEL2 Wald EL1 JEL1 JEL2 

  30 Coverage 0.8691 0.8992 0.8997 0.8989 0.9228 0.9436 0.9489 0.9478 

    Length 1.4349 1.5739 1.5741 1.5738 1.7101 1.9037 1.9056 1.9051 

  50 Coverage 0.8862 0.9087 0.9098 0.9089 0.9342 0.9524 0.9571 0.9562 

    Length 1.0859 1.1844 1.1848 1.1851 1.2943 1.4212 1.4227 1.4223 

15% 75 Coverage 0.8889 0.9134 0.9198 0.9189 0.9411 0.9592 0.9598 0.9593 

    Length 0.8735 0.9515 0.9532 0.9527 1.0412 1.1422 1.1431 1.1428 

  100 Coverage 0.8941 0.9157 0.9176 0.9163 0.9429 0.9617 0.9669 0.9658 

    Length 0.7517 0.8073 0.8086 0.8083 0.8965 0.9783 0.9799 0.9793 

  30 Coverage 0.8676 0.8953 0.8991 0.8979 0.9168 0.9369 0.9476 0.9468 

    Length 1.6869 1.8169 1.8183 1.8177 2.0109 2.1744 2.1753 2.1748 

  50 Coverage 0.8769 0.8987 0.8998 0.8989 0.9276 0.9457 0.9489 0.9481 

    Length 1.2683 1.3631 1.3645 1.3639 1.5114 1.6262 1.6276 1.6261 

30% 75 Coverage 0.8836 0.9067 0.9103 0.9098 0.9375 0.9521 0.9581 0.9573 

    Length 1.0223 1.1047 1.1053 1.1049 1.2169 1.3139 1.3153 1.3148 

  100 Coverage 0.8919 0.9117 0.9189 0.9179 0.9422 0.9596 0.9617 0.9609 

    Length 0.8816 0.9469 0.9478 0.9471 1.0488 1.1363 1.1404 1.1401 

  30 Coverage 0.8497 0.8729 0.8789 0.8778 0.9087 0.9194 0.9215 0.9208 

    Length 2.0332 2.1771 2.1789 2.1785 2.4218 2.5978 2.6012 2.6007 

  50 Coverage 0.8708 0.8852 0.8971 0.8963 0.9238 0.9337 0.9399 0.9388 

    Length 1.5253 1.5963 1.6617 1.6609 1.8163 1.9011 1.9084 1.9079 

45% 75 Coverage 0.8805 0.9011 0.9089 0.9081 0.9342 0.9441 0.9488 0.9479 

    Length 1.2298 1.2965 1.2974 1.2969 1.4651 1.5283 1.5291 1.5286 

  100 Coverage 0.8876 0.9046 0.9089 0.9077 0.9399 0.9478 0.9518 0.9512 

    Length 1.0521 1.1223 1.0370 1.0369 1.2523 1.3241 1.1897 1.1895 

  30 Coverage 0.8142 0.8386 0.8678 0.8669 0.8763 0.8868 0.8991 0.8983 

    Length 2.6108 2.7791 2.8441 2.8438 3.1101 3.2618 3.3685 3.3681 

  50 Coverage 0.8489 0.8494 0.8789 0.8781 0.9013 0.9034 0.9211 0.9203 

    Length 1.9466 1.9872 2.1032 2.1028 2.3187 2.3193 2.4893 2.4891 

60% 75 Coverage 0.8712 0.8673 0.8827 0.8821 0.9219 0.9167 0.9376 0.9371 

    Length 1.5722 1.5893 1.6645 1.6639 1.8744 1.8752 1.8898 1.8591 

  100 Coverage 0.8744 0.8816 0.8975 0.8968 0.9289 0.9279 0.9432 0.9428 

    Length 1.3365 1.3826 1.4321 1.4316 1.6032 1.6217 1.7127 1.7118 

CR: censoring rate 

EL1: empirical likelihood using Kendall estimating equation 

JEL1: jackknife empirical likelihood using Kendall estimating equation 

JEL2: jackknife empirical likelihood using Gehan estimating equation 
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Table 2: Coverage probability and average lengths of confidence intervals for the regression 

parameter β with model 2 

        1-α=0.90       1-α=0.95     

CR n 

 

Wald EL1 JEL1 JEL2 Wald EL1 JEL1 JEL2 

  30 Coverage 0.8543 0.9086 0.9113 0.9107 0.9126 0.9511 0.9609 0.9598 

    Length 2.3071 2.4428 2.5142 2.5133 2.7488 2.8873 2.9251 2.8898 

  50 Coverage 0.8758 0.9165 0.9192 0.9183 0.9297 0.9614 0.9689 0.9679 

    Length 1.7436 1.8877 1.8886 1.8878 2.0776 2.2515 2.2569 2.2563 

15% 75 Coverage 0.8856 0.9184 0.9196 0.9189 0.9379 0.9632 0.9667 0.9658 

    Length 1.4098 1.5139 1.5147 1.5143 1.6798 1.8265 1.8289 1.8283 

  100 Coverage 0.8884 0.9124 0.9202 0.9193 0.9419 0.9632 0.9688 0.9682 

    Length 1.2162 1.2854 1.3051 1.2984 1.4492 1.5598 1.6012 1.6007 

  30 Coverage 0.8526 0.9006 0.9117 0.9111 0.9069 0.9462 0.9512 0.9504 

    Length 2.4351 2.5434 2.6012 2.6006 2.9013 2.9931 3.1241 3.1232 

  50 Coverage 0.8764 0.9064 0.9114 0.9109 0.9239 0.9519 0.9627 0.9621 

    Length 1.8432 1.9751 2.1131 2.1127 2.1966 2.3565 2.4126 2.4122 

30% 75 Coverage 0.8831 0.9127 0.9184 0.9179 0.9379 0.9616 0.9669 0.9662 

    Length 1.4887 1.5897 1.6117 1.6113 1.7736 1.9086 1.9125 1.9122 

  100 Coverage 0.8834 0.9092 0.9124 0.9121 0.9383 0.9588 0.9601 0.9598 

    Length 1.2811 1.3529 1.3613 1.3611 1.5259 1.6345 1.7112 1.7109 

  30 Coverage 0.8441 0.8838 0.8991 0.8983 0.8991 0.9333 0.9464 0.9458 

    Length 2.6694 2.8715 2.9254 2.9249 3.1811 3.4432 3.5213 3.5203 

  50 Coverage 0.8693 0.8965 0.9013 0.9007 0.9211 0.9419 0.9512 0.9503 

    Length 2.0311 2.1351 2.2354 2.2349 2.4198 2.5534 2.6232 2.6228 

45% 75 Coverage 0.8807 0.9081 0.9109 0.9102 0.9331 0.9498 0.9522 0.9515 

    Length 1.6303 1.7278 1.7892 1.7885 1.9422 2.0531 2.6211 2.6207 

  100 Coverage 0.8878 0.9079 0.9126 0.9121 0.9369 0.9545 0.9598 0.9591 

    Length 1.4075 1.4886 1.5125 1.5122 1.6771 1.7754 1.7768 1.7761 

  30 Coverage 0.8322 0.8636 0.8988 0.8982 0.8871 0.9095 0.9371 0.9362 

    Length 3.0165 3.1971 3.4178 3.4171 3.5937 3.7969 3.8112 3.8103 

  50 Coverage 0.8708 0.8785 0.8996 0.8991 0.9181 0.9224 0.9463 0.9456 

    Length 2.2773 2.3437 2.4214 2.4206 2.7134 2.7911 2.8321 2.8315 

60% 75 Coverage 0.8820 0.8946 0.9087 0.9078 0.9305 0.9398 0.9512 0.9508 

    Length 1.8234 1.8976 1.9214 1.9208 2.1725 2.2440 2.4175 2.4171 

  100 Coverage 0.8811 0.8996 0.9021 0.9017 0.9332 0.9424 0.9556 0.9549 

    Length 1.5664 1.6454 1.7231 1.7227 1.8663 1.9424 2.1231 2.1226 
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            The Wald-type procedure has a slightly shorter average length compared to the empirical 

likelihood and the jackknife empirical likelihood methods; thus, the shorter the average length of 

confidence interval, the better the confidence interval. Also we notice that when sample size increases, the 

average length shortens and the censoring rate decreases and the reason is the larger the sample size, the 

less information is susceptible to be lost. The Wald type confidence interval is symmetric; however the 

empirical likelihood and the jackknife empirical likelihood confidence intervals are not symmetric 

because EL1 and JEL confidence intervals are built through their data set instead of a given distribution. 

In term of coverage probability, JEL1 is better than JEL2 which is also better than EL1 but in terms of 

average length, the Wald type method has a slightly shorter length than JEL1 and JEL2. 

3.2 Kendall vs. Buckley-James vs. Gehan vs. Logrank Estimator 

Jackknife empirical likelihood method is used to compare Kendall’s Tau, Buckley-James (Zhou and 

Li , 2008) and Logrank estimators (Zhou,  2005) in terms of coverage probability and average length. In 

this regard, model 3 is introduced with a covariate  and the error term follows a Normal distribution in N 

(1, ). We use the same settings as those in Lu (2009). 

The censoring time C also follows a Normal distribution in N(µ, ), where  

respectively and  censoring rates are 10%, 30%, 50%, 75%. The sample size n is 50, 100 and 200. The 

coverage probabilities are based on 5000 simulation repetitions.  Considering  

 

,  

the AFT model is defined as  

. 
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Table 3: Coverage probability using JEL, EL1, B-J, Logrank, and Gehan estimators 

                                                                  1-α=0.90                                        1-α=0.95                 

Censoring 

rate        n B-J Logrank Gehan EL1 JEL1 JEL2 B-J Logrank Gehan EL1 JEL1 JEL2 

10%  

50 0.8932 0.8885 0.8844 0.9125 0.9179 0.9163 0.9417 0.9411 0.9367 0.9522 0.9559 0.9546 

100 0.8893 0.8918 0.8916 0.9234 0.9283 0.9274 0.9419 0.9491 0.9452 0.9632 0.9678 0.9664 

200 0.8815 0.9067 0.8951 0.9046 0.9072 0.9083 0.9467 0.9509 0.9451 0.9511 0.9581 0.9572 

30% 

50 0.8819 0.8878 0.8812 0.9074 0.9083 0.9072 0.9383 0.9368 0.9299 0.9526 0.9581 0.9569 

100 0.8943 0.8893 0.8879 0.9221 0.9271 0.9279 0.9481 0.9422 0.9392 0.9569 0.9592 0.9581 

200 0.8934 0.9147 0.8967 0.9116 0.9162 0.9149 0.9479 0.9631 0.9453 0.9582 0.9594 0.9585 

50% 

50 0.8843 0.8807 0.8657 0.8981 0.8998 0.8987 0.9332 0.9329 0.9234 0.9372 0.9426 0.9414 

100 0.8934 0.8946 0.8826 0.9082 0.9097 0.9089 0.9425 0.9528 0.9383 0.9532 0.9569 0.9554 

200 0.8957 0.8932 0.8976 0.9146 0.9183 0.9169 0.9487 0.9475 0.9433 0.9611 0.9669 0.9658 

75% 

50 0.8428 0.8447 0.8041 0.8558 0.8764 0.8753 0.9047 0.9022 0.8635 0.8869 0.9293 0.9282 

100 0.8824 0.8747 0.8548 0.8863 0.8981 0.8972 0.9352 0.9311 0.9125 0.9345 0.9415 0.9403 

200 0.8935 0.8865 0.8776 0.9027 0.9073 0.9058 0.9447 0.9448 0.9366 0.9497 0.9538 0.9528 

 
B-J: EL for Buckley-James estimator by Zhou and Li (2008) 

Logrank: EL for logrank estimator by Zhou (2005) 

Gehan: EL for Gehan estimator by Zhou (2005) 

JEL1: Jackknife empirical likelihood using Kendall estimating equation by Kendall (1938) 

JEL2: Jackknife empirical likelihood using Gehan estimating equation by Fygenson and Ritov (1994) 
 

The results displayed in Table 3 show that jackknife empirical likelihood using Kendall 

estimating equation (JEL1) has a better performance in terms of coverage probability, which is followed 

closely by jackknife empirical likelihood using Gehan equation (JEL2). In most cases, Kendall’s coverage 

probability (EL1) has a better performance compared to Buckley-James, Gehan, and Logrank estimators; 

for smaller sample size, Kendall outperforms the three estimators. Gehan has the worst performance 

coverage among the different methods. In conclusion, JEL1 and JEL2 have similar coverage probability 

and are better than Logrank, B-J and EL1 estimators. 
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Chapter 4 

     

 APPLICATION 

4.1 Introduction 

 In this section, we apply jackknife empirical likelihood methods to bone marrow transplant 

procedure described by Klein and Maeschberger (1997) in “survival analysis: techniques for censored and 

truncated data”. Lu (2009) also used EL for Kendall’s estimating equation to analyze this dataset. We 

combine these results together. 

The preparative regimen used in this study of allogeneic marrow transplants for patients with acute 

myeloctic leukemia (AML) and acute lymphoblastic leukemia (ALL) was a combination of 16 mg/kg of 

oral Busulfan (BU) and 120 mg/kg of intravenous cyclophosphamide (Cy). A total of 137 patients (99 

AML, 38 ALL) were treated at one of four hospitals: 76 at The Ohio State University Hospitals (OSU) in 

Columbus; 21 at Hahnemann University (HU) in Philadelphia; 23 at St. Vincent’s Hospital (SVH) in 

Sydney Australia; and 17 at Alfred Hospital (AH) in Melbourne. The study consists of transplants 

conducted at these institutions from March 1, 1984, to June 30, 1989. The maximum follow-up was 7 

years. There were 42 patients who relapsed and 41 who died while in remission. Twenty-six patients had 

an episode of acute GVHD, and 17 patients either relapsed or died in remission without their platelets 

returning to normal levels. 

Several potential risk factors were measured at the time of transplantation. For each disease, 

patients were grouped into risk categories based on their status at the time of transplantation. These  
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categories were as follows: ALL (38 patients), AML low-risk first remission (54 patients), and AML 

high-risk second remission or untreated first relapse (15 patients) or second or greater relapse or never in  

remission (30 patients). Other risk factors measured at the time of transplantation included recipient and 

donor gender (80 and 88 males respectively), recipient and donor cytomegalovirus immune status (CMV) 

status (68 and 58 positive, respectively), recipient and donor age (ranges 7–52 and 2–56, respectively), 

waiting time from diagnosis to transplantation (range 0.8–87.2 months, mean 19.7 months), and, for AML 

patients, their French-American-British (FAB) classification based on standard morphological criteria. 

AML patients with an FAB classification of M4 or M5 (45/99 patients) were considered to have a 

possible elevated risk of relapse or treatment-related death. 

The censoring rate used in this simulation study is 40.88% and the model is defined as follows 

  

Four different coefficient estimates  and a covariate are used to construct the confidence 

intervals. As Table 4 shows, among the covariates, FAB is very significant across all the nominal levels 

when it is associated to the Wald-type procedure. Among the other three coefficient estimates, covariate 

called Group is significant at confidence level 0.90. As in Lu (2009), the variable Age is a scaled 

interaction between patient Age and donor Age, and is defined as Age = (patient Age - 28)  (donor Age 

- 28) /100. Age is significant at several confidence levels.  Lastly, we notice that the Waiting time is not 

significant at any confidence levels as shown in Table 4.  JEL1 and JEL2 have longer lengths; therefore, 

their confidence intervals are longer, which is in phase with the results we found in our simulation study. 
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4.2 Results and Analysis 

 Table 4: Confidence intervals using JEL1, JEL2, EL1 and Wald-type procedure 

             FAB Group Age TimeToTrx 

  β -0.8388 -0.4558 -0.4588 -0.2055 

                     CI                 CI                CI                CI 

  0.90 (-1.3483 -0.3292) (-0.8418 -0.071) (-0.7791 0.1408) (-0.4382 0.0271) 

  Length 1.0191 0.7708 0.6383 0.4653 

W
al

d
 

0.95 (-1.4463 -0.2317) (-0.9157 0.0042) (-0.8381 -0.0799) (-0.4826 0.0715) 

Length 1.2146 0.9199 0.7582 0.5541 

0.99 (-1.6372 -0.0409) (-1.0602 0.1487) (-0.9574 0.0396) (-0.5697 0.1585) 

  Length 1.5963 1.2089 0.997 0.7282 

  0.90 (-1.3728 -0.2543) (-0.8629 -0.0385) (-0.9321 -0.1722) (-0.4908 -0.0136 

  Length 1.1185 0.8244 0.7599 0.4772 

E
L

1
 

0.95 (-1.4936 -0.1244) (-0.9445 0.0421) (-1.0505 -0.1089) (-0.5731 0.0214) 

Length 1.3692 0.9866 0.9416 0.5945 

0.99 (-1.6192 0.1329) (-1.1252 0.2236) (-1.2551 0.0057) (-0.7335 0.0777) 

  Length 1.7521 1.3488 1.2608 0.8112 

  0.90 (-1.4972 -0.2942) (-0.9275 -0.0369) (-1.0262 -0.1843 (-0.5308 -0.0214) 

  Length 1.2030 0.8906 0.8419 0.5094 

JE
L

1
 

0.95 (-1.5238 -0.1348) (-1.1563 0.0572) (-1.3081 -0.1068) (-0.6339 0.0172) 

Length 1.3890 1.2135 1.2013 0.6511 

0.99 (-1.7278 0.1483) (-1.2457 0.3189) (-1.3363 0.0198) (-0.9663 0.0776) 

  Length 1.8761 1.5646 1.3561 1.0439 

  0.90 (-1.4915 -0.2833) (-0.9279 -0.0198) (-0.9878 -0.1586) (-0.5425 -0.0198) 

  Length 1.2083 0.9081 0.8292 0.5227 

JE
L

2
 

0.95 (-1.5242 -0.1353) (-1.1558 0.0395) (-1.0836 -0.1099) (-0.6428 0.0259) 

Length 1.3889 1.1953 1.1935 0.6687 

0.99 (-1.7365 0.1379) (-1.2265 0.3142) (-1.4006 0.0126) (-0.9789 0.0756) 

  Length 1.8744 1.5407 1.4132 1.0545 
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Chapter 5 

 

CONCLUSION 

The recommended coverage probability is the one that that is close enough to the nominal level 

and the best average length is the shortest one. In terms of probability coverage, JEL1 and JEL2 are close 

to their corresponding nominal levels. In addition, when the sample sizes are large the coverage 

probabilities are more accurate and the average lengths are the shortest. The jackknife empirical 

likelihood using Kendall estimating equation outperformed the EL1 method and the Wald-type procedure. 

In terms of average length, Wald procedure is the best.  We also notice that JEL1 and JEL2 have better 

coverage probability. When the sample size increases, all the proposed methods have better performances  

in terms of coverage probabilities and average lengths; However for smaller sample sizes, JEL1 and JEL2 

are the best. In addition, it takes less time to compute JEL1 and JEL2. Zhao (2011) proposed EL method 

to fix the under-coverage problem that is presented in the Wald-type procedure and this method worked 

well in our simulation study as well. By using JEL1 and JEL2 to simulate the data set, we noticed that for 

larger sample size, there is over-coverage problem that needs to be addressed. In our future work, we will 

investigate the use of bootstrap calibration using JEL to fix the over-coverage problem.  
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APPENDIX: MATLAB CODES 

Matlab code: 

%%%Model 1: extreme value distribution for error term. Covariate is 
%uniformly distributed in [-1,1] and the censoring time is uniform [0,c] 
% c controls the censoring rate. 
% k is # of obs. in one data set; C is censoring rate; b is the true value 
% of the coefficient of covariate. 

-------------------------------function for model 1---------------------- 

function Data=data1(k,C,b)  
censor=0; 
for i=1:k 
    z(i)=(rand(1)-0.5)*2; 

    
c(i)=(rand(1)*C); 
Eps(i)=log(-log(rand)); 
T(i)=exp(z(i)*b+Eps(i)); 
if T(i) > c(i) 
delta(i)=0; 
censor=censor+1; 
else delta(i)=1; 
end 
end 
z; 
T; 
%prop=censor/k 
for i=1:k 
Data(i,1)=log(min(T(i),c(i))); 
Data(i,2)=delta(i); 
Data(i,3)=z(i); 
end 
prop=censor/k; 

 

%%%Model 2: Standard Normal distribution for error term. Covariate is 
%uniformly distributed in [0.5,1.5] and the censoring time is uniform [0,c] 
% c controls the censoring rate. 
% k is # of obs. in one data set; C is censoring rate; b is the true value 
% of the coefficient of covariate. 

 
 --------------------------------function for model 2---------------------- 

function Data=data2(k,C,b) 
censor=0; 
for i=1:k 
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    z(i)=(rand(1)+0.5)*1; 

    
c(i)=(-2*log(rand)+C); 

W=randn(1, 1); 
Eps(i)=W; 
T(i)=exp(z(i)*b+Eps(i)); 
if T(i) > c(i) 
delta(i)=0; 
censor=censor+1; 
else delta(i)=1; 
end 
end 
z; 
T; 
%prop=censor/k 
for i=1:k 
Data(i,1)=log(min(T(i),c(i))); 
Data(i,2)=delta(i); 
Data(i,3)=z(i); 
end 
prop=censor/k; 

 

------------------------------generate data for model 1---------------------- 

%generate 2000 data sets 
% for Model 1 
% Choose C=10 for the censoring rate of 15% 11.25 
% Choose C=4 for the censoring rate of 30% 4.2 
% Choose C=2 for the censoring rate of 45% 2 
% Choose C=0.95 for the censoring rate of 60% 
% Choose C=0.42 for the censoring rate of 75% 
% four kinds of sample size: 100 75 50 30 

  
for k=1:10000 
Data1l=data1(100,0.42,2); 
for i=1:100; 
for j=1:3 
Dataa(i,j,k)=Data1l(i,j); 
end 
end 
end 

  
save   nAFT115   Dataa 
clear; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
for k=1:10000 
Data1l=data1(100,0.95,2); 
for i=1:100 
for j=1:3 
Dataa(i,j,k)=Data1l(i,j); 
End 
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end 
end 

 

 

save   nAFT130   Dataa 
clear; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
for k=1:10000 
Data1l=data1(100,2,2); 
for i=1:100 
for j=1:3 
Dataa(i,j,k)=Data1l(i,j); 
end 
end 
end 

  
save   nAFT145   Dataa 
clear; 

 
------------------------------generate data for model 2---------------------- 

%generate 2000 data sets 
% for Model 2 
% Choose C=22.5 for the censoring rate of 15% 23.15 
% Choose C=12 for the censoring rate of 30% 12.5 
% Choose C=6.6 for the censoring rate of 45% 6.85 
% Choose C=3.8 for the censoring rate of 60% 
% Choose C=1.6 for the censoring rate of 75% 
% four kinds of sample size: 100 75 50 30 

  
for k=1:10000 
Data1l=data2(100,1.6,2); 
for i=1:100 
for j=1:3 
Dataa(i,j,k)=Data1l(i,j); 
end 
end 
end 

  
save   nAFT215   Dataa 
clear; 

  
%%%%%%%%% 

  
for k=1:10000 
Data1l=data2(100,3.8,2); 
for i=1:100 
for j=1:3 
Dataa(i,j,k)=Data1l(i,j); 
end 
end 
end 



 

 

30 
  
save   nAFT230   Dataa 
clear; 
%%%%%%%%% 
for k=1:10000 
Data1l=data2(100,6.6,2); 
for i=1:100 
for j=1:3 
Dataa(i,j,k)=Data1l(i,j); 
end 
end 
end 

  
save   nAFT245   Dataa 
clear; 

 
 -function for coverage probability of JEL using Gehan or Kendall estimating 

method--- 

 

function  cov=empcovjack(n,fname,GKtyp) 

%CCC=5; 

clear 

cov1=0; 

cov2=0; 

cov3=0; 

K=size(Dataa,3); 

load(fname); 

count=0; 

b=2 

%n=100 

%for kk=1:K 

%Data=data(n,CCC,b); 

for kk=1:K 

for j=1:n 

for k=1:3 

Data(j,k)=Dataa(j,k,kk); 

end 

end     

    

lambda=Lambdajack(b, n, 0.0001,Data,GKtyp); 

    ll=1; 

    W=0; 

    for it=1:n 

        for j1=1:n 

            switch(GKtyp) 

                case('G') 

                    W= W+(Data(it,3)-Data(j1,3))*(Data(it,2)* ((Data(j1,1)-

b*Data(j1,3)) > (Data(it,1)-b*Data(it,3)))- Data(j1,2)*((Data(it,1)-

b*Data(it,3)) > (Data(j1,1)-b*Data(j1,3))))/(n-1)/2; 

                case('K') 

                    W= W+sign(Data(it,3)-Data(j1,3))*(Data(it,2)* 

((Data(j1,1)-b*Data(j1,3)) > (Data(it,1)-b*Data(it,3)))- 

Data(j1,2)*((Data(it,1)-b*Data(it,3)) > (Data(j1,1)-b*Data(j1,3))))/(n-1)/2; 

            End 
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        end 

    end 

 

 

 

 

for itt=1:n 

 

        Wn=0; 

        for j1=1:n 

            switch(GKtyp) 

                case('G') 

                    Wn= Wn+(Data(itt,3)-Data(j1,3))*(Data(itt,2)* 

((Data(j1,1)-b*Data(j1,3)) > (Data(itt,1)-b*Data(itt,3)))-  

 

 

Data(j1,2)*((Data(itt,1)-b*Data(itt,3)) > (Data(j1,1)-b*Data(j1,3))))/(n-

1)/2; 

                case('K') 

                    Wn= Wn+sign(Data(itt,3)-Data(j1,3))*(Data(itt,2)* 

((Data(j1,1)-b*Data(j1,3)) > (Data(itt,1)-b*Data(itt,3)))- 

Data(j1,2)*((Data(itt,1)-b*Data(itt,3)) > (Data(j1,1)-b*Data(j1,3))))/(n-

1)/2; 

            end 

        end 

 

        U=W-Wn; 

        WW=W*n-(n-1)*(W-Wn); 

        ll=ll*abs(1+lambda*WW); 

    end 

 

    L=2*log(ll); 

 

    if L>0 

    count=count+1 

    end 

cov1=cov1+(L <= 2.7055); 

cov2=cov2+ (L <= 3.841459); 

cov3=cov3+ (L <= 6.6349); 

kk 

%cov(1)=cov1/count 

%cov(2)=cov2/count 

%cov(3)=cov3/count 

cov=[cov1/kk cov2/kk cov3/kk] 

 

end 

 

count; 

cov(1)=cov1/K 

cov(2)=cov2/K 

cov(3)=cov3/K 

  
 -Bisection method for average length of JEL using Gehan or Kendall 

estimating method – 
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function average=empLengthjack(upper,lower,initial,CL,Data,n,GKtyp)   

 

%%%%%%%%%%%%% lower bound for 95% confidence region%%% 

 

Bl=lower; 

Bu=initial; 

if CL==90; 

    Z=1.645^2; 

elseif CL==95; 

    Z=1.96^2; 

elseif CL==99; 

    Z=2.576^2; 

end 

 

diff=2; 

 

while (diff>0.00001) 

    x=(Bl+Bu)/2; 

    B=Lambdajack(x, n, 0.0001, Data, GKtyp); 

    ll=ones(1,1); 

    for it=1:n 

        W=0; 

        for j1=1:n 

            switch(GKtyp) 

                case('G') 

                    W= W+(Data(it,3)-Data(j1,3))*(Data(it,2)* ((Data(j1,1)-

B*Data(j1,3)) > (Data(it,1)-B*Data(it,3)))- Data(j1,2)*((Data(it,1)-

B*Data(it,3)) > (Data(j1,1)-B*Data(j1,3))))/(n-1)/2; 

                case('K') 

                    W= W+sign(Data(it,3)-Data(j1,3))*(Data(it,2)* 

((Data(j1,1)-B*Data(j1,3)) > (Data(it,1)-B*Data(it,3)))- 

Data(j1,2)*((Data(it,1)-B*Data(it,3)) > (Data(j1,1)-B*Data(j1,3))))/(n-1)/2; 

            end 

        end 

    end 

 

    for itt=1:n 

        Wn=0; 

        for j1=1:n 

            switch(GKtyp) 

                case('G') 

                    Wn= Wn+(Data(itt,3)-Data(j1,3))*(Data(itt,2)* 

((Data(j1,1)-B*Data(j1,3)) > (Data(itt,1)-B*Data(itt,3)))- 

Data(j1,2)*((Data(itt,1)-B*Data(itt,3)) > (Data(j1,1)-B*Data(j1,3))))/(n-

1)/2; 

                case('K') 

                    Wn= Wn+sign(Data(itt,3)-Data(j1,3))*(Data(itt,2)* 

((Data(j1,1)-B*Data(j1,3)) > (Data(itt,1)-B*Data(itt,3)))- 

Data(j1,2)*((Data(itt,1)-B*Data(itt,3)) > (Data(j1,1)-B*Data(j1,3))))/(n-

1)/2; 

            end 

        end 

        U=W-Wn; 
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        WW=W*n-(n-1)*(W-Wn); 

        ll=ll*abs(1+B*WW); 

    end 

 

    L=2*log(ll); 

 

 

        if  L < Z 

            Bu=x; 

        else 

            Bl=x; 

        end 

        diff=Bu-Bl; 

  

    end 

  

    bhatl=Bu; 

 

 

    %%%%%%%%%%%%%%%%%%%%%%upper bound for 95% confidence region% 

    Bu=upper; 

    Bl=initial; 

     

    diff=2; 

  

    while (diff>0.00001) 

        x=(Bl+Bu)/2; 

        B=Lambdajack(x, n, 0.0001, Data, GKtyp); 

        ll=ones(1,1); 

        for it=1:n 

            U=zeros(1,1); 

            for it=1:n 

                W=0; 

                for j1=1:n 

                    switch(GKtyp) 

                        case('G') 

                            W= W+(Data(it,3)-Data(j1,3))*(Data(it,2)* 

((Data(j1,1)-B*Data(j1,3)) > (Data(it,1)-B*Data(it,3)))- 

Data(j1,2)*((Data(it,1)-B*Data(it,3)) > (Data(j1,1)-B*Data(j1,3))))/(n-1)/2; 

                        case('K') 

                            W= W+sign(Data(it,3)-Data(j1,3))*(Data(it,2)* 

((Data(j1,1)-B*Data(j1,3)) > (Data(it,1)-B*Data(it,3)))- 

Data(j1,2)*((Data(it,1)-B*Data(it,3)) > (Data(j1,1)-B*Data(j1,3))))/(n-1)/2; 

                    end 

                end 

 

            end 

        end 

         

        for itt=1:n 

            Wn=0; 

            for j1=1:n 

                switch(GKtyp) 

                    case('G') 
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                        Wn= Wn+(Data(itt,3)-Data(j1,3))*(Data(itt,2)* 

((Data(j1,1)-B*Data(j1,3)) > (Data(itt,1)-B*Data(itt,3)))- 

Data(j1,2)*((Data(itt,1)-B*Data(itt,3)) > (Data(j1,1)-B*Data(j1,3))))/(n-

1)/2; 

                    case('K') 

                        Wn= Wn+sign(Data(itt,3)-Data(j1,3))*(Data(itt,2)* 

((Data(j1,1)-B*Data(j1,3)) > (Data(itt,1)-B*Data(itt,3)))-  

Data(j1,2)*((Data(itt,1)-B*Data(itt,3)) > (Data(j1,1)-B*Data(j1,3))))/(n-

1)/2; 

                end 

            end 

 

            U=W-Wn; 

            WW=W*n-(n-1)*(W-Wn); 

            ll=ll*abs(1+B*WW); 

        end 

 

        L=2*log(ll); 

        if  L < Z 

            Bl=x; 

        else 

            Bu=x; 

        end 

        diff=Bu-Bl; 

  

    end 

  

    bhatu=Bu; 

  

    average=bhatu-bhatl; 

 

-- function for Jacobtrans of JEL using Kendall or Gehan estimating method -- 

 

 

function  x=Jacobtransjack(b,n, Bold,Data,GKtyp) 

% load (fname); 

%a0=0; 

%a1=-0.25; 

%n=30; 

 

   x=0; 

  

   W=0; 

   for it=1:n 

   

        for j1=1:n 

            switch(GKtyp) 

                case('G') 

                    W= W+(Data(it,3)-Data(j1,3))*(Data(it,2)* ((Data(j1,1)-

b*Data(j1,3)) > (Data(it,1)-b*Data(it,3)))- Data(j1,2)*((Data(it,1)-

b*Data(it,3)) > (Data(j1,1)-b*Data(j1,3))))/(n-1)/2; 

                case('K') 
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                    W= W+sign(Data(it,3)-Data(j1,3))*(Data(it,2)* 

((Data(j1,1)-b*Data(j1,3)) > (Data(it,1)-b*Data(it,3)))- 

Data(j1,2)*((Data(it,1)-b*Data(it,3)) > (Data(j1,1)-b*Data(j1,3))))/(n-1)/2; 

            end 

end 

 

end 

 

for itt=1:n 

  Wn=0; 

        for j1=1:n 

            switch(GKtyp) 

                case('G') 

                    Wn= Wn+(Data(it,3)-Data(j1,3))*(Data(itt,2)* 

((Data(j1,1)-b*Data(j1,3)) > (Data(itt,1)-b*Data(itt,3)))- 

Data(j1,2)*((Data(itt,1)-b*Data(itt,3)) > (Data(j1,1)-b*Data(j1,3))))/(n-

1)/2; 

                case('K') 

                    Wn= Wn+sign(Data(itt,3)-Data(j1,3))*(Data(itt,2)* 

((Data(j1,1)-b*Data(j1,3)) > (Data(itt,1)-b*Data(itt,3)))-  

Data(j1,2)*((Data(itt,1)-b*Data(itt,3)) > (Data(j1,1)-b*Data(j1,3))))/(n-

1)/2; 

            end 

end 

 

 

U=W-Wn; 

WW=W*n-(n-1)*(W-Wn); 

x=x- (WW/(1+Bold*WW))^2;  

 

end 

 

    

    

%for it=1:n 

    %W=0; 

 %       for j1=1:n 

 % W(it)= W(it)+(Data(it,3)-Data(j1,3))*(Data(it,2)* ((Data(j1,1)-

b*Data(j1,3)) > (Data(it,1)-b*Data(it,3)))- Data(j1,2)*((Data(it,1)-

b*Data(it,3)) > (Data(j1,1)-b*Data(j1,3))))/(n-1)/2; 

 %end 

%x=x- (W(it)/(1+Bold*W(it)))^2;  

%end 

 

 

-- function for Score1trans of JEL using Kendall or Gehan estimating method-- 

 

function  S=Score1transjack(b,Bold, n, Data, GKtyp) 

S=0; 

%W=zeros(1,n); 

 

 W=0; 

for it=1:n 

        for j1=1:n 
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            switch(GKtyp) 

                case('G') 

                    W= W+(Data(it,3)-Data(j1,3))*(Data(it,2)* ((Data(j1,1)-

b*Data(j1,3)) > (Data(it,1)-b*Data(it,3)))- Data(j1,2)*((Data(it,1)-

b*Data(it,3)) > (Data(j1,1)-b*Data(j1,3))))/(n-1)/2; 

                case('K') 

 

                    W= W+sign(Data(it,3)-Data(j1,3))*(Data(it,2)* 

((Data(j1,1)-b*Data(j1,3)) > (Data(it,1)-b*Data(it,3)))- 

Data(j1,2)*((Data(it,1)-b*Data(it,3)) > (Data(j1,1)-b*Data(j1,3))))/(n-1)/2; 

end 

end 

end 

for itt=1:n 

  Wn=0; 

        for j1=1:n 

            switch(GKtyp) 

                case('G') 

                    Wn= Wn+(Data(itt,3)-Data(j1,3))*(Data(itt,2)* 

((Data(j1,1)-b*Data(j1,3)) > (Data(itt,1)-b*Data(itt,3)))-  

 

 

Data(j1,2)*((Data(itt,1)-b*Data(itt,3)) > (Data(j1,1)-b*Data(j1,3))))/(n-

1)/2; 

                case('K') 

                    Wn= Wn+sign(Data(itt,3)-Data(j1,3))*(Data(itt,2)* 

((Data(j1,1)-b*Data(j1,3)) > (Data(itt,1)-b*Data(itt,3)))- 

Data(j1,2)*((Data(itt,1)-b*Data(itt,3)) > (Data(j1,1)-b*Data(j1,3))))/(n-

1)/2; 

            end 

 

             

end 

U=W-Wn; 

WW=W*n-(n-1)*(W-Wn); 

S=S+ (WW/(1+Bold*WW));  

end 

%for it=1:n 

    %W=0; 

%         for j1=1:n 

 % W(it)= W(it)+(Data(it,3)-Data(j1,3))*(Data(it,2)* ((Data(j1,1)-

b*Data(j1,3)) > (Data(it,1)-b*Data(it,3)))- Data(j1,2)*((Data(it,1)-

b*Data(it,3)) > (Data(j1,1)-b*Data(j1,3))))/(n-1)/2; 

 %end 

%S=S+ (W(it)/(1+Bold*W(it)));  

%end  

 

- function for solving Lambda in JEL using Gehan or Kendall estimating method 

 

 

function  r=Lambdajack(b,n,eps,Data,GKtyp) 

%tau=0.25; 

%n=30; 

%a0=0; 



 

 

37 
%a1=-0.25; 

%tau=0.25; 

%CCC=5; 

Bold=0; 

while  (norm(Score1transjack(b,Bold,n,Data,GKtyp))>eps) 

    Bold=Bold-inv(Jacobtransjack(b, n,Bold,Data,GKtyp)) * ... 

        Score1transjack(b,Bold,n,Data,GKtyp); 

count=0; 

   

end 

 

r=Bold; 

kkkk=norm(Score1transjack(b,Bold,n,Data,GKtyp)); 
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