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Fig. 10 Componentsi(t) of trajectories for one instance of the 4x4 AMlinking CNN (11)
(irregular red lines) and for the 4x4 WTA CNN (8)ith fixed all-to-all connections (smooth bluad).
Parameters are calculated according to the stabindition (9): a= -1, =1.11, = -13.89. Switching
time 1=0.001, probability of switching p = 0.1. (Top p§neThe state %, of a losing cell (3,4), starts
from a value that is lower than the largest nunfb&rmatrix (12)) and decreases below -1 as iukho
All other losing cells have similar dynamics andheerge to +1. (Bottom panel): The staig,xof the
winning cell (3,2), corresponding to the largesuead.82, increases beyond the value +1, and threref
both CNNs identify the largest number correctly.

Figure 11 shows another instance of the blinkindNGhbdel (11) for which the model fails to
find the largest number. Note that the WTA CNN {8ixh fixed all-to-all connections always
determines the largest number with probabilitydwaver, it is cumbersome for circuit imple-

mentation.
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Fig. 11 Another instance of the 4x4 WTA blinking CNNL) (irregular red lines) and for the
4x4 WTA CNN (3) with fixed all-to-all connectior{(smooth blue line). Parameters are the same as in
Fig. 10. (Top panel): The statg x of a losing cell (3,4), starts from a value trsatower than the larg-
est number (cf. matrix (12)) and decreases beloas-it should. (Bottom panel): The stajg,xof the
winning cell (3,2), corresponding to the largestuea0.82, increases beyond the value +1 in the CNN
with fixed all-to-all connections as it should, lfails to do so in the blinking CNN. As a resuttetblink-
ing CNN misclassifies the largest number as ceB)(4with the second largest number (0.6433) happen
to reach the +1 state (not depicted in this Figure)

The main property of the CNN (3) with fixed all-&dl- connections is that it has
N=4x4=16 co-existing stable patterngd (stable spatial equilibrium points); however, thps¢
terns are not equilibrium points of the blinkiB&IN (11). Therefore, as it is seen in Figs. 10-

11, the trajectory of the blinking CNN cannot corgeeto an equilibrium point of the CNN with

fixed all-to-all connections but can only approachnd wobble around. In practice, once the
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trajectory of the blinking CNN gets sufficienttyose to the desired stable equilibrium point of
CNN (3) , one can classify the largest number &edsystem is stopped.

As shown in Fig. 11, there always is a non-zerdability of misclassification for the
blinking CNN. However, it is relatively low and deases when the switching time decreases.
For the given switching time=0.001, we have run the simulations of the blink@yN 100
times, starting from the same initial conditionsegi by matrix (12); there were 15 switching se-
quences out of 100 that lead to misclassificatmme(such sequence is depicted in Fig. 11). Our
further numerical simulations showed that decrepasie switching time t0=0.0001 reduces the
probability of misclassification t#=2/100=0.02 as there were only 2 sequences, catiseng

convergence to the wrong attractor.

Loser Xay
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Fig. 12 Similar to Fig.11, except for different switcgitime 1=0.01. The given switching se-

guence leads to misclassification as the winndr(8gl) converges to a wrong -1 state. The probigmf
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misclassification increases as the switching tineedases. Note larger irregular oscillations oflitiek-
ing CNN (cf. Fig. 11); the switching is slower ati@ blinking CNN cannot stay sufficiently closethe
CNN with fixed connections (blue smooth line).

In [5], Belykh et al.. used the Lyapunov function theory together wita #veraging
technique for stochastic differential equationsdéwive an upper bound on the dependence of
probability of misclassification on the switchingie. More specifically, it was shown that if the
general multistable blinking dynamical systems #@&sdaveraged analog, where the switching
parameters are replaced with their mean, start tft@rsame initial condition and the averaged
system converges to one attractor, then the prbilyatbiat the blinking system doesn’t converge
to the same attractor, as it should and escapasdimer attractor, tends to zero as the switching
time approaches 0. Explicit bounds on this prolitghé@re given in [1,5,12]. In our context, the
upper bound on the probability of escape in thekiolg CNN, that causes misclassification, be-

comes [5]:
C
Phisclass = CLNZ eXp{_zTys} :

where constant€; andC, are simple functions of parameterss, and k of CNN model
(3), parametely is defined by, §,and k and the initial condition chosen, ardis the switching
time as before. The actual formulas are tediouselver, their derivation from the general for-

mulas, given in [5,12] is straightforward. Obsethrat the probability of misclassification

1
Prisclass ~ eXp{— ;} (13)

can be made arbitrarily small by decreasing théckivig timet. However, estimate (13)
comes sufficient conditions derived in [1,5,12].this thesis, we numerically verify this expo-

nential dependence for the probably of an errothennegative reciprocal of the switching time



33

T. As a result, we identify an optimal maximum switghitime 1 that keeps the probability of
misclassification minimum. Evidently, to minimizei¢ probability, one should decrease switch-
ing time T, i.e. one should switch as fast as possible. Howdaster switching results in high
power consumption and, in addition, overload the@mmnication network. Therefore, finding a
trade-off between the switching time and the prdhglof misclassification is important. Fig. 13
demonstrates the results of multi-hour numericidutations of the dependence of the probabil-
ity of misclassification on the switching time (@#ency). For each, we numerically integrate
4x4 CNN system (11), starting from the initial cdamh (12), and repeat the integration 100
times, counting the number of trials leading toataissification for which cell 3,2 doesn’t con-
verge to the winner. This number divided by 108lsrigives us the probability of misclassifica-
tion for the given each. Notice that due to the stochastic nature of $wiig, we have in princi-
ple 100 different stochastic sequences of switcliomgeacht. As shown in Fig. 13, the switch-
ing time smaller or equak0.002, corresponding to the switching frequerichr = 500 on thex
axis of the graph in Fig. 13, gives an optimal béor the switching time. Note that for the giv-
en switching frequency, the probability of miscifisation drops dramatically and slowly de-

creases for values larger than 5000.
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Fig. 13 Dependence of the probability of misclassificatP,iscjason the switching frequency

x =1/7 . Each point (diamond) represents the results 0frilnerical solutions of 4x4 CNN system
(11), starting from the same initial condition, kiiffering in the switching sequences, for eacledix
switching frequencyl/7 . Switching frequency faster than 500 yieldscadgely low probability of

misclassification. The solid line represents gpogrential fit to the theoretical curve
Frisclass = eXp{ - 1r }
3.2.3. 10x10 CNN: whereisthe spider?

In this subsection, we use a 10x10 CNN (11) totifiethe darkest spot in a 2-D visual

picture of Fig. 11.
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Fig. 14 2-D picture with the darkest spot at cell 6 @igated by a spider. This picture is ob-

tained from the below table using a Matlab comntandge(A,'CDataMapping’, 'scaled’)’.



36

Table 1 10x10 matrix with the largest number 0.99611(@6) . This matrix is used as initial

conditions for the 10x10 CNN (11). The CNN mustfpem the WTA function by converging to the pat-

tern where cell 6,8 has an output +1 while the rotledls converge to -1 states.

0.45 0.0838  0.2290 | 0.9133 | 0.1524  0.8258 | 0.5383 | 0.9561 0.0782 | 0.4427

0.1067  0.9619 | 0.0046 A 0.7749 0.8173 A 0.8687 A 0.0844 0.3998 ' 0.2599 @ 0.8001

0.4314 . 0.9106 : 0.1818 | 0.2638 . 0.1455 | 0.1361 ; 0.8693 . 0.5797 : 0.5499 | 0.1450

0.8530 | 0.6221 | 0.3510 | 0.5132 | 0.4018 | 0.0760 | 0.2399 ' 0.1233 | 0.1839 | 0.2400

0.4173 . 0.0497 | 0.9027 | 0.9448 : 0.4909 | 0.4893 | 0.3377  0.9001 | 0.3692 | 0.1112

0.7803 | 0.3897 | 0.2417 | 0.4039 ' 0.0965 | 0.1320 ; 0.9421 0.9961 ' 0.5752 A 0.0598

0.2348  0.3532 | 0.8212 | 0.0154  0.0430 : 0.1690 : 0.6491 = 0.7317 . 0.6477 . 0.4509

0.5470  0.2963 | 0.7447 | 0.1890 ' 0.6868 | 0.1835  0.3685  0.6256 | 0.7802 | 0.0811

0.9294 | 0.7757 | 0.4868 | 0.4359 | 0.4468  0.3063 0.5085 | 0.5107 | 0.8176 A 0.7948

0.6443 | 0.3786 | 0.8116 | 0.5328 | 0.3507 | 0.9390 0.8759 | 0.5501 | 0.6225  0.5870

Figure 15 demonstrates the results of numericallsitions and shows successful loca-

tion of the largest number for the given switchgsgjuence with the switching time0.0001.

Similarly to the 4x4 CNN, we have calculated thelability of misclassification for 100
different switching sequences of the 10x10 CNNlite switching time=0.0001. While the
probability of misclassification it is still accegitle (7/100), it's remarkably lower that the one of
the 4x4 CNN with the same switching time. As a ltesve come to a natural conclusion that

while larger CNN networks (10x10 vs 4x4) give betesolution, the switching time must be
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faster to maintain the same probability of classifion (more cells, more co-existing winner-

take-all patterns).

Loser Xog

Spider Xsg

~o 1 2 3 4 5 6 7 8 9 10

Simulation time

Fig. 15 Numerical simulations of a 10x10 all-to-all CN8) (blue smooth line) and a 10x10

switching CNN (11) (red irregular line) with pamaters given in (10) and initial conditions fromble

1. The trajectory converges to the winner-takgsattern: (top) a losing cell converges to a -1estéd)

the winning cell, corresponding to the locatiortte# spider in Fig. 14, converges to the +1 st&itch-

ing time1=0.0001. Probability of misclassificatiof®isclass= 7 /100 (not depicted). Depicted is one of

the successful 100-7=93 switching sequences thedatty identify the largest number (spider) in the-

trix of Table 1 (image of Fig. 14).
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4. CONCLUSIONS

We have analyzed one of the most prominent exawfpétificial neural networks such
as a cellular neural network (CNN) and demongiréibat the addition of random on-off long-
range connections significantly enhances functignalf locally coupled neural networks. In
particular, we have studied the properties of wirtake-all (WTA) CNNs with on-off switch-
ing connections used to automatically identify ldrgest number in the given matrix. The WTA
CNN performs parallel computation by using its @bthamics when each cell of an N-cell net-
work converges to either -1 or +1 state. The raswdn equilibrium pattern, containing -1 and +1
states; for the problem in question this patternosiposed only of +1 “winner” state ahdl
“losing” -1 states.

We have constructed WTA switching CNNs of differsige (4x4 and 10x10 networks)
and analyzed their performance for different swiighfrequencies. By performing extensive
numerical simulations, we have shown that the pibya of misclassification, for which the
CNN fails to identify the largest number correctbgnverges to zero exponentially fast as a
function of the switching frequency. This alloweslto find an optimal switching frequency that
yields a trade-off between the (low) probability rafsclassification and the traffic load on the
communication network used to establish fast sttahan-off connections. We have also stud-
ied how the network size affects the probabilitynaEclassification. More precisely, larger net-
works require faster switching to keep the saméaibdity of misclassification as larger net-

works contain more cells and, therefore, have Wéfé stable patterns.
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APPENDIX: MATLAB CODES

Matlab code:

% Main program to run
%
%
%
%
% Network size 10x10

nrows = 10;
ncols = 10;
n = nrows*ncols;

% Parameter design

alpha =1,

kappa = -alpha*(n”~2 - 6)/(n + 2);

delta = alpha*(n + 4)/(n + 2);

xegp = delta + 1 + alpha*(n-2) + kappa,
xegm = -delta - 1 + alpha*(n-2) + kappa;

A = diag(ones(n,1));

fori=1:n
[irow,icol] = ind2sub([nrows,ncols],i);
forj=1:-1
[jrow,jcol] = ind2sub([nrows,ncols],));
if abs(irow-jrow) + abs(icol-jcol) ==
A®L]) = AGL)) + 1
end
end
end

plotprob=zeros(10,2);

% x0=0+(1-0).*rand(n,1);
%tau =.1,;

increment=1;

%while (tau ~=.000001)

%x0 = 2*rand(n,1)-1;
% Initial conditions:

41
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X0=[0.450541598502498;0.0838213779969326,0.228FABEB19;0.91333736150167
0;0.152378018969223;0.825816977489547;0.53834248&5260.996134716626886;0.078175
5287531837;0.442678269775446,0.106652770180584;:898980855054;0.00463422413406
744,0.774910464711502;0.817303220653433;0.868636A%33.0;0.0844358455109103;0.399
782649098897;0.259870402850654,0.8000684802243(33;813827463545,0.910647594429
523;0.181847028302853;0.263802916521990;0.14553881.7;0.136068558708664,0.8692
92207640089;0.579704587365570;0.549860201836332958798223727;0.8530311177218
94;0.622055131485066,0.350952380892271;0.5132498%3;0.401808033751942;0.07596
66916908419;0.239916153553658;0.1233189348351@3901 788282417;0.2399525256649
03;0.417267069084370,0.0496544303257421;0.9027P3dB28B1;0.944787189721646;0.4908
64092468080,0.489252638400019;0.33771940982130D0053846417662;0.3692467811202
15;0.111202755293787;0.780252068321138;0.389738353;0.241691285913833;0.40391
2145588115;0.0964545251683886;0.131973292606332050590775485;0.9561345402298
02;0.575208595078466,0.0597795429471558;0.2347BF24®6;0.353158571222071,0.8211
94040197959;0.0154034376515551;0.0430238016578A68890029462704;0.64911547495
6452;0.731722385658670;0.647745963136307;0.450%230945,0.547008892286345;0.296
320805607773;0.744692807074156;0.188955015032%86075433365315,0.183511155737
270;0.368484596490337;0.625618560729690;0.78022PA357;0.0811257688657853;0.929
385970968730;0.775712678608402;0.486791632403 ¥B5858588580919,0.446783749429
806;0.306349472016557;0.508508655381127;0.510721284.0;0.817627708322262;0.7948
31416883453;0.644318130193692;0.378609382660283;989458282477;0.5328255887994
55;0.350727103576883;0.939001561999887;0.87594 2@BB4;0.550156342898422,0.62247
5086001228;0.587044704531417;]

%x0=0+(1-0).*rand(n,1)

[xx0,ind] = sort(x0);

indmax = ind(n)

t0 = 0;

t1 = 10;

%tau = 0.0001;
%ntau = fix(tl/tau);

%Switching time;

tau =.0001,
ntau=100000;

t1 = tau*ntau,

t = [tO:tau:tl]’;
tlength = length(t);
p=0.1,

xx0 = x0;

% solution of the all-to-all CNN with fixed connemis

[tf,xfull] = oded5(WTApwl',t,xx0,[],n,alpha,delta,kappa);
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% solutions of the stochastic CNN
xblink = [x0';

myprob=0;
for itau = 1:ntau
B = rand(n,n) < p;
AA = A + (1-A).*B*(1/p);
[tb,xb] = oded5(VTApwI_var'[0 tau],xx0,[],n,AA,alpha,delta,kappa);
% if(xb(itau)>1.5)
% myprob= myprob+1;
%end
nb = length(tb);
xx0 = xb(nb,:)’;
xblink = [xblink; xb(nb,:)];

end
%finalprob=myprob/ntau
%xb(nb,:)

xblink1 = [x0T7;
xX0 = x0;

for itau = 1:ntau
B = rand(n,n) < p;
AA = A + (1-A).*B*(1/p);
[tb,xb] = 0ode23(VTApwI_var,[0 tau],xx0,[],n,AA,alpha,delta,kappa);
nb = length(tb);

xx0 = xb(nb,:)’;
xblink1 = [xblink1; xb(nb,:)];
end

if xblink(tlength,indmax) > 0

attr =1,
else

attr = 0;
end

%plt = fix(rand*n)
plt=4

%************************************************** kkkkkkkkkkhkkkkkkkkhkkk

****take comments out and put the correct plotsfigures 1 and 2 back from this sec-

tl on kkkkkkkkkkkkkkkhkkhkkhkkkkkkkkkhkkhkkhkk



*kkkkkk

*kkkkhkkk

figure(1)

clf

subplot(2,1,1)
axis([0,10,-3,3])

hold on
plot([tO,t1],[0,0],k:")
plot([t0,t1],[1,1],k:")
plot([tO,t1],[-1,-1],k:")
plot([tO,t1],[xegm,xegm]p:’)
plot([t0,t1],[xeqp,xeqp]b:)
plot(t,xfull(:,plt), b)
plot(t,xblink(:,plt),r")
xblink(:,plt)

myprob=0;
myxblink=xblink(:,plt);
for i=1:101
if (myxblink(i)>=1.5)
myxblink(i)

myprob=myprob+1;
end
end

tau

myprob

final =myprob/101
plotprob(increment,:)=[tau,final]
increment=increment+1;
tau=tau/10;

%end

%

subplot(2,1,2)

axis([0,10,-3,3])

hold on

plot([t0,t1],[0,0], k)
plot([tO,t1],[1,1], k')
plot([tO,t1],[-1,-1], k')
plot([tO,t1],[xeqm,xeqm], b )
plot([tO,t1],[xeqp,xeqp], b’
plot(t,xfull(:,indmax), b )
plot(t,xblink(;,indmax), ™)

%

xeq = xegm*ones(1,n);

xeq(indmax) = xeqp;

Mxeq = ones(tlength,1)*xeq;

mdevfull = sgrt(mean((xfull-Mxeq).”2,2));

44
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mdevblink = sqrt(mean((xblink-Mxeq).”2,2));

if attr
mdevblink = sqrt(mean((xblink-Mxeq).”2,2));
else
mdevblink = sqrt(mean((xblink1-Mxeq).”2,2));
end
figure(2)
clf
semilogy(t,mdevfullp’)
hold on
semilogy(t,mdevblink)
96************************************************** kkkkkkkkkkkkkhkkkkhkkk
96************************************************** kkkkkkkkkkkkkkkkkhkkk

%Function for the all-to-all fixed CNN***#ad s
functiondx = WTApwI(t,x,init,n,alpha,delta,kappa)

% function WTApwI(t,x,init,n,alpha,delta,kappa)

dx = -x + (delta + 1)*fcnn(x) - alpha*ones(n,n)*fcfx) + kappa;
%Function for the switching CNN* e
functiondx = WTApwI_loc(t,x,init,n,A,alpha,delta,kappa)

dx = -x + (delta + 1)*fcnn(x) - alpha*A*fcnn(x) +dppa;

96************************************************** kkkkkkkkkkhkkkkkkkkhkkk

96************************************************** kkkkkkkkkkhkkkkkkkkhkkk

functiony = fcnn(x)

% function y = fcnn(x)
% calculates the piecewise linear activation fuorctised in CNN's.

y=-(x<-1) + (-1 <= x).*(x <= 1).*x + (1 < X);



