

29

Fig. 10. Components xi(t) of trajectories for one instance of the 4×4 WTA blinking CNN (11)

(irregular red lines) and for the 4×4 WTA CNN (3) with fixed all-to-all connections (smooth blue line).

Parameters are calculated according to the stability condition (9): a = -1, � =1.11, � = −13.89. Switching

time τ=0.001, probability of switching p = 0.1. (Top panel): The state x(3,4) of a losing cell (3,4), starts

from a value that is lower than the largest number (cf. matrix (12)) and decreases below -1 as it should.

All other losing cells have similar dynamics and converge to +1. (Bottom panel): The state x(3,2) of the

winning cell (3,2), corresponding to the largest value 0.82, increases beyond the value +1, and therefore

both CNNs identify the largest number correctly.

Figure 11 shows another instance of the blinking CNN model (11) for which the model fails to

find the largest number. Note that the WTA CNN (3) with fixed all-to-all connections always

determines the largest number with probability 1; however, it is cumbersome for circuit imple-

mentation.

30

Fig. 11. Another instance of the 4×4 WTA blinking CNN (11) (irregular red lines) and for the

4×4 WTA CNN (3) with fixed all-to-all connections (smooth blue line). Parameters are the same as in

Fig. 10. (Top panel): The state x(3,4) of a losing cell (3,4), starts from a value that is lower than the larg-

est number (cf. matrix (12)) and decreases below -1 as it should. (Bottom panel): The state x(3,2) of the

winning cell (3,2), corresponding to the largest value 0.82, increases beyond the value +1 in the CNN

with fixed all-to-all connections as it should, but fails to do so in the blinking CNN. As a result, the blink-

ing CNN misclassifies the largest number as cell (4,3) with the second largest number (0.6433) happens

to reach the +1 state (not depicted in this Figure).

The main property of the CNN (3) with fixed all-to-all connections is that it has

N=4x4=16 co-existing stable patterns 1P (stable spatial equilibrium points); however, these pat-

terns are not equilibrium points of the blinking CNN (11). Therefore, as it is seen in Figs. 10-

11, the trajectory of the blinking CNN cannot converge to an equilibrium point of the CNN with

fixed all-to-all connections but can only approach it and wobble around. In practice, once the

31

trajectory of the blinking CNN gets sufficiently close to the desired stable equilibrium point of

CNN (3) , one can classify the largest number and the system is stopped.

As shown in Fig. 11, there always is a non-zero probability of misclassification for the

blinking CNN. However, it is relatively low and decreases when the switching time decreases.

For the given switching time τ=0.001, we have run the simulations of the blinking CNN 100

times, starting from the same initial conditions given by matrix (12); there were 15 switching se-

quences out of 100 that lead to misclassification (one such sequence is depicted in Fig. 11). Our

further numerical simulations showed that decreasing the switching time to τ=0.0001 reduces the

probability of misclassification to P=2/100=0.02 as there were only 2 sequences, causing the

convergence to the wrong attractor.

Fig. 12. Similar to Fig.11, except for different switching time τ=0.01. The given switching se-

quence leads to misclassification as the winner cell (3,2) converges to a wrong -1 state. The probability of

32

misclassification increases as the switching time increases. Note larger irregular oscillations of the blink-

ing CNN (cf. Fig. 11); the switching is slower and the blinking CNN cannot stay sufficiently close to the

CNN with fixed connections (blue smooth line).

In [5], Belykh et al.. used the Lyapunov function theory together with the averaging

technique for stochastic differential equations to derive an upper bound on the dependence of

probability of misclassification on the switching time. More specifically, it was shown that if the

general multistable blinking dynamical systems and its averaged analog, where the switching

parameters are replaced with their mean, start from the same initial condition and the averaged

system converges to one attractor, then the probability that the blinking system doesn’t converge

to the same attractor, as it should and escapes to another attractor, tends to zero as the switching

time approaches 0. Explicit bounds on this probability are given in [1,5,12]. In our context, the

upper bound on the probability of escape in the blinking CNN, that causes misclassification, be-

comes [5]:

3
2 2

1 exp ,misclass
C

P C N
γ

τ
  = − 
  

where constants C1 and C2 are simple functions of parameters �, 	, and	
 of CNN model

(3), parameter γ is defined by �, 	, and	
 and the initial condition chosen, and τ is the switching

time as before. The actual formulas are tedious; however, their derivation from the general for-

mulas, given in [5,12] is straightforward. Observe that the probability of misclassification

can be made arbitrarily small by decreasing the switching time τ. However, estimate (13)

comes sufficient conditions derived in [1,5,12]. In this thesis, we numerically verify this expo-

nential dependence for the probably of an error on the negative reciprocal of the switching time

1
exp misclassP

τ
 − 
 

∼ (13)

33

τ. As a result, we identify an optimal maximum switching time τ that keeps the probability of

misclassification minimum. Evidently, to minimize this probability, one should decrease switch-

ing time τ, i.e. one should switch as fast as possible. However, faster switching results in high

power consumption and, in addition, overload the communication network. Therefore, finding a

trade-off between the switching time and the probability of misclassification is important. Fig. 13

demonstrates the results of multi-hour numerical calculations of the dependence of the probabil-

ity of misclassification on the switching time (frequency). For each τ, we numerically integrate

4x4 CNN system (11), starting from the initial condition (12), and repeat the integration 100

times, counting the number of trials leading to misclassification for which cell 3,2 doesn’t con-

verge to the winner. This number divided by 100 trials gives us the probability of misclassifica-

tion for the given each τ. Notice that due to the stochastic nature of switching, we have in princi-

ple 100 different stochastic sequences of switching for each τ. As shown in Fig. 13, the switch-

ing time smaller or equal τ=0.002, corresponding to the switching frequency 1 / 500τ = on the x

axis of the graph in Fig. 13, gives an optimal bound for the switching time. Note that for the giv-

en switching frequency, the probability of misclassification drops dramatically and slowly de-

creases for values larger than 5000.

34

Fig. 13. Dependence of the probability of misclassification misclassP on the switching frequency

1 /x τ= . Each point (diamond) represents the results of 100 numerical solutions of 4x4 CNN system

(11), starting from the same initial condition, but differing in the switching sequences, for each fixed

switching frequency 1 /τ . Switching frequency faster than 500 yields adequately low probability of

misclassification. The solid line represents an exponential fit to the theoretical curve

{ }exp 1/ .misclassP τ= −

3.2.3. 10x10 CNN: where is the spider?

In this subsection, we use a 10x10 CNN (11) to identify the darkest spot in a 2-D visual

picture of Fig. 11.

P= e-5E-04x

0

0.2

0.4

0.6

0.8

1

1.2

0 5000 10000 15000

Series1

Expon. (Series1)

Simulation

Theory curve

35

Fig. 14. 2-D picture with the darkest spot at cell 6,8 indicated by a spider. This picture is ob-

tained from the below table using a Matlab command ‘image(A,'CDataMapping', 'scaled')’.

36

Table 1. 10x10 matrix with the largest number 0.9961 (cell 6,8) . This matrix is used as initial

conditions for the 10x10 CNN (11). The CNN must perform the WTA function by converging to the pat-

tern where cell 6,8 has an output +1 while the other cells converge to -1 states.

Figure 15 demonstrates the results of numerical simulations and shows successful loca-

tion of the largest number for the given switching sequence with the switching time τ=0.0001.

Similarly to the 4x4 CNN, we have calculated the probability of misclassification for 100

different switching sequences of the 10x10 CNN with the switching time τ=0.0001. While the

probability of misclassification it is still acceptable (7/100), it’s remarkably lower that the one of

the 4x4 CNN with the same switching time. As a result, we come to a natural conclusion that

while larger CNN networks (10x10 vs 4x4) give better resolution, the switching time τ must be

0.45 0.0838 0.2290 0.9133 0.1524 0.8258 0.5383 0.9561 0.0782 0.4427

0.1067 0.9619 0.0046 0.7749 0.8173 0.8687 0.0844 0.3998 0.2599 0.8001

0.4314 0.9106 0.1818 0.2638 0.1455 0.1361 0.8693 0.5797 0.5499 0.1450

0.8530 0.6221 0.3510 0.5132 0.4018 0.0760 0.2399 0.1233 0.1839 0.2400

0.4173 0.0497 0.9027 0.9448 0.4909 0.4893 0.3377 0.9001 0.3692 0.1112

0.7803 0.3897 0.2417 0.4039 0.0965 0.1320 0.9421 0.9961 0.5752 0.0598

0.2348 0.3532 0.8212 0.0154 0.0430 0.1690 0.6491 0.7317 0.6477 0.4509

0.5470 0.2963 0.7447 0.1890 0.6868 0.1835 0.3685 0.6256 0.7802 0.0811

0.9294 0.7757 0.4868 0.4359 0.4468 0.3063 0.5085 0.5107 0.8176 0.7948

0.6443 0.3786 0.8116 0.5328 0.3507 0.9390 0.8759 0.5501 0.6225 0.5870

37

faster to maintain the same probability of classification (more cells, more co-existing winner-

take-all patterns).

Fig. 15. Numerical simulations of a 10x10 all-to-all CNN (3) (blue smooth line) and a 10x10

switching CNN (11) (red irregular line) with parameters given in (10) and initial conditions from Table

1. The trajectory converges to the winner-take-all pattern: (top) a losing cell converges to a -1 state; (b)

the winning cell, corresponding to the location of the spider in Fig. 14, converges to the +1 state. Switch-

ing time τ=0.0001. Probability of misclassification 7 /100misclassP =

 (not depicted). Depicted is one of

the successful 100-7=93 switching sequences that correctly identify the largest number (spider) in the ma-

trix of Table 1 (image of Fig. 14).

38

4. CONCLUSIONS

We have analyzed one of the most prominent example of artificial neural networks such

as a cellular neural network (CNN) and demonstrated that the addition of random on-off long-

range connections significantly enhances functionality of locally coupled neural networks. In

particular, we have studied the properties of winner-take-all (WTA) CNNs with on-off switch-

ing connections used to automatically identify the largest number in the given matrix. The WTA

CNN performs parallel computation by using its cell dynamics when each cell of an N-cell net-

work converges to either -1 or +1 state. The result is an equilibrium pattern, containing -1 and +1

states; for the problem in question this pattern is composed only of +1 “winner” state and N-1

“losing” -1 states.

We have constructed WTA switching CNNs of different size (4x4 and 10x10 networks)

and analyzed their performance for different switching frequencies. By performing extensive

numerical simulations, we have shown that the probability of misclassification, for which the

CNN fails to identify the largest number correctly, converges to zero exponentially fast as a

function of the switching frequency. This allowed us to find an optimal switching frequency that

yields a trade-off between the (low) probability of misclassification and the traffic load on the

communication network used to establish fast stochastic on-off connections. We have also stud-

ied how the network size affects the probability of misclassification. More precisely, larger net-

works require faster switching to keep the same probability of misclassification as larger net-

works contain more cells and, therefore, have more WTA stable patterns.

39

REFERENCES

[1] Seiler, G. and Nossek, J., Winner-Take-All Cellular Neural Networks, IEEE Transactions

on Circuits and Systems II: Analog and Digital Signal Processing., Vol. 40, pp. 184-190,

1993.

[2] Belykh, I., Belykh, V., and Hasler, M., Blinking model and synchronization in small-world

networks with a time-varying coupling", Physica D, Vol. 195/1-2, pp 188-206, 2004.

[3] Watts, D. J. and Strogatz, S.H., “Collective dynamics of “small-world” networks”, Nature

393, 440-442 (1998).

[4] Strogatz, S.H., “Exploring complex networks”, Nature 410, 268-276 (2001).

[5] Belykh, I., and Hasler, M., Blinking Long-Range Connections Increase the Functionality of

Locally Connected Networks, IEICE TRANS. Fundamentals, Vol.E88-A, pp. 2647-2655, 2005.

[6] Porfiri, M.M., Stilwell, D.J, Bollt, E.M., Skufca, J.D., Random Talk: Random Walk and

Synchronizability in a Moving Neighborhood Network, Physica D, Vol. 224, pp. 102-113,

2006.

[7] Porfiri, M.M., Pigliacampo, R., Master-slave global stochastic synchronization of chaotic

oscillators, SIAM J. Appl. Dynam. Sys., Vol. 7, 825-842, 2008.

[9] Hasler, M., Belykh, V., and Belykh, I., Dynamics of Stochastically Blinking Systems. Part I:

Finite Time Properties. 2011 (submitted)

[10] Hasler, M., Belykh, V., and Belykh, I., Dynamics of Stochastically Blinking Systems. Part

II: Finite Time Properties. 2011 (submitted).

[11] Chua, L. and Yang, L., Cellular Neural Networks: Theory, IEEE Trans. on Circuits and

Systems, Vol. 35(10), pp. 1257-1272, 1988.

40

[12] Chua, L. and Yang, L., Cellular Neural Networks: Applications, IEEE Trans. on Circuits

and Systems, Vol. 35(10), pp. 1273-1290, 1988.

[13] Cellular Neural Network. Wikipedia (The Free Encyclopedia), 2009.

[14] Hanggi, M. and Moschytz, G. S., Cellular Neural Networks: Analysis, Design, and Optimi-

zation., Kluwer Academic Publishers, 2000.

[15] Manganaro, G., Arena, P. , and Fortuna, L., Cellular Neural Networks: Chaos, Complexi-

ty, and VLSI Processing, Springer, 1999.

[16] Slavova, A., and Mladenov, V., Cellular Neural Networks: Theory and Applications. Nova

Science Publishers, Inc. 2004

[17] Yang T., Cellular Neural Networks and Image Processing. Science Publishers, Inc. 2002

[18] Sum, John P. F., Leung, Chi-Sing, Tam, Peter K. S., Young Gilbert H., Kan, W.K., Chan,

Lai-wan, Analysis for a Class of Winner-Take-All Model, IEEE Transactions On Neural Net-

works, Vol. 10, pp. 64-71, 1999.

[19] Feldman, J.A. and Ballard, D.H., Connectionist Models and Their Properties, Cognitive

Science 6, pp. 205-254, 1982.

41

APPENDIX: MATLAB CODES

Matlab code:

% Main program to run
%
%
%
%
% Network size 10x10

nrows = 10;
ncols = 10;
n = nrows*ncols;

% Parameter design
alpha = 1;
kappa = -alpha*(n^2 - 6)/(n + 2);
delta = alpha*(n + 4)/(n + 2);
xeqp = delta + 1 + alpha*(n-2) + kappa;
xeqm = -delta - 1 + alpha*(n-2) + kappa;

A = diag(ones(n,1));

for i = 1:n
 [irow,icol] = ind2sub([nrows,ncols],i);
 for j = 1:i-1
 [jrow,jcol] = ind2sub([nrows,ncols],j);
 if abs(irow-jrow) + abs(icol-jcol) == 1
 A(i,j) = A(i,j) + 1;
 end
 end
end

plotprob=zeros(10,2);

% x0=0+(1-0).*rand(n,1);
%tau =.1;
increment=1;

%while (tau ~=.000001)

%x0 = 2*rand(n,1)-1;
%Initial conditions:

42

x0=[0.450541598502498;0.0838213779969326;0.228976968716819;0.91333736150167
0;0.152378018969223;0.825816977489547;0.538342435260057;0.996134716626886;0.078175
5287531837;0.442678269775446;0.106652770180584;0.961898080855054;0.00463422413406
744;0.774910464711502;0.817303220653433;0.868694705363510;0.0844358455109103;0.399
782649098897;0.259870402850654;0.800068480224308;0.431413827463545;0.910647594429
523;0.181847028302853;0.263802916521990;0.145538980384717;0.136068558708664;0.8692
92207640089;0.579704587365570;0.549860201836332;0.144954798223727;0.8530311177218
94;0.622055131485066;0.350952380892271;0.513249539867053;0.401808033751942;0.07596
66916908419;0.239916153553658;0.123318934835166;0.183907788282417;0.2399525256649
03;0.417267069084370;0.0496544303257421;0.902716109915281;0.944787189721646;0.4908
64092468080;0.489252638400019;0.337719409821377;0.900053846417662;0.3692467811202
15;0.111202755293787;0.780252068321138;0.389738836961253;0.241691285913833;0.40391
2145588115;0.0964545251683886;0.131973292606335;0.942050590775485;0.9561345402298
02;0.575208595078466;0.0597795429471558;0.234779913372406;0.353158571222071;0.8211
94040197959;0.0154034376515551;0.0430238016578078;0.168990029462704;0.64911547495
6452;0.731722385658670;0.647745963136307;0.450923706430945;0.547008892286345;0.296
320805607773;0.744692807074156;0.188955015032545;0.686775433365315;0.183511155737
270;0.368484596490337;0.625618560729690;0.780227435151377;0.0811257688657853;0.929
385970968730;0.775712678608402;0.486791632403172;0.435858588580919;0.446783749429
806;0.306349472016557;0.508508655381127;0.510771564172110;0.817627708322262;0.7948
31416883453;0.644318130193692;0.378609382660268;0.811580458282477;0.5328255887994
55;0.350727103576883;0.939001561999887;0.875942811492984;0.550156342898422;0.62247
5086001228;0.587044704531417;]

 %x0=0+(1-0).*rand(n,1)

[xx0,ind] = sort(x0);

indmax = ind(n)
t0 = 0;
t1 = 10;
%tau = 0.0001;
%ntau = fix(t1/tau);

%Switching time;

tau =.0001;
ntau=100000;
t1 = tau*ntau;
t = [t0:tau:t1]';
tlength = length(t);
p = 0.1;
xx0 = x0;

% solution of the all-to-all CNN with fixed connections

[tf,xfull] = ode45('WTApwl',t,xx0,[],n,alpha,delta,kappa);

43

% solutions of the stochastic CNN

xblink = [x0'];

myprob=0;
for itau = 1:ntau
 B = rand(n,n) < p;
 AA = A + (1-A).*B*(1/p);
 [tb,xb] = ode45('WTApwl_var',[0 tau],xx0,[],n,AA,alpha,delta,kappa);
 % if(xb(itau)>1.5)
 % myprob= myprob+1;
 %end
 nb = length(tb);
 xx0 = xb(nb,:)';
 xblink = [xblink; xb(nb,:)];

end
%finalprob=myprob/ntau
%xb(nb,:)

xblink1 = [x0'];
xx0 = x0;

for itau = 1:ntau
 B = rand(n,n) < p;
 AA = A + (1-A).*B*(1/p);
 [tb,xb] = ode23('WTApwl_var',[0 tau],xx0,[],n,AA,alpha,delta,kappa);
 nb = length(tb);
 xx0 = xb(nb,:)';
 xblink1 = [xblink1; xb(nb,:)];
end

if xblink(tlength,indmax) > 0
 attr = 1;
else
 attr = 0;
end

%plt = fix(rand*n)
plt = 4
%** ********************

****take comments out and put the correct plots for figures 1 and 2 back from this sec-
tion**********************************

44

figure(1)
clf
subplot(2,1,1)
axis([0,10,-3,3])
hold on
plot([t0,t1],[0,0],'k:')
plot([t0,t1],[1,1],'k:')
plot([t0,t1],[-1,-1],'k:')
plot([t0,t1],[xeqm,xeqm],'b:')
plot([t0,t1],[xeqp,xeqp],'b:')
plot(t,xfull(:,plt),'b')
plot(t,xblink(:,plt),'r')
xblink(:,plt)

myprob=0;
myxblink=xblink(:,plt);
for i=1:101
 if (myxblink(i)>=1.5)
 myxblink(i)

 myprob=myprob+1;
 end
end
tau
myprob
final =myprob/101
plotprob(increment,:)=[tau,final]
increment=increment+1;
tau=tau/10;
%end

%** ********************

subplot(2,1,2)
axis([0,10,-3,3])
hold on
plot([t0,t1],[0,0], 'k:')
plot([t0,t1],[1,1], 'k:')
plot([t0,t1],[-1,-1], 'k:')
plot([t0,t1],[xeqm,xeqm], 'b:')
plot([t0,t1],[xeqp,xeqp], 'b:')
plot(t,xfull(:,indmax), 'b')
plot(t,xblink(:,indmax), 'r')

%** ********************

xeq = xeqm*ones(1,n);
xeq(indmax) = xeqp;
Mxeq = ones(tlength,1)*xeq;
mdevfull = sqrt(mean((xfull-Mxeq).^2,2));

45

mdevblink = sqrt(mean((xblink-Mxeq).^2,2));
if attr
 mdevblink = sqrt(mean((xblink-Mxeq).^2,2));
else
 mdevblink = sqrt(mean((xblink1-Mxeq).^2,2));
end

figure(2)
clf
semilogy(t,mdevfull,'b')
hold on
semilogy(t,mdevblink,'r')
%** ********************

%** ********************

%Function for the all-to-all fixed CNN************* ******

function dx = WTApwl(t,x,init,n,alpha,delta,kappa)

% function WTApwl(t,x,init,n,alpha,delta,kappa)
dx = -x + (delta + 1)*fcnn(x) - alpha*ones(n,n)*fcnn(x) + kappa;

%Function for the switching CNN*******************

function dx = WTApwl_loc(t,x,init,n,A,alpha,delta,kappa)

dx = -x + (delta + 1)*fcnn(x) - alpha*A*fcnn(x) + kappa;

%** ********************

%** ********************

function y = fcnn(x)

% function y = fcnn(x)
% calculates the piecewise linear activation function used in CNN's.

y = -(x < -1) + (-1 <= x).*(x <= 1).*x + (1 < x);

