Iron Catalyzed Selective Nitrogen Atom Transfer Reactions for Olefin Difunctionalization: Iron Catalyzed Direct Diazidation and Asymmetric Intramolecular Aminohydroxylation of Olefin

Yongan Yuan
George State University

Follow this and additional works at: http://scholarworks.gsu.edu/chemistry_diss

Recommended Citation
http://scholarworks.gsu.edu/chemistry_diss/118

This Dissertation is brought to you for free and open access by the Department of Chemistry at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Chemistry Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact scholarworks@gsu.edu.
IRON CATALYZED SELECTIVE NITROGEN ATOM TRANSFER REACTIONS FOR OLEFIN DIFUNCTIONALIZATION: IRON CATALYZED DIRECT DIAZIDATION AND ASYMMETRIC INTRAMOLECULAR AMINOXYLATION OF OLEFIN

by

YONGAN YUAN

Under the Direction of Hao Xu (Ph.D.)

ABSTRACT

Numerous biologically active alkaloids and pharmaceuticals contain nitrogen atoms that are directly attached to stereogenic centers. Therefore, selective nitrogen atom transfer to readily available hydrocarbons through novel mechanistic pathways is an important tool for the synthesis of high-value functional molecules. We are interested in direct difunctionalization of alkenes with non-precious iron catalyst due to its advantages over well-established olefin aziridination and direct C-H amination methods in organic synthesis. Herein, we describe iron-catalyzed nitrogen atom-transfer methods for stereoselective olefin difunctionalization, including olefin aminohydroxylation and diamination reactions. These transformations capitalize on the
novel reactivity of iron catalysts by conveniently converting petrochemicals to highly functionalized building blocks that are valuable to organic synthesis, materials, and biomedical sciences.

The first chapter of the dissertation gives an overview of ligand design and iron catalyst discovery for selective nitrogen atom-transfer to alkenes. The ligand can combine with a metal center through chelation to afford an asymmetric catalyst. This asymmetric catalyst can thus be used to transfer its chirality to its corresponding enantiopure product from achiral precursors.

$[\text{Fe(L1)}(\text{OTf})_2]$, $[\text{Fe(L2)}(\text{OTf})_2]$, $[\text{Fe(L3)}(\text{OAc})_2]$ and $[\text{Fe(L4)}(\text{NTf}_2)_2]$ complexes were synthesized and reactivity studies of these iron complexes were performed.

The second chapter of the dissertation describes an iron(II)-catalyzed intramolecular aminohydroxylation of olefins with functionalized hydroxylamines. A diastereoselective aminohydroxylation of olefins with a functionalized hydroxylamine is catalyzed by new iron(II) complexes. This efficient intramolecular process readily affords synthetically useful amino alcohols with excellent selectivity (dr up to $> 20:1$). Asymmetric catalysis with chiral iron(II) complexes and preliminary mechanistic studies reveal an iron nitrenoid is a possible intermediate that can undergo either aminohydroxylation or aziridination, and the selectivity can be controlled by careful selection of counteranion/ligand combinations.

The third chapter describes an iron(II)-catalyzed asymmetric intramolecular aminohydroxylation of indoles. An enantioselective intramolecular indole aminohydroxylation reaction is catalyzed by iron(II) chiral bisoxazoline (BOX) complexes (ee up to 99%, $dr > 20:1$). This discovery enables expedient asymmetric synthesis of a series of biologically active 3-amino oxindoles and 3-amino indolanes.
The fourth chapter focuses on iron(II)-catalyzed direct diazidation for a broad range of olefins. This novel reaction occurs at room temperature (1–5 mol% of catalysts and dr values of up to $>20:1$). This method tolerates a broad range of both unfunctionalized and highly functionalized olefins, including those that are incompatible with existing methods. It also provides a convenient approach to vicinal primary diamines as well as other synthetically valuable nitrogen-containing building blocks which are difficult to obtain with alternative methods. Preliminary mechanistic studies suggest that the reaction may proceed through a new mechanistic pathway in which both Lewis acid activation and iron-enabled redox catalysis are crucial for selective azido-group transfer.

INDEX WORDS: Iron catalysis, Direct alkene difunctionalization, Selective nitrogen atom-transfer, Asymmetric synthesis, Aminohydroxylation and diamination, Natural product synthesis
IRON CATALYZED SELECTIVE NITROGEN ATOM TRANSFER REACTIONS FOR OLEFIN DIFUNCTIONALIZATION: IRON CATALYZED DIRECT DIAZIDATION AND ASYMMETRIC INTRAMOLECULAR AMINOHYDROXYLATION OF OLEFIN

by

YONGAN YUAN

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the College of Arts and Sciences

Georgia State University

2016
IRON CATALYZED SELECTIVE NITROGEN ATOM TRANSFER REACTIONS FOR OLEFIN DIFUNCTIONALIZATION: IRON CATALYZED DIRECT DIAZIDATION AND ASYMMETRIC INTRAMOLECULAR AMINOHYDROXYLATION OF OLEFIN

by

YONGAN YUAN

Committee Chair: Hao Xu

Committee: Alfons Baumstark
Jun Yin
Ivaylo Ivanov

Electronic Version Approved:

Office of Graduate Studies
College of Arts and Sciences
Georgia State University
May 2016
DEDICATION

To my mom, Zhenping Wang, who always kept me away from the street and provided me the opportunity to chase my dreams. Although we are a thousand miles away, as my personal inspiration and beliefs, she has been my momentum in conquering all that comes against me and making me ready for the new challenges in life. There are not enough words to express how much I love you. I cannot go this far without your support and you are the real “MVP” in my heart.

I also dedicate this work to my beloved wife, Zhuo Wang, works as hard as me day in day out without complaint. Your love makes me stronger to overcome the obstacles; your encouragement inspires me to make a more intellectual contribution; your kindness creates the only place where I find inner peace in life. I love your curves and edges, and all your perfect imperfections.

Last but not least, to my son little walnut, who I could never meet. If there were any chance mama and papa could just take one glance you, we would like to trade everything we have for that without hesitation. You had only been in this world for 79 days and suffered a lot of pain not owing to you. My son, the only thing I want to let you know is that you have your life together with us at the moment you left us; you are not alone no matter where you are and what you do. May you rest in peace and we love you forever.
ACKNOWLEDGEMENTS

To pursue a doctoral career is one of the most important decisions that I have made in my first thirty years. Upon graduation, I want to sincerely acknowledge all those people who helped me with this dissertation.

First and foremost, I would like to give my gratitude to my advisor, Dr. Hao Xu, who encouraged and supported me in both academics and mentality throughout my graduate study. His detailed-oriented attitude, as well as the scientific spirit of seeking positive discovery from unpolished raw data, elevates me to an advanced level of viewing scientific research. As a senior and brilliant young scientist, he sets a model example for us to learn and develop. I appreciate the opportunity he gave me to join his research team and to be a part of the group.

I am indebted to all the faculties of GSU chemistry department for the very best support. Especially, Dr. Alfons Baumstark, you are an icon not only to me but also to our chemistry department. I still remember those hard times you gave me during the class, group meeting as well as my thesis dissertation. However, when I look back over my graduate studies, believe it or not, those are the only very few things I can clearly pick up and share with my family. “There are no stupid chemists, there are only lazy people.” “I can teach a monkey to do NMR” I will keep my good work attitudes that you taught me no matter where I go and what I do in the future. I wish you and Barbara long happy and healthy life. I want to thank Dr. Jun Yin for his great questions with my presentation, patient discussions as well as helpful advice. It’s a big fortune for us to have you join our GSU big family. I also appreciate Dr. Ivaylo Ivanov for his detailed discussions and valuable suggestions towards the computational modeling study of my iron nitrene and azido radical chemistry. I appreciate all your time in reviewing my thesis and providing me the fruitful advice.
I would like to say many thanks to my past and present group members and all the people I tutored or worked with. Dr. Guansai Liu, as my first senior mentor, led me into the world of organic chemistry and worked with me side by side on the iron-catalyzed intramolecular aminohydroxylalation reaction project. Dr. Yongqiang Zhang, who is now an Alexander von Humboldt Scholar in Germany, I wish you all the best in your future endeavors. You are more than a mentor to me, but a big brother and a lifelong friend. My techniques and knowledge in the field of organic chemistry were explosively expanded because of your detailed instruction and criticism day in day out. Our indole project would not have been such a big success without your hard work and output, which laid a solid foundation for my own independent work. Dr. Dengfu Lu, you are an amazing scientist and critical film fan. I benefited a lot from every discussion with you, and your deep thought in each and every project earns our respect. I am 100% sure that you will be a big professor in a top tier university in the very near future. Chengliang Zhu, a rising young star scientist that I am so proud of being your peer. You always hold my back with your signature warm smile. Thanks for everything you have done for me and our whole group. I am also grateful to Dr. Cheng Wang for his very generous help, especially the discussions in synthesis, spectral analysis and structural elucidation; to my friend Garrett Edmunds for proofreading my manuscript; to Jeff Sears for taking most of our group maintenance jobs; to Dr. Junshan Tian and Dr. Yunrong Chen for their encouragement and help. All my friends in the chemistry department at Georgia State University deserve my deepest respect and gratitude.

Last but not least, I would like to acknowledge financial support from Georgia State University and the Molecular Basis of Disease program.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. v

LIST OF TABLES ... xiii

LIST OF FIGURES ... xv

LIST OF SCHEMES ... xvi

1 CHAPTER I SYNTHESIS AND REACTIVITY STUDIES OF IRON
COMPLEXES WITH LIGANDS .. 1

1.1 INTRODUCTION .. 1

1.1.1 Chiral Ligands in Asymmetric Catalysis ... 1

1.1.2 Chiral and C2-Symmetrical Box Ligands .. 1

1.1.3 Expected Results ... 2

1.2 EXPERIMENT .. 3

1.2.1 General Information .. 3

1.2.2 Synthesis of Fe-TetraMe PyBox Complex .. 4

1.2.3 Synthesis of Fe-TetraPh PyBox Complex .. 6

1.2.4 Synthesis of Fe-TetraPh Box Complex ... 8

1.2.5 Synthesis of Fe-Phenanthroline Box Complex ... 9

1.3 RESULTS ... 10

1.3.1 Results of Fe-TetraMe PyBox Complex ... 10

1.3.2 Results of Fe-TetraPy PyBox Complex ... 11
1.3.3 Results of Fe-TetraPy Box Complex ... 12

1.3.4 Results of Fe-Phenanthroline Box Complex ... 13

1.4 CONCLUSIONS .. 14

2 CHAPTER II IRON(II)-CATALYZED AMINO-OXYGENATION OF
ALKENES ... 15

2.1 INTRODUCTION ... 15

2.1.1 Naturally Occurring Molecules ... 15

2.1.2 Osmium-Mediated Reactions ... 17

2.1.3 Copper-Mediated Reactions ... 19

2.1.4 Palladium-Mediated Reactions ... 22

2.1.5 Platinum-Mediated Reactions ... 24

2.1.6 Rhodium-Mediated Reactions ... 24

2.1.7 Gold-Mediated Reactions .. 25

2.1.8 Hypervalent Iodine-Mediated Reactions .. 26

2.1.9 Hydroxamic Acids-Mediated Reactions .. 27

2.1.10 Electrochemical Approach .. 28

2.1.11 Iron-Mediated Reactions .. 28

2.1.12 Expected Results ... 30

2.2 EXPERIMENT ... 30

2.2.1 General Procedures ... 30
2.2.2 Relative Stereochemistry Determination of the Product 31

2.2.3 Synthesis and Characterization of Olefin Substrates 32

2.2.4 Procedure for Iron(II)-Catalyzed Olefin Aminohydroxylation 40

2.2.5 K₄Fe(CN)₆-Catalyzed Crossover Experiment 50

2.2.6 Iron(II)-Catalyzed Enantioselective Olefin Aminohydroxylation 52

2.2.7 Iron(II)-Catalyzed Enantioselective Olefin Aziridination 57

2.2.8 Procedure of Product Derivatization ... 61

2.2.9 Determination ... 63

2.3 RESULTS .. 65

2.3.1 Catalyst Discovery for the Aminohydroxylation 65

2.3.2 Substrate Scope of Iron-Catalyzed Aminohydroxylation 66

2.3.3 Iron-Catalyzed Asymmetric Aminohydroxylation 68

2.3.4 Mechanistic Working Hypothesis .. 70

2.4 CONCLUSIONS .. 71

3 CHAPTER III IRON(II)-CATALYZED ASYMMETRIC INTRAMOLECULAR AMINOHYDROXYLATION OF INDOLES 72

3.1 INTRODUCTION .. 72

3.1.1 Naturally Occurring Molecules ... 72

3.1.2 Chiral Substrate-Controlled C(3)-N(1’) Coupling 73

3.1.3 Organic Molecules and Lewis Acid-Catalyzed Reactions 74
3.1.4 Intramolecular α-Arylation of Amides .. 76

3.1.5 Organic Molecule-Catalyzed Additions .. 77

3.1.6 Rhodium-Catalyzed Intramolecular Aminohydroxylation of Indoles or Pyrroles 78

3.1.7 Previous Indole Aminohydroxylation Reactions .. 79

3.2 EXPERIMENT .. 81

3.2.1 General Procedures ... 81

3.2.2 General Synthetic Route for Substrates Preparation and Characterization 84

3.2.3 Catalyst Discovery for Enantioselective Intramolecular Indole

Aminohydroxylation .. 94

3.2.4 Product Derivatization and its Synthetic Applications 115

3.2.5 Asymmetric Aminohydroxylation of an N-Boc Indole and Product

Derivatization 120

3.2.6 Iron-Catalyzed Aminohydroxylation of Functionalized Tryptophan 127

3.2.7 X-ray Crystallographic Analysis for Product Absolute Stereochemistry

Determination ... 133

3.3 RESULTS .. 133

3.3.1 Iron Catalyst Discovery .. 134

3.3.2 Substrate Scope ... 137

3.3.3 Synthetic Transformations ... 138
3.4 CONCLUSIONS .. 139

4 CHAPTER IV IRON CATALYZED DIRECT DIAZIDATION FOR A
BROAD RANGE OF OLEFINS.. 140

4.1 INTRODUCTION .. 140

4.1.1 Naturally Occurring Molecules ... 140

4.1.2 Fe(II)/Fe(III)-Mediated Reactions .. 142

4.1.3 Mn(III)-Mediated Reactions ... 142

4.1.4 Aryl-π3-Iodanes Mediated Reactions ... 143

4.2 EXPERIMENT .. 144

4.2.1 General Procedure .. 144

4.2.2 Catalyst Discovery and Procedures for the Diazidation 145

4.2.3 Procedures for the Diazidation of Acetyl Quinine and Glycals 202

4.2.4 Mechanistic Investigation of the Iron-Catalyzed Olefin Diazidation 217

4.3 RESULTS .. 225

4.3.1 Iron Catalyst Discovery .. 226

4.3.2 Substrate Scope .. 227

4.3.3 Late Stage Functionalization ... 230

4.3.4 Mechanistic Working Hypothesis .. 231

4.4 CONCLUSIONS .. 233

REFERENCES .. 234
APPENDICES

Appendix A 1H and 13C Spectra of Compounds in Chapter I

Appendix B 1H and 13C Spectra of Compounds in Chapter II

Appendix C 1H and 13C Spectra of Compounds in Chapter III

Appendix D 1H and 13C Spectra of Compounds in Chapter IV

Appendix E X-ray Crystallographic Analysis for Product Absolute Stereochemistry Determination
LIST OF TABLES

Table 1. The Diastereoselectivity Optimization of para-Methyl Substituted Substrate.. 41
Table 2. Ligand Screening for Reaction Optimization .. 54
Table 3. Solvent Screening for Reaction Optimization .. 54
Table 4. Temperature Screening for Reaction Optimization ... 54
Table 5. Concentration Screening for Reaction Optimization 55
Table 6. Counter Ion Screening for Reaction Optimization .. 57
Table 7. Catalyst Discovery for the Aminohydroxylation .. 66
Table 8. Substrate Scope of Iron-Catalyzed Aminohydroxylation 68
Table 9. Catalyst Discovery for the Racemic Indole Aminohydroxylation 82
Table 10. Substrate Scope .. 84
Table 11. Catalyst Discovery for Intramolecular Indole Aminohydroxylation 94
Table 12. Solvent Screening for Fe(OTf)₂–L9 System ... 95
Table 13. Temperature Screening for Fe(OTf)₂–L9-Catalyzed Reactions 96
Table 14. Temperature Screening for Fe(OAc)₂–L9-Catalyzed Reactions 96
Table 15. Concentration Screening for Fe(OAc)₂–L9-Catalyzed Reactions 96
Table 16. N-Donor Additive Effect ... 97
Table 17. Counter Anion Screening with Lutidine as the N-donor 98
Table 18. Lutidine Quantity Screening .. 98
Table 19. Temperature Screening for the Additive Effect ... 99
Table 20. Reaction Conditions Screening for Aminohydroxylation of Tryptophan 129
Table 21. Reaction Discovery for Aminohydroxylation of Tryptophan Substrate 10.... 131
Table 22. Catalyst Discovery for the Asymmetric Indole Aminohydroxylation 135
Table 23. Substrate Scope for the Asymmetric Indole Aminohydroxylation................. 137
Table 24. Catalyst Discovery for the Iron-Catalyzed Indene Diazidationa....................... 146
Table 25. Catalyst Discovery for the Diastereoselective Indene Diazidation 227
Table 26. Substrate Scope for the Iron-Catalyzed Olefin Diazidation 230
LIST OF FIGURES

Figure 1. Privileged Chiral Ligands ... 2
Figure 2. Compounds Containing the 1,2-Amino Alcohol Motifs 15
Figure 3. Approaches for the Synthesis of Vicinal 1,2-Amino Alcohols 16
Figure 4. Amino Oxindoles and Amino Indolanes Structural Motifs 73
Figure 5. Chiral N,N'-Dioxides ... 76
Figure 6. Important Transformations of Organic Azides 140
Figure 7. Compounds Containing the Vicinal Diamine Motif 141
LIST OF SCHEMES

Scheme 1. Synthesis of TetraMe PyBox Ligand ... 4
Scheme 2. Synthesis of Fe-TetraMe PyBox Complex.. 6
Scheme 3. Synthesis of TetraPh PyBox Ligand ... 6
Scheme 4. Synthesis of Fe-TetraPh PyBox Complex.. 8
Scheme 5. Synthesis of Fe-TetraPh Box Complex .. 9
Scheme 6. Synthesis of Phenanthroline Box Ligand ... 9
Scheme 7. Synthesis of Fe-Phenanthroline Box Complex .. 10
Scheme 8. Osmium-Catalyzed Sharpless Olefin AA ... 17
Scheme 9. Osmium-Catalyzed Enantioselective AA ... 17
Scheme 10. Regioselective Aminohydroxylation of Allylic Carbamates 18
Scheme 11. Regioselective Aminohydroxylation of Allylic Carbamates with Stereogenic Center .. 18
Scheme 12. Improved Aminohydroxylation of Allylic Carbamates 19
Scheme 13. Copper(I)-Catalyzed Cyclization of Unsaturated N-Benzoyloxyamines 19
Scheme 14. Copper(II)-Catalyzed Aminohydroxylation of Styrenic Olefins 20
Scheme 15. Copper(II)-Catalyzed Enantioselective Aminohydroxylation 20
Scheme 16. (a) New Oxaziridines-Mediated Aminohydroxylation 21
Scheme 17. Cu(II)-Catalyzed Enantioselective Intramolecular Aminooxygenation of Alkenes ... 21
Scheme 18. Pd-Catalyzed Aminooacteoxylation of Alkenes .. 22
Scheme 19. Pd-Catalyzed Intermolecular Aminooacteoxylation of Alkenes 23
Scheme 20. Pd-Catalyzed Formation of 3-Aminotetrahydrofuran Derivatives................. 23
Scheme 21. Pd-Catalyzed Aminoacetoxylation .. 23
Scheme 22. Pt-Catalyzed Aerobic 1,2-Aminoacetoxylation of Alkenes 24
Scheme 23. Iodine(III)-Mediated Aziridination Reaction 24
Scheme 24. Rh(II)-Catalyzed Amidoglycosylation 25
Scheme 25. Gold-Catalyzed Aminooxygenation Reaction of Alkenes 25
Scheme 26. Gold-Catalyzed Aminoamidation Reaction of Alkenes 26
Scheme 27. Intramolecular Oxidimination of Unsaturated O-Alkyl Hydroxamates 26
Scheme 28. Metal-Free Aminotrifluoroacetoxylation of Alkenes 27
Scheme 29. Metal-Free Oxyaminations of Alkenes Using Hydroxamic Acids 28
Scheme 30. Intramolecular Anodic Olefin Coupling Reaction 28
Scheme 31. Iron-Catalyzed Aminohydroxylation of Olefins with N-Sulfonyl Oxaziridines .. 29
Scheme 32. Iron-Catalyzed Asymmetric Oxyamination of Olefins 29
Scheme 33. Hydrolysis of Oxazolidone ... 31
Scheme 34. Substrates Preparation .. 32
Scheme 35. Ligand Controlled Asymmetric Induction .. 69
Scheme 36. Mechanistic Working Hypothesis ... 71
Scheme 37. Total Synthesis of Psychotrimine ... 73
Scheme 38. The Synthesis of C(3)-N(1') Dimers .. 74
Scheme 39. Organocatalytic Amination of 2-Oxindoles 74
Scheme 40. Expanded Substrate Scope for Amination of 2-Oxindoles 75
Scheme 41. Catalytic Asymmetric Synthesis of 3-Aminooxindoles 75
Scheme 42. Chiral NHC Carbene Catalyzed Oxindole Synthesis 76
Scheme 43. Pd-Mediated Asymmetric Intramolecular Arylation of Ketimino Amides... 77
Scheme 44. Decarboxylative Addition of MAHT to Ketimines................................. 77
Scheme 45. Intramolecular Aziridination and Nucleophilic Ring-Opening............... 78
Scheme 46. Synthesis of (+)-Gonyautoxin 3... 79
Scheme 47. Rh-Mediated Intramolecular Aza-spiroannulation................................. 79
Scheme 48. Oxaziridine-Mediated Oxyamination of Indoles...................................... 80
Scheme 49. Catalytic Oxyamidation of Indoles ... 80
Scheme 50. General Synthetic Route for Substrates Preparation............................. 84
Scheme 51. Synthesis of Amino Indolane ... 115
Scheme 52. Synthesis of Amino Oxindoles... 116
Scheme 53. Asymmetric Aminohydroxylation of an N-Boc Indole............................ 120
Scheme 54. Synthesis of Amino Indolane ... 121
Scheme 55. Synthesis of Amino Oxindoles... 122
Scheme 56. Preparation of Tryptophan Substrate 5.. 127
Scheme 57. Iron(II)-Catalyzed Indole Aminohydroxylation Accelerated by 2,6-Lutidine
.. 136
Scheme 58. Product Synthetic Transformation and the Iron(II)-Catalyzed AA of
Tryptophan... 139
Scheme 59. Fe(II)/Fe(III)-Mediated Diazidonation of Alkenes................................. 142
Scheme 60. Mn(III)-Mediated Diazidation of Alkenes.. 142
Scheme 61. Modified Mn(III)-Mediated Diazidation of Alkenes............................... 142
Scheme 62. (PhIO)$_n$-Mediated Diazidation of Alkenes.. 143
Scheme 63. TEMPO-Mediated Diazidation of Alkenes.. 143
Scheme 64. Staudinger Reduction of Azides... 148
Scheme 65. Optical Resolution of the Indene-(trans)-1,2-Diamine 149
Scheme 66. Procedures for the Diazidation of Acetyl Quinine 202
Scheme 67. Reduction of Acetyl Quinine ... 204
Scheme 68. Procedures for the Diazidation of Glycals ... 205
Scheme 69. Radical Clock of the Iron-Catalyzed Olefin Diazidation 223
Scheme 70. Iron-Catalyzed Olefin Diazidation ... 225
Scheme 71. Iron-Catalyzed Diazidation of Acetyl Quinine and Glycals for N-Linked Glycopeptide Synthesis... 231
Scheme 72. Control Experiments for Mechanistic Insights of the Iron-Catalyzed Olefin Diazidation ... 232
Scheme 73. Mechanistic Working Hypothesis for the Iron-Catalyzed Olefin Diazidation Using Benziodoxole and TMSN$_3$... 233
1 CHAPTER I SYNTHESIS AND REACTIVITY STUDIES OF IRON COMPLEXES WITH LIGANDS

1.1 INTRODUCTION

1.1.1 Chiral Ligands in Asymmetric Catalysis

Chiral ligands are specially designed and widely adapted molecules utilized for asymmetric synthesis. The chiral ligand which is enantiopure can coordinate with a metal center through chelation to afford an asymmetric catalyst. This asymmetric catalyst can thus be used to transfer its chirality to the reaction product in a chemical reaction. The beauty of chiral ligand in asymmetric catalysis is that even catalyst at low concentration is effective to turn over much more equivalents of reactant to its corresponding enantiopure product from the achiral precursor, making it superior to most chiral auxiliaries and well suited to large scale synthesis.

1.1.2 Chiral and C2-Symmetrical Box Ligands

Interestingly, although thousands of chiral ligands have been synthesized and screened, some of these are enantioselective over a wide range of different reactions. We call such catalysts “privileged ligands”. Examples of privileged chiral ligands and catalysts are listed in Figure 1 below. The framework of Bis(oxazoline) ligands inspired by vitamin B$_{12}$, was first synthesized and used for enantioselective carbenoid cyclopropanation in 1984 by Brunner. Later, in 1989, Nishiyama reported the first application of tridentate nitrogen ligand PyBox in transition metal catalysis. These newly designed chiral ligands were simply prepared from 2,6-Pyridinedicarboxylic acid and enantiopure amino alcohols, drawing significant attention due to
the ready availability of chiral precursors and their excellent performance in hydrosilylation of ketones, oxidative cyclization, reductive cyclization of various unsaturated alkyl halides, etc.3-4 Iron-based catalysts is less explored compared with the noble metals, such as Pd, Pt, Ru as well as Rd. Therefore, the discovery of a novel iron-based catalyst is of great importance due to its high abundance, low cost, and low toxicity.5 Fe/PyBox complexes were developed for a broad range of organic transformations such as the asymmetric Nazarov cyclization,6 asymmetric aziridine formation reaction,7 Mukaiyama-Aldol reaction,8 etc. Based on the X-ray crystallographic analysis and reactivity studies of these Fe-PyBox complexes, we learned that the coordination abilities of pybox ligands to the iron center as well as the reactivities of the Fe-PyBox complexes were dependent on the structure of the pybox ligand employed.9

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{privileged_chiral_ligands.png}
\caption{Privileged Chiral Ligands}
\end{figure}

\subsection*{1.1.3 Expected Results}

We are interested in discovering general and selective catalytic reactions that transform readily available hydrocarbons to high-value functional molecules through novel mechanistic pathways. One of our current research focuses is to develop iron-catalyzed nitrogen atom transfer methods for stereoselective olefin functionalization, including olefin aminoxylation, and
diamination reactions. These transformations capitalize on the novel reactivity of iron catalysts by conveniently converting petrochemicals to highly functionalized building blocks that are valuable to organic synthesis, material and biomedical sciences.

1.2 EXPERIMENT

1.2.1 General Information

General Procedures. All reactions were performed in oven-dried or flame-dried round-bottom flasks and vials. Stainless steel syringes and cannula were used to transfer air- and moisture-sensitive liquids. Flash chromatography was performed using silica gel 60 (230-400 mesh) from Sigma–Aldrich.

Materials. Commercial reagents were purchased from Sigma-Aldrich, Fluka, EM Science, and Lancaster and used as received. All solvents were used after being freshly distilled unless otherwise noted.

Instrumentation. Proton nuclear magnetic resonance (\(^1\)H NMR) spectra, carbon nuclear magnetic resonance (\(^{13}\)C NMR) spectra and fluorine nuclear magnetic resonance (\(^{19}\)F NMR) were recorded on Bruker UltraShield-400 (400 MHz). Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to the NMR solvent residual peak (CHCl\(_3\): \(\delta\) 7.26). Chemical shifts for carbons are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the NMR solvent (CDCl\(_3\): \(\delta\) 77.0). Chemical shifts for fluorine are reported in parts per million downfield and are referenced to the fluorine resonances of CFCl\(_3\). Data are represented as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz), and integration.
The mass spectroscopic data were obtained at the Georgia State University mass spectrometry facility using a Micromass Platform II single quadruple instrument. Infrared (IR) spectra were obtained using a Perkin Elmer Spectrum 100 FT-IR spectrometer. Data are represented as follows: frequency of absorption (cm\(^{-1}\)) and absorption strength (s = strong, m = medium, w = weak).

Abbreviations used: EtOH–ethanol, EtOAc–ethyl acetate, THF–tetrahydrofuran, MeOH–methanol, Et2O–diethyl ether, CH2Cl2–dichloromethane, TEA–triethylamine, MeCN–acetonitrile, MS–molecular sieves, CDI–1,1′-carbonyl diimidazole, Troc–2,2,2-trichloroethoxycarbonyl, DCC–N,N′-dicyclohexylcarbodiimide, TLC–thin layer chromatography, Boc2O–di-tert-butyl dicarbonate, DMAP–4-dimethylaminopyridine.

1.2.2 Synthesis of Fe-TetraMe PyBox Complex

1.2.2.1 Synthesis of TetraMe PyBox Ligand

Ligand L1 was synthesized according to a modified literature procedure:\(^{10}\)

![Scheme 1. Synthesis of TetraMe PyBox Ligand](image)

To a 100 mL flame-dried flask charged with a stir bar and a reflux condenser was added 2,6-pyridinedicarboxylic acid (3.34 g, 20 mmol). After the flask was evacuated and backfilled with N\(_2\) twice, SOCl\(_2\) (30 ml) and DMF (0.2 mL) were added. The reaction was heated under a
reflux condition for 3 h. Then the mixture was cooled to room temperature and concentrated \textit{in vacuo} to afford the 2,6-pyridinedicarbonyl dichloride as a white solid which can be used directly in the next step. Under N\textsubscript{2} atmosphere, to a solution of amino alcohol \textbf{1} (6.23 g, 70 mmol) and Et\textsubscript{3}N (10.1 g, 100 mmol) in CH\textsubscript{2}Cl\textsubscript{2} (70 mL), were added 2,6-pyridinedicarbonyl dichloride in CH\textsubscript{2}Cl\textsubscript{2} (30 mL) drop-wise at 0 °C. After the reaction mixture was stirred at room temperature for 16 h, the mixture was poured into an ice-water mixture (60 mL), which was then extracted with CH\textsubscript{2}Cl\textsubscript{2} (60 mL \times 3). The combined organic layers were washed with water (20 mL) and brine (20 mL), dried over anhydrous Na\textsubscript{2}SO\textsubscript{4} and concentrated \textit{in vacuo}. The residue was purified through a silica gel flash column (hexanes/acetone: from 10:1 to 1:1) to afford product \textbf{2} as a white solid (3.53 g, 57% yield for 2 steps), which is a known compound.10

\[
\textbf{L1}
\]

\textbf{2} (3.09 g, 10 mmol) was dissolved in toluene (40 mL) in a 100 mL flame-dried flask charged with a stir bar and a reflux condenser. SOCl\textsubscript{2} (7.14 g, 60 mmol) was added via a syringe and the mixture was heated under a reflux condition. The reaction was monitored by TLC. When the starting material disappeared, the reaction was cooled to 0 °C and quenched with a saturated NaHCO\textsubscript{3} solution (30 mL). The organic layer was separated from the aqueous one which was then extracted with EtOAc (30 mL \times 3). The combined organic layers were dried over anhydrous Na\textsubscript{2}SO\textsubscript{4} and concentrated \textit{in vacuo}. The residue was filtered through a short silica gel pad with EtOAc as an eluent and concentrated again. The obtained oil was dissolved in anhydrous THF (50 mL) under N\textsubscript{2} atmosphere and cooled to 0 °C. NaH (2 g, 50 mmol, 60% in mineral oil) was added to the solution portion-wise and the whole mixture was then warmed up to room temperature and monitored by TLC until the starting material was fully consumed. The reaction
mixture was filtered through a Celite pad, concentrated and purified through a silica gel flash column (hexanes/acetone: from 20:1 to 2:1) to provide the ligand L_1 as a white solid (2.02 g, 74\% yield for 2 steps).

1.2.2.2 Synthesis of Fe-TetraMe PyBox complex

![Scheme 2](image)

Iron complexes 3 was prepared by stirring iron(II) triflate anhydrous and the corresponding PyBox ligand at a ratio of 1:1 in DCM/MeCN (50:1) at room temperature (Scheme 2). Upon removal of the solvent in vacuo, iron complex 3 was achieved in almost quantitative yield.

1.2.3 Synthesis of Fe-TetraPh PyBox Complex

1.2.3.1 Synthesis of TetraPh PyBox Ligand

Ligand L_2 was synthesized according to a modified literature procedure:

![Scheme 3](image)

To a 100 mL flame-dried flask charged with a stir bar and a reflux condenser was added
2,6-pyridinedicarboxylic acid (3.34 g, 20 mmol). After the flask was evacuated and backfilled with N\textsubscript{2} twice, SOCl\textsubscript{2} (30 ml) and DMF (0.2 mL) were added. The reaction was heated under a reflux condition for 3 h. Then the mixture was cooled to room temperature and concentrated \textit{in vacuo} to afford the 2,6-pyridinedicarbonyl dichloride as a white solid which can be used directly in the next step. Under N\textsubscript{2} atmosphere, to a solution of amino alcohol 4 (6.23 g, 70 mmol) and Et\textsubscript{3}N (10.1 g, 100 mmol) in CH\textsubscript{2}Cl\textsubscript{2} (70 mL), were added 2,6-pyridinedicarbonyl dichloride in CH\textsubscript{2}Cl\textsubscript{2} (30 mL) drop-wise at 0 °C. After the reaction mixture was stirred at room temperature for 16 h, the mixture was poured into an ice-water mixture (60 mL), which was then extracted with CH\textsubscript{2}Cl\textsubscript{2} (60 mL × 3). The combined organic layers were washed with water (20 mL) and brine (20 mL), dried over anhydrous Na\textsubscript{2}SO\textsubscript{4} and concentrated \textit{in vacuo}. The residue was purified through a silica gel flash column (hexanes/acetonitrile: from 10:1 to 1:1) to afford product 5 as a white solid (5.01 g, 45% yield for 2 steps), which is a known compound.10, 11

![Diagram](image_url)

5 (5.01 g, 9 mmol) was dissolved in toluene (40 mL) in a 100 mL flame-dried flask charged with a stir bar and a reflux condenser. SOCl\textsubscript{2} (6.43 g, 54 mmol) was added via a syringe and the mixture was heated under a reflux condition. The reaction was monitored by TLC. When the starting material disappeared, the reaction was cooled to 0 °C and quenched with a saturated NaHCO\textsubscript{3} solution (30 mL). The organic layer was separated from the aqueous one which was then extracted with EtOAc (30 mL × 3). The combined organic layers were dried over anhydrous Na\textsubscript{2}SO\textsubscript{4} and concentrated \textit{in vacuo}. The residue was filtered through a short silica gel pad with EtOAc as an eluent and concentrated again. The obtained oil was dissolved in anhydrous THF (50 mL) under N\textsubscript{2} atmosphere and cooled to 0 °C. NaH (1.8 g, 45 mmol, 60% in mineral oil) was
added to the solution portion-wise and the whole mixture was first warmed up to room
temperature and then was refluxed until TLC indicated fully consumption of the starting material
and reaction intermediate. The reaction mixture was filtered through a Celite pad, concentrated
and purified through a silica gel flash column (hexanes/acetone: from 20:1 to 2:1) to provide the
ligand L1 as a white solid (2.90 g, 62% yield for 2 steps).

1.2.3.2 Synthesis of Fe-TetraPh PyBox Complex

Scheme 4. Synthesis of Fe-TetraPh PyBox Complex

Iron complexes 6 was prepared by stirring iron(II) triflate anhydrous and the
corresponding PyBox ligand at a ratio of 1:1 in DCM/MeCN (50:1) at room temperature
(Scheme 4). Upon removal of the solvent in vacuo, iron complex 6 was achieved in almost
quantitative yield.

1.2.4 Synthesis of Fe-TetraPh Box Complex

1.2.4.1 Synthesis of TetraPh Box Ligand

L3 was synthesized according to the literature procedures.12

1.2.4.2 Synthesis of Fe-TetraPh Box Ligand
Iron complexes 7 was prepared by stirring iron(II) acetate anhydrous and the corresponding Box ligand at a ratio of 1:2 in Tol/MeCN (50:1) at room temperature (Scheme 5). Upon removal of the solvent in vacuo, iron complex 7 was achieved in almost quantitative yield.

1.2.5 **Synthesis of Fe-Phenanthroline Box Complex**

1.2.5.1 **Synthesis of Phenanthroline Box Ligand**

Ligand L4 was synthesized from 2-cyanophenanthroline. 2-Cyanophenanthroline (4.10 g, 20 mmol) was dissolved in anhydrous methanol (60 mL) in a flame-dried flask equipped with a stir bar. NaOMe (108 mg, 2 mmol) was added to the reaction. The reaction mixture was stirred at room temperature and monitored with TLC until the starting material was fully consumed. The reaction was then quenched with acetic acid (0.22 mL) and the mixture was filtered and concentrated in vacuo. The residue was dissolved in toluene (100 mL) together with amino alcohol 1 (1.87 g, 21 mmol) and p-TsOH·H₂O (380 mg, 2 mmol). The reaction mixture was then heated under a reflux condition with a Dean–Stark apparatus until the intermediate was consumed. After the reaction was cooled to room temperature, the solvent was removed in vacuo.
and the residue was purified through a silica gel flash column (hexanes/acetone: from 2:1 to 1:2) to afford L4 as a white solid (3.6g, 65% yield).10

1.2.5.2 Synthesis of Fe-Phenanthroline Box Complex

![Scheme 7. Synthesis of Fe-Phenanthroline Box Complex](image)

Iron complexes 8 was prepared by stirring iron(II) triflimide and the corresponding Box ligand at a ratio of 1:1 in DCM/MeCN (50:1) at room temperature (Scheme 7). Upon removal of the solvent in vacuo, iron complex 8 was achieved in almost quantitative yield.

1.3 RESULTS

1.3.1 Results of Fe-TetraMe PyBox Complex

1.3.1.1 Results of TetraMe PyBox Ligand

2,6-Bis(4,4-dimethyl-4,5-dihydrooxazol-2-yl)pyridine (L1): ligand L1 was further purified by recrystallization from a mixture of hexanes/EtOAc (9:1) as a colorless crystalline solid (m.p. 139–141 °C). IR ν\textsubscript{max} (neat)/cm-1: 3423 (w), 2967 (m), 2927 (w), 2896 (w), 1641 (s), 1573 (s), 1459 (s), 1365 (s), 1302 (s); 1H NMR (400 MHz, CDCl\textsubscript{3}): δ 8.22 (d, J = 7.9 Hz, 2H),
7.87 (t, J = 7.9 Hz, 1H), 4.24 (s, 4H), 1.42 (s, 12H); 13C NMR (100 MHz, CDCl$_3$): δ 160.9, 147.0, 137.1, 125.7, 79.8, 68.0, 28.4; HRMS (ESI, m/z): calcd for C$_{15}$H$_{20}$N$_3$O$_2$+, [M + H$^+$], 274.1550, found 274.1554.

1.3.1.2 Applications of Fe-TetraMe PyBox Complex

Complex 3 shows new reactivity in effectively catalyzing intermolecular olefin amino hydroxylation, amino halogenation as well as diazidation reactions.

1.3.2 Results of Fe-TetraPy PyBox Complex

1.3.2.1 Results of TetraPh PyBox Ligand

2,6-Bis(4,4-diphenyl-4,5-dihydrooxazol-2-y1)pyridine (L2): white solid (m.p. 213–215 °C); IR ν_{max} (neat)/cm$^{-1}$: 3059 (w), 3026 (w), 1641 (s), 1570 (m), 1492 (m), 1449 (s), 1380 (s), 1114 (m), 1077 (s); 1H NMR (400 MHz, CDCl$_3$): δ 8.47 (d, J = 7.8 Hz, 2H), 7.92 (t, J = 7.8 Hz, 1H), 7.40 (d, J = 7.9 Hz, 8H), 7.33 (t, J = 7.5 Hz, 8H), 7.26 (t, J = 7.2 Hz, 4H), 5.09 (s, 4H); 13C NMR (100 MHz, CDCl$_3$): δ 161.7, 146.9, 145.7, 137.2, 128.5, 127.3, 126.7, 126.7, 80.5, 79.8; HRMS (ESI, m/z): calcd for C$_{35}$H$_{28}$N$_3$O$_2$+, [M + H$^+$]: 522.2176, found 522.2178.
1.3.2.2 Applications of Fe-TetraPh PyBox Complex

Complex 6 is effective to catalyze highly diastereoselective intermolecular diazidation reaction for a broad range of olefins.

1.3.3 Results of Fe-TetraPy Box Complex

1.3.3.1 Results of TetraPy Box Ligand

2,2-Bis-2-[4(R),5(S)-diphenyl-1,3-oxazolinyl]propane (L3): white solid (m.p. 153–154 °C); IR ν_{max} (neat)/cm⁻¹: 3056 (w), 1674 (s), 1450 (m), 1319 (m), 1140(s), 1119(m); ¹H NMR (400 MHz, CDCl₃): δ 7.2–6.96(m, 10H), 5.98 (d, J = 10 Hz, 1H), 5.60 (d, 1H), 1.93 (s, 3H), 0.78 (d, 3H), nearly identical to the literature data.¹²

1.3.3.2 Applications of Fe-TetraPh Box Complex
Complex 7 is effective to catalyze highly enantioselective intramolecular amino-hydroxylation of olefins with functionalized hydroxylamines as well as aminohydroxylation reaction for a variety of indoles.

1.3.4 Results of Fe-Phenanthroline Box Complex

1.3.4.1 Results of Phenanthroline Box Ligand

![L4](image)

4,4-Dimethyl-2-(1,10-phenanthroin-2-yl)-4,5-dihydrooxazole (L4): ligand L4 was further purified by recrystallization from a hexanes/EtOAc mixture as a white solid (m.p. 106–108 °C). IR ν_{max} (neat)/cm$^{-1}$: 3385 (m), 3223 (m), 2966 (w), 1646 (s), 1493 (m), 1400 (s); 1H NMR (400 MHz, CDCl$_3$): δ 9.25 (dd, $J =$ 4.3, 1.3 Hz, 1H), 8.43 (d, $J =$ 8.3 Hz, 1H), 8.34 (d, $J =$ 8.3 Hz, 1H), 8.29 (d, $J =$ 6.9 Hz, 1H), 7.86 (q, $J =$ 8.8 Hz, 2H), 7.68 (dd, $J =$ 8.1, 4.4 Hz, 1H), 4.34 (s, 2H), 1.49 (s, 6H); 13C NMR (100 MHz, CDCl$_3$): δ 161.7, 150.4, 146.4, 145.9, 145.5, 136.6, 136.2, 129.4, 128.9, 128.0, 126.1, 123.4, 122.7, 79.8, 68.1, 28.5; HRMS (ESI, m/z): calcd for C$_{17}$H$_{16}$N$_3$O$^+$, [M + H$^+$]: 278.1288, found 278.1289.

1.3.4.2 Applications of Fe-Phenanthroline Box Complex

![8](image)

Complex 8 is effective to catalyze highly diastereo- and enantioselective intermolecular aminohydroxylation of olefin with a labile C-H bond as well as the allylic positon of substituted indole substrate.
1.4 CONCLUSIONS

We have successfully synthesized the iron(II) complexes [Fe(tetraMe–PyBox)(OTf)₂] (3), [Fe(tetraPh–PyBox)(OTf)₂] (4), [Fe(tetraPh–Box)(OAc)₂] (7) and [Fe(Phen–Box)(NTf₂)₂] (8) by the reaction of iron(II) salt with the corresponding N-based ligand. X-ray crystallographic analysis and reactivity studies of these iron complexes were performed. The results indicate that the reactivity of the iron complexes is dependent on their unique structures as well as the coordination abilities of N-based ligands to the iron center. Therefore, searching for new reactivity of those iron catalysts in the fields of total synthesis, new drug discovery, as well as novel reaction and methodology studies, show great importance.
2 CHAPTER II IRON(II)-CATALYZED AMINO-OXYGENATION OF ALKENES

2.1 INTRODUCTION

2.1.1 Naturally Occurring Molecules

Numerous biologically active alkaloids and pharmaceuticals contain chiral 1,2-amino alcohols, and as depicted in Figure 2. However, the synthesis of 1,2-amino alcohol motifs is very challenging and synthetic approaches towards this important problem can be summarized in Figure 3, including epoxide opening, nucleophilic substitution, imine reduction, aldehyde reduction, enamine oxidation, aziridine opening, etc.

![Figure 2. Compounds Containing the 1,2-Amino Alcohol Motifs](image)

From Figure 3 we can see that, research into the simultaneous transfer of nitrogen and another heteroatom across a variety of double bonds by organocatalysis or metal catalyzed
methods show great advantages compared to other methods, because these catalytic reactions readily transform commodity chemicals to highly functionalized building blocks valuable to medicinal chemistry and pharmaceutical research.

![Figure 3. Approaches for the Synthesis of Vicinal 1,2-Amino Alcohols](image)

We are interested in direct difunctionalization of alkenes with non-precious metal catalysts which is among the most utilized methods to introduce stereogenic nitrogen atoms in organic synthesis. The application of iron catalyst in organic synthesis is attractive for a few reasons. First and foremost, iron is the most abundant metal in the earth; thus, the price of iron is much cheaper than other most often used precious metals. Secondly, considering the incorporation of iron compounds in biological systems during the evolutionary process, iron is crucial to many integral metabolic parts due to its relatively low toxicity. Last but not the least, from the research point of view, although the catalytic efficiency and applicability of iron is still behind palladium or some other metals in organic synthesis, publications related to iron in catalysis as well as organic synthesis has a tremendous increase just in the last few years, demonstrating the coming of the “iron age”.
2.1.2 Osmium-Mediated Reactions

The pioneering asymmetric aminohydroxylation (AA) reported by K.B. Sharpless and coworkers in 1976 remains a powerful method for the synthesis of enantioenriched syn-vicinal amino alcohols. Different from the well-known dihydroxylation reaction, the unsymmetrical addition brings the regioselectivity issue of the reaction affording two possible products, as illustrated in Scheme 8. This osmium-catalyzed procedure provides the cis addition of the hydroxyl (OH) and arylsulfonamide (ArSO₂NH₂) moieties across an olefinic linkage with sixteen different olefin substrates, and yields ranging from 34% to 96%.¹⁵b

Scheme 8. Osmium-Catalyzed Sharpless Olefin AA

The asymmetric induction was first time achieved by using chiral tertiary amine ligands, which belongs to cinchona alkaloid family. In this case, chirality is transformed from a catalytic amount of osmium and an enantiopure ligand to chiral products in good yield and ee, as shown in Scheme 9. The advantages of the AA are its simplicity, functional group tolerance as well as no requirement for auxiliary functional groups; however, certain barriers still exist such as the scope and utility of the reaction, which limits their applications.

Scheme 9. Osmium-Catalyzed Enantioselective AA

Despite the advances achieved regarding control of the regio- and stereoselectivity in osmium-catalyzed aminohydroxylation, the reaction itself is still controlled by the substrates.
Donohoe16 developed an Os-based tethered strategy to solve the regioselectivity problem in racemic olefin aminohydroxylation.

Starting from allylic alcohols, carbamate intermediates can be prepared in high yield by a two-step procedure, as shown in Scheme 10. The reaction is stereospecific and proceeds with the only catalytic amount of catalyst loading with the application of the Sharpless AA conditions. A range of hydroxyl oxazolidinones with complete \textit{syn} stereospecific the tethered osmium species across the alkene were thus achieved.16f,16h Unfortunately, no \textit{ee} was observed in the presence of (DHQ)$_2$-PHAL.

\begin{scheme}
\begin{align*}
\text{OH} &\xrightarrow{i. \text{Cl}_2\text{CCONCO}} \text{O} &\xrightarrow{nPr} \text{H}_2\text{O}_2\text{K}_2\text{CO}_3 &\xrightarrow{\text{K}_2\text{OsO}_4\text{(OH)}_4 (4\%)} &\xrightarrow{nPrOH/H}_2\text{O}, \text{r.t.}, 54\%
\end{align*}
\end{scheme}

\textbf{Scheme 10.} Regioselective Aminohydroxylation of Allylic Carbamates

After illustrating achiral allyl carbamates with regio- and stereoselectivity, substrates bearing an allylic stereogenic center were further examined with the optimized reaction conditions, affording high \textit{syn} diastereoselectivity showed in Scheme 11.16c,16g

\begin{scheme}
\begin{align*}
\text{O} &\xrightarrow{\text{K}_2\text{OsO}_4\text{(OH)}_4 (4\%)} &\xrightarrow{nPrOH/H}_2\text{O}, \text{r.t.}, 67\%
\end{align*}
\end{scheme}

\textbf{Scheme 11.} Regioselective Aminohydroxylation of Allylic Carbamates with Stereogenic Center
To avoid the use of chlorinating agents, Donohoe and others discovered a replacement procedure for the synthesis of N-sulfonyloxy and N-carbonyloxy derivatives of a broad range of acyclic and cyclic allylic alcohols. The prepared intermediates can thus be converted to the corresponding hydroxyl oxazolidinones with higher yields as well as low catalyst loading.16b-d

![Scheme 12. Improved Aminohydroxylation of Allylic Carbamates](image)

2.1.3 Copper-Mediated Reactions

This reaction has also inspired extensive efforts to discover alternative approaches to address its inherent limitations. Göttlich17 discovered the first radical aminohydroxylation of double bonds. N-benzoyl hydroxylamines are reduced by Cu(I) in the presence of a Lewis acid, followed by carbon radical oxidized by Cu(II) via a ligand transfer to furnish the cyclized products in moderate yields and different regioselectivity for pyrrolidines over piperidines. While the formation of piperidine goes through an unusual 6-\textit{endo} radical cyclization, it might be caused by the \textit{gem} dialkyl groups in the substrates.

![Scheme 13. Copper(I)-Catalyzed Cyclization of Unsaturated N-Benzoyloxyamines](image)

Yoon18 firstly reported a novel copper(II)-catalyzed reaction of oxaziridines that affects regioselective aminohydroxylation of styrenes and electron-rich olefins in 2007, as shown in Scheme 14.18a Cu(II) works as Lewis acid to activate the oxaziridine and nucleophilic attack by
styrenic olefins, allyl silanes, enol ethers as well as symmetrical dienes, subsequent ring closer onto the resultant benzylic cation to furnish highly chemoselective aminals. However, an extended reaction, limited substrates scope (only electron rich olefins that can sufficiently stabilize the carbon cation intermediate) and poor diastereoselectivity limited their further applications.

Scheme 14. Copper(II)-Catalyzed Aminohydroxylation of Styrenic Olefins

Subsequent reports have revealed this significant use of chiral bisoxazoline copper(II) complexes to provide good enantioselectivity for most electron rich styrenic olefins but low diastereoselectivity.18d

Scheme 15. Copper(II)-Catalyzed Enantioselective Aminohydroxylation

An important implement for this reaction is the discovery of dimethyloxaziridine with the combination of anionic halocuprate(II) complexes that takes care of the diastereoselectivity issue as well as reaction time problem for olefinic substrates as summarized in Scheme \textit{16(a)}18c. In most cases, the reaction can finish within 4.5 h with improved yields, and the resulted products can be deprotected under milder conditions compared to the reduction conditions required for removal of an \textit{N}-benzenesulfonyl group. Also, the anionic halocuprate(II) complexes show advantages over neutral copper(II) salts such as, dramatically increased amount of sterically and
electronically deactivated styrenes, rate acceleration in most cases with dramatically enhanced yields indicated in Scheme 16(b).

\[
\text{Scheme 16. (a) New Oxaziridines-Mediated Aminohydroxylation}
\]

\[
\text{(b) Anionic Halocuprate(II) Complex as Enhanced Catalyst}
\]

Chemler19 discovered copper can catalyze intramolecular olefin aminooxygenation in the presence of TEMPO, as depicted in Scheme 17. This intramolecular process provides efficient access to a variety of chiral pyrrolidines and indolines of interest to synthetic organic and medicinal chemists.19a Although this methodology gives us another option for the preparation of the valuable vicinal amino alcohols directly from olefins, it is limited to terminal olefin systems. Besides that, further optimization of the reaction time and temperature is still needed in order to broaden its synthetic application.
2.1.4 Palladium-Mediated Reactions

Bäckvall in 1975 reported the first direct aminooxygenation of the terminal and internal olefins catalyzed by a stoichiometric amount of Pd(II) catalyst. Alkene was initially activated by Pd(II) via nucleophilic attack to afford Pd(II) intermediate region isomers. The Pd-C bond was subsequently oxidized with Pb(OAc)$_2$ to generate vicinal amino motifs. Although highly diastereoselective syn addition products were afforded for symmetrically substituted internal olefins, only moderate regioselectivity can be achieved for terminal and asymmetrical alkenes.

An investigation by Sorensen in 2005 leads to a successful story of Pd(II)-catalyzed intramolecular oxyamination of olefins. A possible catalytic mechanism is that Pd(II) catalyzed reversible trans-amino metalation of the alkenes followed by generation of a protonated intermediate than can undergo an irreversible deprotonation process. Thus, the addition of base is crucial to the reaction rate and regioselectivity. After the alkyl Pd(II) intermediate being oxidized by PhI(OAc)$_2$, C-O will be forming through a reductive elimination process to complete the catalytic cycle.

In the same year, Peter Szolcsanyi described a novel method for the preparation of the 6-oxa-2-azabicyclo[3.2.1]octane skeleton featuring Pd(II)/CuCl$_2$-catalyzed N,O-bicyclization as a key step.

Scheme 18. Pd-Catalyzed Aminoacetoxylation of Alkenes
A significant development came in 2006, Stahl and Liu23 demonstrated that simple Pd(II) complexes can catalyze intermolecular aminoacetoxylation of terminal alkenes, such as terminal allylic, homoallylic and enol ethers, with high levels of regio- and diastereoselectivity. However, excess alkene substrate was required to achieve high product yield.

![Scheme 19](image)

Scheme 19. Pd-Catalyzed Intermolecular Aminoacetoxylation of Alkenes

The following year, Sanford24 enclosed that homoallylic alcohols could be cyclized to furnish 3-aminotetrahydrofurans in moderate to high diastereoselectivity. This process involves a Pd-catalyzed alkene aminopalladation to generate alkyl Pd species, followed by intramolecular oxidative functionalization and reductive elimination to afford stereoselectively tetrahydrofuran products.

![Scheme 20](image)

Scheme 20. Pd-Catalyzed Formation of 3-Aminotetrahydrofuran Derivatives

Recently, Bingfeng Shi25 reported that a divergent synthesis of cyclic ureas and isoureas via a catalyst controlled aminoacetoxylation of alkenes with PhI(OAc)\textsubscript{2} as the oxidant in good yields under mild conditions.

![Scheme 21](image)

Scheme 21. Pd-Catalyzed Aminoacetoxylation
2.1.5 Platinum-Mediated Reactions

Kilian Muniz26 disclosed that homogeneous Pt can catalyze 1,2 difunctionalizations of alkenes to deliver the corresponding bicyclic isoureas in high yields under aerobic conditions. More interestingly, the catalytic amount of Cu(II) oxidant is sufficient to turn over the reaction without any additives resulting in the formation of 5 or 6 member fused ring system with high chemoselectivity, and good diastereoselectivity in the presence of a stereocenter.

\begin{center}
\includegraphics[width=0.8\textwidth]{scheme_22.png}
\end{center}

\textbf{Scheme 22.} Pt-Catalyzed Aerobic 1,2-Aminoacetoxylation of Alkenes

2.1.6 Rhodium-Mediated Reactions

More recently, Albert Padwa27 and co-work came up with the iodine (III)-mediated aziridination reaction of an indolyl-substituted carbamate which requires a Rh(II) catalyst and proceeds by metallonitrene intermediate. A metal-free zwitterion is generated by stepwise addition across the indole π-bond followed by Rh (II) detachment, which ultimately furnishes the final products, as demonstrated in Scheme 23.

\begin{center}
\includegraphics[width=0.8\textwidth]{scheme_23.png}
\end{center}

\textbf{Scheme 23.} Iodine(III)-Mediated Aziridination Reaction

Christian28 subsequently came up with the amidoglycosylation reaction of allyl 3-carbamates catalyzed by rhodium and copper acyl nitrenoids in the presence of iodosobenzene. Glycal enol ether π-system will react with the metal nitrenoid leading to the formation of C2-N bond; sequential β-selective glycosylation may take place via a metal-complexed glycosyl
aziridine to afford highly diastereoselective glycosylation product without activation of Lewis acid.

![Scheme 24. Rh(II)-Catalyzed Amidoglycosylation](image)

2.1.7 Gold-Mediated Reactions

The research group of Cristina Nevado\(^\text{29}\) reported the first gold-catalyzed amino-oxygenation and aminoamidation of unactivated alkenes. The afforded results are complementary to 5-*exo* palladium-catalyzed process but with expanded substrates scope compared to that of copper-mediated reactions. Au(I) can activate the alkene and favor the 6-*endo* nitrogen cyclization fashion to form the carbon Au(III) intermediate in a reversible manner. Due to the highly electrophilic nature of the Au(III), varying levels of nucleophiles, such as water, alcohol, even acetonitrile can be employed in the ligand exchange process, thus the reductive elimination will subsequently occur to afford highly diastereoselective desired products.

![Scheme 25. Gold-Catalyzed Aminooxygenation Reaction of Alkenes](image)
2.1.8 Hypervalent Iodine-Mediated Reactions

K. C. Nicolaou, P. S. Baran and others discovered and subsequently developed a novel cyclization reaction of N-aryl amides (anilides) onto internally located unactivated olefins to form heterocycles induced by the o-iodoxybenzoic acid (IBX).\(^{30}\) It has a great success for the synthesis of lactams, cyclic urethanes, hydroxyl amines, amino sugars, \textit{et al}. Mechanistic investigations indicated that an SET (single electron transfer) from the anilide functionality to IBX followed by a radical trapping process. The simplicity in terms of operation and substrates preparation make this a great method for constructing small molecule libraries for biological and pharmaceutical applications.

In the year 2009, Duncan J. Wardrop\(^{31}\) and coworkers showed that when unsaturated o-alkyl hydroxamates were treated with phenyliodine(III) bis(trifluoroacetate) (PIFA) in pure DCM at 0 °C, it subsequently underwent an intramolecular cyclization to afford the \textit{anti} addition products in high yield and excellent diastereoselectivity. This alkene oxamidation method represents a remarkable method for rapid construction of these pharmaceutically important N-heterocycles.

Scheme 26. Gold-Catalyzed Aminoamidation Reaction of Alkenes

Scheme 27. Intramolecular Oxamidation of Unsaturated O-Alkyl Hydroxamates
Different from metal or Lewis acid catalyzed reactions, Forrest E. Michael32 have developed a broadly applicable, high yielding oxyamination reaction promoted by a Brønsted acid with high regioselectivity and excellent diastereoselectivity. The oxidant loading is decreased without diminished yield for endo cyclization products, and a reaction condition is much milder in terms of temperature although with extended reaction time. The showcase total synthesis of \((-\)-Pseudoconhydrine is very concise and interesting.

![Scheme 28. Metal-Free Aminotrifluoroacetoxylation of Alkenes](image)

2.1.9 Hydroxamic Acids-Mediated Reactions

A significant improved to metal-free alkene oxyamination is described by Erik Alexanian33 in 2011. This radical-mediated process capitalizes on the unique feature of aminoxyl radical in difunctionalizing alkenes using diisopropyl azodicarboxylate (DIAD) as a simple radical trap. The furnished high levels of diastereoselective \textit{syn} cyclic oxyamination products are complementary to the previously reported \textit{cis}-selective process but with single regioisomers. Initial extensions of the radical mediated difunctionalization to multibond-forming cascade processes are also described. Future work will be focused on applications in complex molecule synthesis.
Scheme 29. Metal-Free Oxyaminations of Alkenes Using Hydroxamic Acids

2.1.10 Electrochemical Approach

Moeller et al.34 published an electrochemical approach for the synthesis of proline derivatives by oxidative anodic cyclization reactions bearing electron-rich alkenes, as demonstrated in Scheme 30. The reactions benefit from the use of a less polar radical cation intermediate and the use of more basic reaction conditions, which is complementing to previously reported iodine protocols. However, the diastereoselectivity, in this case, is controlled by the substrates.

Scheme 30. Intramolecular Anodic Olefin Coupling Reaction

2.1.11 Iron-Mediated Reactions

Despite these important achievements above, the direct conversion of a trans-olefin to a 1,2 anti-amino alcohol remains as an unsolved synthetic problem. In addition, the iron-catalyzed aminohydroxylation is a less-explored process. In the year 2010, Yoon35 and others established a Fe(III)-catalyzed intermolecular aminohydroxylation of a variety of olefins, such as styrenic
olefins, dienes as well as aliphatic olefins, with N-sulfonyl oxaziridine as the N-O sources. More interestingly, the afforded product with an amino group on the terminal carbon, this regioselectivity is complementary to that observed with their reported Cu(II)-mediated reactions, wherein the amino-functional group in at the internal position. Although the mechanism of this novel reaction was unclear at that time, this unusual phenomenon indicates the different reaction pathway compared to that of the Cu(II)-catalyzed reaction. It turns out to be a useful synthetic strategy for the synthesis of 1,2-aminoalcohols.

Scheme 31. Iron-Catalyzed Aminohydroxylation of Olefins with N-Sulfonyl Oxaziridines

In a more recent publication, Yoon’s group discovered that a novel iron(II) bis(oxazoline) complex is capable of catalyzing regioselective and enantioselective oxyamination of alkenes with N-sulfonyl oxaziridines. On one hand, this process furnishes highly enantioenriched and synthetically useful 1,2-amino alcohol precursors. On the other hand, the regioselectivity of this reaction is also complementary to that obtained from the copper(II)-catalyzed reaction. Thus, this method capitalizes on the regio- and stereochemical control of 1,2-amino alcohol motifs.

Scheme 32. Iron-Catalyzed Asymmetric Oxyamination of Olefins
2.1.12 **Expected Results**

Our group at Georgia State University, we are interested in discovering new iron-catalyzed olefin amination methods that are unique in organic synthesis, pharmaceutical application, and biomedical engineering. Herein, we describe an iron(II)-catalyzed diastereoselective aminohydroxylation of an olefin to afford a 1,2 *anti*-amino alcohol with a functionalized hydroxylamine, possibly *via* an iron nitrenoid\(^{37}\) intermediate. The catalysts are able to transfer both the \(N\) and \(O\) groups of the hydroxylamine intramolecularly to a variety of olefins, affording amino alcohols with a stereochemical array that is difficult to access with other known methods. We envision this discovery offers an appealing alternative for existing aminohydroxylation methods.

2.2 **EXPERIMENT**

2.2.1 **General Procedures**

General procedures. All reactions were performed in oven-dried or flame-dried round-bottom flasks and vials. Stainless steel syringes and cannula were used to transfer air- and moisture-sensitive liquids. Flash chromatography was performed using silica gel 60 (230-400 mesh) from Sigma–Aldrich.

Materials. Commercial reagents were purchased from Sigma-Aldrich, Fluka, EM Science, and Lancaster and used as received. All solvents were used after being freshly distilled unless otherwise noted.

Instrumentation. Proton nuclear magnetic resonance (\(^1\)H NMR) spectra, carbon nuclear magnetic resonance (\(^{13}\)C NMR) spectra and fluorine nuclear magnetic resonance (\(^{19}\)F NMR) were recorded on Bruker UltraShield-400 (400 MHz). Chemical shifts for protons are
reported in parts per million downfield from tetramethylsilane and are referenced to the NMR solvent residual peak (CHCl₃: δ 7.26). Chemical shifts for carbons are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the NMR solvent (CDCl₃: δ 77.0). Chemical shifts for fluorine are reported in parts per million downfield and are referenced to the fluorine resonances of CFCl₃. Data are represented as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz), and integration.

The mass spectroscopic data were obtained at the Georgia State University mass spectrometry facility using a Micromass Platform II single quadruple instrument. Infrared (IR) spectra were obtained using a Perkin Elmer Spectrum 100 FT-IR spectrometer. Data are represented as follows: frequency of absorption (cm⁻¹) and absorption strength (s = strong, m = medium, w = weak).

Abbreviations used: EtOH–ethanol, EtOAc–ethyl acetate, THF–tetrahydrofuran, MeOH–methanol, Et2O–diethyl ether, CH₂Cl₂–dichloromethane, TEA–triethylamine, MeCN–acetonitrile, MS–molecular sieves, CDI–1,1′-carbonyldiimidazole, Troc–2,2,2-trichloroethoxycarbonyl, DCC–N,N'-dicyclohexylcarbodiimide, TLC–thin layer chromatography, Boc₂O–di-tert-butyl dicarbonate, DMAP–4-dimethylaminopyridine.

2.2.2 Relative Stereochemistry Determination of the Product

2 was hydrolyzed and compared with reported literature data.¹⁶h, ³⁸

![Scheme 33. Hydrolysis of Oxazolidone](image)

[Scheme 33. Hydrolysis of Oxazolidone](image)
Comparison of 1H NMR data of hydrolysis product of 2 with ones of known compounds:

<table>
<thead>
<tr>
<th>1H NMR of S1</th>
<th>1H NMR of S2</th>
<th>1H NMR of hydrolysis products of 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.28-7.54 (5H, m), 4.97 (1H, brs), 4.69 (1H, d, $J = 6.0$ Hz), 4.44-4.52 (2H, m), 3.98-4.03 (1H, m), 2.47 (1H, br, s)</td>
<td>7.32-7.44 (5H, m), 5.54 (1H, br, s), 4.63 (1H, dd, $J = 7.5$, 3.5 Hz), 4.23 (1H, t, $J = 9.0$ Hz), 4.12 (1H, dd, $J = 9.0$, 5.5 Hz), 4.05 (1H, m), 2.48 (1H, d, $J = 3.5$ Hz)</td>
<td>7.30-7.53 (5H, m), 5.09 (1H, brs), 4.69 (1H, d, $J = 6.4$ Hz), 4.42-4.51 (2H, m), 3.98-4.03 (1H, m)</td>
</tr>
</tbody>
</table>

2.2.3 Synthesis and Characterization of Olefin Substrates

1,1’-Carbonyldiimidazole (CDI, 1.5 equiv) was added to a solution of alcohol (1.0 equiv) in acetonitrile (0.2 M) and stirred at room temperature. The reaction was monitored by TLC, and upon its completion, imidazole (4.0 equiv) and hydroxylamine hydrochloride (5.0 equiv) were added and stirring continued until TLC analysis indicated the reaction reached completion. After removing the solvent, the residue was partitioned between ethyl acetate and 1 M HCl followed by extraction of the aqueous phase with ethyl acetate. The organic phase was washed with brine, dried (Na_2SO_4), filtered, and concentrated in vacuo to afford the crude hydroxyl carbamate.

Scheme 34. Substrates Preparation

![Scheme 34](image-url)
product, which was purified by flash column chromatography with 40% ethyl acetate-hexane (63-91% yield). A 25 mL flame-dried round bottom flask was charged with a stirring bar, hydroxyl carbamate (1.0 equiv), NEt₃ (1.1 equiv) and diethyl ether (0.2 M). After stirring at 0 °C for 5 mins, ArCOCl (1.1 equiv) was added dropwise over 10 min. The mixture was stirred for 2-4 hrs until TLC analysis indicates full conversion of the starting material. The mixture was then cooled to 0 °C and cold water was added to quench the reaction. The aqueous layer was extracted with ethyl acetate for three times. The organic phase was washed with brine, dried (Na₂SO₄), filtered, and concentrated in vacuo to afford the crude product, which was purified by flash column chromatography using 20% ethyl acetate-hexane (78-98% yield).

Allylic alcohol substrates in Table 8 were prepared according to literature methods.³⁹

Cinnamyl benzoxyloxycarbamate (S3-1): White solid, mp: 95-97 °C; ¹H NMR (CDCl₃, 400 MHz): δ ppm 8.40 (1H, s), 8.13 (2H, d, J = 8.4 Hz), 7.69-7.65 (1H, m), 7.53-7.50 (2H, m), 7.42-7.28 (5H, m), 6.72 (1H, d, J = 16.0 Hz), 6.33 (1H, dt, J = 16.0, 6.4 Hz), 4.90 (1H, d, J = 6.4 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ ppm 165.9, 165.5, 136.0, 135.0, 134.3, 130.0, 128.7, 128.6, 128.3, 126.8, 126.7, 122.3, 67.3; IR (film) ν max, 3242 (m), 1770 (s), 1759 (s), 1731 (s), 1600 (m), 1770 (s), 1759 (s), 1731 (s), 1600 (m), 1490 (s), 1451 (s), 1389 (s), 1179 (m), 1108 (s), 1038 (m), 1004 (m), 967 (m), 854(m), 749 (s), 705 (s), 694 (s) cm⁻¹; HRMS (ESI-TOF) for C₁₇H₁₄NO₄ [M-H⁺] calcd 296.0923, found 296.0933.
(E)-3-(p-tolyl)allyl (4-cyanobenzoyl)oxycarbamate (S3-2): 1H NMR (CDCl$_3$, 400 MHz): δ ppm 8.46 (1H, s), 8.22 (2H, d, $J = 8.0$ Hz), 7.81 (2H, d, $J = 8.0$ Hz), 7.30 (2H, d, $J = 7.6$ Hz), 7.16 (2H, d, $J = 7.2$ Hz), 6.68 (1H, d, $J = 15.6$ Hz), 6.25 (1H, dt, $J = 16.0$, 6.4 Hz), 4.89 (1H, d, $J = 6.4$ Hz); 13C NMR (CDCl$_3$, 100 MHz): δ ppm 164.3, 156.1, 138.4, 135.5, 133.1, 132.5, 130.6, 130.5, 129.4, 129.2, 126.7, 120.8, 117.7, 117.6, 67.8, 21.3; IR (film) ν_{max}, 3235 (w), 1772 (s), 1732 (w), 1717 (s), 1491 (m), 1324 (s), 1118 (s), 1108 (s), 1040 (m), 1005 (m), 970 (m), 765 (m), 706 (s) cm$^{-1}$; HRMS (ESI-TOF) for C$_{19}$H$_{15}$N$_2$O$_4$ [M-H$^+$] calcd 335.1032, found 335.1032.

![S3-3](image)

(E)-Methyl 4-(3-(((benzoyloxy)carbamoyl)oxy)prop-1-en-1-yl)benzoate (S3-3): White solid, mp: 109-111 °C; 1H NMR (CDCl$_3$, 400 MHz): δ ppm 8.50 (1H, s), 8.01 (2H, d, $J = 8.0$ Hz), 7.67 (2H, d, $J = 7.6$ Hz), 7.66 (1H, t, $J = 7.6$ Hz), 7.52 (2H, t, $J = 7.6$ Hz), 7.44 (2H, d, $J = 8.0$ Hz), 6.73 (1H, d, $J = 16.0$ Hz), 6.41 (1H, dt, $J = 16.0$, 6.0 Hz), 4.92 (1H, d, $J = 6.0$ Hz), 3.93 (3H, s); 13C NMR (CDCl$_3$, 100 MHz): δ ppm 166.8, 165.8, 156.3, 140.4, 134.3, 133.5, 129.99, 129.96, 129.6, 128.8, 126.6, 126.3, 125.0, 66.8, 52.1; IR (film) ν_{max}, 3248 (w), 2953 (w), 1716 (m), 1606 (m), 1452 (m), 1436 (m), 1278 (s), 1179 (s), 1106 (s), 1041 (m), 1005 (m), 970 (m), 960 (m), 866 (m), 763 (s), 706 (s) cm$^{-1}$; HRMS (ESI-TOF) for C$_{19}$H$_{16}$NO$_6$ [M-H$^+$] calcd 354.0978, found 354.0967.

![S3-4](image)
(E)-3-(3-Chlorophenyl)allyl benzoyloxy carbamate (S3-4): White solid, mp: 101-103 °C; \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta\) ppm 8.46 (1H, s), 8.13 (2H, d, \(J = 8.0\) Hz), 7.67 (1H, t, \(J = 7.6\) Hz), 7.51 (2H, t, \(J = 7.6\) Hz), 7.38 (1H, s), 7.28-7.26 (3H, m), 6.64 (1H, d, \(J = 16.0\) Hz), 6.31 (1H, dt, \(J = 16.0, 6.0\) Hz), 4.89 (2H, d, \(J = 6.0\) Hz); \(^{13}\)C NMR (CDCl\(_3\), 100 MHz): \(\delta\) ppm 165.8, 156.3, 137.9, 134.6, 134.3, 133.2, 130.0, 129.8, 128.7, 128.2, 126.7, 124.9, 123.9, 66.8; IR (film) \(\nu_{max}\), 3272 (w), 1733 (s), 1599 (m), 1566 (m), 1452 (s), 1318 (m), 1224 (s), 1179 (m), 1094 (s), 1004 (s), 964 (s), 885 (m), 765 (s), 682 (s) cm\(^{-1}\); HRMS (ESI-TOF) for C\(_{17}\)H\(_{13}\)NO\(_4\)Cl \([\text{M-H}^+]\) calcd 330.0533, found 330.0533.

\[\text{S3-5} \]

(E)-3-(Pyridin-4-yl)allyl benzoyloxy carbamate (S3-5): White solid, mp: 105-107 °C; \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta\) ppm 9.37 (1H, s), 8.57 (1H, s), 8.12 (2H, d, \(J = 8.0\) Hz), 7.71 (1H, d, \(J = 8.0\) Hz), 7.65 (1H, t, \(J = 7.6\) Hz), 7.50 (2H, t, \(J = 7.6\) Hz), 7.28 (1H, s), 6.67 (1H, d, \(J = 16.0\) Hz), 6.37 (1H, dt, \(J = 16.0, 6.0\) Hz), 4.89 (2H, d, \(J = 6.0\) Hz); \(^{13}\)C NMR (CDCl\(_3\), 100 MHz): \(\delta\) ppm 165.8, 156.4, 148.9, 148.3, 134.2, 133.2, 130.6, 130.0, 128.7, 126.8, 125.0, 124.0, 66.4; IR (film) \(\nu_{max}\), 2924 (w), 1745 (s), 1636 (w), 1452 (m), 1363 (w), 1280 (s), 1113 (s), 902 (w), 750 (m), 706 (m) cm\(^{-1}\); HRMS (ESI-TOF) for C\(_{16}\)H\(_{13}\)N\(_2\)O\(_4\) \([\text{M-H}^+]\) calcd 297.0875, found 297.0871.

\[\text{S3-6} \]

(E)-3-(Naphthalen-1-yl)allyl benzoyloxy carbamate (S3-6): White solid, mp: 75-77 °C; \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta\) ppm 8.41 (1H, s), 8.18-8.10 (3H, m), 7.88 (1H, d, \(J = 8.8\) Hz),
7.83 (1H, d, J = 8.4 Hz), 7.67 (1H, t, J = 7.2 Hz), 7.62 (1H, d, J = 7.2 Hz), 7.54-7.47 (6H, m),
6.36 (1H, dt, J = 16.0, 6.0 Hz), 5.02 (2H, d, J = 6.0 Hz); 13C NMR (CDCl$_3$, 100 MHz): δ ppm
165.9, 156.5, 134.3, 133.8, 133.6, 132.1, 131.0, 128.8, 128.6, 126.7, 126.3, 125.9, 125.6,
125.5, 124.2, 123.7, 67.3; IR (film) ν$_{\text{max}}$, 3268 (w), 1744 (s), 1601 (m), 1452 (m), 1396 (m), 1319
(m), 1223 (s), 1179 (m), 1108 (m), 1040 (m), 1004 (m), 969 (m), 765 (s), 750 (s) cm$^{-1}$; HRMS
(ESI-TOF) for C$_{21}$H$_{16}$NO$_4$ [M-H$^+$] calcd 347.1158, found 347.1155.

(E)-5-Phenylpent-2-en-4-yn-1-yl benzoyloxy carbamate (S3-7): Yellow solid, mp: 62-
64 °C, 1H NMR (CDCl$_3$, 400 MHz): δ ppm 8.83 (1H, s), 8.12 (2H, d, J = 7.2 Hz), 7.62 (1H, t, J =
7.6 Hz), 7.49-7.45 (4H, m), 7.34-7.32 (3H, m), 6.27 (1H, dt, J = 16.0, 6.0 Hz), 6.03 (1H, d, J =
16.0 Hz), 4.81 (2H, d, J = 6.0 Hz); 13C NMR (CDCl$_3$, 100 MHz): δ ppm 165.8, 156.4, 135.4,
134.3, 131.6, 130.0, 128.8, 128.5, 128.4, 126.7, 123.0, 114.3, 91.4, 86.8, 66.1; IR (film) ν$_{\text{max}}$,
3254 (m), 1747 (s), 1489 (m), 1452 (m), 1228 (s), 1179 (m), 1112 (s), 1004 (m), 952 (m), 756
(s), 706 (m) cm$^{-1}$; HRMS (ESI-TOF) for C$_{19}$H$_{15}$NO$_4$Na [M+Na$^+$] calcd 344.0899, found
344.0912.

(E)-But-2-en-1-yl benzoyloxy carbamate (S3-8): White solid, mp: 65-67 °C; 1H NMR
(CDCl$_3$, 400 MHz): δ ppm 8.64 (1H, s), 8.08 (2H, d, J = 7.6 Hz), 7.62 (1H, t, J = 7.6 Hz), 7.46
(1H, d, J = 7.6 Hz), 5.87-5.78 (1H, m), 5.63-5.56 (1H, m), 4.63 (2H, d, J = 6.4 Hz), 1.71 (3H, d,
J = 6.4 Hz); 13C NMR (CDCl$_3$, 100 MHz): δ ppm 165.8, 156.6, 134.2, 132.4, 130.0, 128.7,
126.8, 124.4, 67.4, 17.8; IR (film) ν$_{\text{max}}$, 3273 (w), 2969 (w), 1733 (s), 1601 (w), 1451 (m), 1319
(Z)-3-Phenylallyl benzoyloxy carbamate (S3-9): Colorless oil, 1H NMR (CDCl$_3$, 400 MHz): δ ppm 8.52 (1H, s), 8.12 (2H, d, $J = 7.6$ Hz), 7.66 (1H, t, $J = 7.4$ Hz), 7.51 (2H, t, $J = 7.6$ Hz), 7.37 (2H, t, $J = 7.6$ Hz), 7.30 (1H, t, $J = 7.8$ Hz), 7.24 (2H, d, $J = 7.4$ Hz), 6.73 (1H, d, $J = 7.6$ Hz), 5.90-5.83 (1H, m), 5.01 (2H, d, $J = 6.4$ Hz); 13C NMR (CDCl$_3$, 100 MHz): δ ppm 165.9, 165.5, 135.8, 134.3, 133.9, 130.0, 128.7, 128.5, 127.7, 126.7, 124.9, 63.6; IR (film) ν_{max}, 3267 (m), 1747 (s), 1490 (m), 1452 (m), 1230 (s), 1119 (m), 1040 (m), 1004 (m), 855 (m), 765 (m), 701 (s) cm$^{-1}$; HRMS (ESI-TOF) for C$_{17}$H$_{16}$NO$_4$ [M+H$^+$] calcd 298.1079, found 298.1065.

(Z)-5-Phenylpent-2-en-4-yn-1-yl benzoyloxy carbamate (S3-10): Yellow solid, mp: 45-47 ºC, 1H NMR (CDCl$_3$, 400 MHz): δ ppm 8.55 (1H, s), 8.11 (2H, d, $J = 7.6$ Hz), 7.65 (1H, t, $J = 7.6$ Hz), 7.52-7.46 (4H, m), 7.35-7.33 (3H, m), 6.10 (1H, dt, $J = 11.2$, 6.0 Hz), 5.95 (1H, d, $J = 11.2$ Hz), 5.10 (2H, d, $J = 6.4$ Hz); 13C NMR (CDCl$_3$, 100 MHz): δ ppm 165.8, 156.4, 135.0, 134.3, 131.6, 130.0, 128.73, 128.66, 128.4, 126.7, 122.8, 113.7, 96.5, 84.3, 64.4; IR (film) ν_{max}, 3266 (m), 1747 (s), 1490 (m), 1452 (m), 1230 (s), 1119 (m), 1040 (m), 756 (s), 706 (m) cm$^{-1}$; HRMS (ESI-TOF) for C$_{19}$H$_{15}$NO$_4$Na [M+Na$^+$] calcd 344.0899, found 344.0912.
(E)-3-Phenylbut-2-en-1-yl benzoyloxy carbamate (S3-11): White solid, mp: 64-66 °C;
1H NMR (CDCl$_3$, 400 MHz): δ ppm 8.72 (1H, s), 8.13 (2H, d, $J = 7.6$ Hz), 7.64 (1H, t, $J = 7.6$ Hz), 7.51-7.31 (7H, m), 5.95 (1H, t, $J = 7.2$ Hz), 4.97 (2H, d, $J = 6.8$ Hz), 2.14 (3H, s); 13C NMR (CDCl$_3$, 100 MHz): δ ppm 165.9, 156.8, 142.4, 141.3, 134.2, 130.0, 128.7, 128.4, 127.7, 126.8, 125.9, 120.5, 63.9, 16.3; IR (film) ν_{max}, 3274 (w), 1733 (s), 1600 (m), 1451 (s), 1346 (m), 1317 (m), 1225 (s), 1179 (m), 1104 (m), 1039 (m), 1004 (m), 931 (m), 854 (m), 751 (s), 697 (s) cm$^{-1}$; HRMS (ESI-TOF) for C$_{18}$H$_{16}$NO$_4$ [M-H$^+$] calcd 310.1079, found 310.1087.

(E)-2-Methyl-3-phenylallyl benzoyloxy carbamate (S3-12): White solid, mp: 85-87 °C;
1H NMR (CDCl$_3$, 400 MHz): δ ppm 8.66 (1H, brs), 8.13 (2H, d, $J = 7.6$ Hz), 7.65 (1H, t, $J = 6.8$ Hz), 7.50 (2H, t, $J = 6.8$ Hz), 7.38-7.25 (5H, m), 6.59 (1H, s), 4.82 (2H, s), 1.93 (3H, s); 13C NMR (CDCl$_3$, 100 MHz): δ ppm 165.9, 156.7, 136.8, 134.3, 132.0, 130.0, 129.0, 128.9, 128.2, 126.9, 126.7, 72.3, 15.4; IR (film) ν_{max}, 3274 (w), 2990 (w), 1744 (m), 1600 (m), 1452 (m), 1320 (m), 1275 (s), 1260 (s), 1228 (s), 1107 (m), 1004 (m), 856 (m), 750 (s), 700 (m) cm$^{-1}$; HRMS (ESI-TOF) for C$_{18}$H$_{16}$NO$_4$ [M-H$^+$] calcd 310.1079, found 310.1087.

Methyl 4-((((((2-phenylallyl)oxy)carbonyl)amino)oxy)carbonyl)benzoate (S3-13): White solid, mp: 75-77 °C; 1H NMR (CDCl$_3$, 400 MHz): δ ppm 8.45 (1H, s), 8.14-8.11 (4H, m),
7.44-7.42 (2H, m), 7.37-7.30 (3H, m), 5.60 (1H, s), 5.43 (1H, d, \(J = 0.8 \) Hz), 5.15 (2H, d, \(J = 0.4 \) Hz), 3.98 (3H, s); \(^{13}\)C NMR (CDCl\(_3\), 100 MHz): \(\delta \) ppm 166.0, 165.0, 156.1, 141.8, 137.6, 135.0, 130.3, 129.9, 129.8, 128.5, 128.2, 126.0, 116.1, 68.0, 52.6; IR (film) \(\nu_{\text{max}} \) 3267 (w), 1738 (s), 1600 (m), 1452 (m), 1318 (m), 1225 (s), 1179 (m), 1095 (m), 1044 (m), 1003 (m), 915 (m), 855 (m), 828 (w), 764 (s) cm\(^{-1}\); IR (film) \(\nu_{\text{max}} \) 3261 (w), 3005 (w), 1722 (s), 1575 (w), 1436 (m), 1409 (m), 1276 (s), 1261 (s), 1223 (s), 1102 (m), 1009 (m), 872 (m), 750 (s), 723 (m) cm\(^{-1}\); HRMS (ESI-TOF) for C\(_{19}\)H\(_{18}\)NO\(_6\) [M-H\(^+\)] calcd 354.1056, found 354.1047.

![Methyl 4-((5-methylhex-4-enamido)oxy)carbonyl]benzoate (S3-14): White solid, mp: 92-94°C; \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta \) ppm 8.13-8.08 (4H, m), 5.13 (1H, s), 3.96 (3H, s), 2.38 (4H, s), 1.70 (3H, s), 1.63 (3H, s); \(^{13}\)C NMR (CDCl\(_3\), 100 MHz): \(\delta \) ppm 166.0, 164.0, 134.9, 134.0, 130.4, 129.9, 129.7, 122.0, 52.6, 33.2, 25.7, 23.6, 17.7; IR (film) \(\nu_{\text{max}} \) 3211 (w), 2918 (w), 1781 (s), 1729 (s), 1671 (s), 1435 (m), 1280 (s), 1234 (s), 1106 (s), 1017 (m), 750 (m), 721 (m) cm\(^{-1}\); HRMS (ESI-TOF) for C\(_{16}\)H\(_{20}\)NO\(_5\) [M+H\(^+\)] calcd 306.1341, found 306.1348.

![Cyclohex-2-en-1-yl benzoyloxy carbamate (S3-15): White solid, mp: 63-65°C; \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta \) ppm 8.43 (1H, s), 8.10 (2H, d, \(J = 8.0 \) Hz), 7.64 (1H, t, \(J = 7.6 \) Hz), 7.49 (2H, t, \(J = 7.6 \) Hz), 6.02-5.97 (1H, m), 5.79-5.77 (1H, m), 5.32-5.31 (1H, m), 2.08-1.84 (4H, m), 1.77-1.63 (2H, m); \(^{13}\)C NMR (CDCl\(_3\), 100 MHz): \(\delta \) ppm 165.9, 156.4, 134.2, 133.6, 130.0, 128.7, 126.8, 124.9, 71.0, 28.2, 24.8, 18.6; IR (film) \(\nu_{\text{max}} \) 3275 (w), 2942 (w), 1733 (s), 1601 (w), 1452...](image-url)
(m), 1229 (s), 1179 (m), 1106 (m), 1003 (m), 909 (m), 750 (m), 706 (m) cm⁻¹; HRMS (ESI-TOF) for C₁₄H₁₆NO₄ [M+H⁺] calcd 262.1079, found 262.1085.

![Image of the compound](s3-16)

Methyl 4-((((1-phenylallyl)oxy)carbonyl)amino)oxy)carbonyl)benzoate (S3-16):

White solid, mp: 39-41 °C; ¹H NMR (CDCl₃, 400 MHz): δ ppm 8.86 (1H, s), 8.11 (4H, s), 7.35-7.28 (5H, m), 6.29 (1H, d, J = 6.0 Hz), 6.08-5.99 (1H, m), 5.39-5.28 (2H, m), 3.95 (3H, s); ¹³C NMR(CDCl₃, 100 MHz): δ ppm 166.0, 165.0, 164.9, 155.7, 137.9, 135.4, 134.9, 130.5, 129.9, 129.8, 128.6, 128.5, 127.1, 117.8, 78.9, 52.6; IR (film) ν max, 3266 (w), 2942 (w), 1725 (s), 1436 (m), 1287 (s), 1270 (m), 1105 (s), 1040 (m), 1003 (m), 909 (m), 725 (m), 700 (m) cm⁻¹; HRMS (ESI-TOF) for C₁₉H₁₈NO₆ [M+H⁺] calcd 356.1134, found 356.1123.

2.2.4 Procedure for Iron(II)-Catalyzed Olefin Aminohydroxylation

2.2.4.1 Substrates Screen

During the optimization process, O-alkyl hydroxycarbamates and O-sulfonyl hydroxycarbamates were both screened. It was found that O-alkyl hydroxycarbamates were nonreactive under K₄Fe(CN)₆ (70 °C), Fe(NTf₂)₂ and Fe(OAc)₂ conditions. Full recovery of starting material was obtained in each case. O-sulfonyl hydroxycarbamates displayed a few undesired reaction patterns listed below.

1) K₄Fe(CN)₆ + phenanthroline (70 °C)
2) Fe(NTf$_2$)$_2$ + phenanthroline/chiral BOX ligands **L4** (0 °C): full recovery of the starting material

3) Fe(OAc)$_2$ + phenanthroline at RT

![Chemical reaction diagram](image)

4) Fe(OAc)$_2$ + chiral BOX ligands **L4** at 0 °C:

![Chemical reaction diagram](image)

2.2.4.2 Diastereoselectivity Optimization of para-Methyl Substituted Substrate

![Chemical reaction diagram](image)

<table>
<thead>
<tr>
<th>R group</th>
<th>dr</th>
</tr>
</thead>
<tbody>
<tr>
<td>R = benzoyle</td>
<td>1:1</td>
</tr>
<tr>
<td>R = 2,4-dichlorobenzoyle</td>
<td>1.7:1</td>
</tr>
<tr>
<td>R = 4-CO$_2$Mebenzoyle</td>
<td>1.8:1</td>
</tr>
<tr>
<td>R = 3,5-diCF$_3$benzoyle</td>
<td>2.1:1</td>
</tr>
<tr>
<td>R = 4-CNbenzoyle</td>
<td>3.1:1</td>
</tr>
</tbody>
</table>

Table 1. The Diastereoselectivity Optimization of *para*-Methyl Substituted Substrate

For K$_4$Fe(CN)$_6$-catalyzed reaction, the major diastereomer from the *trans* olefin is the *anti*-addition product, which can be obtained through either intramolecular *suprafacial* ligand (benzoate) transfer after C-C sigma bond rotation or intermolecular *antarafacial* ligand transfer.
before C-C sigma bond rotation. From the crossover experiment under the K₄Fe(CN)₆-catalyzed conditions, it is possible intermolecular ligand transfer occurs. Therefore, the antarafacial ligand transfer before C-C sigma bond rotation might be accountable for a high dr. In principle, para-methyl-phenyl can further stabilize the radical, and allows for more time of C-C sigma bond rotation before the antarafacial ligand transfer, which leads to low dr.

Presumably, more electron-deficient benzoates will be transferred to benzyl radical faster (reminiscent of both Jacobsen and Kochi’s ligand electronic tuning to influence the dr of epoxidation), so that it can outcompete the dr erosion effect from the radical stabilizing groups on substrates.

For Fe(OAc)₂ and Fe(NTf₂)₂-catalyzed reactions, totally different mechanism might operate. We found the complementary diastereoselectivities were achieved with achiral and chiral ligands.

2.2.4.3 General Procedure for Key Reaction Set Up

To a flame-dried schlenk tube were added K₄Fe(CN)₆ (0.02 mmol) and phenanthroline (0.04 mmol). After evacuation upon oil pump and refill with Ar three times, anhydrous and degassed MeCN (3 mL) was added. The obtained suspension was stirred vigorously at room temperature for 30 minutes, after which time the substrate (0.2 mmol) was added. The reaction mixture was heated at 70 ºC until all the starting material was fully consumed. The reaction mixture was cooled and concentrated to a residue, which was chromatographed by using 1:1 hexane and ethyl acetate as the eluant to give the designed aminohydroxylation product (40-92% yield).
2-Oxooxazolidin-4-yl)(phenyl)methyl benzoate (S4-1): 89% yield from E substrate, 75% yield from Z substrate, Colorless oil, 1H NMR (CDCl$_3$, 400 MHz): δ ppm 8.09 (2H, d, $J = 7.6$ Hz), 7.63 (1H, t, $J = 7.6$ Hz), 7.49 (2H, t, $J = 7.6$ Hz), 7.43-7.39 (5H, m), 6.05 (1H, d, $J = 6.0$ Hz), 5.29 (1H, s), 4.49 (2H, d, $J = 6.8$ Hz), 4.37-4.32 (1H, m); 13C NMR (CDCl$_3$, 100 MHz): δ ppm 165.4, 159.0, 135.5, 133.7, 129.8, 129.2, 129.1, 128.7, 126.6, 75.9, 66.5, 56.2; IR (film) ν_{max}, 3279 (w), 1750 (s), 1745 (s), 1736 (s), 1601 (w), 1451 (m), 1381 (m), 1265 (s), 1178(m), 1108 (s), 1069 (m), 1025 (s), 939 (m), 710 (s) cm$^{-1}$; HRMS (ESI-TOF) for C$_{17}$H$_{16}$NO$_4$ [M+H$^+$] calcd 298.1079, found 298.1065.

2-Oxooxazolidin-4-yl)(p-tolyl)methyl 4-cyanobenzoate (S4-2): 81% yield, 1H NMR (CDCl$_3$, 400 MHz): major isomer: δ ppm 8.18 (2H, d, $J = 8.0$ Hz), 7.78 (1H, t, $J = 8.0$ Hz), 7.31-7.22 (4H, m), 6.15 (1H, s), 5.91 (1H, d, $J = 4.8$ Hz), 4.40-4.36 (2H, m), 4.21-4.19 (1H, m), 2.36 (3H, s); 13C NMR (CDCl$_3$, 100 MHz): δ ppm 163.9, 159.1, 139.7, 133.1, 132.5, 131.9, 130.3, 130.0, 126.7, 117.8, 78.4, 66.5, 56.2, 21.2; minor isomer: δ ppm 8.18 (2H, d, $J = 8.0$ Hz), 7.78 (1H, t, $J = 8.0$ Hz), 7.31-7.22 (4H, m), 6.03 (1H, d, $J = 4.8$ Hz), 5.72 (1H, s), 4.48-4.46 (1H, m), 4.40-4.36 (1H, m), 2.36 (3H, s); 13C NMR (CDCl$_3$, 100 MHz): δ ppm 163.9, 158.9, 139.5, 133.1, 132.4, 131.7, 130.3, 129.9, 126.6, 117.0, 76.7, 66.3, 56.0, 21.2; IR for the mixture of 2
diasteromers (film) ν_{max}, 3318 (w), 1730 (s), 1728 (s), 1635 (w), 1450 (m), 1380 (m), 1271 (s), 1177 (m), 1103 (s), 1018 (m), 910 (m), 737 (s) cm$^{-1}$; HRMS (ESI-TOF) for C$_{19}$H$_{15}$N$_2$O$_4$ [M-H$^-$] calcd 335.1032, found 335.1036.

Methyl 4-((benzoyloxy)((2-oxooxazolidin-4-yl)methyl)benzoate (S4-3): 75% yield, Colorless oil, 1H NMR (CDCl$_3$, 400 MHz): δ ppm 8.08-8.06 (4H, m), 7.65-7.61 (1H, m), 7.51-7.48 (4H, m), 6.10 (1H, d, $J = 5.2$ Hz), 6.00 (1H, s), 4.46-4.42 (2H, m), 4.35-4.30 (1H, m), 3.93 (3H, s); 13C NMR (CDCl$_3$, 100 MHz): δ ppm 166.3, 165.3, 159.1, 140.3, 133.8, 130.9, 130.3, 129.8, 129.0, 128.7, 126.5, 75.5, 66.1, 56.1, 52.3; IR (film) ν_{max}, 3273 (w), 1752 (s), 1747 (s), 1560 (w), 1496 (w), 1247 (s), 1149 (w), 1109 (s), 1019 (w), 900 (w), 713 (s) cm$^{-1}$; HRMS (ESI-TOF) for C$_{19}$H$_{18}$NO$_6$ [M+H$^+$] calcd 356.1134, found 356.1125.

3-Chlorophenyl-2-oxooxazolidin-4-yl)methyl benzoate (S4-4): 74% yield, Colorless oil, 1H NMR (CDCl$_3$, 400 MHz): δ ppm 8.10-8.07 (2H, m), 7.65-7.61 (1H, m), 7.49 (2H, d, $J = 8.0$ Hz), 7.40-7.26 (4H, m), 6.16 (1H, s), 6.02 (1H, d, $J = 5.2$ Hz), 4.49-4.42 (2H, m), 4.32-4.28 (1H, m); 13C NMR (CDCl$_3$, 100 MHz): δ ppm 165.3, 159.2, 137.5, 135.2, 133.8, 130.4, 129.9, 129.3, 129.0, 128.7, 126.7, 124.8, 75.3, 66.3, 56.2; IR (film) ν_{max}, 3274 (w), 1750 (s), 1737 (s), 1560 (w), 1477 (m), 1451 (m), 1407 (m), 1262 (s), 1179 (m), 1107 (s), 1069 (m), 1026 (s), 713 (s); HRMS (ESI-TOF) for C$_{19}$H$_{18}$NO$_6$ [M+H$^+$] calcd 356.1134, found 356.1125.
(2-Oxooxazolidin-4-yl)(pyridin-4-yl)methyl benzoate (S4-5): 80% yield, White solid, mp: 183-185 °C; 1H NMR (MeOD-d$_4$, 400 MHz): δ ppm 8.71 (1H, s), 8.56 (1H, s), 8.14-8.12 (2H, m), 7.99 (1H, d, $J = 8.0$ Hz), 7.66 (1H, t, $J = 7.6$ Hz), 7.55-7.48 (3H, m), 6.12 (1H, d, $J = 3.6$ Hz), 4.53-4.46 (3H, m); 13C NMR (MeOD-d$_4$, 100 MHz): δ ppm 165.2, 160.5, 149.1, 147.7, 135.6, 133.5, 132.4, 129.1, 128.4, 124.1, 74.4, 65.9, 55.7; IR (film) ν_{max} 3241 (w), 1721 (s), 1668 (s), 1559 (w), 1461 (m), 1451 (m), 1316 (m), 1261 (s), 1179 (m), 1107 (s), 1069 (s), 1025 (s), 937 (m), 766 (m) cm$^{-1}$; HRMS (ESI-TOF) for C$_{17}$H$_{15}$NO$_4$Cl [M+H$^+$] calcd 332.0690, found 332.0690.

Naphthalen-1-yl(2-oxooxazolidin-4-yl)methyl benzoate (S4-6): 81% yield, White solid, mp: 115-117 °C; 1H NMR (CDCl$_3$, 400 MHz): δ ppm 8.17-8.11 (3H, m), 7.93-7.87 (2H, m), 7.68-7.47 (7H, m), 6.91 (1H, d, $J = 4.8$ Hz), 5.72 (1H, s), 4.64-4.60 (1H, m), 4.55-4.51 (1H, m), 4.39-4.35 (1H, m); 13C NMR (CDCl$_3$, 100 MHz): δ ppm 165.5, 159.1, 133.9, 133.7, 131.3, 130.2, 129.9, 129.7, 129.3, 129.2, 128.7, 127.2, 126.3, 125.3, 124.3, 122.4, 72.9, 66.2, 55.6; IR (film) ν_{max} 3298 (w), 1738 (s), 1724 (s), 1600 (w), 1402 (m), 1267 (s), 1178 (w), 1109 (m), 1070
(m), 1027 (m), 765 (m), 712 (s) cm⁻¹; HRMS (ESI-TOF) for C₂₁H₁₈NO₄ [M+H⁺] calcd 348.1236, found 348.1247.

1-(2-Oxooxazolidin-4-yl)-3-phenylprop-2-yn-1-yl benzoate (S4-7): 92% yield from E substrate, 90% yield from Z substrate, Colorless oil, Major isomer: ¹H NMR (CDCl₃, 400 MHz): δ ppm 8.02 (2H, d, J = 8.0 Hz), 7.61-7.59 (1H, m), 7.57-7.44 (4H, m), 7.39-7.26 (3H, m), 6.54 (1H, s), 5.82 (1H, d, J = 4.2 Hz), 4.61-4.56 (1H, m), 4.53-4.50 (1H, m), 4.33-4.31 (1H, m); ¹³C NMR (CDCl₃, 100 MHz): δ ppm 165.2, 159.5, 133.8, 132.2, 130.0, 129.4, 128.9, 128.6, 128.4, 121.1, 87.8, 81.7, 66.5, 66.2, 55.1; minor isomer: ¹H NMR (CDCl₃, 400 MHz): δ ppm 7.99 (2H, d, J = 8.0 Hz), 7.61-7.59 (1H, m), 7.57-7.44 (4H, m), 7.39-7.26 (3H, m), 6.48 (1H, s), 5.90 (1H, d, J = 2.4 Hz), 4.61-4.56 (1H, m), 4.53-4.50 (1H, m), 4.33-4.31 (1H, m); ¹³C NMR (CDCl₃, 100 MHz): δ ppm 165.3, 159.5, 133.3, 131.6, 130.1, 129.4, 128.9, 128.6, 128.3, 121.1, 88.0, 81.4, 66.4, 65.9, 55.2; IR for the two isomers (film) νmax, 3264 (w), 1754 (s), 1721 (s), 1601 (s), 1491 (w), 1406 (m), 1315 (m), 1262 (s), 1178 (w), 1094 (m), 1025 (m), 932 (w), 758 (m), 711 (s), 691 (s) cm⁻¹; HRMS (ESI-TOF) for C₁₉H₁₅NO₄Na [M+Na⁺] calcd 344.0899, found 344.0912.

1-(2-Oxooxazolidin-4-yl)ethyl benzoate (S4-8): 85% yield, Colorless oil, Major isomer: ¹H NMR (CDCl₃, 400 MHz): δ ppm 8.03 (2H, d, J = 8.0 Hz), 7.58 (1H, t, J = 7.2 Hz), 7.45 (2H, t, J = 7.6 Hz), 6.70 (1H, s), 5.23-5.17 (1H, m), 4.54-4.48 (1H, m), 4.44-4.36 (1H, m), 4.09-4.03
(1H, m), 1.37 (3H, d, J = 6.4 Hz); 13C NMR (CDCl$_3$, 100 MHz): δ ppm 165.8, 160.0, 133.4, 129.7, 129.6, 128.5, 71.2, 66.3, 55.7, 15.2; minor isomer: 1H NMR (CDCl$_3$, 400 MHz): δ ppm 8.03 (2H, d, J = 8.0 Hz), 7.58 (1H, t, J = 7.2 Hz), 7.45 (2H, t, J = 7.6 Hz), 6.84 (1H, s), 5.17-5.13 (1H, m), 4.54-4.48 (1H, m), 4.28-4.25 (1H, m), 4.09-4.03 (1H, m), 1.37 (3H, d, J = 6.4 Hz); 13C NMR (CDCl$_3$, 100 MHz): δ ppm 165.8, 160.0, 133.4, 129.7, 129.6, 128.5, 71.5, 66.8, 55.7, 15.7; IR for the two isomers (film) ν_{max}, 3298 (w), 1755 (s), 1736 (s), 1722 (s), 1541 (w), 1276 (s), 1150 (w), 1110 (m), 960 (w), 729 (w), 712 (s) cm$^{-1}$; HRMS (ESI-TOF) for C$_{12}$H$_{14}$NO$_4$ [M+H$^+$] calc 236.0923, found 236.0925.

1-(2-Oxooxazolidin-4-yl)-1-phénylbenzoate (S4-9): 81% yield, Colorless oil, Major isomer: 1H NMR (CDCl$_3$, 400 MHz): δ ppm 8.07 (2H, d, J = 8.0 Hz), 7.61 (1H, t, J = 7.2 Hz), 7.49 (2H, t, J = 7.2 Hz), 7.42-7.33 (5H, m), 6.32 (1H, s), 4.33-4.31 (2H, m), 4.23-4.20 (1H, m), 2.07 (3H, s); 13C NMR (CDCl$_3$, 100 MHz): δ ppm 164.6, 159.6, 139.5, 133.4, 129.7, 129.0, 128.6, 128.4, 125.1, 83.8, 65.7, 61.8, 18.7; IR (film) ν_{max}, 3298 (w), 1755 (s), 1722 (s), 1540 (w), 1276 (s), 1150 (w), 1110 (m), 957 (w), 735 (w), 712 (s) cm$^{-1}$; HRMS (ESI-TOF) for C$_{18}$H$_{18}$NO$_4$ [M+H$^+$] calc 312.1236, found 312.1243.

(4-Methyl-2-oxooxazolidin-4-yl)(phenyl)methyl benzoate (S4-10): 71% yield, Colorless oil, Major isomer: 1H NMR (CDCl$_3$, 400 MHz): δ ppm 8.10-7.37 (10H, m), 5.99 (1H, s), 5.90 (1H, s), 4.54 (1H, d, J = 8.8 Hz), 4.14 (1H, d, J = 8.8 Hz), 1.39 (3H, s); 13C NMR
(CDCl₃, 100 MHz): δ ppm 165.4, 158.9, 135.2, 133.6, 129.9, 129.3, 128.8, 128.7, 127.2, 79.3, 73.5, 23.3; minor isomer: ¹H NMR (CDCl₃, 400 MHz): δ ppm 8.10-7.37 (10H, m), 6.22 (1H, s), 5.99 (1H, s), 4.56 (1H, m), 4.10 (1H, d, J = 8.8 Hz), 1.48 (3H, s); ¹³C NMR (CDCl₃, 100 MHz): δ ppm 165.4, 158.9, 135.2, 133.3, 129.9, 129.8, 128.8, 128.7, 127.3, 79.0, 72.8, 23.0; IR for the two isomers (film) νmax, 3280 (w), 1752 (s), 1721 (s), 1534 (w), 1276 (s), 1130 (w), 1111 (m), 970 (w), 735 (w), 716 (s) cm⁻¹; HRMS (ESI-TOF) for C₁₈H₁₈NO₄ [M+H⁺] calcd 312.1236, found 312.1243.

Methyl ((2-oxo-4-phenyloxazolidin-4-yl)methyl) terephthalate (S4-11): 72% yield, White solid, mp: 207-209 °C; ¹H NMR (CDCl₃, 400 MHz): δ ppm 8.11-8.05 (4H, m), 7.48-7.36 (5H, m), 6.48 (1H, s), 4.77 (1H, d, J = 8.8 Hz), 4.70-4.63 (2H, m), 4.78 (1H, d, J = 8.4 Hz), 3.96 (3H, s); ¹³C NMR (DMSO-d₆, 100 MHz): δ ppm 165.9, 165.0, 158.7, 140.9, 134.3, 133.5, 130.1, 129.9, 129.2, 128.5, 125.8, 72.8, 70.2, 63.1, 53.0; IR (film) νmax, 3279 (w), 1750 (s), 1718 (s), 1435 (m), 1399 (w), 1267 (s), 1106 (m), 1018 (m), 750 (s), 727 (s) cm⁻¹; HRMS (ESI-TOF) for C₁₉H₁₈NO₆ [M+H⁺] calcd 356.1134, found 356.1123.

Methyl (2-(5-oxopyrrolidin-2-yl)propan-2-yl) terephthalate (S4-12): 76% yield, White solid, mp: 160-162 °C; ¹H NMR (CDCl₃, 400 MHz): δ ppm 8.10 (d, 2H, J = 8.4 Hz), 8.01 (2H, d, J = 8.0 Hz), 6.62 (1H, s), 4.08 (1H, t, J = 6.8 Hz), 3.97 (1H, s), 2.43-2.26 (3H, m), 2.04-
2.01 (1H, m), 1.66 (3H, s), 1.62 (3H, s); 13C NMR (CDCl$_3$, 100 MHz): δ ppm 178.3, 166.2, 164.7, 134.9, 134.0, 129.6, 129.4, 84.8, 61.8, 52.5, 30.0, 22.4, 22.1, 20.4; IR (film) ν_{max}, 2917 (w), 1695 (s), 1596 (m), 1499 (w), 1457 (w), 1389 (w), 1277 (s), 1118 (m), 731 (m), cm$^{-1}$; HRMS (ESI-TOF) for C$_{16}$H$_{20}$NO$_5$ [M+H$^+$] calcd 306.1341, found 306.1348.

2-Oxooctahydrobenzo[d]oxazol-4-yl benzoate (S4-13): 75% yield, White solid, mp: 158-160 °C; 1H NMR (CDCl$_3$, 400 MHz): δ ppm 8.03 (d, 2H, $J = 8.0$ Hz), 7.60 (1H, t, $J = 7.2$ Hz), 7.47 (2H, t, $J = 7.6$ Hz), 6.04 (1H, s), 5.02-4.97 (1H, m), 4.84-4.83 (1H, m), 3.76-3.73 (1H, m), 2.24-2.13 (2H, m), 1.80-1.73 (3H, m), 1.58-1.49 (1H, m); 13C NMR (CDCl$_3$, 100 MHz): δ ppm 166.2, 159.5, 133.5, 129.7, 129.6, 128.5,76.5, 76.3, 56.8, 26.6, 26.2, 17.0; IR (film) ν_{max}, 2926 (w), 1752 (m), 1275 (w), 1261(s), 1151 (m), 750 (m), cm$^{-1}$; HRMS (ESI-TOF) for C$_{14}$H$_{16}$NO$_4$ [M+H$^+$] calcd 262.1079, found 262.1085.

methyl ((2-oxo-5-phenyloxazolidin-4-yl)methyl) terephthalate (S4-14): 40% yield, White solid, mp: 183-185 °C; 1H NMR (CDCl$_3$, 400 MHz): δ ppm 8.15-8.08 (m, 4H), 7.43 (5H, s), 5.77 (1H, s), 5.11 (1H, d, $J = 5.6$ Hz), 4.65-4.61 (1H, m), 4.49-4.45 (1H, m), 4.16-4.15 (1H, m), 3.98 (3H, s); 13C NMR (d$_6$-DMSO, 100 MHz): δ ppm 166.0, 165.2, 158.5, 139.7, 134.2, 133.7, 130.2, 129.9, 129.3, 129.2, 126.4, 78.8, 66.4, 58.6, 53.0; IR (film) ν_{max}, 3377 (w), 1757
(m), 1721 (m), 1403 (m), 1275 (s), 1119 (s), 1019 (m), 730 (m), cm$^{-1}$; HRMS (ESI-TOF) for C$_{19}$H$_{18}$NO$_6$ [M+H$^+$] calcd 356.1134, found 356.1128.

2.2.5 $K_4Fe(CN)_6$-Catalyzed Crossover Experiment

To a flame-dried Schleck tube was added $K_4Fe(CN)_6$ (0.02 mmol) and phenanthroline (0.04 mmol). After evacuation upon oil pump and refill with Ar three times, anhydrous and degassed MeCN (3 mL) was added. The obtained suspension was stirred vigorously at room temperature for 30 minutes, after which time the two substrates with the same equivalence (0.1 mmol for each) were added. The reaction mixture was heated at 70 ºC until all the starting material was fully consumed. The reaction mixture was cooled and concentrated to a residue, which was filtered through a very short column. The obtained solution was then concentrated upon rotavap and analyzed on chiral HPLC (Chiralcel OD-H, 1.0 mL/min, 210 nm, 20% i-PrOH in hexane).

HPLC traces for four possible cyclization products:

![HPLC traces for four possible cyclization products](image-url)
2.2.6 Iron(II)-Catalyzed Enantioselective Olefin Aminohydroxylation

2.2.6.1 Procedure for Fe(II)-Catalyzed Racemic Aminohydroxylation Reaction

To a flame-dried Schlenk tube was added $\text{K}_4\text{Fe(CN)}_6$ (0.02 mmol) and phenanthroline (0.04 mmol) respectively. After evacuation upon oil pump and refill with Ar three times, anhydrous and degassed MeCN (3 mL) was added. The obtained suspension was stirred vigorously at room temperature for 30 minutes, after which time the substrate $9a$ or $9b$ (0.2 mmol) was added. The reaction mixture was heated at 70 °C until all the starting material was fully consumed. The reaction mixture was cooled and concentrated to a residue, which was chromatographed by using 1:1 hexane and ethyl acetate as the eluant to give the designed racemic aminohydroxylation product (85% yield, $dr = 3.6:1$).

2.2.6.2 Procedure for Fe(II)-Catalyzed Asymmetric Aminohydroxylation Reaction

To a flame-dried schlenk tube were added Fe($\text{NTf}_2)_2$ (0.01 mmol) and chiral ligand L3 (0.02 mmol) respectively. After evacuation upon oil pump and refill with Ar gas three times, anhydrous and degassed acetonitrile (2 mL) was added. The obtained mixture was stirred vigorously at room temperature for 60 minutes. Substrate $9a$ or $9b$ (0.1 mmol) in 1 mL of anhydrous and degassed MeCN was then added. The reaction mixture was stirred at -10 °C for 12 hours. The reaction mixture was then quenched by Sat. NaHCO$_3$, and then extracted with ethyl acetate. The organic phase was washed with brine, dried (Na$_2$SO$_4$), filtered, and concentrated in vacuo to afford the crude product, which was purified by flash column chromatography using 50 % ethyl acetate-hexane (68% yield, $dr > 20:1$, 82% ee).
2-Oxooxazolidin-4-yl)(phenyl)methyl 2,4-dichlorobenzoate (11): 1H NMR (CDCl$_3$, 400 MHz): $[\alpha]_D^{20} = -8.8$ ($c = 1.3$, CH$_2$Cl$_2$); syn-isomer: δ ppm 7.90 (2H, d, $J = 8.4$ Hz), 7.51 (1H, s), 7.43 (5H, s), 7.35 (1H, d, $J = 8.4$ Hz), 6.04 (1H, s), 5.93 (1H, d, $J = 5.6$ Hz), 4.35-4.31 (2H, m), 4.21-4.20 (1H, m); anti-isomer: δ ppm 7.90 (2H, d, $J = 8.4$ Hz), 7.51 (1H, s), 7.43 (5H, s), 7.35 (1H, d, $J = 8.4$ Hz), 6.04 (1H, d, $J = 6.0$ Hz), 5.14 (1H, s), 4.52-4.45 (2H, m), 4.38-4.33 (1H, m); 13C NMR (CDCl$_3$, 100 MHz): syn-isomer: δ ppm 163.6, 158.9, 139.2, 135.0, 134.9, 133.1, 131.2, 129.5, 129.3, 127.4, 127.2, 127.0, 78.6, 66.2, 56.1; anti-isomer: δ ppm 163.6, 158.9, 139.3, 135.0, 134.9, 133.2, 131.2, 129.5, 129.4, 127.4, 127.3, 127.1, 78.8, 66.2, 56.2; IR (film) ν_{max}, 3285 (w), 1738 (m), 1653 (m), 1584 (m), 1455 (m), 1376 (m), 1276 (w), 1231 (s), 1145 (m), 1100 (m), 1045 (m), 733 (m), 696 (s) cm$^{-1}$; HRMS (ESI-TOF) for C$_{17}$H$_{12}$Cl$_2$NO$_4$ [M-H$^+$] calcd 364.0143, found 364.0142.

2.2.6.3 Reaction Optimization of Asymmetric Aminohydroxylation Reaction

Parameters below were further optimized upon following the procedure of Fe(II)-catalyzed asymmetric aminohydroxylation reaction.

1) Ligand screen
2) Solvent screen

![Reaction Diagram]

<table>
<thead>
<tr>
<th>Solvent</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toluene</td>
<td>59</td>
</tr>
<tr>
<td>Toluene/MeCN = 40/1</td>
<td>63</td>
</tr>
<tr>
<td>Toluene/MeCN = 20/1</td>
<td>71</td>
</tr>
<tr>
<td>Toluene/MeCN = 10/1</td>
<td>73</td>
</tr>
<tr>
<td>Toluene/MeCN = 4/1</td>
<td>77</td>
</tr>
<tr>
<td>MeCN</td>
<td>82</td>
</tr>
</tbody>
</table>

Table 3. Solvent Screening for Reaction Optimization

3) Temperature screen

![Reaction Diagram]

<table>
<thead>
<tr>
<th>Temperature</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room temperature</td>
<td>65</td>
</tr>
<tr>
<td>0 °C</td>
<td>82</td>
</tr>
<tr>
<td>-10 °C</td>
<td>82</td>
</tr>
<tr>
<td>-20 °C</td>
<td>83</td>
</tr>
</tbody>
</table>

Table 4. Temperature Screening for Reaction Optimization

4) Concentration screen
2.2.6.4 HPLC Data

The samples were analyzed by Chiral HPLC analysis (Chiralcel AD-H, 1.0 mL/min, 254 nm, 20% i-PrOH in hexane).

Racemic sample:

<table>
<thead>
<tr>
<th>Concentration</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 M</td>
<td>75</td>
</tr>
<tr>
<td>0.05 M</td>
<td>79</td>
</tr>
<tr>
<td>0.03 M</td>
<td>82</td>
</tr>
<tr>
<td>0.01 M</td>
<td>79</td>
</tr>
</tbody>
</table>

Table 5. Concentration Screening for Reaction Optimization

FeII-catalyzed tethered asymmetric aminohydroxylation reaction:
2.2.6.5 **Ligand Effect over Diastereoselectivity**

An *anti*-amino alcohol was obtained when achiral ligands (including phenanthroline and the tridentate L4) was used as a ligand, disregard of iron sources while a *syn*-amino alcohol was obtained when chiral BOX ligands were applied.
2.2.7 Iron(II)-Catalyzed Enantioselective Olefin Aziridination

2.2.7.1 Counter ion Effect

<table>
<thead>
<tr>
<th>Iron salt</th>
<th>11/12 (crude 1H NMR)</th>
<th>ee of 12 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe(OAc)$_2$</td>
<td>1/1.2</td>
<td>65</td>
</tr>
<tr>
<td>Fe(TFA)$_2$</td>
<td>1/0.7</td>
<td>61</td>
</tr>
<tr>
<td>Fe(NTf)$_2$</td>
<td>1/0</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

Table 6. Counter Ion Screening for Reaction Optimization

1) Phenanthroline as a ligand

2) Chiral BOX as a ligand
2.2.7.2

Fe(II)-Catalyzed Enantioselective Olefin Aziridination

To a flame-dried Schleck tube was added Fe(OAc)$_2$ (0.01 mmol) and chiral ligand L4 (0.02 mmol) respectively. After evacuation upon oil pump and refill with Ar gas three times, anhydrous and degassed toluene/acetonitrile (2 mL, v/v = 4/1) was added. The obtained mixture was stirred vigorously at room temperature for 60 minutes. Substrate 9a or 9b (0.1 mmol) in 1 mL of anhydrous and degassed toluene/acetonitrile (2 mL, v/v = 4/1) was then added. The reaction mixture was stirred at 0 ºC for 12 hours. The reaction mixture was then quenched by Sat. NaHCO$_3$, and then extracted with ethyl acetate. The organic phase was washed with brine, dried (Na$_2$SO$_4$), filtered, and concentrated in vacuo to afford the crude product, which was purified by flash column chromatography using 50% ethyl acetate-hexane (38% yield of aminohydroxylation product 11 and 46% yield of aziridination product 12). 12: $^{37d} [\alpha]_D^{20} = -1.6$ (c = 0.2, CH2Cl2); 1H NMR (CDCl$_3$, 400 MHz): δ ppm 7.39-7.37 (3H, m), 7.21 (2H, d, $J = 8.0$ Hz), 4.65 (1H, d, $J = 9.2$ Hz), 4.55 (1H, dd, $J = 9.2, 5.2$ Hz), 3.38 (1H, d, $J = 3.2$ Hz), 3.26-3.25 (1H, m).

2.2.7.3 HPLC Data

The samples were analyzed by Chiral HPLC analysis (Chiralcel AD-H, 1.0 mL/min, 230 nm, 20% i-PrOH in hexane).

Racemic sample (Racemic sample, used as a standard for chiral HPLC analysis, was synthesized by the identical method except for using 20 mol % phenanthroline instead of chiral ligand L4):
Fe(II)-catalyzed asymmetric aziridination reaction:

2.2.7.4 Control Experiments

To verify whether or not 11 was obtained through the intermediacy of aziridine 12 in Fe(OAc)₂-catalyzed reactions, 12 was subjected to the catalytic reaction conditions. The isomeric aminohydroxylation product 11’ was isolated.
To a flame-dried Schleck tube was added Fe(OAc)$_2$ (0.01 mmol) and chiral ligand L4 (0.02 mmol) respectively. After evacuation upon oil pump and refill with Ar gas three times, anhydrous and degassed toluene/acetonitrile (2 mL, v/v = 4/1) was added. The obtained mixture was stirred vigorously at room temperature for 60 minutes. Aziridine 12 (0.1 mmol) and 2,4-dichlorobenzoic acid or its sodium salt (0.1 mmol) in 1 mL of anhydrous and degassed toluene/acetonitrile (1 mL, v/v = 4/1) was then added. The reaction mixture was stirred at 0 ºC for 12 hours. The reaction mixture with 2,4-dichlorobenzoic acid was then quenched by Sat. NaHCO$_3$, and then extracted with ethyl acetate. The organic phase was washed with brine, dried (Na$_2$SO$_4$), filtered, and concentrated in vacuo to afford the crude product, which was purified by flash column chromatography using 50 % ethyl acetate-hexane: 15% isolated yield of anti-isomer.

2.2.7.5 Olefin Aziridination of Tosyl Hydroxyl Carbamate

To a flame-dried Schleck tube was added Fe(OAc)$_2$ (0.01 mmol) and chiral ligand 10 (0.02 mmol) respectively. After evacuation upon oil pump and refill with Ar gas three times, anhydrous and degassed toluene/acetonitrile (2 mL, v/v = 4/1) was added. The obtained mixture was stirred vigorously at room temperature for 60 minutes. Substrate 14 (0.1 mmol) in 1 mL of
anhydrous and degassed toluene/acetonitrile (2 mL, v/v = 4/1) was then added. The reaction mixture was stirred at 0 °C for 12 hours. The reaction mixture was then quenched by Sat. NaHCO₃, and then extracted with ethyl acetate. The organic phase was washed with brine, dried (Na₂SO₄), filtered, and concentrated in vacuo to afford the crude product, which was purified by flash column chromatography using 50% ethyl acetate-hexane. From HPLC trace, the ee of aziridination product 12 was also 65% (Chiralcel AD-H, 1.0 mL/min, 230 nm, 20% i-PrOH in hexane).

<table>
<thead>
<tr>
<th>Peak RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.329 MM</td>
<td>0.3521</td>
<td>609.80457</td>
<td>28.86740</td>
<td>17.3671</td>
</tr>
<tr>
<td>2</td>
<td>10.696 MM</td>
<td>0.4222</td>
<td>2901.45776</td>
<td>114.53984</td>
<td>82.6329</td>
</tr>
</tbody>
</table>

2.2.8 **Procedure of Product Derivatization**

Procedures: A mixture of 11 (37 mg, 0.1 mmol), Boc₂O (32 mg, 0.14 mmol), Et₃N (21 µL, 0.15 mmol) and a catalytic amount of DMAP (10% mol) in CH₂Cl₂ (2 mL) was stirred 1 hour at room temperature. The reaction was quenched by concentrated in a vacuum. Quick
purification of the residue by a short flash chromatography (hexane/ethyl acetate) afforded Boc-protected product in quantitative yield. The above obtained Boc-protected product was dissolved in 1,4-dioxane (2 mL). An aqueous solution of LiOH 2N (0.3 mL, 0.6 mmol) was then added. The mixture was stirred at room temperature for 4 h. The solvent was removed. The resulting crude was purified by flash chromatography (hexane/ethyl acetate) to give 18.7 mg of compound 13\(^{41}\) (70 %) as a colorless oil. \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta\) ppm 7.41-7.30 (5H, m), 5.17 (1H, brs), 5.01 (1H, s), 3.85-3.79 (3H, m), 3.03 (1H, brs), 2.26 (1H, brs), 1.38 (9H, s); \(^13\)C NMR (CDCl\(_3\), 100 MHz): \(\delta\) ppm 141.1, 128.5, 127.9, 126.1, 79.9, 74.8, 64.2, 57.2, 28.3. HRMS (ESI-TOF) for C\(_{14}\)H\(_{22}\)NO\(_4\) [M+H\(^+\)] calcd 269.1472, found 269.1469.

HPLC data of 13:

The samples were analyzed by Chiral HPLC analysis (Chiralcel AD-H, 1.0 mL/min, 220 nm, 5% \(i\)-PrOH in hexane).

Racemic Sample (The racemic sample was gotten through the following route):

![HPLC graph](image)
Enantio-enriched Sample:

2.2.9 Determination

2.2.9.1 Comparison of Optical Rotation

Comparison of optical rotation of 13 with literature value.\(^\text{42}\)

\[
\left[\alpha\right]_{D}^{20} = +51.5 \text{ (c = 1.02, CH}_2\text{Cl}_2)
\]

experiment value: \[
\left[\alpha\right]_{D}^{20} = +31.7 \text{ (c = 0.26, CH}_2\text{Cl}_2) \text{ (82% ee from chiral HPLC)}
\]

2.2.9.2 Stereospecific Epimerization

To confirm the absolute stereochemistry of the aziridine, the hydrolysis product of 11 was subjected to the Mitsunobu reaction condition.
HPLC trace of 11’:

![HPLC Trace Image]

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.848</td>
<td>MM</td>
<td>0.3481</td>
<td>2148.18237</td>
<td>102.85355</td>
<td>8.2799</td>
</tr>
<tr>
<td>2</td>
<td>11.086</td>
<td>MM</td>
<td>0.4807</td>
<td>1.42006e4</td>
<td>492.31439</td>
<td>91.7201</td>
</tr>
</tbody>
</table>

HPLC trace:

![HPLC Trace Image]

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.895</td>
<td>MF</td>
<td>0.4284</td>
<td>157.16843</td>
<td>6.11477</td>
<td>15.5900</td>
</tr>
<tr>
<td>2</td>
<td>11.859</td>
<td>MM</td>
<td>0.5480</td>
<td>850.96515</td>
<td>25.88031</td>
<td>84.4100</td>
</tr>
</tbody>
</table>
2.3 RESULTS

2.3.1 Catalyst Discovery for the Aminohydroxylation

We initiated the catalyst discovery with a cinnamyl alcohol derived substrate 1 that incorporates both a trans-disubstituted olefin and a functionalized hydroxylamine. A preliminary inspection revealed that FeII salts alone are unable to catalyze the reaction at room temperature; however, the reactions are greatly accelerated by a variety of nitrogen-based bidentate and tridentate ligands (Table 7): ligands 3 and 4 (with π-acceptor character) facilitate more efficient reactions than TMEDA and sparteine (entries 1−4). While FeII/3 complexes are able to catalyze the aminohydroxylation, FeIII/3 complexes are inactive (entry 5). In addition, we observed a significant counterion effect: cyanide (entries 9 and 10) with strong π-acceptor character proves to be superior to bromide (entries 3 and 4), triflate (entry 6), carboxylate (entry 7), and triflimide (entry 8). Re-examination of FeII cyanide/ligand combinations revealed that K$_4$Fe(CN)$_6$/3 can catalyze a highly diastereoselective aminohydroxylation,16c,38 delivering an anti-amino alcohol with a stereochemistry complementary to the one obtained through Os-based methods. We discovered that acyl hydroxyl carbamates prove uniquely effective for the desired reaction: both alkyl and sulfonyl hydroxyl carbamates are not viable substrates.

![Reaction Scheme]

<table>
<thead>
<tr>
<th>entry(^a)</th>
<th>Fe(X)$_n$</th>
<th>ligand (mol%)</th>
<th>conversion(^b)</th>
<th>yield(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FeBr$_2$</td>
<td>none</td>
<td><10%</td>
<td><5%</td>
</tr>
<tr>
<td>2</td>
<td>FeBr$_2$</td>
<td>sparteine/TMEDA</td>
<td><40%</td>
<td><5%</td>
</tr>
<tr>
<td>3</td>
<td>FeBr$_2$</td>
<td>3 (20)</td>
<td>100%</td>
<td>8%</td>
</tr>
</tbody>
</table>
Reactions were carried out under argon at 23 °C unless stated otherwise. Conversions were determined by 1H NMR analysis with 1,3,5-trimethoxybenzene as an internal standard. Isolated yield. Catalyst was prepared in situ by stirring FeBr₃ or K₄Fe(CN)₆ with freshly prepared potassium salt of the ligand 4. The reaction was performed at 45 °C. An aziridine was isolated. The reaction was performed at 70 °C for 4 h. Conversion was less than 5% without ligands. TMEDA = tetramethylethylenediamine, OTf = trifluoromethanesulfonate, NTf₂ = trifluoromethanesulfonimide.

Table 7. Catalyst Discovery for the Aminohydroxylation

2.3.2 Substrate Scope of Iron-Catalyzed Aminohydroxylation

To explore the scope and limitation of this reaction, we have applied the method to a variety of olefins (Table 8). *trans*-Disubstituted styrenyl olefins are excellent substrates (dr > 20:1) (entries 1–4). Unlike Os-based methods that are not tolerant to basic nitrogen functional groups, the olefin containing a pyridine ring is a viable substrate (entry 4). A *para*-methyl-styrenyl substrate suffers from a total loss of dr (entry 5); however, electronic tuning on the benzoyl group increased the dr to 3.1:1 (entry 6). *trans*-Disubstituted olefins with 1-naphthyl, alkyl, and alkynyl substituents can participate in the reaction with acceptable yields but diminished diastereoselectivity (entries 7–9, dr varies from 2.5:1 to 5:1). We note that the *cis*-disubstituted olefins also afford anti-amino alcohols in this reaction (entries 10–11). The stereochemical convergence (entries 1 and 10) and a related crossover experiment suggest the stepwise nature of the aminohydroxylation. In addition, trisubstituted olefins (entries 12–13) are suitable substrates (dr varies from 2.2:1 to > 20:1). Disubstituted terminal olefins are decent substrates (entry 14), while monosubstituted olefins (entry 15) suffer from lower yields. We also
discovered a cyclohexanol-derived substrate (entry 16) readily participates in the reaction to afford an *anti*-hydroxyl oxazolidinone that was difficult to access with Os-based strategies. Further investigation reveals that nonallylic alcohol based substrates, including an olefin containing hydroxamate, can also undergo smooth reactions (entry 17).
Since the asymmetric synthesis of hydroxyl oxazolidinones by catalytic aminohydroxylation has not been reported, we explored the asymmetric induction with FeII–chiral bisoxazoline (BOX)45 complexes (Scheme 35A). Extensive optimization revealed that Fe(NTf$_2$)$_2$–chiral BOX ligand L4 is effective for enantioinduction. It converts both 9a and 9b to syn-hydroxyl oxazolidinone 11 with the same ee and dr (82% ee, dr > 20:1). More synthetically useful amino alcohol triad 13 was subsequently obtained without stereochemistry erosion with a known method.40 To our surprise, the diastereoselectivity observed here is different from the one in the K$_4$Fe(CN)$_6$-catalyzed reaction (Table 3). We also observed that the Fe(OAc)$_2$–chiral BOX ligand L4 complex catalyzes a convergent aminohydroxylation of both 9a and 9b, affording 11 with diminished selectivities (71% ee, dr = 5:1). In addition to 11, a chiral aziridine 12 (65% ee, dr > 20:1) was obtained from both 9a and 9b. It is important to note that the sense of enantioinduction for 11 and 12 is the same, and they cannot interconvert under reaction conditions.

Table 8. Substrate Scope of Iron-Catalyzed Aminohydroxylation

2.3.3 Iron-Catalyzed Asymmetric Aminohydroxylation

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Fe(NTf$_2$)$_2$–chiral BOX Ligand L4</th>
<th>Product</th>
<th>ee (%)</th>
<th>dr</th>
</tr>
</thead>
<tbody>
<tr>
<td>9a</td>
<td>L4</td>
<td>11</td>
<td>82</td>
<td>> 20:1</td>
</tr>
<tr>
<td>9b</td>
<td>L4</td>
<td>11</td>
<td>82</td>
<td>> 20:1</td>
</tr>
<tr>
<td>13</td>
<td>L4</td>
<td>13</td>
<td>71</td>
<td>5:1</td>
</tr>
<tr>
<td>12</td>
<td>L4</td>
<td>12</td>
<td>65</td>
<td>> 20:1</td>
</tr>
</tbody>
</table>

aCombined isolated yield. bDetermined by 1H NMR. cPhenyl vinyl ketone was also isolated as a side product.
conditions.42 We were curious about this reactivity divergence and explored a series of ligands, discovering that the counteranion effect over the product distribution is general. In literature, Bolm demonstrated that Fe(OTf)\textsubscript{2}–chiral BOX can mediate asymmetric styrene aziridination (up to 40\% ee). Lebel37d, 37e also reported a copper-catalyzed racemic aziridination from tosyl hydroxyl carbamate 14. To gain further mechanistic insight, we explored the reactivity of 14 under the optimized conditions (Scheme 35B): Fe(NTf\textsubscript{2})\textsubscript{2} is unable to catalyze the cyclization of 14; Fe(OAc)\textsubscript{2} can mediate the aziridination of 14, affording 12 (the same ee with the one obtained from 9a and 9b), albeit in a low conversion. These results indicate that the Fe(OAc)\textsubscript{2}-catalyzed aziridination of 9a, 9b, and 14 likely go through the same intermediate.

A) convergent enantioselective aminohydroxylation

\begin{equation}
\begin{aligned}
\text{9a} & \xrightarrow{a} \text{11} \\
\text{R: 2,4-Cl\textsubscript{2}-benzoyl} & \xrightarrow{b} \text{11} \\
\text{R: 2,4-Cl\textsubscript{2}-benzoyl} & \xrightarrow{c} \text{13} \\
\end{aligned}
\end{equation}

68 \% yield, 82 \% ee, dr > 20:1

82 \% ee, dr > 20:1

38 \% yield, 71 \% ee, dr = 5:1

46 \% yield, 65 \% ee, dr > 20:1

B) reactivity of tosyl hydroxyl carbamates

\begin{equation}
\begin{aligned}
\text{14} & \xrightarrow{a} \text{12} \\
\end{aligned}
\end{equation}

\text{full recovery}

85 \% ee, dr > 20:1

Fe(NTf\textsubscript{2})\textsubscript{2} (10 mol \%), 10 (20 mol \%), MeCN, 0 °C, 8 h. 4Fe(OAc)\textsubscript{2} (10 mol \%), 10 (20 mol \%), toluene/MeCN = 4:1, 0 °C, 4 h. Boc\textsubscript{2}O, Et\textsubscript{3}N, DCM, rt, 3 h, then LiOH, dioxane, rt, 4 h, 75\% in two steps. Boc\textsubscript{2}O = Di-tert-butyl dicarbonate.

\textbf{Scheme 35.} Ligand Controlled Asymmetric Induction
2.3.4 Mechanistic Working Hypothesis

The successful asymmetric induction provides further mechanistic insights: (a) FeII–chiral ligand complexes are involved in both rate- and enantioselectivity-determining steps; (b) olefin aziridination is likely a competing pathway from the same intermediate. Presumably, two distinct types of mechanistic pathways might operate: (a) Kharasch-type atom transfer radical addition46 or (b) pathways involving iron nitrenoid47 species. Based on the collected mechanistic evidence, a working hypothesis that best corroborates the Fe(OAc)$_2$-catalyzed enantioselective reaction is shown in Scheme 33. First, the Fe(OAc)$_2$–ligand complex can reductively cleave the N–O σ-bond and possibly convert the isomeric cis- and trans-styrenyl substrates 9a and 9b to iron nitrenoids A1 and A2, respectively. Then, a stepwise cycloamination (from A1 and A2) will presumably occur, affording two carbo-radical species, B1 and B2 that are in a fast equilibrium. In principle, the intramolecular aziridination should occur much slower than the ligand (OR) transfer from B2, because of the unfavorable A (1,3) interaction encountered in the transition state leading to aziridines. In contrast, aziridination can effectively compete with the ligand transfer from B1, since the A (1,3) interaction is absent in this conformation. Therefore, the aminohydroxylation should occur predominately from intermediate B2, leading to an amino alcohol 11, while the cyclization from intermediate B1 will mostly lead to a trans-aziridine 12. It is possible that the mechanistic intricacy will vary with different counterion/ligand combinations, which will influence the relative stability of B1 vs B2, as well as the rates of aziridination (k_A) vs aminohydroxylation (k_B). Since the diastereoselectivity of K$_4$Fe(CN)$_6$-catalyzed reactions is very different from the ones catalyzed by Fe(NTf$_2$)$_2$ and Fe(OAc)$_2$, it is less likely this working hypothesis applies for the K$_4$Fe(CN)$_6$-catalyzed racemic reactions.
2.4 CONCLUSIONS

In conclusion, we have discovered a new Fe(II)-catalyzed intramolecular olefin aminohydroxylation with functionalized hydroxylamines, where both the N and O functional groups are efficiently transferred for olefin aminohydroxylation. Preliminary mechanistic studies revealed that an iron nitrenoid is possibly an intermediate that can undergo either olefin aziridination or aminohydroxylation. This discovery opens up the possibility of developing a unique and general approach for stereoselective olefin amination. Our current effort focuses on better understanding the mechanistic details of this process and its application in complex molecule synthesis.
3 CHAPTER III IRON(II)-CATALYZED ASYMMETRIC INTRAMOLECULAR AMINOHYDROXYLATION OF INDOLES

3.1 INTRODUCTION

3.1.1 Naturally Occurring Molecules

Indole chemistry has been extensively explored since its first synthesis by Baeyer et al in 1866. Due to its prevalence in the structures of numerous medicinal agents and biologically active natural products, the study of indole chemistry remains to be appealing in constructing those important indole alkaloids as depicted in Figure 4, such as AG-041R, a gastrin/CCK-B receptor agonist; SSR-149415, also called Nalivaptan, a medicine for the treatment of anxiety and depression;48 and natural products psychotrimine, kapakahines, and chaetomin.49 More interestingly, all of these natural products are bearing either amino oxindoles or amino indolanes structural motifs. Much attention has been focused on those well-established reactions, such as oxidative (radical) dimerization, or electrophilic cyclization cascades. However, methodologies for diastereo- and enantioselectively catalytic functionalization at the C2 and C3 positions for the synthesis of amino oxindoles and amino indolanes are less explored.
3.1.2 Chiral Substrate-Controlled C(3)-N(1′) Coupling

Chiral substrate-controlled indole–aniline coupling and stereospecific functional group manipulation are among the strategies that have been applied to the asymmetric synthesis of 3-amino indolanes. Phil S. Baran49b demonstrated a powerful and exceptionally concise gram scale synthesis of Psychotrimine with minimal use of protection chemistry and redox steps. The proposed coupling reaction was explored using 2-Iodoaniline and L-tryptophan (Scheme 37) with a variety of oxidants. Most oxidants afforded a complex mixing system. With exceptionally simple halogenating agents such as NCS and NBS, the cyclized C(3)-N(1′) coupling product was furnished as the major diastereomer. The key finding in making the reaction robust and scalable was using NIS to afford the C3 aminated product in 45% isolated yield along with 40% starting material recovered.

Scheme 37. Total Synthesis of Psychotrimine
Meanwhile, Rainier disclosed another C(3)-N(1') heterodimeric indolines synthesis. Luckily they achieved 28% yield desired product for their first batch as a single diastereoisomer. Interestingly, the reaction product bearing a methyl ester functional group could epimerize from the \textit{exo}-position to the thermodynamically more favorable \textit{endo}-position. Thus, a novel and facile entry into the C(3)-N(1') construction with up to 82% yield for 8 examples and up to 20:1 \textit{dr} were thus reported.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{scheme38.png}
\caption{Scheme 38. The Synthesis of C(3)-N(1') Dimers}
\end{figure}

\subsection{3.1.3 Organic Molecules and Lewis Acid-Catalyzed Reactions}

An effective approach for the enantio-synthesis of 3-amino-2-oxindoles was discovered by Yongjun Chen. Biscinchona alkaloids catalyzed asymmetric amination of unprotected oxindoles with the generation of quaternary chiral carbon center was thus realized by the employment of azodicarboxylate as the nitrogen source.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{scheme39.png}
\caption{Scheme 39. Organocatalytic Amination of 2-Oxindoles}
\end{figure}

Another enantioselective \(\alpha\)-amination of aryl oxindoles catalyzed by cinchona alkaloids has been developed by Carlos and coworkers. The reaction is general, broad in substrate scope,
and affords the desired products in good yields with good to excellent enantioselectivities. This study provides a general organocatalytic method for the creation of nitrogen-containing, tetrasubstituted chiral centers at the C3 position of alkyl and aryl oxindoles.

Scheme 40. Expanded Substrate Scope for Amination of 2-Oxindoles

Recently, a highly enantioselective catalytic synthesis of 3-aminooxindoles with a tetrasubstituted carbon stereocenter is reported by Shibasaki’s group.\(^{52}\) 1–2 mol % of homo bimetallic \((R)\)-Ni\(_2\)-Schiff base can catalyze the asymmetric amination of 3-substituted oxindoles with azodicarboxylates to give \((R)\)-products in 89 to 98% yield and with large than 87% ee. While reversed ee was observed when switching to monometallic Schiff base complexes without loss of yield and ee. A formal synthesis of the key intermediate for AG-041R from an optically active oxindole is also described.

Scheme 41. Catalytic Asymmetric Synthesis of 3-Aminooxindoles
Dr. Xiaoming Feng also made a great contribution in this area during the last few years. They demonstrated that C2-symmetric N,N’-dioxide amide compounds (as shown in Figure 5) are effective in a variety of chiral ligand metal-catalyzed or organocatalyzed asymmetric reactions under mild reaction conditions. Due to the easy accessibility, extensive versatility, as well as other advantages, such as excellent enantioselectivity and reactivity, low price, operational simplicity, mild reaction conditions, thus their applications in both traditional and new catalytic asymmetric reactions, are promising.

![Figure 5. Chiral N,N'-Dioxides](image)

3.1.4 Intramolecular α-Arylation of Amides

Peter Kundig developed an asymmetric Pd/NHC-catalyzed intramolecular α-arylation of amide enolates to afford optically active 3-alkoxy or 3-aminoxindoles in high yields and enantioselectivities.

![Scheme 42. Chiral NHC Carbene Catalyzed Oxindole Synthesis](image)
Recently, Steven Ley reported an approach for enantioselective 3-amino-2-oxindoles through a Pd-catalyzed intramolecular arylation of α-ketimino amides using chiral phosphine ligand.\(^5^5\)

\[
\text{Scheme 43. Pd-Mediated Asymmetric Intramolecular Arylation of Ketimino Amides}
\]

3.1.5 Organic Molecule-Catalyzed Additions

More interestingly, a highly enantioselective decarboxylative addition of MAHTs to ketimines derived from isatins by using novel cinchonidine organocatalysts is described by Norio Shibata in 2012.\(^5^6\) In the paper, they claimed the first example of decarboxylative addition of MAHTs to ketimines, while the afforded product could be further converted to optically active (+)-AG-041R.

\[
\text{Scheme 44. Decarboxylative Addition of MAHT to Ketimines}
\]
3.1.6 **Rhodium-Catalyzed Intramolecular Aminohydroxylation of Indoles or Pyrroles**

Despite these key discoveries, a method that can provide both amino oxindoles and amino indolanes with synthetically useful ee through catalytic asymmetric indole aminohydroxylation has yet to be discovered. Inspired by the pioneering Sharpless asymmetric aminohydroxylation, there has been significant progress in the development of methods for selective olefin aminohydroxylation as we discussed in chapter 2. Albert Padwa and co-work came up with the iodine (III)-mediated aziridination reaction of an indolyl-substituted carbamate which requires a Rh(II) catalyst and proceeds by metallonitrene intermediate. A metal-free zwitterion is generated by stepwise addition across the indole π-bond followed by Rh (II) detachment, which ultimately furnishes the final products, as demonstrated in Scheme 23.

Chi-ming Che has found a mild and straightforward enantioselective method for the synthesis of optically active indole oxazolidine. Chiral dirhodium complexes can catalyze the asymmetric intramolecular aziridination of unsaturated sulfonamides and carbamates giving excellent yield and moderate ee. The forming aziridine can be opened in the presence of other nucleophiles, such as acetate. Their efforts are currently underway to improve the moderate to good ee.

![Scheme 45. Intramolecular Aziridination and Nucleophilic Ring-Opening](image)

In a stereoselective total synthesis of (+)-Gonyautoxin 3 reported by J. Du Bois in 2008. This important transformation capitalized on the novel reactivity of Rh-bound guanidine nitrene
that is capable of modifying both C-H bond and π system to afford the pyrrole amination product.

Scheme 46. Synthesis of (+)-Gonyautoxin 3

Recently, Iwabuchi disclosed a chiral Rh-nitrenoid species based oxidative nitrogen atom transfer reaction, with a versatile and highly enantioselective synthesis of spiro-β-lactam cores and expanded the substrate scope. The further effort towards the total synthesis of chartelline alkaloids is now ongoing in his lab.59

Scheme 47. Rh-Mediated Intramolecular Aza-spiroannulation

3.1.7 Previous Indole Aminohydroxylation Reactions

Yoon has been interested in developing a synthetic methodology for rapid constructing a class of pyrroloindoline alkaloids, aiming at C-N bond formation in an enantioselective fashion. Later on, they have demonstrated that the copper (II)-catalyzed intermolecular oxyamination of indoles affords aminals in high yields and with excellent regioselectivity.18e Based on the knowledge of their recently revised mechanistic model,35 a radical intermediate is consistent with the furnished high regioselective products that can be easily transformed into 3-aminoindoles, indolines, pyrroloindolines and other synthetically valuable heterocyclic building blocks. Finally, by incorporation of a chiral auxiliary, they subsequently achieved asymmetric oxyamination of
tryptamine derivatives. This transformation enables the enantioselective construction of 3-aminopyrroloindolines that is useful in the synthesis of oxidized-indole natural products.

![Scheme 48. Oxaziridine-Mediated Oxyamination of Indoles](image)

More recently, Dauban utilized this rhodium nitrene for direct nitrogen atom transfer to indolic derivatives. This efficient intermolecular oxyamidation reaction affords access to 2,3-substituted indolines. Interestingly, its stereoselectivity is controlled by the nucleophile, while the regioselectivity is operated by the introduction of a substituent at C3. Moreover, the introduction of nitrogen nucleophiles enables the development of the catalytic diamination of indoles.

![Scheme 49. Catalytic Oxyamidation of Indoles](image)
3.2 EXPERIMENT

3.2.1 General Procedures

General Procedures. All reactions were performed in oven-dried or flame-dried round-bottom flasks and vials. Stainless steel syringes and cannula were used to transfer air- and moisture-sensitive liquids. Flash chromatography was performed using silica gel 60 (230-400 mesh) from Sigma-Aldrich.

Materials. Commercial reagents were purchased from Sigma-Aldrich, Fluka, EM Science, and Lancaster and used as received. All solvents were used after being freshly distilled unless otherwise noted.

Instrumentation. Proton nuclear magnetic resonance (\(^1\)H NMR) spectra and carbon nuclear magnetic resonance (\(^{13}\)C NMR) spectra were recorded on Bruker UltraShield-400 (400 MHz). Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to the NMR solvent residual peak (CHCl\(_3\): \(\delta7.26\); DMSO: \(\delta2.50\)). Chemical shifts for carbons are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the NMR solvent (CDCl\(_3\): \(\delta77.0\); DMSO: \(\delta39.5\)). Data are represented as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m = multiplet), coupling constants (\(J\)) in Hertz (Hz), and integration.

The mass spectroscopic data were obtained at the Georgia State University mass spectrometry facility using a Micromass Platform II single quadrupole instrument. Infrared (IR) spectra were obtained by using a Perkin Elmer Spectrum 100 FT-IR spectrometer. Data are represented as follows: frequency of absorption (cm\(^{-1}\)). Optical rotations were measured using a 1 mL cell with a 1 dm path length on a Perkin Elmer model 343 at 589 nm, and are reported as \([\alpha\)
$[\theta]$ (concentration ingrams/100 mL solvent). Chiral HPLC analysis was performed with an Agilent HPLC instrument.

![Chemical structure](image)

Table 9. Catalyst Discovery for the Racemic Indole Aminohydroxylation

General Procedure: To a flame-dried vial were added Fe(X)$_n$ (0.007 mmol) and 1,10-phenanthroline (0.014 mmol). After evacuation upon oil pump and refill with argon three times, anhydrous and degassed MeCN (1.5 mL) was added. The resulting suspension was stirred vigorously at room temperature for 30 min; substrate 1 (0.04 mmol) in MeCN (0.5 mL) was added afterwards. The reaction was stirred at the indicated temperature for 5 h. Conversions were determined by 1H NMR analysis with 1, 3, 5-trimethoxybenzene as an internal standard. The reaction was quenched with saturated NaHCO$_3$ aqueous solution, and extracted with DCM three times. The combined organic phase was dried over anhydrous Na$_2$SO$_4$ and concentrated *in vacuo*.
The residue was purified by silica gel flash column (hexane:THF = 4:1) to afford the racemic aminohydroxylation product 2.

![Chemical structure of 2](image)

(±)-2'-Oxo-1-(phenylsulfonyl)spiro[indoline-3,4'-oxazolidine]-2-yl 2,4-dichlorobenzoate (2): 1H NMR (400 MHz, d_6-DMSO, ppm): δ 8.80 (s, 1H), 8.02 (d, $J = 7.6$ Hz, 2H), 7.84 (s, 1H), 7.77 (d, $J = 8.4$ Hz, 1H), 7.69 (t, $J = 6.8$ Hz, 1H), 7.57-7.54 (m, 3H), 7.49 (d, $J = 6.8$ Hz, 1H), 7.41 (s, 2H), 7.21 (s, 1H), 6.99 (s, 1H), 4.62 (d, $J = 9.2$ Hz, 1H), 4.06 (d, $J = 8.8$ Hz, 1H); 13C NMR (100 MHz, d_6-DMSO, ppm): δ 162.7, 158.1, 150.4, 139.5, 138.7, 138.0, 134.9, 134.8, 133.7, 131.4, 131.2, 130.2, 129.7, 128.0, 127.7, 127.0, 125.7, 125.4, 113.5, 89.4, 73.9, 67.0; IR ν_{max} (neat)/cm$^{-1}$: 3443 (w), 1768 (s), 1238 (m), 1029 (m); HRMS (ESI) calcd for $C_{23}H_{15}Cl_2N_2O_6S$ [M-H]$^-$: 517.0028, found 517.0042.
3.2.2 General Synthetic Route for Substrates Preparation and Characterization

Substrate Scope

[Chemical Structures]

Table 10. Substrate Scope

Scheme 50. General Synthetic Route for Substrates Preparation

3.2.2.1 Preparation of Indole Alcohols and Product Characterization

General Procedure for Preparation of Indole Alcohols (IA): \(^6\) At 0 °C, to a solution of indole aldehyde (1 mmol) in DCM (10 mL), was added \(\text{Bu}_3\text{NHSO}_4\) (0.05 mmol, 17 mg) and NaOH (1.1 mmol, 44 mg) subsequently. After stirring for 0.5 h at 0 °C, PhSO\(_2\)Cl (1.1 mmol, 194 mg) was added dropwise and stirred for additional 0.5 h at room temperature. Then the reaction mixture was diluted with DCM (50 mL) and water (50 mL). The organic layer was separated and the aqueous phase was extracted with 50 mL DCM. The combined organic layer
was washed with brine (50 mL), dried over anhydrous Na$_2$SO$_4$, and concentrated \textit{in vacuo}. The crude product was purified with flash silica gel column chromatography (20% EtOAc in hexanes) to afford the protected indole aldehyde (75–95% yield). To a solution of protected indole aldehyde obtained (1 mmol) in methanol (10 mL), NaBH$_4$ (1.1 mmol, 41 mg) was added in one portion at 0 °C. After stirring for 30 min, the solvents were removed under vacuum, and the residue was extracted by DCM (50 mL). The organic layer was washed by brine, dried over anhydrous Na$_2$SO$_4$ and concentrated under vacuum. The residue was purified by silica gel flash column chromatography (40% EtOAc in hexanes) to afford the indole alcohol (IA1–IA9, 85–95% yield).

![IA1](image)

\textbf{(1-(Phenylsulfonyl)-1H-indol-3-yl)methanol (IA1):} IA1 was prepared by following the literature procedure and the NMR spectra were in accordance with the previously reported data.

![IA2](image)

\textbf{(5-Methyl-1-(phenylsulfonyl)-1H-indol-3-yl)methanol (IA2):} white solid, mp: 119–121 °C; 1H NMR (400 MHz, CDCl$_3$, ppm): δ 7.87–7.84 (m, 3H), 7.48–7.44 (m, 2H), 7.38–7.35 (m, 3H), 7.14 (d, $J = 8.4$ Hz, 1H), 4.72 (s, 2H), 2.38 (s, 3H), 2.28 (brs, 1H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 138.0, 133.7, 133.6, 133.0, 129.6, 129.1, 126.6, 126.3, 123.7, 122.4, 119.7,
113.2, 56.9, 21.2; IR νₘₐₓ (neat)/cm⁻¹: 3323 (w), 1447 (m), 1364 (m), 1172 (s), 1118 (s); HRMS (ESI) calcd for C₁₆H₁₄NO₃S [M-H]⁻: 300.0704, found 300.0694.

![IA3](image)

(5-Methoxy-1-(phenylsulfonyl)-1H-indol-3-yl)methanol (IA3): white solid, mp: 105–107 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.79 (d, J = 8.0 Hz, 2H), 7.45 (s, 1H), 7.40 (t, J = 7.2 Hz, 1H), 7.31 (t, J = 7.6 Hz, 1H), 6.96 (s, 1H), 6.90 (d, J = 9.2 Hz, 1H), 4.66 (s, 2H), 3.72 (s, 3H), 2.85 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 156.3, 137.7, 133.6, 130.4, 129.8, 129.0, 126.4, 124.2, 122.7, 114.3, 113.9, 102.2, 56.6, 55.4; IR νₘₐₓ (neat)/cm⁻¹: 3403 (w), 1475 (m), 1366 (m), 1170 (s), 1029 (s); HRMS (ESI) calcd for C₁₆H₁₄NO₃S [M-H]⁻: 316.0644, found 316.0649.

![IA4](image)

(6-Methyl-1-(phenylsulfonyl)-1H-indol-3-yl)methanol (IA4): white solid, mp: 118-120 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.86 (d, J = 8.0 Hz, 2H), 7.80 (s, 1H), 7.51-7.38 (m, 5H), 7.06 (d, J = 8.0 Hz, 1H), 4.73 (s, 2H), 2.47 (s, 3H), 2.07 (s, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 138.2, 135.8, 135.2, 133.7, 129.2, 127.1, 126.6, 124.9, 123.0, 122.5, 119.4, 113.7, 57.0, 21.9; IR νₘₐₓ (neat)/cm⁻¹: 3352 (w), 1448 (m), 1367 (m), 1275 (s), 1173 (s); HRMS (ESI) calcd for C₁₆H₁₄NO₃S [M+H]⁺: 300.0704, found 300.0694.
(6-Bromo-1-(phenylsulfonyl)-1H-indol-3-yl)methanol (IA5): white solid, mp: 124-126 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): \(\delta\) 8.16 (s, 1H), 7.87 (d, \(J = 7.6\) Hz, 2H), 7.55 (t, \(J = 7.2\) Hz, 1H), 7.49-7.43 (m, 4H), 7.34 (d, \(J = 8.4\) Hz, 1H), 4.76 (s, 2H), 1.90 (s, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), ppm): δ 137.9, 136.0, 134.1, 129.5, 128.2, 126.7, 124.0, 122.3, 121.1, 118.8, 116.6, 56.9; IR \(\nu_{\text{max}}\) (neat)/cm\(^{-1}\): 3370 (w), 1367 (m), 1276 (s), 1174 (s), 1125 (s); HRMS (ESI) calcd for C\(_{15}\)H\(_{11}\)NO\(_3\)SBr [M-H]: 363.9643, found 363.9645.

(6-Chloro-1-(phenylsulfonyl)-1H-indol-3-yl)methanol (IA6): white solid, mp: 141-143 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): \(\delta\) 8.03 (s, 1H), 7.91 (d, \(J = 8.0\) Hz, 2H), 7.59 (t, \(J = 7.2\) Hz, 1H), 7.54-7.47 (m, 4H), 7.25 (d, \(J = 8.4\) Hz, 1H), 4.81 (d, \(J = 4.4\) Hz, 2H), 1.73 (t, \(J = 4.8\) Hz, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), ppm): δ 137.9, 135.8, 134.1, 131.2, 127.9, 126.8, 124.1, 122.2, 120.8, 113.9, 57.0; IR \(\nu_{\text{max}}\) (neat)/cm\(^{-1}\): 3366 (w), 1448 (m), 1370 (m), 1173 (s), 1132 (s); HRMS (ESI) calcd for C\(_{15}\)H\(_{11}\)NO\(_3\)SCl [M-H]: 320.0148, found 320.0146.

(6-Phenyl-1-(phenylsulfonyl)-1H-indol-3-yl)methanol (IA7): \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): \(\delta\) 8.26 (s, 1H), 7.92 (d, \(J = 7.6\) Hz, 2H), 7.67-7.60 (m, 4H), 7.50-7.48 (m, 4H),
7.43–7.39 (m, 3H), 4.81 (s, 2H), 2.27 (s, 1H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 141.2, 138.6, 138.1, 136.1, 134.0, 129.4, 128.9, 128.7, 127.5, 127.4, 126.8, 124.1, 123.1, 122.6, 120.2, 112.1, 57.0; IR ν_{max} (neat)/cm$^{-1}$: 3371 (w), 1369 (m), 1174 (s), 1122 (m); HRMS (ESI) calcd for C$_{21}$H$_{16}$NO$_3$S [M-H]$^-$: 362.0851, found 362.0859.

(7-Methyl-1-(phenylsulfonyl)-1H-indol-3-yl)methanol (IA8): white solid, mp: 118–120 °C; 1H NMR (400 MHz, CDCl$_3$, ppm): δ 7.66 (s, 1H), 7.53 (t, $J = 7.2$ Hz, 1H), 7.47–7.40 (m, 3H), 7.15 (t, $J = 7.2$ Hz, 1H), 7.04 (d, $J = 7.2$ Hz, 1H), 4.82 (s, 2H), 2.51 (s, 3H), 2.06 (brs, 1H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 139.8, 135.4, 133.5, 131.5, 129.3, 128.6, 127.2, 126.3, 125.0, 123.9, 121.6, 117.6, 57.0, 21.6; IR ν_{max} (neat)/cm$^{-1}$: 3361 (w), 1447 (m), 1354 (s), 1275 (s), 1083 (s); HRMS (ESI) calcd for C$_{16}$H$_{15}$NO$_3$SNa [M+Na]$^+$: 324.0670, found 324.0670.

(4-Bromo-1-(phenylsulfonyl)-1H-indol-3-yl)methanol (IA9): 1H NMR (400 MHz, CDCl$_3$, ppm): δ 7.98 (d, $J = 6.4$ Hz, 2H), 7.73 (s, 1H), 7.69 (t, $J = 7.2$ Hz, 1H), 7.59 (t, $J = 8.0$ Hz, 2H), 7.44 (d, $J = 7.6$ Hz, 1H), 7.25 (t, $J = 8.0$ Hz, 1H), 5.31 (t, $J = 5.2$ Hz, 1H), 4.86 (d, $J = 6.0$ Hz, 2H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 136.7, 135.9, 134.8, 129.9, 127.8, 127.4, 126.7, 126.1, 124.9, 113.7, 112.7, 56.3; IR ν_{max} (neat)/cm$^{-1}$: 3006 (w), 1276 (m), 1173 (w), 978 (w), 750 (s); HRMS (ESI) calcd for C$_{15}$H$_{12}$NO$_3$SBrNa [M+Na]$^+$: 387.9619, found 387.9626.
3.2.2.2 Preparation of Indole Hydroxylamines and Product Characterization

General Procedure for Preparation of Indole Substrates (IS): To a solution of indole alcohol (1 mmol) in MeCN (10 mL), was added CDI-HCl (3 mmol, 599 mg) at room temperature. After stirring for 1.0 h, NH₂OH-HCl (4 mmol, 278 mg), imidazole (5 mmol, 340 mg) were added subsequently and stirred for an additional 4 h at room temperature. Then the reaction mixture was diluted with DCM (50 mL) and water (50 mL). The organic layer was separated and aqueous phase was extracted with 30 mL DCM three times. The combined organic layer was washed with brine (50 mL), dried over anhydrous Na₂SO₄, and concentrated under vacuum. The residue was purified with silica gel flash column chromatography (50% EtOAc in hexanes) to afford the hydroxyl carbamate product (70–85% yield). To a solution of indole hydroxyl carbamate (1.0 mmol) and TEA (1.5 mmol, 152 mg) in THF (10 mL), 2, 4-dichlorobenzoyl chloride (1.05 mmol, 218 mg) in THF (3.0 mL) was added dropwise at 0 °C. After stirring for 1 h, the mixture was quenched by cautiously adding water (0.2 mL). Then the reaction mixture was diluted with DCM (50 mL) and water (50 mL). The aqueous phase was extracted with DCM (50 mL). The combined organic layer was washed with brine (50 mL), dried over anhydrous Na₂SO₄, and concentrated under vacuum. The residue was purified with silica gel flash column chromatography (30% EtOAc in hexanes) to afford the indole substrates (1 to IS9) (75–95% yield).

![Chemical structure](image)

(1-(Phenylsulfonyl)-1H-indol-3-yl)methyl 2,4-dichlorobenzoyloxycarbamate (1) : white solid, mp: 165–167 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.53 (brs, 1H), 7.99 (d, J =
8.4 Hz, 1H), 7.90 (d, J = 7.6 Hz, 2H), 7.83 (d, J = 8.4 Hz, 1H), 7.70 (s, 1H), 7.57 (d, J = 7.6 Hz, 1H), 7.54–7.41 (m, 4H), 7.35 (t, J = 7.6 Hz, 1H), 7.27–7.23 (m, 2H), 5.39 (s, 2H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 163.6, 156.2, 139.8, 137.9, 135.6, 135.0, 133.9, 132.7, 131.2, 129.3, 129.2, 127.2, 126.8, 126.1, 125.2, 124.5, 123.6, 119.6, 116.5, 113.6, 60.0; IR ν_{max} (neat)/cm$^{-1}$: 3006 (w), 1747 (s), 1585 (m), 1447 (s), 1374 (m), 1275 (s), 1085 (s); HRMS (ESI) calcd for C$_{23}$H$_{15}$Cl$_2$N$_2$O$_6$S [M-H]$: 517.0028, found 517.0025.

Methyl 4-(((5-methyl-1-(phenylsulfonyl)-1H-indol-3-yl) methoxy) carbonylaminoxy) carbonyl) benzoate (IS2): white solid, mp: 121-122 °C; 1H NMR (400 MHz, CDCl$_3$, ppm): δ 8.41 (s, 1H), 8.12 (s, 4H), 7.88–7.84 (m, 3H), 7.62 (s, 1H), 7.53 (t, J = 7.6 Hz, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.33 (s, 1H), 7.15 (d, J = 8.4 Hz, 1H), 5.35 (s, 2H), 3.96 (s, 3H), 2.38 (s, 3H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 165.0, 156.2, 138.1, 135.1, 134.0, 133.4, 133.36, 130.3, 129.9, 129.5, 129.4, 126.8, 126.7, 126.3, 119.5, 116.4, 113.4, 60.2, 52.7, 21.3; IR ν_{max} (neat)/cm$^{-1}$: 3266 (w), 1721 (s), 1448 (m), 1370 (m), 1226 (s), 1095 (s); MS(ESI) C$_{26}$H$_{21}$N$_2$O$_8$S [M-H]$: 521.1.

Methyl 4-(((5-methoxy-1-(phenylsulfonyl)-1H-indol-3-yl) methoxy) carbonylaminoxy) carbonyl) benzoate (IS3): white solid, mp: 122–124 °C; 1H NMR (400 MHz, CDCl$_3$, ppm): δ 8.37 (s, 1H), 8.11 (s, 4H), 7.87–7.85 (m, 3H), 7.62 (s, 1H), 7.53 (t, J = 7.2
Hz, 1H), 7.43 (t, $J = 7.6$ Hz, 2H), 6.98 (s, 1H), 6.94 (d, $J = 9.2$ Hz, 1H), 5.35 (s, 2H), 3.96 (s, 3H), 3.79 (s, 3H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 166.0, 165.2, 156.8, 156.3, 138.1, 135.3, 134.1, 130.3, 129.4, 128.3, 126.9, 116.7, 114.8, 114.6, 102.0, 60.2, 55.8, 52.8; IR ν_{max} (neat)/cm$^{-1}$: 3111 (w), 1718 (s), 1450 (m), 1376 (m), 1216 (s), 1097 (s); MS(ESI) C$_{26}$H$_{21}$N$_2$O$_6$S [M-H]$^-$: 537.0.

![IS4](image)

2,4-dichlorobenzoyloxy carbamate (IS4): white solid, mp: 144–146 °C; 1H NMR (400 MHz, d_6-DMSO, ppm): δ 11.52 (brs, 1H), 7.99 (d, $J = 7.2$ Hz, 2H), 7.88-7.77 (m, 4H), 7.68 (t, $J = 6.8$ Hz, 1H), 7.60-7.49 (m, 4H), 7.09 (d, $J = 7.2$ Hz, 1H), 5.34 (s, 2H), 2.44 (s, 3H); 13C NMR (100 MHz, d_6-DMSO, ppm): δ 163.3, 156.2, 138.5, 137.0, 135.0, 134.8, 133.9, 132.6, 130.8, 129.9, 127.9, 126.9, 126.7, 125.8, 125.6, 125.0, 119.8, 117.4, 113.1, 58.9, 21.5; IR ν_{max} (neat)/cm$^{-1}$: 3006 (w), 2250 (w), 1275 (s), 1025 (s), 820 (s); HRMS (ESI) calcd for C$_{24}$H$_{17}$Cl$_2$N$_2$O$_6$S [M-H]$^-$: 531.0184, found 531.0180.

![IS5](image)

2,4-dichlorobenzoyloxy carbamate (IS5): white solid, mp: 139–141 °C; 1H NMR (400 MHz, d_6-DMSO, ppm): δ 11.53 (s, 1H), 8.08 (s, 1H), 8.03–8.00 (m, 3H), 7.82 (s, 2H), 7.72 (t, $J = 7.6$ Hz, 1H), 7.64–7.55 (m, 4H), 7.45 (d, $J = 8.0$ Hz, 1H), 5.35 (s, 2H); 13C NMR (100 MHz, d_6-DMSO,
ppm): \(\delta 163.2, 156.1, 138.5, 136.7, 135.04, 135.0, 133.9, 132.6, 130.8, 130.1, 128.2, 127.9, 127.3, 126.7, 125.5, 122.1, 118.0, 117.4, 115.6, 58.6 \); IR \(\nu_{\text{max}} \) (neat)/cm\(^{-1} \): 3006 (w), 2251 (w), 1752 (s), 1585 (m), 1448 (m), 1375 (s), 1275 (s), 1095 (s); HRMS (ESI) calcd for C\(_{23}\)H\(_{14}\)BrCl\(_2\)N\(_2\)O\(_7\)S \([M-H]\)\(^{\cdot}\): 594.9133, found 594.9124.

\[(6\text{-Chloro-1-(phenylsulfonyl)-1H-indol-3-yl)methyl} \quad 2,4\text{-dichlorobenzoyloxyxycarbamate (IS6): white solid, mp: 160–162 °C; } ^1\text{H NMR (400 MHz, CDCl}_3, \text{ppm): } \delta 8.51 \text{ (s, 1H), 7.97 (s, 1H), 7.88 (d, } J = 7.6 \text{ Hz, 2H), 7.82 (d, } J = 8.4 \text{ Hz, 1H), 7.65 (s, 1H), 7.55 (t, } J = 7.2 \text{ Hz, 1H), 7.27 (s, 4H), 7.26 (d, } J = 5.2 \text{ Hz, 1H), 7.18 (d, } J = 8.0 \text{ Hz, 1H), 5.33 (s, 2H); } ^{13}\text{C NMR (100 MHz, CDCl}_3, \text{ppm): } \delta 163.6, 156.1, 140.0, 137.6, 135.7, 135.3, 134.2, 132.7, 131.3, 131.2, 129.5, 127.6, 127.2, 126.8, 126.6, 124.4, 124.3, 120.6, 116.4, 113.7, 59.7; IR \nu_{\text{max}} \) (neat)/cm\(^{-1} \): 3005 (w), 1752 (s), 1585 (m), 1448 (m), 1375 (s), 1275 (s), 1095 (s); HRMS (ESI) calcd for C\(_{23}\)H\(_{14}\)Cl\(_3\)N\(_2\)O\(_7\)S \([M-H]\)\(^{\cdot}\): 550.9638, found 550.9646.

\[(6\text{-Phenyl-1-(phenylsulfonyl)-1H-indol-3-yl)methyl} \quad 2,4\text{-dichlorobenzoyloxyxycarbamate (IS7): } ^1\text{H NMR (400 MHz, CDCl}_3, \text{ppm): } \delta 8.39 \text{ (s, 1H), 8.22 (s, 1H), 7.94 (d, } J = 7.6 \text{ Hz, 2H), 7.88 (d, } J = 8.4 \text{ Hz, 1H), 7.72 (s, 1H), 7.65–7.63 (m, 3H), 7.58–7.32 (m, 8H), 7.30–7.29 (m, 1H), 5.42 (s, 2H); } ^{13}\text{C NMR (100 MHz, CDCl}_3, \text{ppm): } \delta 163.7, 156.2, 141.1, 140.0, 138.9, 138.0, 135.8, 135.7, 134.1, 132.8, 131.3, 129.4, 128.9, 128.4, 127.5,
127.4, 127.3, 126.9, 126.6, 124.6, 123.3, 119.9, 116.4, 112.1, 60.1; IR \nu_{\text{max}} (\text{neat})/\text{cm}^{-1}: 3344 (w), 1725 (w), 1174 (m), 722 (s); HRMS (ESI) calcd for C_{29}H_{19}Cl_{2}N_{2}O_{6}S [M-H]: 593.0341, found 593.0329.

(7-Methyl-1-(phenylsulfonyl)-1H-indol-3-yl)methyl 2,4-dichlorobenzoyloxy carbamate (IS8): white solid, mp: 130–132 °C; 1H NMR (400 MHz, CDCl\textsubscript{3}, ppm): \delta 8.46 (brs, 1H), 8.15 (s, 4H), 7.93 (s, 1H), 7.70 (d, J = 7.6 Hz, 2H), 7.58 (t, J = 7.2 Hz, 1H), 7.49-7.45 (m, 3H), 7.16 (t, J = 7.6 Hz, 1H), 7.06 (d, J = 7.2 Hz, 1H), 5.44 (s, 2H), 3.98 (s, 3H), 2.52 (s, 3H); 13C NMR (100 MHz, CDCl\textsubscript{3}, ppm): \delta 165.9, 165.0, 156.2, 139.7, 135.1, 133.7, 131.2, 130.2, 129.9, 129.8, 129.6, 129.4, 128.8, 126.4, 124.9, 124.0, 117.3, 115.7, 60.1, 52.6, 21.6; \nu_{\text{max}} (\text{neat})/\text{cm}^{-1}: 3260 (w), 1725 (s), 1361 (m), 1227 (s), 1087 (s); HRMS (ESI) calcd for C_{26}H_{21}N_{2}O_{8}S [M-H]: 521.1019, found 521.1030.

(4-Bromo-1-(phenylsulfonyl)-1H-indol-3-yl)methyl 2,4-dichlorobenzoyloxy carbamate (IS9): 1H NMR (400 MHz, CDCl\textsubscript{3}, ppm): \delta 8.58 (s, 1H), 7.97-7.95 (d, J = 8.4 Hz, 1H), 7.91-7.89 (m, 3H), 7.78 (s, 1H), 7.56 (t, J = 7.2 Hz, 1H), 7.49-7.44 (m, 3H), 7.39 (d, J = 7.6 Hz, 1H), 7.29 (d, J = 8.0 Hz, 1H), 7.17 (t, J = 8.0 Hz, 1H), 5.60 (s, 2H); 13C NMR (100 MHz, CDCl\textsubscript{3}, ppm): \delta 163.7, 156.0, 139.8, 137.5, 136.1, 135.7, 134.3, 132.8, 131.2, 129.4, 127.8, 127.7, 127.2, 126.9, 125.9, 124.6, 116.6, 114.1, 112.7, 60.5; IR \nu_{\text{max}} (\text{neat})/\text{cm}^{-1}:
3006 (w), 1745 (m), 1374 (m), 983 (s), 722 (s); HRMS (ESI) calcd for C_{23}H_{14}BrCl_{2}N_{2}O_{6}S [M-H]: 594.9133, found 594.9149.

3.2.3 Catalyst Discovery for Enantioselective Intramolecular Indole Aminohydroxylation

3.2.3.1 General Procedure

<table>
<thead>
<tr>
<th>entry<sup>a</sup></th>
<th>Fe(X)<sub>2</sub></th>
<th>ligand</th>
<th>R<sup>'</sup></th>
<th>yield<sup>b</sup></th>
<th>ee<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fe(OTf)<sub>2</sub></td>
<td>L<sub>1</sub></td>
<td>2,4-Cl<sub>2</sub>-benzoyl</td>
<td>22%</td>
<td>0%</td>
</tr>
<tr>
<td>2</td>
<td>Fe(OTf)<sub>2</sub></td>
<td>L<sub>2</sub></td>
<td>2,4-Cl<sub>2</sub>-benzoyl</td>
<td>25%</td>
<td>31%</td>
</tr>
<tr>
<td>3</td>
<td>Fe(OTf)<sub>2</sub></td>
<td>L<sub>3</sub></td>
<td>2,4-Cl<sub>2</sub>-benzoyl</td>
<td>58%</td>
<td>77%</td>
</tr>
<tr>
<td>4<sup>d</sup></td>
<td>Fe(OTf)<sub>2</sub></td>
<td>L<sub>4</sub></td>
<td>2,4-Cl<sub>2</sub>-benzoyl</td>
<td>48%</td>
<td>-86%</td>
</tr>
<tr>
<td>5</td>
<td>Fe(OTf)<sub>2</sub></td>
<td>L<sub>5</sub></td>
<td>2,4-Cl<sub>2</sub>-benzoyl</td>
<td>15%</td>
<td>32%</td>
</tr>
<tr>
<td>6</td>
<td>Fe(OTf)<sub>2</sub></td>
<td>L<sub>6</sub></td>
<td>2,4-Cl<sub>2</sub>-benzoyl</td>
<td>33%</td>
<td>22%</td>
</tr>
<tr>
<td>7</td>
<td>Fe(OTf)<sub>2</sub></td>
<td>L<sub>7</sub></td>
<td>2,4-Cl<sub>2</sub>-benzoyl</td>
<td>21%</td>
<td>37%</td>
</tr>
<tr>
<td>8</td>
<td>Fe(OTf)<sub>2</sub></td>
<td>L<sub>8</sub></td>
<td>2,4-Cl<sub>2</sub>-benzoyl</td>
<td>25%</td>
<td>61%</td>
</tr>
<tr>
<td>9</td>
<td>Fe(OTf)<sub>2</sub></td>
<td>L<sub>9</sub></td>
<td>2,4-Cl<sub>2</sub>-benzoyl</td>
<td>65%</td>
<td>87%</td>
</tr>
<tr>
<td>10</td>
<td>Fe(OTf)<sub>2</sub></td>
<td>L<sub>10</sub></td>
<td>2,4-Cl<sub>2</sub>-benzoyl</td>
<td>50%</td>
<td>81%</td>
</tr>
<tr>
<td>11</td>
<td>Fe(OTf)<sub>2</sub></td>
<td>L<sub>9</sub></td>
<td>4-CO<sub>2</sub>Me-benzoyl</td>
<td>62%</td>
<td>87%</td>
</tr>
<tr>
<td>12</td>
<td>Fe(OTf)<sub>2</sub></td>
<td>L<sub>9</sub></td>
<td>4-CF<sub>3</sub>-benzoyl</td>
<td>65%</td>
<td>77%</td>
</tr>
<tr>
<td>13</td>
<td>Fe(OTf)<sub>2</sub></td>
<td>L<sub>9</sub></td>
<td>4-Cl-benzoyl</td>
<td>58%</td>
<td>78%</td>
</tr>
<tr>
<td>14</td>
<td>Fe(OTf)<sub>2</sub></td>
<td>L<sub>9</sub></td>
<td>3,5-(CF<sub>3</sub>)<sub>2</sub>-benzoyl</td>
<td>75%</td>
<td>75%</td>
</tr>
<tr>
<td>15</td>
<td>Fe(NTf)<sub>2</sub></td>
<td>L<sub>9</sub></td>
<td>2,4-Cl<sub>2</sub>-benzoyl</td>
<td>67%</td>
<td>79%</td>
</tr>
<tr>
<td>16</td>
<td>FeCl<sub>2</sub></td>
<td>L<sub>9</sub></td>
<td>2,4-Cl<sub>2</sub>-benzoyl</td>
<td>63%</td>
<td>86%</td>
</tr>
<tr>
<td>17</td>
<td>FeBr<sub>2</sub></td>
<td>L<sub>9</sub></td>
<td>2,4-Cl<sub>2</sub>-benzoyl</td>
<td>52%</td>
<td>75%</td>
</tr>
<tr>
<td>18</td>
<td>Fe(OAc)<sub>2</sub></td>
<td>L<sub>9</sub></td>
<td>2,4-Cl<sub>2</sub>-benzoyl</td>
<td>67%</td>
<td>90%</td>
</tr>
</tbody>
</table>

^aReactions were carried out under argon in 0.025 M toluene/MeCN (50:1) mixture; catalyst complexes were formed by premixing Fe(X)₂ and ligands for 40 min.^bIsolated yield. ^cee was measured by HPLC analysis with chiral stationary phase. ^dThe sense of enantioinduction in entry 4 is opposite to that of other entries.

Table 11. Catalyst Discovery for Intramolecular Indole Aminohydroxylation
4 Å MS (50 mg), Fe(X)$_2$ (0.007 mmol) and chiral ligand L (0.014 mmol) were added to a flame-dried vial. After evacuation upon oil pump and refill with argon three times, anhydrous and degassed toluene/MeCN (50:1, 1.5 mL) mixture was added. The obtained suspension was stirred vigorously at room temperature for 30 min when the substrate (0.04 mmol) in the aforementioned co-solvent (0.5 mL) was added. The reaction mixture was stirred at room temperature for 12 h before quenched by saturated NaHCO$_3$ aqueous solution. The aqueous phase was extracted with DCM three times. The combined organic phase was dried over anhydrous Na$_2$SO$_4$ and concentrated in vacuo. Purification of the residue by silica gel flash column (hexane:THF = 4:1) afforded the aminohydroxylation product 2.

3.2.3.2 Solvent Screening

A series of toluene and MeCN co-solvent systems have been screened for the asymmetric reaction with the aforementioned procedure (Table 12).

![Diagram of reaction](image)

<table>
<thead>
<tr>
<th>entry</th>
<th>solvent</th>
<th>ratio</th>
<th>ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toluene</td>
<td>-</td>
<td>85%</td>
</tr>
<tr>
<td>2</td>
<td>toluene/MeCN</td>
<td>5:1</td>
<td>80%</td>
</tr>
<tr>
<td>3</td>
<td>toluene/MeCN</td>
<td>10:1</td>
<td>81%</td>
</tr>
<tr>
<td>4</td>
<td>toluene/MeCN</td>
<td>20:1</td>
<td>81%</td>
</tr>
<tr>
<td>5</td>
<td>toluene/MeCN</td>
<td>50:1</td>
<td>87%</td>
</tr>
<tr>
<td>6</td>
<td>MeCN</td>
<td>-</td>
<td>49%</td>
</tr>
</tbody>
</table>

Table 12. Solvent Screening for Fe(OTf)$_2$–L9 System
3.2.3.3 Temperature Screening

![Chemical structure and reaction conditions]

<table>
<thead>
<tr>
<th>entry</th>
<th>temperature</th>
<th>conversion</th>
<th>ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>rt</td>
<td>>95%</td>
<td>87%</td>
</tr>
<tr>
<td>2</td>
<td>0 °C</td>
<td>65%</td>
<td>87%</td>
</tr>
</tbody>
</table>

Table 13. Temperature Screening for Fe(OTf)$_2$–L9-Catalyzed Reactions

![Chemical structure and reaction conditions]

<table>
<thead>
<tr>
<th>entry</th>
<th>temperature</th>
<th>conversion</th>
<th>ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>rt</td>
<td>>95%</td>
<td>90%</td>
</tr>
<tr>
<td>2</td>
<td>0 °C</td>
<td><50%</td>
<td>90%</td>
</tr>
</tbody>
</table>

Table 14. Temperature Screening for Fe(OAc)$_2$–L9-Catalyzed Reactions

3.2.3.4 Concentration Screening

![Chemical structure and reaction conditions]

<table>
<thead>
<tr>
<th>entry</th>
<th>concentration</th>
<th>ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.10 M</td>
<td>82%</td>
</tr>
<tr>
<td>2</td>
<td>0.05 M</td>
<td>87%</td>
</tr>
<tr>
<td>3</td>
<td>0.02 M</td>
<td>90%</td>
</tr>
<tr>
<td>4</td>
<td>0.01 M</td>
<td>90%</td>
</tr>
</tbody>
</table>

Table 15. Concentration Screening for Fe(OAc)$_2$–L9-Catalyzed Reactions
3.2.3.5 \textit{N-Donor Effect}

General Procedure for \textit{N}-donor Additive’s Effect: To a flame-dried vial were added 4 Å MS (50 mg), Fe(OTf)$_2$ (0.007 mmol) and ligand L9 (0.014 mmol). After evacuation upon oil pump and refill with argon three times, the anhydrous and degassed toluene was added, followed by addition of the \textit{N}-donor compound (0.04 mmol). The obtained suspension was stirred vigorously at room temperature for 30 min when the substrate (0.04 mmol) dissolved anhydrous and degassed toluene (600 µL) was added in one portion. The reaction was stirred at room temperature for indicated time above and quenched by saturated NaHCO$_3$ aqueous solution. The aqueous phase was extracted with DCM three times. The combined organic phase was dried over anhydrous Na$_2$SO$_4$. After concentration \textit{in vacuo}, the residue was purified by silica gel flash column chromatography (hexane:THF = 4:1).

![Chemical reaction](image)

<table>
<thead>
<tr>
<th>entry</th>
<th>\textit{N}-donor</th>
<th>time for full conversion</th>
<th>ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>\begin{array}{l} \text{Me} \ \text{N} \ \text{Me} \end{array}</td>
<td>0.5 h</td>
<td>85%</td>
</tr>
<tr>
<td>2</td>
<td>\begin{array}{l} \text{Me} \ \text{N} \ \text{Me} \end{array}</td>
<td>1.0 h</td>
<td>80%</td>
</tr>
<tr>
<td>3</td>
<td>\begin{array}{l} \text{Me} \ \text{N} \ \text{Me} \end{array}</td>
<td>12 h</td>
<td>79%</td>
</tr>
<tr>
<td>4</td>
<td>\begin{array}{l} \text{Me} \ \text{N} \ \text{Me} \end{array}</td>
<td>12 h</td>
<td>87%</td>
</tr>
<tr>
<td>5</td>
<td>\begin{array}{l} \text{Me} \ \text{N} \ \text{Me} \end{array}</td>
<td>non-reactive</td>
<td>NA</td>
</tr>
<tr>
<td>6</td>
<td>\begin{array}{l} \text{Me} \ \text{N} \ \text{Me} \end{array}</td>
<td>non-reactive</td>
<td>NA</td>
</tr>
</tbody>
</table>

\textit{Table 16. \textit{N}-Donor Additive Effect}
In the presence of lutidine as the N–donor additive, a series of iron (II) salts with different counter anions were screened (Table 17).

Table 17. Counter Anion Screening with Lutidine as the N-donor

Experiments with different quantities of lutidine were performed for ee optimization (Table 18).

The temperature screening showed that the highest enantioselectivity is obtained at -10 °C (Table 19).
3.2.3.6 General Procedure for Iron(II)-Catalyzed Asymmetric Aminohydroxylation

To a flame-dried vial were added 4Å MS (50 mg), Fe(OAc)$_2$ (0.007 mmol) together with ligand L9 (0.014 mmol). After evacuation upon oil pump and refill with argon three times, anhydrous and degassed toluene/MeCN (50:1, 1.5 mL) co-solvent was added. The obtained suspension was stirred vigorously at room temperature for 30 min before the substrate (0.04 mmol) in the aforementioned co-solvent (0.5 mL) was added in one portion. The reaction system was stirred at room temperature for 12 h when all the starting material was fully consumed. Sat. NaHCO$_3$ aqueous solution was added to quench the reaction, and the aqueous phase was extracted with DCM three times. The combined organic phase was dried over anhydrous Na$_2$SO$_4$ and concentrated in vacuo. The residue was purified by silica gel flash column chromatography (hexane:THF = 4:1) to give the desired aminohydroxylation product 2.

3.2.3.7 Product Characterization

![Chemical structure of compound 2](image)

$$(2R, 3S)$-2'$-Oxo-1-(phenylsulfonyl)spiro[indoline-3,4'-oxazolidine]-2-yl 2,4-$$
dichlorobenzoate (2): by following the general procedure (0.04 mmol scale), the title compound 2 was obtained from 1 and isolated by a silica gel flash column as white foam (14 mg, 67% yield). The sample was analyzed by Chiral HPLC analysis and determined to be 90% ee (Chiralcel AD-H, 1.0 mL/min, 272 nm, 20% i-PrOH in hexane, t$_r$ (minor) = 19.99 min, t$_r$ (major) = 32.33 min). [α]2_0 = 62.0° (c = 1.0, DCM). 1H NMR (400 MHz, d_6-DMSO, ppm): δ 8.80 (s, 1H), 8.02 (d, $J = 7.6$ Hz, 2H), 7.84 (s, 1H), 7.77 (d, $J = 8.4$ Hz, 1H), 7.69 (t, $J = 6.8$ Hz, 1H), 7.57-7.54 (m, 3H), 7.49 (d, $J = 6.8$ Hz, 1H), 7.41 (s, 2H), 7.21 (s, 1H), 6.99 (s, 1H), 4.62 (d, $J = 9.2$ Hz, 1H), 4.06 (d, $J = 8.8$ Hz, 1H); 13C NMR (100 MHz, d_6-DMSO, ppm): δ 162.7, 158.1, 150.4, 139.5, 138.7, 138.0, 134.9, 134.8, 133.7, 131.4, 131.2, 130.2, 129.7, 128.0, 127.7, 127.0, 125.7, 125.4, 113.5, 89.4, 73.9, 67.0; HRMS (ESI) calcd for C$_{23}$H$_{15}$Cl$_2$N$_2$O$_6$S [M-H]: 517.0028, found 517.0042.

Methyl (2R,3S)-5-ethyl-2'-oxo-1-(phenylsulfonyl)spiro[indoline-3,4'-oxazolidine]-2-yl terephthalate (P2): by following the general procedure (0.04 mmol scale), the title compound P2 was obtained from IS2 and isolated by a silica gel flash column as white foam (16 mg, 72% yield). The sample was analyzed by Chiral HPLC analysis and determined to be 94% ee (Chiralcel AD-H, 1.0 mL/min, 254 nm, 20% i-PrOH in hexane, t$_r$ (minor) = 18.86 min, t$_r$ (major) = 24.41 min). [α]2_0 = 32.0° (c = 1.1, DCM). 1H NMR (400 MHz, d_6-DMSO, ppm): δ 8.80 (s, 1H), 8.08 (d, $J = 8.0$ Hz, 2H), 7.97 (d, $J = 7.6$ Hz, 4H), 7.69 (t, $J = 7.2$ Hz, 1H), 7.55 (t, $J = 7.6$ Hz, 2H), 7.35 (d, $J = 8.0$ Hz, 1H), 7.29 (s, 1H), 7.25 (d, $J = 8.0$ Hz, 1H), 6.97 (s, 1H), 4.52 (d, $J = 9.2$ Hz, 1H), 4.01 (d, $J = 9.2$ Hz, 1H), 3.90 (s, 3H); 13C NMR (100 MHz, d_6-DMSO, ppm): δ
165.9, 164.3, 158.2, 138.1, 137.3, 135.1, 134.9, 132.5, 131.8, 130.7, 130.3, 129.9, 129.8, 127.5, 125.8, 113.6, 89.5, 73.8, 67.1, 53.1, 20.9; IR ν_{max} (neat)/cm⁻¹: 3324 (w), 1767 (s), 1276 (m), 1176 (m); HRMS (ESI) calcd for C₂₄H₁₈Cl₂N₂O₆S [M-H]⁻: 531.0184, found 531.0192.

(2R,3S)-5-methoxy-2'-oxo-1-(phenylsulfonyl)spiro[indoline-3,4'-oxazolidine]-2-yl methyl terephthalate (P3): the title compound P3 was obtained from IS3 by following the general procedure with lutidine as the additive. To a flame-dried vial were added 4 Å MS (50 mg), Fe(OTf)₂ (0.007 mmol) and ligand L9 (0.014 mmol). After evacuation upon oil pump and refill with argon three times, anhydrous and degassed toluene (1.4 mL) was added, followed by addition of lutidine (0.04 mmol). The obtained suspension was stirred vigorously at room temperature for 30 min and then IS3 (0.04 mmol) dissolved anhydrous and degassed toluene (600 µL) was added in one portion. The reaction was stirred at room temperature for 1 h and quenched by saturated NaHCO₃ aqueous solution. The aqueous phase was extracted with DCM three times and the combined organic phase was dried over anhydrous Na₂SO₄. After concentration in vacuo, the title compound was isolated by a silica gel flash column as white foam (17 mg, 75% yield). The sample was analyzed by Chiral HPLC analysis and determined to be 93% ee (Chiralcel AD-H, 1.0 mL/min, 272 nm, 20% i-PrOH in hexane, t_e (minor) = 20.03 min, t_e (major) = 21.67 min). [α]²⁰ _D = 30.5° (c = 1.3, DCM). ¹H NMR (400 MHz, d₆-DMSO, ppm): δ 8.81 (s, 1H), 8.03 (AB, 4H), 7.94 (d, J = 7.6 Hz, 2H), 7.70 (t, J = 7.2 Hz, 1H), 7.56 (t, J = 8.0 Hz, 2H), 7.40 (d, J = 8.8 Hz, 1H), 7.09 (d, J = 2.0 Hz, 1H), 7.01 (dd, J = 8.4 Hz, 2.0 Hz, 1H), 6.93 (s, 1H), 4.36 (d, J = 9.2 Hz, 1H), 4.03 (d, J = 8.8 Hz, 1H), 3.90 (s, 3H), 3.75 (s, 3H);
C NMR (100 MHz, d_6-DMSO, ppm): δ 165.9, 164.3, 158.1, 157.6, 137.9, 134.9, 134.6, 132.8, 132.5, 131.4, 130.7, 130.3, 129.8, 127.5, 117.0, 115.1, 110.9, 89.7, 73.5, 67.3, 56.2, 53.1; IR ν_{max} (neat)/cm$^{-1}$: 3330 (w), 1771 (s), 1275 (m), 1033 (s); MS(ESI) C$_{26}$H$_{22}$N$_2$O$_9$S [M-H]$^-$: 537.1.

(2R, 3S)-6-methyl-2'-oxo-1-(phenylsulfonyl)spiro[indoline-3,4'-oxazolidine]-2-yl 2,4-dichlorobenzoate (P4): by following the general procedure (0.04 mmol scale), the title compound P4 was obtained from IS4 and isolated by a silica gel flash column as white foam (14 mg, 65% yield). The sample was analyzed by Chiral HPLC analysis and determined to be 94% ee (Chiralcel AD-H, 1.0 mL/min, 254 nm, 20% i-PrOH in hexane, t_r (minor) = 17.02 min, t_r (major) = 28.59 min). $[\alpha]_D^{20} = 25.9^\circ$ (c = 1.1, DCM). 1H NMR (400 MHz, CDCl$_3$, ppm): δ 8.75 (s, 1H), 8.01 (d, $J = 7.6$ Hz, 2H), 7.84 (s, 1H), 7.75 (d, $J = 8.4$ Hz, 1H), 7.68 (d, $J = 7.2$ Hz, 1H), 7.57–7.55 (m, 3H), 7.35 (d, $J = 7.6$ Hz, 1H), 7.24 (s, 1H), 7.02 (d, $J = 8.0$ Hz, 1H), 6.94 (s, 1H), 4.53 (d, $J = 9.2$ Hz, 1H), 4.01 (d, $J = 9.2$ Hz, 1H), 3.17 (s, 3H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 162.2, 157.6, 141.1, 139.3, 138.2, 137.6, 134.4, 134.3, 133.2, 130.7, 129.8, 127.5, 127.2, 126.5, 126.4, 125.7, 124.8, 13.6, 89.2, 73.4, 66.4, 21.3; IR ν_{max} (neat)/cm$^{-1}$: 3342 (w), 1634 (w), 1276 (m), 750 (s); HRMS (ESI) calcd for C$_{24}$H$_{18}$Cl$_2$N$_2$O$_6$S [M-H]$^-$: 531.0184, found 531.0193.

(2R, 3S)-6-bromo-2'-oxo-1-(phenylsulfonyl)spiro[indoline-3,4'-oxazolidine]-2-yl 2,4-dichlorobenzoate (P5): by following the general procedure (0.04 mmol scale), the title
compound **P5** was obtained from **IS5** and isolated by a silica gel flash column as white foam (16 mg, 64% yield). The sample was analyzed by Chiral HPLC analysis and determined to be 98% ee (Chiralcel AD-H, 1.0 mL/min, 272 nm, 20% *i*-PrOH in hexane, t_r (minor) = 20.19 min, t_r (major) = 28.35 min). [α]²⁰ = 13.1° (c = 0.87, DCM). ¹H NMR (400 MHz, d₆-DMSO, ppm): δ 8.83 (s, 1H), 8.04 (d, J = 7.6 Hz, 2H), 7.83 (d, J = 1.6 Hz, 1H), 7.77–7.71 (m, 2H), 7.61–7.55 (m, 3H), 7.49–7.43 (m, 3H), 7.00 (s, 1H), 4.64 (d, J = 9.2 Hz, 1H), 4.10 (d, J = 9.2 Hz, 1H);¹³C NMR (100 MHz, d₆-DMSO, ppm): δ 162.0, 157.5, 140.5, 138.3, 137.4, 134.8, 134.4, 133.2, 130.8, 130.0, 128.9, 127.8, 127.6, 127.2, 126.3, 123.5, 115.5, 89.0, 73.1, 66.2; IR v_{max} (neat)/cm⁻¹: 3290 (m), 1647 (w), 1276 (w), 1016 (s), 750 (s); HRMS (ESI) calcd for C₂₃H₁₄BrCl₂N₂O₆S [M-H] : 594.9133, found 594.9147.

(2^R, 3^S)-6-chloro-2'-oxo-1-(phenylsulfonyl)spiro[indoline-3,4'-oxazolidine]-2-yl 2,4-dichlorobenzoate (**P6**): by following the general procedure (0.04 mmol scale), the title compound **P6** was obtained from **IS6** and isolated by a silica gel flash column as white foam (16 mg, 70% yield). The sample was analyzed by Chiral HPLC analysis and determined to be 99% ee (Chiralcel AD-H, 1.0 mL/min, 272 nm, 20% *i*-PrOH in hexane, t_r (minor) = 18.39 min, t_r (major) = 26.10 min). [α]²⁰ = 10.1° (c = 0.67, DCM). ¹H NMR (400 MHz, d₆-DMSO, ppm): δ 8.82 (s, 1H), 8.05 (d, J = 7.6 Hz, 2H), 7.83 (d, J = 1.6 Hz, 1H), 7.76–7.70 (m, 2H), 7.61–7.54 (m, 4H), 7.35 (s, 1H), 7.29 (d, J = 7.6 Hz, 1H), 7.01 (s, 1H), 4.65 (d, J = 9.2 Hz, 1H), 4.10 (d, J = 9.2 Hz, 1H);¹³C NMR (100 MHz, d₆-DMSO, ppm): δ 162.0, 157.5, 140.4, 138.3, 137.4, 135.2, 134.7, 134.4, 133.2, 130.8, 130.0, 128.4, 127.5, 127.2, 126.9, 126.3, 124.9, 112.8, 89.1, 73.1,
IR ν max (neat)/cm⁻¹: 3260 (w), 1767 (s), 1586 (m), 1376 (m), 1027 (s); HRMS (ESI) calcd for C_{23}H_{14}Cl_{3}N_{2}O_{6}S [M−H]⁻: 550.9638, found 550.9640.

Methyl (2R, 3S)-7-methyl-2'-oxo-1-(phenylsulfonyl)spiro[indoline-3,4'-oxazolidine]-2-yl terephthalate (P8): by following the general procedure (0.04 mmol scale), the title compound P8 was obtained from IS8 and isolated by a silica gel flash column as white foam (13 mg, 65% yield).
mg, 62% yield). The sample was analyzed by Chiral HPLC analysis and determined to be 88% ee (Chiralcel AD-H, 1.0 mL/min, 254 nm, 20% EtOH in hexane, t_r (minor) = 20.81 min, t_r (major) = 23.31 min). [α]_D^{20} = -19.1° (c = 0.8, DCM). ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.07 (d, J = 8.0 Hz, 2H), 7.96 (d, J = 7.6 Hz, 2H), 7.92 (d, J = 8.0 Hz, 2H), 7.64 (t, J = 7.6 Hz, 1H), 7.52 (t, J = 7.2 Hz, 2H), 7.28 (s, 2H), 7.20 (d, J = 3.6 Hz, 1H), 7.05 (s, 1H), 5.95 (s, 1H), 4.46 (d, J = 9.6 Hz, 1H), 4.03 (d, J = 9.2 Hz, 1H), 3.94 (s, 3H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 165.9, 139.0, 134.9, 133.9, 133.8, 131.8, 131.0, 130.0, 129.7, 129.3, 127.8, 127.5, 121.0, 89.7, 73.9, 68.0, 52.6, 20.2; IR ν_max (neat)/cm⁻¹: 2922 (w), 1727 (s), 1279 (s), 1116 (m); HRMS (ESI) calcd for C_{26}H_{22}N_{2}O_{8}S [M-H]⁻: 521.1019, found 521.1014.

(2R, 3S)-4-bromo-2'-oxo-1-(phenylsulfonyl)spiro[indoline-3,4'-oxazolidine]-2-yl 2,4-dichlorobenzoate (P9): by following the general procedure (0.04 mmol scale), the title compound P9 was obtained from IS9 and isolated by a silica gel flash column as white foam (16 mg, 67% yield). The sample was analyzed by Chiral HPLC analysis and determined to be 74% ee (Chiralcel AD-H, 1.0 mL/min, 254 nm, 20% i-PrOH in hexane, t_r (minor) = 13.59 min, t_r (major) = 27.94 min). [α]_D^{20} = 14.3° (c = 0.35, DCM). ¹H NMR (400 MHz, d₆-DMSO, ppm): δ 8.81 (s, 1H), 8.04 (d, J = 7.6 Hz, 2H), 7.86 (d, J = 8.0 Hz, 1H), 7.85 (s, 1H), 7.72 (t, J = 7.2 Hz, 1H), 7.60-7.55 (m, 3H), 7.43-7.33 (m, 3H), 7.04 (s, 1H), 4.83 (d, J = 9.2 Hz, 1H), 7.24 (d, J = 9.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 162.2, 157.5, 141.4, 138.3, 137.4, 134.6, 134.3, 133.2, 132.7, 130.7, 129.8, 128.9, 127.9, 127.5, 127.3, 126.5, 126.48, 119.6, 112.4, 89.9, 71.4, 67.1; IR ν_max (neat)/cm⁻¹: 3241 (w), 1759 (m), 1582 (m), 1026 (s), 728 (s); HRMS (ESI) calcd for
C$_{23}$H$_{14}$BrCl$_2$N$_2$O$_6$S [M-H]: 594.9133, found 594.9140.

3.2.3.8 HPLC Data

Racemic sample:

![HPLC graph]

Signal 1: DAD1 A, Sig=272,4 Ref=off

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>[min]</td>
<td>[min]</td>
<td>[mAU*s]</td>
<td>[mAU]</td>
<td></td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>19.230</td>
<td>MM</td>
<td>1.1054</td>
<td>1321.00183</td>
<td>19.91783</td>
<td>50.4531</td>
</tr>
<tr>
<td>2</td>
<td>31.162</td>
<td>MM</td>
<td>1.8157</td>
<td>1297.27380</td>
<td>11.90822</td>
<td>49.5469</td>
</tr>
</tbody>
</table>

90% ee

![HPLC graph]

Signal 1: DAD1 A, Sig=272,4 Ref=off

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>[min]</td>
<td>[min]</td>
<td>[mAU*s]</td>
<td>[mAU]</td>
<td></td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>19.993</td>
<td>MM</td>
<td>1.3822</td>
<td>740.34070</td>
<td>8.92688</td>
<td>4.5039</td>
</tr>
<tr>
<td>2</td>
<td>32.334</td>
<td>MM</td>
<td>1.8809</td>
<td>1.56975e4</td>
<td>139.09419</td>
<td>95.4961</td>
</tr>
</tbody>
</table>
Racemic sample:

\[
\text{P2} \quad \text{R} = \text{p-CO}_2\text{Me-benzoyl}
\]

Signal 2: DAD1 B, Sig=254,16 Ref=off

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>[min]</td>
<td></td>
<td>[min]</td>
<td>[mAU*s]</td>
<td>[mAU]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>19.001</td>
<td>MM</td>
<td>1.2738</td>
<td>1.9413e4</td>
<td>253.99942</td>
<td>50.0961</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>24.638</td>
<td>MM</td>
<td>1.5357</td>
<td>1.9338e4</td>
<td>209.88080</td>
<td>49.9039</td>
<td></td>
</tr>
</tbody>
</table>

94% ee

Signal 2: DAD1 B, Sig=254,16 Ref=off

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>[min]</td>
<td></td>
<td>[min]</td>
<td>[mAU*s]</td>
<td>[mAU]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>18.062</td>
<td>MM</td>
<td>1.1015</td>
<td>810.48639</td>
<td>12.26366</td>
<td>2.6721</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>24.414</td>
<td>MM</td>
<td>1.7846</td>
<td>2.95206e4</td>
<td>275.70087</td>
<td>97.3279</td>
<td></td>
</tr>
</tbody>
</table>
Racemic sample:

Signal 1: DAD1 A, Sig=274,4 Ref=off

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19.878</td>
<td>MF</td>
<td>1.0266</td>
<td>6707.78027</td>
<td>108.90113</td>
<td>40.5999</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>21.548</td>
<td>FM</td>
<td>1.4083</td>
<td>9813.88770</td>
<td>116.14644</td>
<td>59.4001</td>
<td></td>
</tr>
</tbody>
</table>

93% ee

Signal 1: DAD1 A, Sig=274,4 Ref=off

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.029</td>
<td>MF</td>
<td>0.8448</td>
<td>539.15747</td>
<td>10.63658</td>
<td>3.2852</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>21.670</td>
<td>FM</td>
<td>1.3706</td>
<td>1.58726e4</td>
<td>193.00690</td>
<td>96.7148</td>
<td></td>
</tr>
</tbody>
</table>
Racemic sample:

Signal 2: DAD1 B, Sig=254,16 Ref=off

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>[min]</td>
<td>[min]</td>
<td>[mAU*s]</td>
<td>[mAU]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>16.518</td>
<td>MM</td>
<td>1.053</td>
<td>2449.47503</td>
<td>30.76852</td>
<td>51.4211</td>
</tr>
<tr>
<td>2</td>
<td>28.467</td>
<td>MM</td>
<td>1.7952</td>
<td>2314.08838</td>
<td>21.48346</td>
<td>48.5789</td>
</tr>
</tbody>
</table>

94% ee

Signal 2: DAD1 B, Sig=254,16 Ref=off

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>[min]</td>
<td>[min]</td>
<td>[mAU*s]</td>
<td>[mAU]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>17.024</td>
<td>MM</td>
<td>0.8195</td>
<td>2514.57104</td>
<td>51.14065</td>
<td>2.8450</td>
</tr>
<tr>
<td>2</td>
<td>28.594</td>
<td>MM</td>
<td>1.6314</td>
<td>8.58701e4</td>
<td>877.24841</td>
<td>97.1550</td>
</tr>
</tbody>
</table>
Racemic sample:

Signal 1: DAD1 A, Sig=272.4 Ref=off

Peak RetTime Type Width Area Height Area	%	
1	18.633 MM 1.2394 402.72701 5.41551	51.5159
2	27.687 MM 1.6570 379.02621 3.81235	48.4841

98% ee

Signal 2: DAD1 B, Sig=254,16 Ref=off

Peak RetTime Type Width Area Height Area	%	
1	20.188 MM 0.6578 235.00507 5.97425	0.8293
2	28.354 MM 1.5651 2.82330e4 300.64658	99.1717
Racemic sample:

99% ee
Racemic sample:

Signal 1: DAD1 A, Sig=272.4 Ref=off

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>[min]</td>
<td>[min]</td>
<td>[mAU's]</td>
<td>[mAU]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>18.499</td>
<td>MM</td>
<td>1.3049</td>
<td>6817.73682</td>
<td>87.07579</td>
<td>50.8616</td>
</tr>
<tr>
<td>2</td>
<td>26.282</td>
<td>MM</td>
<td>1.9619</td>
<td>6586.74170</td>
<td>55.95666</td>
<td>49.1384</td>
</tr>
</tbody>
</table>

91% ee

Signal 1: DAD1 A, Sig=272.4 Ref=off

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>[min]</td>
<td>[min]</td>
<td>[mAU's]</td>
<td>[mAU]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>20.429</td>
<td>MM</td>
<td>1.1509</td>
<td>2741.47095</td>
<td>39.69990</td>
<td>4.2207</td>
</tr>
<tr>
<td>2</td>
<td>27.218</td>
<td>MM</td>
<td>1.8750</td>
<td>6.22112e4</td>
<td>552.98376</td>
<td>95.7793</td>
</tr>
</tbody>
</table>
Racemic sample:

![Chemical Structure Image]

Signal 2: DAD1 B, Sig=254,16 Ref=off

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width [min]</th>
<th>Area [mAU*š]</th>
<th>Height [mAU]</th>
<th>Area [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.970</td>
<td>MF</td>
<td>0.3043</td>
<td>6699.18408</td>
<td>366.86557</td>
<td>49.2501</td>
</tr>
<tr>
<td>2</td>
<td>21.566</td>
<td>FM</td>
<td>0.2387</td>
<td>6903.19629</td>
<td>481.90265</td>
<td>50.7499</td>
</tr>
</tbody>
</table>

88% ee

![Chemical Structure Image]

Signal 2: DAD1 B, Sig=254,16 Ref=off

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width [min]</th>
<th>Area [mAU*š]</th>
<th>Height [mAU]</th>
<th>Area [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.805</td>
<td>MM</td>
<td>0.6906</td>
<td>4617.72656</td>
<td>110.16177</td>
<td>5.9865</td>
</tr>
<tr>
<td>2</td>
<td>23.310</td>
<td>MM</td>
<td>1.4453</td>
<td>7.25179e4</td>
<td>836.27386</td>
<td>94.0135</td>
</tr>
</tbody>
</table>
Racemic sample:

Signal 2: DAD1 B, Sig=254,16 Ref=off

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.950</td>
<td>MM</td>
<td>0.692</td>
<td>4555.69385</td>
<td>109.72266</td>
<td>49.0385</td>
</tr>
<tr>
<td>2</td>
<td>26.892</td>
<td>MM</td>
<td>1.407</td>
<td>4734.34277</td>
<td>56.08091</td>
<td>50.9615</td>
</tr>
</tbody>
</table>

74% ee
3.2.4 Product Derivatization and its Synthetic Applications

3.2.4.1 Amino Indolane and Amino Oxindole Synthesis

Scheme 51. Synthesis of Amino Indolane

Procedure for Amino Indolane (3) Synthesis: 2 (0.04 mmol, 21 mg) was dissolved in 2mL DCM, to which Et$_3$SiH (0.4 mmol, 63.0 µL) was then added, followed by addition of BF$_3$·Et$_2$O (0.12 mmol, 15µL) at -78 ºC. The mixture was stirred overnight and allowed to warm to room temperature. Then DCM was added and the organic phase was washed with water. The organic layer was washed with brine and dried over anhydrous Na$_2$SO$_4$. After filtration, the solvent was removed under vacuum and the residue was used in the next step directly without further purification.

At room temperature, to a solution of the crude product obtained from the previous step in THF (2.0 mL), TEA (0.15 mmol, 21.0 µL) and DMAP (0.01 mmol, 1.2 mg) were added, followed by addition of Boc$_2$O (0.2 mmol, 13 mg). After stirring for 1.0h at rt, the reaction was quenched with water and extracted with DCM three times. The combined organic phase was dried over anhydrous Na$_2$SO$_4$ and concentrated *in vacuo*. The protected indolane product was dissolved in MeOH (2.0 mL), to which Cs$_2$CO$_3$ (0.04 mmol, 13 mg) was added. The reaction mixture was stirred at room temperature for 1.0 h and quenched by water. DCM was added and the organic phase was washed with water. The combined organic layers were dried over anhydrous Na$_2$SO$_4$. After filtration and concentration under vacuum, the residue was purified by silica gel flash column chromatography (hexane/EtOAc = 2:1) to afford the 3-amino indolane.
(11 mg, 64% overall yield).

(R)-tert-Butyl (3-(hydroxymethyl)-1-(phenylsulfonyl)indolin-3-yl) carbamate(3): The sample was analyzed by Chiral HPLC analysis and determined to be 90% ee (Chiralcel AD-H, 1.0 mL/min, 254 nm, 10% i-PrOH in hexane, t_r (minor) = 25.91 min, t_r (major) = 19.08 min). [α]²⁰ = 4.4° (c = 1.4, DCM). ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.84 (d, J = 7.6 Hz, 2H), 7.70 (d, J = 8.0 Hz, 1H), 7.56 (t, J = 7.2 Hz, 1H), 7.46 (t, J = 7.2 Hz, 2H), 7.31 (t, J = 7.6 Hz, 1H), 7.17 (d, J = 7.2 Hz, 1H), 7.04 (t, J = 7.2 Hz, 1H), 4.14 (AB, 2H), 3.73-3.68 (m, 1H), 3.48 (s, 1H), 1.32 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 155.2, 141.7, 137.4, 133.3, 132.5, 130.0, 129.1, 127.2, 124.0, 123.5, 115.0, 80.8, 67.2, 63.24, 63.15, 57.7; IR ν_{max} (neat)/cm⁻¹: 3428 (w), 1697 (m), 1358 (m), 1168 (s); MS(ESI) calcd for C₂₀H₂₅N₂O₅S [M+H]⁺: 405.1, found: 405.2.

Scheme 52. Synthesis of Amino Oxindoles

Procedure for Synthesis of Amino Oxindoles (4): At room temperature, Boc₂O (0.11 mmol, 24 mg) was added to a solution of 2 (0.1 mmol), TEA (0.15 mmol, 20.9 µL) and DMAP (0.01 mmol, 1.2 mg) in THF (4 mL). After stirring for 1.0h, the reaction was quenched with water and extracted with DCM three times. The combined organic phase was dried over anhydrous Na₂SO₄ and concentrated in vacuo. Quick purification of the residue by a short flash chromatography (hexane/EtOAc) affords the crude N-Boc protected intermediate.
The obtained \(N \)-Boc protected intermediate was dissolved in 2mL MeOH, to which 2 \(N \) aqueous \(\text{Cs}_2\text{CO}_3 \) solution (0.02 mmol, 10 \(\mu \text{L} \)) was added. The mixture was stirred at room temperature for 1 h before the solvent was removed \textit{in vacuo}. The residue was dissolved in DCM and washed with water for three times. The combined organic layers were washed with brine (50 mL) and dried over anhydrous \(\text{Na}_2\text{SO}_4 \). After filtration, the solvent was removed to afford the crude product, which was directly subjected to next step without further purification.

To a solution of the crude product obtained above in DCM, DMP (0.12 mmol, 51 mg) was added and the mixture was stirred for 1.0 h at room temperature before water was added. The resulting mixture was extracted with DCM three times, and the combined organic layers were washed with brine (50 mL) and dried over anhydrous \(\text{Na}_2\text{SO}_4 \). After being concentrated \textit{in vacuo}, the residue was purified by silica gel flash column chromatography (hexane/EtOAc) to afford the 3-amino oxindole product 4 (36 mg, 61% overall yield).

\[
\text{(S)-(3-((tert-butoxycarbonyl)amino)-2-oxo-1-(phenylsulfonyl)indolin-3-yl)methyl 2,4-dichlorobenzoate (4)}
\]

The sample was analyzed by Chiral HPLC analysis and determined to be 90% \(ee \) (Chiralcel AD-H, 1.0 mL/min, 254 nm, 20\% \(\text{i-PrOH} \) in hexane, \(t_r \) (minor) = 18.18 min, \(t_r \) (major) = 31.45 min). \([\alpha]_D^{20} = -23.5^\circ \) (c = 1.2, DCM). \(^1\text{H NMR} \) (400 MHz, CDCl\(_3\), ppm): \(\delta \) 8.16 (d, \(J = 7.6 \text{ Hz} \), 2H), 7.99 (d, \(J = 8.0 \text{ Hz} \), 1H), 7.79 (s, 1H), 7.67 (t, \(J = 7.2 \text{ Hz} \), 1H), 7.55 (t, \(J = 7.6 \text{ Hz} \), 2H), 7.43–7.37 (m, 3H), 7.30 (t, \(J = 7.6 \text{ Hz} \), 1H), 7.25–7.18 (m, 2H), 4.39 (AB, 2H), 1.49 (s, 9H); \(^{13}\text{C NMR} \) (100 MHz, CDCl\(_3\), ppm): \(\delta \) 171.0, 163.9, 153.2, 139.2, 137.7, 137.5, 134.4, 132.0, 131.8, 130.5, 130.2, 130.1, 128.9, 128.2, 127.5, 126.1, 125.1, 123.9, 113.7, 84.0, 67.5,
62.2, 27.6; IR νmax (neat)/cm⁻¹: 3009 (w), 1754 (s), 1681 (w), 1370 (m), 1253 (s); MS (ESI) calculated for C_{27}H_{25}Cl_{2}N_{2}O_{7}S [M + H]^+: 591.1, found: 591.1.

3.2.4.2 HPLC Data

Racemic sample:

![HPLC chromatogram](image)

<table>
<thead>
<tr>
<th>Signal 1: DAD1 A, Sig=272,4 Ref=off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak RetTime Type Width Area Height Area</td>
</tr>
<tr>
<td>#</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

90% ee

![HPLC chromatogram](image)

<table>
<thead>
<tr>
<th>Signal 1: DAD1 A, Sig=272,4 Ref=off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak RetTime Type Width Area Height Area</td>
</tr>
<tr>
<td>#</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>
Racemic sample:

90% ee

Signal 2: DAD1 B, Sig=254,16 Ref=off

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>[min]</td>
<td></td>
<td>[min]</td>
<td>[mAU*s]</td>
<td>[mAU]</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>18.290</td>
<td>MM</td>
<td>1.0987</td>
<td>1.70843e4</td>
<td>259.16397</td>
<td>50.4794</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>31.746</td>
<td>MM</td>
<td>1.9674</td>
<td>1.67598e4</td>
<td>141.97903</td>
<td>49.5206</td>
<td></td>
</tr>
</tbody>
</table>

Signal 2: DAD1 B, Sig=254,16 Ref=off

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>[min]</td>
<td></td>
<td>[min]</td>
<td>[mAU*s]</td>
<td>[mAU]</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>18.187</td>
<td>MM</td>
<td>1.2973</td>
<td>1.47275427</td>
<td>18.92053</td>
<td>4.7387</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>31.447</td>
<td>MM</td>
<td>1.9620</td>
<td>2.96065e4</td>
<td>251.49319</td>
<td>95.2613</td>
<td></td>
</tr>
</tbody>
</table>
3.2.5 Asymmetric Aminohydroxylation of an N-Boc Indole and Product Derivatization

3.2.5.1 Asymmetric Aminohydroxylation of an N-Boc Indole

Scheme 53. Asymmetric Aminohydroxylation of an N-Boc Indole

Procedure for asymmetric aminohydroxylation of an N-Boc indole: To a flame-dried vial were added 4Å MS (50 mg), Fe(OAc)$_2$ (0.004 mmol) together with ligand L9 (0.004 mmol). After evacuation upon oil pump and refill with argon three times, anhydrous and degassed toluene/MeCN (50:1, 1.5 mL) co-solvent was added. The obtained suspension was stirred vigorously at room temperature for 30 min before the substrate 5 (19 mg, 0.04 mmol) in the aforementioned co-solvent (0.5 mL) was added in one portion. The reaction system was stirred 0 °C for 12 h when all the starting material was fully consumed. Saturated NaHCO$_3$ aqueous solution was added to quench the reaction, and the aqueous phase was extracted with DCM three times. The combined organic phase was dried over anhydrous Na$_2$SO$_4$ and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography (hexane: THF = 4:1) to give the desired aminohydroxylation product 6 (16 mg, 85% yield).

tert-Butyl 3-(((2,4-dichlorobenzoyl)oxy)carbamoyl)oxy)methyl)-1H-indole-1-carboxylate (5): 1H NMR (400 MHz, CDCl$_3$, ppm): δ 8.44 (s, 1H), 8.17 (d, $J = 8.0$ Hz, 1H), 7.87 (d, $J = 8.4$ Hz, 1H), 7.71 (s, 1H), 7.62 (d, $J = 8.0$ Hz, 1H), 7.52 (s, 1H), 7.39-7.25 (m, 3H),
5.43 (s, 2H), 1.69 (s, 9H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 163.7, 156.3, 149.4, 139.9, 135.7, 132.8, 131.2, 129.0, 127.2, 126.2, 124.9, 124.6, 122.9, 119.1, 115.3, 114.5, 84.1, 60.5, 28.1; IR ν_{max} (neat)/cm$^{-1}$: 3255 (w), 1733 (s), 1370 (m), 1087 (s), 731 (m); HRMS (ESI) calculated for C$_{22}$H$_{19}$Cl$_2$N$_2$O$_6$ [M - H]$^-$: 477.0620, found: 477.0610.

tert-Butyl (2R,3S)-2-((2,4-dichlorobenzoyl)oxy)-2'-oxospiro[indoline-3,4'-oxazolidine]-1-carboxylate (6): The sample was analyzed by Chiral HPLC analysis and determined to be 87% ee (Chiralcel AD-H, 1.0 mL/min, 254 nm, 20% i-PrOH in hexane, t_r (minor) = 4.58 min, t_r (major) = 8.56 min). [α]$^D_{20}$ = 44.7$^\circ$ (c = 2.1, DCM). 1H NMR (400 MHz, CDCl$_3$, ppm): δ 7.81 (d, J = 8.4 Hz, 1H), 7.47 (s, 1H), 7.39 (d, J = 8.4 Hz, 2H), 7.32 (dd, J = 1.2 Hz, 8.4 Hz, 1H), 7.17 (t, J = 7.2 Hz, 1H), 6.96 (s, 1H), 6.36 (s, 1H), 4.71 (d, J = 9.2 Hz, 1H), 4.29 (d, J = 9.2 Hz, 1H), 1.52 (t, J = 9H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 163.2, 158.3, 150.8, 140.9, 139.2, 135.1, 133.0, 131.2, 127.2, 126.8, 124.4, 123.5, 115.2, 87.2, 83.4, 75.3, 28.2; IR ν_{max} (neat)/cm$^{-1}$: 3256 (w), 1765 (s), 1721 (s), 1632 (s), 1583, 150.8, 140.9, 139.2, 135.1, 133.0, 131.2, 127.2, 126.8, 124.4, 123.5, 115.2, 87.2, 83.4, 75.3, 28.2; HRMS (ESI) calculated for C$_{22}$H$_{19}$Cl$_2$N$_2$O$_6$ [M - H]$^-$: 477.0620, found: 477.0625.

3.2.5.2 N-Boc Indole Product Derivatization

![Scheme 54. Synthesis of Amino Indolane](image)
Procedure for Amino Indolane (6) Synthesis: 6 (0.04 mmol, 19 mg) was dissolved in DCM (2 ml), to which Et₃SiH (0.4 mmol, 63.0 µL) was then added, followed by addition of BF₃·Et₂O (0.12 mmol, 15µL) at -78 °C. The mixture was stirred overnight and allowed to warm to 0 °C. Then DCM was added and the organic phase was washed with water. The organic layer was washed with brine and dried over anhydrous Na₂SO₄. After filtration, the solvent was removed under vacuum and the residue was purified by silica gel flash column chromatography (hexane/EtOAc = 1:1) to afford the 3-amino indolane S1 (13 mg, 66% overall yield).

(R)-Spiro [indoline-3,4'-oxazolidin]-2'-one (S1): The sample was analyzed by Chiral HPLC analysis and determined to be 86% ee (Chiralcel AD-H, 1.0 mL/min, 254 nm, 10% EtOH in hexane, tᵣ (minor) = 51.76 min, tᵣ (major) = 72.76 min). [α]D₂₀ = -52.1° (c = 0.19, DCM).

1H NMR (400 MHz, CDCl₃, ppm): δ 7.31 (d, J = 7.6 Hz, 1H), 7.18 (t, J = 7.2 Hz, 1H), 6.86 (t, J = 7.2 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 6.50 (AB, 2H), 3.65 (AB, 2H); 13C NMR (100 MHz, CDCl₃, ppm): δ 159.7, 150.6, 129.7, 129.3, 122.9, 119.7, 110.9, 76.2, 65.7, 58.3; IR νmax (neat)/cm⁻¹: 3331 (w), 1740 (s), 1609 (m), 1387 (m), 754 (w).

3.2.5.3 Synthesis of Amino Oxindoles

Scheme 55. Synthesis of Amino Oxindoles
Procedure for Synthesis of Amino Oxindoles (S2): At room temperature, LiOH (0.11 mmol, 2.46mg) was added to a solution of 5 (0.1 mmol) in THF/MeOH/H$_2$O (8/1/1, 2.0 mL). After stirring for 1.0 h, the reaction was concentrated *in vacuo*. Quick purification of the residue by a short flash chromatography (hexane/EtOAc) affords the crude hydroxyl oxazolidinone intermediate.

To a solution of the hydroxyl oxazolidinone intermediate obtained above in Dess–Martin Periodinane (0.22 mmol, 93 mg), NaHCO$_3$ (1.0 mmol, 84 mg) were added and the mixture was stirred for 10 h at room temperature before water was added. The resulting mixture was extracted with DCM three times, and the combined organic layers were washed with brine (50 mL) and dried over anhydrous Na$_2$SO$_4$. After being concentrated *in vacuo*, the residue was purified by silica gel flash column chromatography (hexane/EtOAc) to afford the oxindole intermediate.

To a solution of the oxindole intermediate obtained above in DCM (1.0 mL), TFA (1.0 mmol, 76 uL) was added and the mixture was stirred for 2 h at 0 °C before saturated NaHCO$_3$ aqueous solution was added. The resulting mixture was extracted with DCM for three times, and the combined organic layers were washed with brine (50 mL) and dried over anhydrous Na$_2$SO$_4$. After being concentrated *in vacuo*, the residue was purified by silica gel flash column chromatography (hexane/EtOAc) to afford the amino oxindole product S2 (11 mg, 56% overall yield).

(S)-Spiro [indoline-3,4'-oxazolidine]-2,2'-dione (S2): The sample was analyzed by Chiral HPLC analysis and determined to be 87% ee (Chiralcel AD-H, 1.0 mL/min, 254 nm, 20% i-PrOH in hexane, t$_r$ (minor) = 13.12 min, t$_r$ (major) = 7.08 min). \([\alpha]_{D}^{20} = 6.0^o\ (c = 0.05, \text{DCM}).\)
1H NMR (400 MHz, CDCl$_3$, ppm): δ 7.48 (d, $J = 7.6$ Hz, 1H), 7.35 (t, $J = 8.0$ Hz, 1H), 7.14 (t, $J = 7.6$ Hz, 1H), 6.94 (d, $J = 8.0$ Hz, 1H), 4.55 (AB, 2H); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 130.3, 128.1, 124.0, 123.0, 110.3, 72.7; IR ν_{max} (neat)/cm$^{-1}$: 3250 (w), 1725 (s), 1620 (m), 1471 (m), 752 (m); HRMS (ESI) calculated for C$_{10}$H$_7$N$_2$O$_3$ [M - H]: 203.0457, found: 203.0451.

3.2.5.4 HPLC Data

Racemic sample:

![HPLC graph]

Signal 1: DAD1 A, Sig=274, 4 Ref=off

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.569</td>
<td>MM</td>
<td>0.3243</td>
<td>4188.07959</td>
<td>215.25876</td>
<td>50.9358</td>
</tr>
<tr>
<td>2</td>
<td>8.599</td>
<td>MM</td>
<td>0.5773</td>
<td>4034.19727</td>
<td>116.46326</td>
<td>49.0642</td>
</tr>
</tbody>
</table>

87% ee

![HPLC graph]

Signal 1: DAD1 A, Sig=274, 4 Ref=off

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.580</td>
<td>MM</td>
<td>0.2279</td>
<td>1213.47314</td>
<td>88.755775</td>
<td>6.4601</td>
</tr>
<tr>
<td>2</td>
<td>8.559</td>
<td>MM</td>
<td>0.5640</td>
<td>1.75706e4</td>
<td>519.25574</td>
<td>93.5399</td>
</tr>
</tbody>
</table>
Racemic sample:

Signal 3: DAD1, Sig=305.00, 5.00 Ref=off, EXT
Signal has been modified after loading from rawdata file!

<table>
<thead>
<tr>
<th>Peak RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>[min]</td>
<td>[min]</td>
<td>mAU*s</td>
<td>[mAU]</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>51.278</td>
<td>MM</td>
<td>2.6914 2772 32690</td>
<td>17.16756</td>
<td>49.9543</td>
</tr>
<tr>
<td>2</td>
<td>70.478</td>
<td>MM</td>
<td>4.1618 2777 39600</td>
<td>11.12248</td>
<td>50.0457</td>
</tr>
</tbody>
</table>

86% ee

Signal 3: DAD1, Sig=305.00, 5.00 Ref=off, EXT
Signal has been modified after loading from rawdata file!

<table>
<thead>
<tr>
<th>Peak RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>[min]</td>
<td>[min]</td>
<td>mAU*s</td>
<td>[mAU]</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>51.160</td>
<td>MM</td>
<td>1.7353 1369.34412</td>
<td>13.15154</td>
<td>6.7173</td>
</tr>
<tr>
<td>2</td>
<td>72.765</td>
<td>MM</td>
<td>0.2236 1.90160e4</td>
<td>1417.43347</td>
<td>93.2827</td>
</tr>
</tbody>
</table>
Racemic sample:

Signal 4: DAD1, Sig=205.00, 5.00 Ref=off, EXT
Signal has been modified after loading from rawdata file!

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.956</td>
<td>MM</td>
<td>0.4523</td>
<td>3392.31934</td>
<td>124.99969</td>
<td>50.5098</td>
</tr>
<tr>
<td>2</td>
<td>12.496</td>
<td>MM</td>
<td>1.1691</td>
<td>3323.84546</td>
<td>47.38362</td>
<td>49.4902</td>
</tr>
</tbody>
</table>

87% ee

Signal 3: DAD1, Sig=205.00, 5.00 Ref=off, EXT
Signal has been modified after loading from rawdata file!

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.083</td>
<td>MM</td>
<td>0.4370</td>
<td>128.38167</td>
<td>4.89661</td>
<td>93.5438</td>
</tr>
<tr>
<td>2</td>
<td>13.118</td>
<td>MM</td>
<td>0.6480</td>
<td>8.86065</td>
<td>2.27912e-1</td>
<td>6.4562</td>
</tr>
</tbody>
</table>
3.2.6 Iron-Catalyzed Aminohydroxylation of Functionalized Tryptophan

3.2.6.1 Preparation of Tryptophan Substrate

Procedure for Substrate S4 Synthesis: LiOH (5.0 mmol) was added to a solution of L-tryptophan methyl ester S3 (1.0 mmol) in THF/H$_2$O (10 mL) and the mixture was stirred at room temperature for 10 h until the starting material was completely consumed. THF was removed under reduced pressure and the resulting residue was dissolved in DCM and washed with water three times. The combined organic phase was dried over anhydrous Na$_2$SO$_4$ and concentrated *in vacuo*. The crude product was purified by silica gel flash column chromatography (DCM/MeOH) to afford S4 (423 mg, 86% yield).

(S)-Methyl 2-(((benzyloxy)carbonyl)amino)-3-(1-(phenylsulfonyl)-1H-indol-3-yl)propanoate (S4): 1H NMR (400 MHz, CDCl$_3$, ppm): δ 9.88 (brs, 1H$_A$ + 1H$_B$), 7.99 (d, $J = 8.4$ Hz, 1H$_A$ + 1H$_B$), 7.55 (s, 1H$_A$), 7.51–7.39 (m, 4H), 7.31–7.29 (m, 11H), 7.20–7.14 (m, 3H), 6.87 (d, $J = 7.6$ Hz, 1H$_B$), 5.50 (d, $J = 7.6$ Hz, 1H$_A$), 5.12 (AB, 2H$_A$), 4.91 (AB, 2H$_B$), 4.79–4.74 (m, 1H$_A$), 4.61–4.60 (m, 1H$_B$), 3.36–3.06 (m, 2H$_A$ + 2H$_B$); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 175.5, 155.9, 137.8, 135.9, 135.0, 133.7, 130.7, 130.4, 129.1, 128.5, 128.2, 128.0, 127.9, 126.6, 124.9, 124.6, 123.4, 119.4, 119.2, 117.2, 116.9, 113.6, 67.7, 67.2, 54.0, 53.7, 28.4, 27.4; IR ν_{max}
Procedure for Substrate Tryptophan 7 Synthesis: At room temperature, CDI (2 mmol) was added to a solution of protected L-tryptophan S4 (1.0 mmol) in DMF (10 mL). The reaction mixture was stirred for 30 min and then NH₂OH·HCl (4 mmol) was added. After being stirred for an additional 1.0 h at room temperature, H₂O (5 mL) was added and the reaction system was stirred for another 30 min, and then diluted with DCM (50 mL) and water (50 mL). The aqueous phase was extracted with DCM (50 mL) three times and the combined organic phase was dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude product was purified by short silica gel flash column chromatography (10% MeOH in DCM) to afford the hydroxyl carbamate intermediate (420 mg, 85% yield).

To a solution of the obtained hydroxyl carbamate (1.0 mmol) and 2, 4-dichlorobenzoyl acid (1.0 mmol) in DCM (10 mL), DCC (1.0 mmol) in DCM (3.0 mL) was added dropwise at 0 °C. After being stirred for 1.0 h, the reaction mixture was diluted by Et₂O (15 mL). The byproduct precipitated out and was removed by filtration. DCM was removed under vacuum and the residue was purified by silica gel flash column chromatography (30% EtOAc in hexanes) to afford 7 (480 mg, 72% yield).

\[\text{(S)-Benzyl} \quad (1-(((2,4-	ext{dichlorobenzoyl})oxy)amino)-1-oxo-3-(1-\text{phenylsulfonyl})-1H-indol-3-yl)propan-2-yl)carbamate (7) : \]

\[\delta 10.44 \text{ (brs, 1H), 7.97 (d, } J = 8.4 \text{ Hz, 1H), 7.85 (d, } J = 7.6 \text{ Hz, 3H), 7.58 (s, 1H), 7.49–7.41 (m, 3H), 7.35–7.21 (m, 9H), 7.16 (t, } J = 7.6 \text{ Hz, 1H), 5.79 (d, } J = 7.6 \text{ Hz, 1H), 5.02 (s, 2H), 4.76 (s, 1H), 3.22 (AB,}\]
\(1^3\)C NMR (100 MHz, CDCl\(_3\), ppm): \(\delta\) 162.2, 139.9, 138.0, 135.7, 135.6, 135.1, 133.7, 132.9, 131.2, 130.4, 129.2, 128.5, 128.2, 128.0, 127.2, 126.7, 125.0, 124.4, 123.4, 119.3, 116.9, 113.7, 67.5, 52.2, 27.4; IR \(\nu_{\text{max}}\) (neat)/cm\(^{-1}\): 3285 (w), 1683 (s), 1374 (m), 1176 (s), 1081 (m); HRMS (ESI) calcd for \(\text{C}_{32}\text{H}_{26}\text{Cl}_2\text{N}_3\text{O}_7\) \([\text{M+H}]^+\): 666.0869, found 666.0865.

3.2.6.2 Reaction Discovery for Aminohydroxylation of Tryptophan Substrate

![Chemical reaction diagram](attachment:reaction_diagram.png)

<table>
<thead>
<tr>
<th>entry</th>
<th>ligand (mol %)</th>
<th>Fe(X)n (15 mol %)</th>
<th>solvent</th>
<th>time</th>
<th>conversion</th>
<th>yield (8)</th>
<th>yield (9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L11 (30)</td>
<td>Fe(NTf(_2))(_2)</td>
<td>DCM</td>
<td>4 h</td>
<td>>95%</td>
<td>46%</td>
<td>21%</td>
</tr>
<tr>
<td>2</td>
<td>L12 (30)</td>
<td>Fe(NTf(_2))(_2)</td>
<td>DCM</td>
<td>5 h</td>
<td>>95%</td>
<td>< 5%</td>
<td>77%</td>
</tr>
<tr>
<td>3</td>
<td>L13 (30)</td>
<td>Fe(NTf(_2))(_2)</td>
<td>DCM</td>
<td>1 h</td>
<td>>95%</td>
<td>< 5%</td>
<td>85%</td>
</tr>
<tr>
<td>4</td>
<td>L9 (30)</td>
<td>Fe(NTf(_2))(_2)</td>
<td>DCM</td>
<td>2 h</td>
<td>>95%</td>
<td>< 5%</td>
<td>78%</td>
</tr>
<tr>
<td>5</td>
<td>(\text{ent})-L9 (30)</td>
<td>Fe(NTf(_2))(_2)</td>
<td>DCM</td>
<td>2 h</td>
<td>>95%</td>
<td>< 5%</td>
<td>81%</td>
</tr>
<tr>
<td>6</td>
<td>L14 (15)</td>
<td>Fe(NTf(_2))(_2)</td>
<td>DCM</td>
<td>1 h</td>
<td>>95%</td>
<td>< 5%</td>
<td>81%</td>
</tr>
<tr>
<td>7</td>
<td>L15 (15)</td>
<td>Fe(NTf(_2))(_2)</td>
<td>DCM</td>
<td>1 h</td>
<td>>95%</td>
<td>< 5%</td>
<td>72%</td>
</tr>
<tr>
<td>8</td>
<td>L11 (30)</td>
<td>Fe(OAc)(_2)</td>
<td>DCM</td>
<td>6 h</td>
<td>>95%</td>
<td>< 5%</td>
<td>51%</td>
</tr>
<tr>
<td>9</td>
<td>L11 (30)</td>
<td>Fe(NTf(_2))(_2)</td>
<td>MeCN</td>
<td>1 h</td>
<td>>95%</td>
<td>< 5%</td>
<td>52%</td>
</tr>
<tr>
<td>10</td>
<td>L11 (15)</td>
<td>Fe(NTf(_2))(_2)</td>
<td>Et(_2)O</td>
<td>8 h</td>
<td>>95%</td>
<td>< 5%</td>
<td>87%</td>
</tr>
</tbody>
</table>

Table 20. Reaction Conditions Screening for Aminohydroxylation of Tryptophan

Procedure for Aminohydroxylation of 7: Fe(NTf\(_2\))\(_2\) (0.007 mmol) and 1,10-phenanthroline (0.014 mmol) were added to a flame-dried vial. After evacuation upon oil pump and refill with argon three times, anhydrous and degassed DCM (1.0 mL) was added. The resulting suspension was stirred vigorously at room temperature for 30 min and cooled down to -
10 °C. 7 (0.04 mmol) dissolved in anhydrous and degassed DCM (1.0 mL) was added dropwise to the reaction system, which was stirred at -10 °C for 4 h when all the starting material was fully consumed. Saturated NaHCO₃ aqueous solution was added to quench the reaction, and the aqueous phase was extracted with DCM three times. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel flash column chromatography (hexane: EtOAc = 2:1) to give 8 and 9 respectively.

(2S,2'S,4'S)-4'-(Benzyloxy carbonylamino)-5'-oxo-1-(phenylsulfonyl)spiro[indoline-3,2'-pyrrolidine]-2-yl 2,4-dichlorobenzoate (8): by following the procedure above (0.04 mmol scale), the title compound 8 was obtained from 7 and isolated by a silica gel flash column as white foam (13 mg, 46% yield). [α]ᵡ₂₀° = -36.3⁰ (c = 0.8, DCM). ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.69–7.57 (m, 3H), 7.49–7.34 (m, 9H), 7.24–7.16 (m, 4H), 6.74 (s, 1H), 5.96 (s, 1H), 5.35 (d, J = 8.4 Hz, 1H), 5.09 (s, 2H), 4.49–4.44 (m, 1H), 2.44–2.39 (m, 1H), 2.16–2.10 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 163.4, 155.8, 139.5, 139.48, 138.2, 136.0, 135.6, 134.0, 133.0, 131.5, 131.2, 130.9, 129.6, 128.6, 128.3, 128.1, 127.1, 126.9, 126.3, 125.5, 124.1, 114.4, 88.9, 67.1, 64.9, 51.3, 42.0. IR νₘₐₓ (neat)/cm⁻¹: 3362 (w), 1710 (s), 136 (m), 1238 (m), 1173 (s); HRMS (ESI) calcd for C₃₂H₂₆Cl₂N₃O₇S [M+H]⁺: 666.0869, found 666.0868.
(S)-Benzyl 3-oxo-4-((1-phenylsulfonyl)-1H-indol-3-yl)methyl)-1,2-diazetidine-1-carboxylate (9): by following the general procedure (0.04 mmol scale), the title compound 9 was obtained from 7 and isolated by a silica gel flash column as white foam (5 mg, 25% yield). [α]$_D^{20}$ = -38.2° (c = 1.6, DCM). 1H NMR (400 MHz, d_6-acetone, ppm): δ 8.02 (d, J = 8.4 Hz, 1H), 7.97-7.93 (m, 2H), 7.78 (s, 1H), 7.70 (d, J = 7.6 Hz, 1H), 7.63–7.59 (m, 1H), 7.52–7.47 (m, 3H), 7.39–7.26 (m, 6H), 5.69 (q, J = 7.6 Hz, 1H), 5.15–5.08 (m, 2H), 3.29 (d, J = 6.8 Hz, 2H); 13C NMR (100 MHz, d_6-acetone, ppm): δ 137.9, 135.1, 134.2, 130.8, 129.5, 128.4, 128.0, 127.9, 126.7, 124.9, 123.5, 119.8, 117.6, 113.6, 66.3, 63.2, 31.6. IR $\nu$$_{max}$ (neat)/cm$^{-1}$: 3306 (w), 2246 (s), 1716 (m), 1174 (s); MS (ESI) calcd for C$_{25}$H$_{21}$N$_3$NaO$_5$S [M+Na]$^+$: 498.1, found 498.1.

3.2.6.3 Reaction Discovery for Aminohydroxylation of Tryptophan Substrate

![Reaction Scheme]

<table>
<thead>
<tr>
<th>entry</th>
<th>ligand</th>
<th>time (h)</th>
<th>conversion</th>
<th>yield (%)</th>
<th>dr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L11</td>
<td>8</td>
<td>>95</td>
<td>78</td>
<td>1.7:1</td>
</tr>
<tr>
<td>2</td>
<td>L9</td>
<td>12</td>
<td>76</td>
<td>43</td>
<td>1.2:1</td>
</tr>
<tr>
<td>3</td>
<td>ent-L9</td>
<td>12</td>
<td>64</td>
<td>37</td>
<td>1:1</td>
</tr>
</tbody>
</table>

Table 21. Reaction Discovery for Aminohydroxylation of Tryptophan Substrate 10
Procedure for Aminohydroxylation of 10: Fe(NTf₂)₂ (0.007 mmol) and 1,10-phenanthroline (0.014 mmol) were added to a flame-dried vial. After evacuation with a vacuum pump and refill with argon three times, anhydrous and degassed CH₃CN (1.0 mL) was added. The resulting suspension was stirred vigorously at room temperature for 30 min and cooled down to 0 °C. 10 (0.04 mmol) dissolved in anhydrous and degassed CH₃CN (1.0 mL) was added dropwise to the reaction system, which was stirred at 0 °C for 8 h when all the starting material was fully consumed. Saturated NaHCO₃ aqueous solution was added to quench the reaction, and the aqueous phase was extracted with DCM three times. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel flash column chromatography (hexane: EtOAc = 2:1) to give 11.

(S)-tert-Butyl 3-(((2,4-dichlorobenzoyl)oxy)amino)-2-(1,3-dioxoisindolin-2-yl)-3-oxopropyl)-1H-indole-1-carboxylate (10): white solid (mp: 155-157 °C) ¹H NMR (400 MHz, CDCl₃, ppm): δ 10.47 (brs, 1H), 8.05 (d, J = 7.6 Hz, 1H), 7.93 (d, J = 8.4 Hz, 1H), 7.79-7.76 (m, 2H), 7.69-7.66 (m, 2H), 7.56 (d, J = 8.0 Hz, 2H), 7.46 (s, 1H), 7.42 (s, 1H), 7.31-7.16 (m, 3H), 5.42 (t, J = 8.0 Hz, 1H), 3.74 (d, J = 8.0 Hz, 2H), 1.58 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 167.9, 162.4, 149.4, 139.9, 135.8, 134.5, 133.0, 131.4, 129.7, 127.3, 124.7, 124.5, 124.3, 123.8, 122.7, 118.7, 115.3, 115.0, 83.6, 52.8, 33.7, 28.1. IR νmax (neat)/cm⁻¹: 3350 (w), 1717 (s), 1372 (m), 878 (m); HRMS (ESI) calcd for C₃₁H₂₅Cl₂N₃O₇Na [M+Na]+: 644.0967, found 644.0958.
(2S, 2'S, 4'S)-tert-Butyl 2-((2,4-dichlorobenzoyl)oxy)-4'- (1,3-dioxoisindolin-2-yl)-5'-oxospiro[indoline-3,2'-pyrrolidine]-1-carboxylate (11): by following the procedure above (0.04 mmol scale), the title compound 11 was obtained from 10 and isolated by a silica gel flash column as white solid (mp: 183-185 °C, 19 mg, 76% yield). 1H NMR (400 MHz, CDCl$_3$, ppm): δ 7.78-7.76 (m, 8H), 7.68 (d, J = 7.6 Hz, 1H), 7.47 (s, 1H), 7.40-7.30 (m, 4H), 7.20 (t, J = 8.0 Hz, 1H), 6.91 (s, 1H), 6.46 (s, 1H) (6.38 (s, 1H, minor diastereomer)), 5.39 (d, J = 10.0 Hz, 1H) (5.28 (d, J = 10.0 Hz, 1H, minor diastereomer)), 2.91 (t, J = 8.0 Hz, 1H) (3.14 (t, J = 8.4 Hz, 1H, minor diastereomer)), 2.76 (t, J = 12.8 Hz, 1H) (2.61 (t, J = 9.6 Hz, 1H, minor diastereomer)), 1.52 (s, 9H) (1.55 (s, 5H, minor diastereomer)); 13C NMR (100 MHz, CDCl$_3$, ppm): δ 172.0, 171.9, 171.5, 167.3, 163.8, 162.6, 151.0, 139.9, 139.3, 139.1, 135.2, 135.0, 133.2, 132.9, 131.24, 131.2, 130.6, 130.4, 127.3, 124.6, 124.2, 123.9, 123.8, 123.7, 122.1, 115.4, 114.8, 88.9, 88.1, 83.3, 64.1, 63.8, 48.6, 48.1, 39.0, 38.8, 28.2. IR ν_{max} (neat)/cm$^{-1}$: 3340 (w), 1717 (s), 1040 (m), 880 (m); HRMS (ESI) calcd for C$_{31}$H$_{25}$Cl$_2$N$_3$O$_7$Na [M+Na]$^+$: 644.0967, found 644.0959.

3.2.7 X-ray Crystallographic Analysis for Product Absolute Stereochemistry Determination

Please refer to Appendix E for further details.

3.3 RESULTS

Despite these important achievements, the catalytic asymmetric aminohydroxylation of indoles with synthetically useful ee has remained a challenge. Likewise, iron-catalyzed olefin
aminohydroxylation is also a less-explored process;14b, 14d, 14e, 62 however, Yoon recently discovered an iron-catalyzed olefin aminohydroxylation with sulfonyl oxaziridines.35-36 We have recently reported an iron-catalyzed intramolecular olefin aminohydroxylation and the mechanistic studies revealed that an iron-nitrenoid is a possible intermediate in the selective atom transfer reaction.63 Herein, we describe our latest discovery: an iron(II)-catalyzed asymmetric intramolecular aminohydroxylation of indoles. In this reaction, the iron catalyst diastereo- and enantioselectively transfer the N and O group of the hydroxylamine to a variety of indoles ($dr > 20:1$, ee up to 99%). Simple product derivatization provides both amino oxindoles and amino indolanes in their enantioenriched forms.

3.3.1 Iron Catalyst Discovery

3.3.1.1 Iron(II)-Catalyzed Racemic Reaction

We initiated the catalyst discovery with a model substrate 1 and extensive optimization revealed that the FeSO$_4$–1,10-phenanthroline complex catalyzes an efficient racemic indole aminohydroxylation reaction affording product 2 as a single diastereomer (Table 9).

3.3.1.2 Iron(II)-Catalyzed Asymmetric Reaction

With the optimized racemic reaction in hand, we set out to search for chiral ligands that effectively promote enantioselective indole aminohydroxylation with iron(II) complexes (Table 22). Since FeSO$_4$ is poorly soluble in nonpolar solvents such as toluene, we selected Fe(OTf)$_2$ as the iron salt for chiral ligand discovery. Extensive experimentation revealed that a toluene–MeCN (50:1) mixture is crucial for high enantioselectivity. Under these conditions, we systematically inspected a series of chiral bisoxazoline (BOX) and pyridine–oxazoline (PyBOX) hybrid ligands.37b, 45a, 45b, 45d, 64
Reactions were carried out under argon in 0.025 M toluene/MeCN (50:1) mixture; catalyst complexes were formed by premixing Fe(X) and ligands for 40 min.

Isolated yield.

ee was measured by HPLC analysis with chiral stationary phase.

The sense of enantioinduction in entry 4 is opposite to that of other entries.

Table 22. Catalyst Discovery for the Asymmetric Indole Aminohydroxylation

We observed that the Fe(OTf)₂–iPrBOX L₁ complex fails to induce any enantioselectivity (entry 1); however, the Fe(OTf)₂–tBuBOX L₂ complex is capable of asymmetric induction (entry 2, 31% ee). The change from L₂ to PhBOX L₃ correlates with both enhanced reactivity and enantioselectivity (entry 3, 58% yield, 77% ee). Surprisingly, a relatively minor modification to the ligand’s structure (from PhBOX L₃ to BnBOX L₄) leads to asymmetric induction in the opposite sense (entry 4, 48% yield, −86% ee). We, therefore, tested...
PyBOX and pyridine-oxazoline hybrid ligands \textbf{L5–L8} and determined that they are inferior to \textbf{L3} and \textbf{L4} (entries 5–8, \textit{ee} up to 61\%). Further screening of tetrasubstituted chiral BOX ligands (\textbf{L9–L10}) revealed that the \text{Fe(OTf)}_2–\textbf{L9} complex catalyzes the indole aminohydroxylation with further enhanced \textit{ee} (entry 9, 65\% yield, 87\% \textit{ee}). Knowing that aromatic interaction may be important for asymmetric induction,65 we carried out electronic tuning experiments on the benzoyl protecting group. We discovered that the 4-Cl, 4-CF\textsubscript{3}, and 3,5-(CF\textsubscript{3})\textsubscript{2} substituents result in decreased \textit{ee} while the 4-CO\textsubscript{2}Me group maintains the similar \textit{ee} (entries 11–14 compared with entry 9). We also observed that hydrolytically more robust \text{Fe(NTf)}_245e promotes the reaction with a slightly increased yield yet decreased \textit{ee} (entry 15, 67\% yield, 79\% \textit{ee}). Concordantly, we discovered that both \text{FeCl}_2 and \text{FeBr}_2 promote less selective reactions with \textbf{L9} (entries 16–17); however, the \text{Fe(OAc)}_2–\textbf{L9} complex manages to increase the \textit{ee} to 90\% in 12 h (entry 18).

3.3.1.3 \textit{N-Donor Effect}

\begin{center}
\textbf{Scheme 57.} Iron(II)-Catalyzed Indole Aminohydroxylation Accelerated by 2,6-Lutidine
\end{center}

In order to search for a more reactive yet highly selective catalyst, we inspected a variety of additives with bulky \textit{N}-donor ability.66 Extensive optimization revealed that 2,6-lutidine (1.0 equiv) significantly accelerates the \text{Fe(OTf)}_2–\textbf{L9} catalyzed reaction in toluene with a slight increase in enantioselectivity (Scheme 57, full conversion in 45 min at −10 °C, 65\% yield, 88\% \textit{ee}). This discovery offers us an opportunity to expand the substrate scope and includes substrates that have low reactivity in \text{Fe(OAc)}_2-catalyzed reactions.
3.3.2 Substrate Scope

To explore the scope and limitation of the aforementioned method, we applied the optimized reaction conditions to a variety of substituted indoles (Table 23). We observed that 5-methylindole is an excellent substrate for Fe(OAc)\(_2\)-catalyzed asymmetric aminohydroxylation (AA) (entry 2, 94% ee). Likewise, the Fe(OTf)\(_2\)-L\(_9\)-lutidine complex enantioselectively converts a 5-methoxy indole to its corresponding hydroxyl oxazolidinone (entry 3, 93% ee). We also discovered that 6-methyl-, bromo-, and chloro-substituents are all well-tolerated in the Fe(OAc)\(_2\)-catalyzed indole AA, which thereby offers versatile handles for further transformation (entries 4–6, 91–99% ee). Further exploration revealed that 6-phenyl indole is an excellent substrate for Fe(OTf)\(_2\)-catalyzed AA (entry 7, 91% ee) and that 7-methyl indole participates in the Fe(OAc)\(_2\)-catalyzed AA with acceptable ee (entry 8, 88% ee). However, we observed that the ee for aminohydroxylation of 4-bromo indole is significantly lower than other substrates (entry 9, 74% ee), which suggests that 4-H may be important for asymmetric induction.

![Chemical structure](https://example.com/structure.png)

Table 23. Substrate Scope for the Asymmetric Indole Aminohydroxylation

<table>
<thead>
<tr>
<th>entry</th>
<th>R</th>
<th>yield</th>
<th>ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>67%</td>
<td>90%</td>
</tr>
<tr>
<td>2(d)</td>
<td>5-Me</td>
<td>72%</td>
<td>94%</td>
</tr>
<tr>
<td>3(d,e)</td>
<td>5-OMe</td>
<td>75%</td>
<td>93%</td>
</tr>
<tr>
<td>4</td>
<td>6-Me</td>
<td>65%</td>
<td>95%</td>
</tr>
<tr>
<td>5</td>
<td>6-Br</td>
<td>64%</td>
<td>91%</td>
</tr>
<tr>
<td>6</td>
<td>6-Cl</td>
<td>70%</td>
<td>99%</td>
</tr>
<tr>
<td>7(e)</td>
<td>7-Ph</td>
<td>65%</td>
<td>91%</td>
</tr>
<tr>
<td>8(d)</td>
<td>7-Me</td>
<td>62%</td>
<td>85%</td>
</tr>
<tr>
<td>9</td>
<td>4-Br</td>
<td>67%</td>
<td>74%</td>
</tr>
</tbody>
</table>

\(d\)Reactions were carried out under argon in 0.025 M toluene/MeCN (50:1) mixture unless stated otherwise.

\(e\)Isolated yield, and 3-indole aldehydes were isolated (ca. 15%) as the side product. ee was measured by HPLC analysis with chiral stationary phase.

\(f\)Reactions were carried out under argon at 0.025 M toluene at 10 °C for 4 h. Fe(OTf)\(_2\) (15 mol %) and L\(_9\) (30 mol %) were applied as the catalyst and 2,6-lutidine (1.0 equiv) was used as the additive.
3.3.3 Synthetic Transformations

The enantio-enriched hydroxyl oxazolidinone 2 can be readily converted to either amino indolane 3 or amino oxindole 4 without erosion of the ee with three-step procedures (Scheme 58A). The N-sulfonyl protected amino oxindole motif is of interest in medicinal chemistry because it is present in SSR-149415, a medicine for the treatment of anxiety and depression. In order to develop an easy entry to both unprotected amino indolanes and oxindoles, we explored the aminohydroxylation of an N-Boc protected indole 5 (Scheme 58B). We observed that Fe(OAc)$_2$–L9 complex catalyzes the efficient aminohydroxylation of 5 with an even lower catalyst loading, affording product 6 with excellent yield (10 mol% catalyst, 85% yield, $dr > 20:1$, 87% ee).

We further observed that the Fe(NTf$_2$)$_2$–phenanthroline complex catalyzes the aminohydroxylation of a protected tryptophan 7 to afford a single diastereomeric hydroxyl oxazolidinone 8 (full conversion, 46% yield, Scheme 58C); interestingly, the aminohydroxylation occurs from the α face of tryptophan. In addition, we also isolated diazetidinone 9 (25% yield), a side product that is possibly derived from an N–H insertion reaction of the putative iron-nitrenoid intermediate. We, therefore, applied the same catalyst to another fully protected tryptophan 10 and observed the efficient aminohydroxylation afford 11.

A) synthetic transformation of the product: amino indolanes and amino oxindoles
B) asymmetric aminohydroxylation of an N-Boc indole

![Chemical structure and reaction scheme](attachment:Scheme_58.png)

C) aminohydroxylation of tryptophan

![Chemical structures and reaction schemes](attachment:Scheme_58.png)

Scheme 58. Product Synthetic Transformation and the Iron(II)-Catalyzed AA of Tryptophan

3.4 CONCLUSIONS

In conclusion, we have discovered an asymmetric intramolecular indole aminohydroxylation catalyzed by iron(II)–chiral BOX complexes. This enantioselective process enables the facile asymmetric synthesis of biologically relevant 3-amino oxindoles and 3-amino indolanes. Our current research focuses on the application of this method in medicinal agent synthesis and a better understanding of the origin for asymmetric induction.
CHAPTER IV IRON CATALYZED DIRECT DIAZIDATION FOR A BROAD RANGE OF OLEFINS

4.1 INTRODUCTION

4.1.1 Naturally Occurring Molecules

Since the first discovery of organic azides more than 140 years by Peter Grieß,67 it has been broadly applied in numerous syntheses of important classes of organic compounds. Particularly in more recent years, a varied utility of organic azides was developed due to its good accessibility, such as organic functional group transformations in industrial and pharmaceutical areas, the synthesis of heterocycles and the well-known “Click Chemistry”. In spite of the explosive property of azide compounds, a vast utility of azido group in a late stage diversification of commercially available drug candidates, biomedical probes, as well as molecule libraries received considerable attentions.68

\textbf{Figure 6.} Important Transformations of Organic Azides
More importantly, we have witnessed the power and achievements of selective nitrogen-atom-transfer for olefin functionalization due to their generation of high-value chemicals from readily available hydrocarbons or petrochemicals. Among the blossoming of C-H activations as well as olefin functionalization processes by azido-group transfer, catalytic olefin diazidation has emerged with unique value for a few reasons. First and foremost, vicinal diamines are important structural motifs that widely exist in naturally occurring molecules as shown in Figure 7. Thus, this reaction provides an easy access to affording synthetically important vicinal primary diamines which are difficult to obtain with the currently existing olefin diamination methods. Next, it can also rapidly convert olefins into a variety of probes for the robust azide–alkyne click chemistry, which has given organic azides irreplaceable roles in biological and material sciences. Therefore, searching for a general, yet novel selective olefin diazidation method has been an attracting research area and a variety of methods for certain limited types of olefins have been developed.

![Figure 7. Compounds Containing the Vicinal Diamine Motif](image-url)
4.1.2 \textit{Fe(II)/Fe(III)}-Mediated Reactions

Minisci developed a \textit{Fe(II)/Fe(III)}-mediated stoichiometric approach, with hydrogen peroxide and NaN$_3$, specifically for styrenyl olefins. In his case, the yield of diazide product is significantly affected by the oxidant type. However, this method is incompatible with nonstyrenyl olefins.71i

![Scheme 59. Fe(II)/Fe(III)-Mediated Diazidonation of Alkenes](image)

4.1.3 \textit{Mn(III)}-Mediated Reactions

Fristad and co-workers reported a \textit{Mn(III)}-mediated stoichiometric method only for nonfunctionalized aliphatic olefins with a large excess of NaN$_3$ in acetic acid at 110 °C. The rate enhancement evidences that ligand transfer oxidation happened in the presence of alkenes rather than the participation of the free azido radical.71c

![Scheme 60. Mn(III)-Mediated Diazidation of Alkenes](image)

Later on, Snider subsequently reported a key improvement of Fristad’s procedure by using a mixture of MeCN/TFA at −20 °C.71l This modified procedure is effective for acid-sensitive substrates, such as glycal; however, it is unsuitable for acyclic aliphatic olefins.

![Scheme 61. Modified Mn(III)-Mediated Diazidation of Alkenes](image)
4.1.4 Aryl-\(\lambda^3\)-Iodanes Mediated Reactions

The group of Arimoto reported (PhIO)\(n\)/TMSN\(_3\)-mediated method specifically for electron-rich allyl silanes in DCM at \(-78\,^\circ\text{C}\) to room temperature to afford vicinal diazide in the absence of BF\(_3\),Et\(_2\)O with good yields.\(^{71a}\)

\[
\text{TMS}-\text{CH} = \text{CH}-\text{SiMe}_3 \xrightarrow{(\text{PhIO})_n, \text{TMSN}_3, \text{DCM, } -78\,^\circ\text{C}} \text{TMS}-\text{CH} = \text{CH}-\text{N}_3
\]

\text{yield from 46\% to 86\%}

Scheme 62. (PhIO)\(n\)-Mediated Diazidation of Alkenes

More recently, Magnus discovered that treatment of silyl enol ether with (PhIO)\(n\)/TMSN\(_3\) with the addition of catalytic amount of the stable radical TEMPO can boost the high yield of the corresponding diazide product.\(^{71h}\)

\[
\text{OTIPS}-\text{CH} = \text{CH}-\text{SiMe}_3 \xrightarrow{(\text{PhIO})_n, \text{TMSN}_3, \text{TEMPO}, 0.1 \text{ eq, DCM, } -78\,^\circ\text{C}} \text{OTIPS}-\text{CH} = \text{CH}-\text{N}_3
\]

\text{yield from 59\% to 91\%}

Scheme 63. TEMPO-Mediated Diazidation of Alkenes

These methods have been valuable for synthetic chemistry; however, significant gaps still exist for this important transformation. First, a general and selective catalytic method that is compatible with a broad range of both unfunctionalized and highly functionalized olefins has yet to be developed. Second, a diastereoselective method for internal olefins has not yet been reported. Furthermore, a new diazidation reaction which proceeds through a new selective pathway under mild reaction conditions (thus avoiding both heating and cryogenic cooling) has yet to be discovered.
4.2 EXPERIMENT

4.2.1 General Procedure

General Procedures. All reactions were performed in oven-dried or flame-dried round-bottom flasks and vials. Stainless steel syringes and cannula were used to transfer air- and moisture-sensitive liquids. Flash chromatography was performed using silica gel 60 (230–400 mesh) from Sigma–Aldrich.

Materials. Commercial reagents were purchased from Sigma–Aldrich, Fluka, EM Science, and Lancaster and used as received. All solvents were used after being freshly distilled unless otherwise noted.

Instrumentation. Proton nuclear magnetic resonance (1H NMR) spectra and carbon nuclear magnetic resonance (13C NMR) spectra were recorded on Bruker UltraShield–400 (400 MHz). Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to the NMR solvent residual peak (CHCl$_3$ δ 7.26). Chemical shifts for carbons are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the NMR solvent (CDCl$_3$ δ 77.0). Data are represented as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz), and integration. The mass spectroscopic data were obtained at the Georgia State University mass spectrometry facility using a Micromass Platform II single quadrupole instrument. Infrared (IR) spectra were obtained using a Perkin Elmer Spectrum 100 FT-IR spectrometer. Data are represented as follows: frequency of absorption (cm$^{-1}$) and absorption strength (s = strong, m = medium, w = weak).

Abbreviations Used: EtOH–ethanol, EtOAc–ethyl acetate, THF–tetrahydrofuran, MeOH–methanol, Et$_2$O–diethyl ether, CH$_2$Cl$_2$–dichloromethane, TEA–triethylamine, MeCN–
acetonitrile, MS–molecular sieves, CDI–1,1′-carbonyldiimidazole, Troc–2,2,2-trichloroethoxycarbonyl, DCC–N,N′-dicyclohexylcarbodiimide, TLC–thin layer chromatography, Boc₂O–di-tert-butyl dicarbonate, DMAP–4-dimethylaminopyridine, TBAN₃–tetra-n-butylammonium azide, HATU–1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate.

4.2.2 Catalyst Discovery and Procedures for the Diazidation

4.2.2.1 Catalyst Discovery for the Iron-Catalyzed Indene Diazidation

![Diagram of catalyst discovery process]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Fe(X)₂</th>
<th>Ligand</th>
<th>2</th>
<th>TMSN₃ [equiv]</th>
<th>Time [h]</th>
<th>Yield [%]</th>
<th>d²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ᵇ</td>
<td>Fe(OTf)₂</td>
<td>L1</td>
<td>2a</td>
<td>0</td>
<td>24.0</td>
<td><5</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>Fe(OTf)₂</td>
<td>L1</td>
<td>2a</td>
<td>1.5</td>
<td>1.0</td>
<td>81</td>
<td>3.7:1</td>
</tr>
<tr>
<td>3ᵇ</td>
<td>none</td>
<td>none</td>
<td>2a</td>
<td>1.5</td>
<td>1.0</td>
<td><5</td>
<td>NA</td>
</tr>
<tr>
<td>4</td>
<td>Fe(OTf)₂</td>
<td>L2</td>
<td>2a</td>
<td>1.5</td>
<td>1.0</td>
<td>82</td>
<td>7.1:1</td>
</tr>
<tr>
<td>5</td>
<td>Fe(OTf)₂</td>
<td>L3</td>
<td>2a</td>
<td>1.5</td>
<td>1.0</td>
<td>85</td>
<td>8.5:1</td>
</tr>
<tr>
<td>6</td>
<td>Fe(OTf)₂</td>
<td>L3</td>
<td>2b</td>
<td>3.6</td>
<td>1.0</td>
<td>82</td>
<td>8.6:1</td>
</tr>
<tr>
<td>7</td>
<td>Fe(NTf₂)₂</td>
<td>L3</td>
<td>2b</td>
<td>3.6</td>
<td>1.0</td>
<td>78</td>
<td>8.0:1</td>
</tr>
<tr>
<td>8</td>
<td>Fe(OAc)₂</td>
<td>L3</td>
<td>2b</td>
<td>3.6</td>
<td>3.5</td>
<td>87</td>
<td>>20:1</td>
</tr>
<tr>
<td>9</td>
<td>Fe(OAc)₂</td>
<td>L4</td>
<td>2b</td>
<td>3.6</td>
<td>3.5</td>
<td>75</td>
<td>8:1</td>
</tr>
<tr>
<td>10ʰ</td>
<td>Fe(OAc)₂</td>
<td>L5</td>
<td>2b</td>
<td>3.6</td>
<td>3.0</td>
<td>84</td>
<td>10:1</td>
</tr>
<tr>
<td>11ʰ</td>
<td>Fe(OAc)₂</td>
<td>L6</td>
<td>2b</td>
<td>3.6</td>
<td>3.5</td>
<td>82</td>
<td>7:1</td>
</tr>
</tbody>
</table>
Reactions were carried out under N₂ and then quenched with a saturated NaHCO₃ solution unless stated otherwise. Standard precautions with regard to handling TMSN₃ should be taken during the reaction workup. Reduction condition: PPh₃ (2.5 equiv), H₂O (5.0 equiv), THF, 50 °C, 2 h, then TsOH (2.5 equiv). Conversion is < 5%. Isolated yield; dr was measured by ¹H NMR analysis. OTf: trifluoromethanesulfonate, NTf₂: trifluoromethanesulfonimide. No significant ee was observed (ee <5%).

Table 24. Catalyst Discovery for the Iron-Catalyzed Indene Diazidation

4.2.2.2 General Procedure for the Iron-Catalyzed Indene Diazidation

To a flame-dried sealable 2-dram vial (vial A) equipped with a stir bar were added an iron salt (0.02 mmol) and a ligand (0.02 mmol). After the vial was evacuated and backfilled with N₂ three times, anhydrous CH₂Cl₂ (0.8 mL) and MeCN (0.2 mL) were added via a syringe and the mixture was stirred at room temperature for 10 min. To another flame-dried 3-dram vial (vial B) equipped with a stir bar was added 2a or 2b (0.48 mmol). This vial was evacuated and backfilled with N₂ three times and then anhydrous CH₂Cl₂ (3.0 mL) was added. Both vials were degassed with brief evacuation and then backfilled with N₂ twice. Subsequently, freshly distilled TMSN₃ (79 μL, 0.6 mmol or 190 μL, 1.44 mmol) and indene 1 (47 μL, 0.4 mmol) were added to vial B, followed by drop-wise addition of the catalyst solution in vial A at room temperature. The reaction was kept at the same temperature for the indicated time and then quenched with saturated NaHCO₃ solution (0.1 mL) and then further diluted with hexanes (5 mL). The mixture was stirred vigorously for 10 min and filtered through a short silica gel pad. The filtrate was further concentrated in vacuo and directly subject to dr analysis by ¹H NMR. The residue was further purified through a silica gel flash column (hexanes/Et₂O: from 200:1 to 50:1) to afford the indene diazide 3a as colorless oil.

Warning: Standard precautions with regard to handling TMSN₃ should be taken during the reaction workup since an extra equivalent of TMSN₃ is used when 2b is directly used as the terminal oxidant.
Since the C/N ratios for indene diazide are between 1 and 3, careful isolation and characterization of diazides was carried out under small-scale (<100 mg) conditions.

trans-1,2-Diazido-2,3-dihydro-1H-indene (*trans-3a*). The major diastereomer *trans-3a* is a known compound: both the 1H NMR and 13C NMR data are in accordance with the literature data.\(^7^2\)

1H NMR (400 MHz, CDCl$_3$): δ 7.67–6.68 (m, 4H), 4.77 (d, $J = 5.6$ Hz, 1H), 4.17 (dd, $J = 12.8, 6.7$ Hz, 1H), 3.35 (dd, $J = 16.0, 7.3$ Hz, 1H), 2.94 (dd, $J = 16.0, 6.6$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$): δ 139.2, 137.8, 129.5, 127.8, 125.2, 124.6, 70.3, 67.7, 36.2; IR ν_{max} (neat)/cm$^{-1}$: 2104 (s), 1743(w), 1478 (w), 1247 (s).

Note: it was challenging to obtain HRMS analysis of indene diazides 3a and most of other diazides through ESI analysis; therefore, the HRMS analysis was performed with the corresponding diaminium salts after derivatization. Additionally, diazides 3d and 3f were both derived to bistriazole compounds through the click-reaction with phenylacetylene to confirm the structure (*vide infra*).

cis-1,2-Diazido-2,3-dihydro-1H-indene (*cis-3a*): The minor diastereomer *cis-3a* is also a known compound: both the 1H NMR and 13C NMR data are in accordance with the literature data.\(^7^3\)
1H NMR (400 MHz, CDCl$_3$): δ 7.45–7.27 (m, 4H), 4.84 (d, $J = 5.6$ Hz, 1H), 4.29 (dd, $J = 12.3$, 6.5 Hz, 1H), 3.25–3.06 (m, 2H); 13C NMR (100 MHz, CDCl$_3$): δ 139.8, 137.6, 129.8, 127.8, 125.5, 125.0, 67.1, 64.2, 35.7; IR ν_{max} (neat)/cm$^{-1}$: 2096 (s), 1742 (w), 1322 (m), 1242 (s).

Scheme 64. Staudinger Reduction of Azides

The indene diazides 3a (trans- and cis-) were both converted to dianium salts 4a through a 2-step procedure. To a 3-dram vial equipped with a stir bar were added trans-cis-3a (60.0 mg, 0.3 mmol), THF (3 mL) and H$_2$O (27 μL, 1.5 mmol). After the vial was evacuated and backfilled with N$_2$ three times, a solution of PPh$_3$ (196.8 mg, 0.75 mmol) in THF (1.5 mL) was added drop-wise at 0°C. The mixture was warmed up to 50 $^\circ$C and stirred for 5 h (the reaction was monitored by IR until the absorption of azido groups disappeared). The mixture was then concentrated in vacuo and the residue was further dissolved in Et$_2$O (5 mL). This solution was added drop-wise to a solution of TsOH·H$_2$O (142.7 mg, 0.75 mmol) in Et$_2$O (3 mL). The reaction was kept stirring for 30 min and the white precipitate was collected by filtration, washed with Et$_2$O (5 mL \times 3) and dried in vacuo.

(\pm)-(1R,2R)-2,3-Dihydro-1H-indene-1,2-diaminium ditosylate (trans-4a). trans-4a was prepared through the aforementioned reduction/protonation procedure and it was isolated as a white solid (94% yield, m.p. 276–279 $^\circ$C). IR ν_{max} (neat)/cm$^{-1}$: 3036 (s), 2920 (s), 1599 (m), 1437 (w), 1166 (s), 1119 (s), 1032 (s), 1009 (s), 812 (m), 723 (m), 679 (s); 1H NMR (400 MHz,
DMSO-\textit{d}_6): \delta 8.37 (brs, 6H), 7.58 (d, \textit{J} = 7.7 \text{ Hz}, 1H), 7.48 (d, \textit{J} = 8.0 \text{ Hz}, 4H), 7.45–7.34 (m, 3H), 7.12 (d, \textit{J} = 7.9 \text{ Hz}, 4H), 4.82 (d, \textit{J} = 4.9 \text{ Hz}, 1H), 3.99 (dd, \textit{J} = 13.7, 5.6 \text{ Hz}, 1H), 3.47 (dd, \textit{J} = 16.8, 8.3 \text{ Hz}, 1H), 3.01 (dd, \textit{J} = 16.8, 5.9 \text{ Hz}, 1H), 2.29 (s, 6H); 13C NMR (100 MHz, DMSO-\textit{d}_6): \delta 144.9, 140.1, 138.3, 136.0, 130.0, 128.3, 127.8, 125.6, 125.2, 125.0, 58.5, 54.4, 35.5, 20.9; HRMS (ESI, m/z): calcd for C\textsubscript{9}H\textsubscript{13}N\textsubscript{2}+, [M + H+], 149.1073, found 149.1067.

(\pm)-(1\textit{R},2\textit{S})-2,3-Dihydro-\textit{1H}-indene-1,2-diaminium ditosylate (cis-4a). cis-4a was prepared through the aforementioned reduction/protonation procedure and it was isolated as a white solid (94% yield, m.p. 268–270 °C). IR \textit{\nu}_{\text{max}} (neat)/cm-1: 2870 (s), 1634 (w), 1547 (w), 1218 (s), 1187 (s), 1153 (m), 1125 (s), 1038 (s), 1012 (s), 817 (m), 682 (s); 1H NMR (400 MHz, DMSO-\textit{d}_6): \delta 8.47 (brs, 6H), 7.58 (d, \textit{J} = 7.5 \text{ Hz}, 1H), 7.53 (d, \textit{J} = 8.0 \text{ Hz}, 4H), 7.43–7.32 (m, 3H), 7.15 (d, \textit{J} = 7.8 \text{ Hz}, 4H), 4.85 (d, \textit{J} = 6.1 \text{ Hz}, 1H), 4.18 (dd, \textit{J} = 13.7, 7.1 \text{ Hz}, 1H), 3.24 (ddd, \textit{J} = 31.5, 16.0, 7.5 \text{ Hz}, 2H), 2.30 (s, 6H); 13C NMR (100 MHz, DMSO-\textit{d}_6): \delta 144.6, 140.1, 138.5, 136.0, 130.2, 128.4, 127.7, 125.9, 125.6, 125.4, 54.9, 52.0, 34.1, 20.9; HRMS (ESI, m/z): calcd for C\textsubscript{9}H\textsubscript{13}N\textsubscript{2}+, [M + H+], 149.1073, found 149.1067.

\subsection*{4.2.2.3 Optical Resolution of the Indene-(trans)-1,2-Diamine}

To a 3-dram vial equipped with a stir bar were added trans-3a (2.6 g, 13.0 mmol), THF (40 mL) and H\textsubscript{2}O (1.2 mL, 65.0 mmol). After the vial was evacuated and backfilled with N\textsubscript{2} three
times, a solution of PPh$_3$ (8.18 g, 31.2 mmol) in THF (20 mL) was added drop-wise at 0 °C. The mixture was warmed up to 50 °C and stirred for 4 h (the reaction was monitored by IR until the absorption of azido groups disappeared). L-(-)-tartaric acid (1.47 g, 9.8 mmol) was dissolved in MeOH (5 mL) and added to the reaction mixture drop-wise at 50 °C. The white precipitate was formed and the whole mixture was kept stirring for another 10 min. Then AcOH (0.37 mL, 6.5 mmol) was added via a syringe. After refluxing for 2 min, the reaction was cooled down to room temperature without stirring. The resulting white precipitate was collected by filtration, washed with MeOH (5 mL × 2), EtOAc (10 mL × 2) and dried *in vacuo*. The white solid was dissolved in hot water (10 mL), and hot MeOH (11 mL) was added subsequently. The resulting solution was cooled down to room temperature and crystalline white solids precipitated out in 12 h. The solids were collected (1.09 g) by filtration and washed with a mixture of MeOH/H$_2$O (2:1, 5 mL), and then MeOH (5 mL). Another portion of white solids (220 mg) precipitated out of the filtrate, and they were also collected by filtration and dried *in vacuo*. Both solids were dissolved in NaOH solution (1 M), extracted with CH$_2$Cl$_2$ for four times and dried over anhydrous K$_2$CO$_3$ separately. Evaporation of the solvent afforded the chiral diamine S1 as white solids (533 mg and 107 mg, 35% combined yield from diazide trans-3a). The ee of both solids was determined to be 97% by HPLC analysis after derivatization. Its configuration was determined as (1R,2R) by comparison of the optical rotation of the diamine S1 ([α]$_D^{20} = -20.3^\circ$ (c=0.7 in CHCl$_3$)) with the one reported in literature ([α]$_D^{25} = -20.4^\circ$ (c=0.7 in CHCl$_3$)).

\[\text{N,N'}-((1R,2R)-2,3-dihydro-1H-indene-1,2-diyl)diacetamide (S2)}\]

\[\text{S2} \]

Diamine S1 (14.8 mg, 0.1 mmol) was dissolved in anhydrous CH$_2$Cl$_2$ (2 mL) in a flame-dried vial under N$_2$. The
reaction was cooled to 0 °C and Et₃N (35 μL, 0.25 mmol) were added followed by dropwise addition of Ac₂O (23 μL, 0.24 mmol). The reaction was then warmed up to room temperature and kept stirring for 2 hours. After quenching with the saturated NaHCO₃ solution under vigorous stirring, the mixture was extracted with CH₂Cl₂ (2 mL × 3) and then concentrated in vacuo. The residue was purified through a silica gel flash column (hexanes/acetone from 2:1 to 1:2) to afford S2 as a white solid (19.5 mg, 84% yield, m.p. decomposed at 250 °C). IR νₘₐₓ (neat)/cm⁻¹: 3271 (m), 3068 (w), 2937 (w), 1641 (s), 1542 (s), 1371 (m), 1295 (m); ¹H NMR (400 MHz, CDCl₃, 318 K): δ 7.25–7.08 (m, 4H), 6.74 (d, J = 5.5 Hz, 1H), 6.36 (d, J = 8.0 Hz, 1H), 5.34 (t, J = 8.7 Hz, 1H), 4.34–4.21 (m, 1H), 3.31 (dd, J = 15.5, 7.7 Hz, 1H), 2.63 (dd, J = 15.4, 9.8 Hz, 1H), 2.08 (s, 3H), 1.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 318 K): δ 171.5, 171.0, 139.9, 139.7, 128.3, 127.1, 124.9, 122.9, 59.8, 59.5, 36.8, 23.20, 23.15; HRMS (ESI, m/z): calcd for C₁₃H₁₇N₂O₂+, [M + H⁺], 233.1285, found 233.1283; [α]D²⁰ = −44.2 (c=1.0 in CHCl₃, 97% ee); The ee was determined by Chiral HPLC analysis (Chiral S.S. Whelk, 1.0 mL/min, 254 nm, 10% EtOH in hexanes, tᵣ (major) = 12.49 min, tᵣ (minor) = 16.98 min, 97% ee).

Racemic S2

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area [mAU*min]</th>
<th>Height [mAU]</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.491</td>
<td>MM</td>
<td>0.5418</td>
<td>1778.21216</td>
<td>54.70387</td>
<td>50.4385</td>
</tr>
<tr>
<td>2</td>
<td>16.975</td>
<td>MM</td>
<td>0.6719</td>
<td>1747.29346</td>
<td>43.34398</td>
<td>49.5615</td>
</tr>
</tbody>
</table>

Totals : 3525.50562 98.04784
Enantio-enriched S2 (97% ee)

4.2.2.4 Procedure for the Iron-Catalyzed Olefin Diazidation and Product Characterization

Warning: Standard precautions with regard to handling TMSN₃ should be taken during the reaction workup since an extra equivalent of TMSN₃ is used when 2b is directly used as the terminal oxidant.

For safely handling TMSN₃, see the MSDS sheet at:

Since the C/N ratios for these synthetically valuable diazides generally vary from 1 to 3, careful isolation and characterization of diazides was carried out under small-scale (<100 mg) conditions. Also, direct reduction of diazides to diamines without further concentration is carried out for most substrates.
For safely handling organic azides, see:

3.6 equiv. of TMSN₃ is sufficient for high yields with anhydrous 2b that is stored in a glove-box. Alternatively, 4.0 equiv. of TMSN₃ is used to achieve the same yield with 2b that is stored out of a glove-box.

Allylbenzene is commercially available and was distilled before usage.

To a flame-dried sealable 2-dram vial (vial A) equipped with a stir bar were added Fe(OTf)₂ (1.8 mg, 0.005 mmol) and L₂ (1.4 mg, 0.005 mmol). After the vial was evacuated and backfilled with N₂ three times, anhydrous CH₂Cl₂ (0.8 mL) and MeCN (0.2 mL) were added via a syringe and the mixture was stirred at room temperature for 10 min. To another flame-dried 3-dram vial (vial B) equipped with a stir bar was added 2b (158.4 mg, 0.60 mmol). This vial was evacuated and backfilled with N₂ three times and anhydrous CH₂Cl₂ (4.0 mL) was added. Both vials were degassed with brief evacuation and backfilled with N₂ twice. Freshly distilled allylbenzene (66 μL, 0.5 mmol), TMSN₃ (263 μL, 2.0 mmol) were added successively to vial B and followed by drop-wise addition of the catalyst solution in vial A at room temperature. The reaction was kept at room temperature for 2 h and then quenched with a saturated NaHCO₃ solution (0.1 mL) and further diluted with hexanes (5 mL). The mixture was stirred vigorously for 10 min and filtered through a short silica gel pad. The filtrate was concentrated in vacuo. The residue was subsequently purified through a silica gel flash column (hexanes/Et₂O: from 200:1 to 50:1) as a colorless oil (72.8 mg, 72% yield).
(2,3-Diazidopropyl)benzene (3b): IR ν_{max} (neat)/cm$^{-1}$: 2932 (w), 2100 (s), 1205 (m), 743 (w); 1H NMR (400 MHz, CDCl$_3$): δ 7.36–7.32 (m, 2H), 7.30–7.27 (m, 1H), 7.25–7.17 (m, 2H), 3.79–3.66 (m, 1H), 3.40 (dd, $J = 12.7, 3.9$ Hz, 1H), 3.29 (dd, $J = 12.7, 6.9$ Hz, 1H), 2.88 (d, $J = 7.0$ Hz, 2H); 13C NMR: (100 MHz, CDCl$_3$) δ 136.5, 129.4, 129.0, 127.3, 63.0, 54.0, 38.1.

3-Phenylpropane-1,2-diaminium ditosylate (4b). To a 3-dram vial equipped with a stir bar were added diazidation product 3b (60.7 mg, 0.3 mmol), THF (3 mL) and H$_2$O (27 μL, 1.5 mmol). After the vial was evacuated and backfilled with N$_2$ three times, a solution of PPh$_3$ (196.8 mg, 0.75 mmol) in THF (1.5 mL) was added drop-wise at 0 °C. The mixture was warmed up to 50 °C and stirred for 6 h (the reaction was monitored by IR until the absorption of azido groups disappeared). The mixture was then concentrated in vacuo and the residue was further dissolved in Et$_2$O (5 mL). This solution was added drop-wise to a solution of TsOH·H$_2$O (142.7 mg, 0.75 mmol) in Et$_2$O (3 mL). The reaction was kept stirring for 30 min and the white precipitate was collected by filtration, washed with Et$_2$O (5 mL × 3) and dried in vacuo. 4b was obtained as a white solid (138 mg, 93% yield, m.p. 217–219 °C). IR ν_{max} (neat)/cm$^{-1}$: 3059 (s), 2917 (m), 1176 (s), 1120 (s), 1034 (m), 1010 (m), 812 (w), 723 (m), 679 (s); 1H NMR (400 MHz, CD$_3$OD): δ 7.72 (d, $J = 8.1$ Hz, 4H), 7.40–7.27 (m, 5H), 7.24 (d, $J = 7.9$ Hz, 4H), 3.86 (m, 1H), 3.33 (dd, $J = 13.9, 7.2$ Hz, 1H), 3.23 (dd, $J = 13.9, 5.4$ Hz, 1H), 3.08 (dd, $J = 14.2, 6.9$ Hz, 1H), 2.99 (dd, $J = 14.2, 6.9$ Hz, 1H), 2.37 (s, 6H); 13C NMR: (100 MHz, CD$_3$OD) δ 143.2, 142.0, 135.6, 130.5, 130.3, 130.0, 128.9, 126.9, 52.2, 42.0, 37.6, 21.3; HRMS (ESI, m/z): calcd for C$_9$H$_{15}$N$_2^+$, [M $+$ H$^+$], 151.1230, found 151.1224.
(1,2,3-Triazidopropyl)benzene (S4). A pair of tri-azidation products were isolated as side products as a colorless oil (17.0 mg, 14% yield, $dr = 1.8:1$). S4 was generated presumably through the addition/elimination/addition sequence. Their structures were further corroborated through the analysis of the corresponding tri-amine. IR ν_{max} (neat)/cm$^{-1}$: 2922 (w), 2091 (s), 1454 (w), 1247 (s); 1H NMR (400 MHz, CDCl$_3$): δ 7.50–7.30 (m, 5H), 4.63 (d, $J = 8.0$ Hz, 1H), 4.62 (d, $J = 7.6$ Hz, 1H, minor), 3.70 (ddd, $J = 7.6, 6.9, 3.9$ Hz, 1H, minor), 3.65 (ddd, $J = 8.0, 6.5, 3.7$ Hz, 1H), 3.54–3.44 (m, 2H, minor), 3.31 (dd, $J = 12.8, 3.7$ Hz, 1H), 3.09 (dd, $J = 12.8, 6.5$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$): δ 135.4, 135.1 (minor), 129.5, 129.4 (minor), 129.4, 129.2 (minor), 127.8 (minor), 127.4, 67.3, 66.0 (minor), 65.7, 65.1 (minor), 51.8, 51.7 (minor).

N,N',N''-(1-Phenylpropane-1,2,3-triy1)triacetamide (S5). The structure of S4 was further confirmed after derivatization. To a 2-dram vial equipped with a stir bar was added Pd/C (1.5 mg, 10 wt%). After the vial was evacuated and backfilled twice with N$_2$, a solution of triazide S4 (14.6 mg, 0.06 mmol, dissolved in 1 mL MeOH) was added. The mixture was degassed with brief evacuation and backfilled twice with N$_2$ and then three times with H$_2$. The reaction was vigorously stirred under H$_2$ at room temperature until the reduction completed (the reaction was monitored by IR until the absorption of azido groups disappeared). The solution
was filtered through Celite, washed with MeOH (3 mL) and the filtrate was concentrated in vacuo. Subsequently, the residue was dissolved in CH$_2$Cl$_2$ (2 mL) and cooled to 0 °C. Et$_3$N (42 µL, 0.3 mmol) was then added followed by dropwise addition of Ac$_2$O (23 µL, 0.24 mmol). The reaction was warmed up to room temperature and stirred for additional 4 h and quenched with a saturated NaHCO$_3$ solution (1 mL). After the organic layer was separated, the aqueous phase was extracted with CH$_2$Cl$_2$ (2 mL x 6). The combined organic layers were dried over anhydrous Na$_2$SO$_4$ and concentrated in vacuo. The residue was purified through a silica gel flash column (CH$_2$Cl$_2$/MeOH: from 20:1 to 5:1) to afford S5 as a colorless oil (dr = 6:1). IR ν_{max} (neat)/cm$^{-1}$: 3281 (m), 3068 (w), 1641 (s), 1530 (s), 1371 (s), 1279 (m), 1118 (w); 1H NMR (400 MHz, CDCl$_3$): δ 7.37–7.27 (m, 6H), 7.11 (d, $J = 6.9$ Hz, 1H), 6.68 (d, $J = 7.2$ Hz, 1H, minor), 6.34 (t, $J = 5.3$ Hz, 1H, minor), 6.01 (t, $J = 5.3$ Hz, 1H), 5.14 (dd, $J = 7.9$, 3.7 Hz, 1H, minor), 4.85 (dd, $J = 10.3$, 7.5 Hz, 1H), 4.42–4.34 (m, 1H, minor), 4.33–4.25 (m, 1H), 3.51–3.42 (m, 1H, minor), 3.38–3.29 (m, 1H, minor), 3.16 (t, $J = 5.7$ Hz, 2H), 2.07 (s, 3H, minor), 2.01 (s, 3H), 1.97 (s, 3H), 1.94 (s, 3H, minor), 1.93 (s, 3H), 1.85 (s, 3H, minor); 13C NMR: (100 MHz, CDCl$_3$) δ 172.9, 172.3, 170.5, 139.3, 129.2, 128.3, 127.2, 57.1, 55.5, 41.7, 23.4, 23.3, 23.1; HRMS (ESI, m/z): calcd for C$_{15}$H$_{20}$N$_3$O$_3^-$, [M - H$^+$], 290.1510, found 290.1501.

Allyl triisopropylsilane S6 was prepared through a literature procedure.74

To a flame-dried sealable 2-dram vial (vial A) equipped with a stir bar were added Fe(OTf)$_2$ (5.3 mg, 0.015 mmol) and L2 (4.1 mg, 0.015 mmol). After the vial was evacuated and
backfilled with N₂ three times, anhydrous CH₂Cl₂ (0.8 mL) and MeCN (0.2 mL) were added via a syringe and the mixture was stirred at room temperature for 10 min. To another flame-dried 3-dram vial (vial B) equipped with a stir bar was added 2b (158.4 mg, 0.60 mmol). This vial was evacuated and backfilled with N₂ three times and anhydrous CH₂Cl₂ (4.0 mL) was added. Both vials were degassed with brief evacuation and backfilled with N₂ twice. Allyl triisopropylsilane S6 (148 µL, 0.5 mmol), TMSN₃ (263 µL, 2.0 mmol) were added successively to vial B and followed by dropwise addition of the catalyst solution in vial A at room temperature. The reaction was kept at room temperature for 2 h and then quenched with a saturated NaHCO₃ solution (0.1 mL) and further diluted with hexanes (5 mL). The mixture was stirred vigorously for 10 min and filtered through a short silica gel pad. The filtrate was concentrated in vacuo. The residue was subsequently purified through a silica gel flash column (hexanes/Et₂O: from 200:1 to 50:1) as a colorless oil (125.7 mg, 89% yield).

(2,3-Diazidopropyl)triisopropylsilane (3c): IR νₓmax (neat)/cm⁻¹: 2942 (m), 2103 (s), 1463 (w), 1261 (m), 764 (s); ¹H NMR (400 MHz, CDCl₃): δ 3.69–3.58 (m, 1H), 3.42 (dd, J = 12.5, 4.0 Hz, 1H), 3.35 (dd, J = 12.5, 7.6 Hz, 1H), 1.07 (s, 21H), 0.91 (dd, J = 15.0, 8.9 Hz, 1H), 0.84 (dd, J = 15.0, 5.6 Hz, 1H); ¹³C NMR: (100 MHz, CDCl₃) δ 59.8, 58.0, 18.87, 18.84, 12.9, 11.4.

3-(Triisopropylsilyl)propane-1,2-diaminium ditosylate (4c). To a 3-dram vial equipped with a stir bar were added diazidation product 3c (84.8 mg, 0.3 mmol), THF (3 mL)
and H$_2$O (27 μL, 1.5 mmol). After the vial was evacuated and backfilled with N$_2$ three times, a solution of PPh$_3$ (196.8 mg, 0.75 mmol) in THF (1.5 mL) was added drop-wise at 0 °C. The mixture was warmed up to 50 °C and stirred for 6 h (the reaction was monitored by IR until the absorption of azido groups disappeared). The mixture was then concentrated in vacuo and the residue was further dissolved in Et$_2$O (5 mL). This solution was added drop-wise to another solution of TsOH·H$_2$O (142.7 mg, 0.75 mmol) in Et$_2$O (3 mL). The reaction was kept stirring for 30 min and the white precipitate was collected by filtration, washed with Et$_2$O (5 mL × 3) and dried in vacuo. 4c was obtained as a white solid (155.2 mg, 90% yield, m.p. 246–248 °C). IR ν_{max} (neat)/cm$^{-1}$: 2942 (s), 1531 (m), 1171 (s), 1126 (s), 1035 (s), 1012 (s), 813 (m), 679(s); 1H NMR (400 MHz, CD$_3$OD): δ 7.71 (d, J = 8.1 Hz, 4H), 7.24 (d, J = 8.0 Hz, 4H), 3.92–3.69 (m, 1H), 3.28 (d, J =14.3, 9.8 Hz, 1H), 3.21 (dd, J = 14.3, 3.0 Hz, 1H), 2.37 (s, 6H), 1.14 (d, J = 7.6 Hz, 2H), 1.08 (s, 21H); 13C NMR (100 MHz, CD$_3$OD): δ 143.1, 142.0, 130.0, 126.9, 49.8, 44.2, 21.3, 19.18, 19.17, 14.4, 12.5; HRMS (ESI, m/z): calcd for C$_{12}$H$_{31}$N$_2$Si$^+$, [M + H$^+$], 231.2251, found 231.2247.

Styrene is commercially available and was distilled before usage.

To a flame-dried sealable 2-dram vial (vial A) equipped with a stir bar were added Fe(OTf)$_2$ (5.3 mg, 0.015 mmol) and L2 (4.1 mg, 0.015 mmol). After the vial was evacuated and backfilled with N$_2$ three times, anhydrous CH$_2$Cl$_2$ (0.8 mL) and MeCN (0.2 mL) were added via a syringe and the mixture was stirred at room temperature for 10 min. To another flame-dried 3-
drum vial (vial B) equipped with a stir bar was added 2b (158.4 mg, 0.60 mmol). This vial was evacuated and backfilled with N₂ three times and anhydrous CH₂Cl₂ (4.0 mL) was added. Both vials were degassed with brief evacuation and backfilled with N₂ twice. Freshly distilled styrene (57 µL, 0.5 mmol), TMSN₃ (263 µL, 2.0 mmol) were added successively to vial B and followed by drop-wise addition of the catalyst solution in vial A at room temperature. The reaction was kept at room temperature for 2 h and then quenched with saturated NaHCO₃ solution (0.1 mL) and further diluted with hexanes (5 mL). The mixture was stirred vigorously for 10 min and filtered through a short silica gel pad. The filtrate was concentrated in vacuo. The residue was subsequently purified through a silica gel flash column (hexanes/Et₂O: from 200:1 to 50:1) as colorless oil (80.0 mg, 85% yield).

![Chemical structure of 3d](image)

(1,2-Diazidoethyl)benzene (3d): IR ν_{max} (neat)/cm⁻¹: 2927 (w), 2099 (s), 1456 (w), 1152 (m); ¹H NMR (400 MHz, CDCl₃): δ 7.47–7.38 (m, 3H), 7.38–7.27 (m, 2H), 4.68 (dd, J = 8.2, 5.0 Hz, 1H), 3.51 (dd, J = 12.7, 8.3 Hz, 1H), 3.45 (dd, J = 12.7, 5.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 136.5, 129.2, 129.2, 127.1, 65.6, 56.1.

1-Phenylethane-1,2-diaminium ditosylate (4d). To a 3-dram vial equipped with a stir bar were added diazidation product 3d (56.5 mg, 0.3 mmol), THF (3 mL) and H₂O (27 µL, 1.5 mmol). After the vial was evacuated and backfilled with N₂ three times, a solution of PPh₃ (196.8 mg, 0.75 mmol) in THF (1.5 mL) was added drop-wise at 0 °C. The mixture was warmed up to 50 °C and stirred for 6 h (the reaction was monitored by IR until the absorption of azido groups
disappeared). The mixture was then concentrated in vacuo and the residue was further dissolved in Et₂O (5 mL). This solution was added drop-wise to another solution of TsOH·H₂O (142.7 mg, 0.75 mmol) in Et₂O (3 mL). The reaction was kept stirring for 30 min and the white precipitate was collected by filtration, washed with Et₂O (5 mL × 3) and dried in vacuo. 4d was obtained as a white solid (126.9 mg, 88% yield, m.p. 245–247 °C). IR νₘₐₓ (neat)/cm⁻¹: 3053 (s), 2918 (s), 1620 (w), 1515 (m), 1193 (s), 1172 (s), 1126 (s), 1036 (s), 1011 (s), 759 (m), 697 (m), 680 (s); ¹H NMR (400 MHz, CD₃OD): δ 7.72 (d, J = 8.1 Hz, 4H), 7.59–7.54 (m, 2H), 7.54–7.48 (m, 3H), 7.25 (d, J = 8.0 Hz, 4H), 4.68 (dd, J = 9.4, 5.7 Hz, 1H), 3.66 (dd, J = 13.0, 5.7 Hz, 1H), 3.57 (dd, J = 13.0, 9.4 Hz, 1H), 2.38 (s, 6H); ¹³C NMR (100 MHz, DMSO-d₆): δ 144.8, 138.5, 133.8, 129.8, 129.2, 128.4, 128.1, 125.6, 52.2, 41.6, 20.9; HRMS (ESI, m/z): calcd for C₈H₁₃N₂⁺, [M + H⁺], 137.1073, found 137.1067.

1,1’-(1-Phenylethane-1,2-diyl)bis(4-phenyl-1H-1,2,3-triazole) (S7): Diazido compound 3d (37.6 mg, 0.2 mmol) was dissolved in a 2:1 mixture of ²BuOH and water (0.6 mL). Phenylacetylene (48 µL, 0.44 mmol), CuSO₄·5H₂O (10.0 mg, 0.04 mol), sodium ascorbate (15.9 mg, 0.08 mmol) and TBTA (tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine) (2.1 mg, 0.004 mmol) were added and the solution was stirred at room temperature for 1 h. The reaction mixture was diluted with water (20 mL) and extracted with CH₂Cl₂ (5 × 20 mL). The combined organic phases were dried over MgSO₄ and the solvent was evaporated. The resulting solid was washed with ether (2 × 3 mL) and bistriazole S7 was isolated as a white solid (71.4 mg, 91%). IR νₘₐₓ (neat)/cm⁻¹: 3091 (m), 1464 (s), 1231 (m), 1020 (m) 1081 (m), 1044 (w), 838 (w); ¹H NMR (400 MHz, DMSO-d₆, 323K): δ 8.79 (s, 1H), 8.52 (s, 1H), 7.80 (d, J = 7.3 Hz, 2H), 7.75 (d, J = 7.4 Hz, 4H), 7.54 (m, 16H), 7.40 (m, 4H), 7.30 (m, 4H), 6.98 (m, 4H), 5.87 (s, 2H), 4.39 (s, 3H).
Hz, 2H), 7.58 (d, J = 7.0 Hz, 2H), 7.48 – 7.39 (m, 7H), 7.36 – 7.28 (m, 2H), 6.55 (dd, J = 9.7, 5.8 Hz, 1H), 5.62 (dd, J = 14.2, 9.9 Hz, 1H), 5.35 (dd, J = 14.2, 5.6 Hz, 1H); \(^{13}\)C NMR (100 MHz, DMSO-\(d_6\), 323K): \(\delta\) 147.0, 146.7, 136.6, 131.0, 130.9, 129.5, 129.33, 129.32, 128.5, 128.4, 127.8, 125.7, 125.6, 122.3, 121.5, 64.0, 52.7; HRMS (ESI, m/z): calcd for C\(_{24}\)H\(_{20}\)N\(_6\)Na\(^+\), [M + Na\(^+\)], 415.1642, found 415.1636.

\(\alpha\)-Methylstyrene is commercially available and was distilled before usage.

To a flame-dried sealable 2-dram vial (vial A) equipped with a stir bar were added Fe(OTf)\(_2\) (5.3 mg, 0.015 mmol) and \(L_2\) (4.1 mg, 0.015 mmol). After the vial was evacuated and backfilled with N\(_2\) three times, anhydrous CH\(_2\)Cl\(_2\) (0.8 mL) and MeCN (0.2 mL) were added via a syringe and the mixture was stirred at room temperature for 10 min. To another flame-dried 3-dram vial (vial B) equipped with a stir bar was added \(2b\) (158.4 mg, 0.60 mmol). This vial was evacuated and backfilled with N\(_2\) three times and anhydrous CH\(_2\)Cl\(_2\) (4.0 mL) was added. Both vials were degassed with brief evacuation and backfilled with N\(_2\) twice. Freshly distilled \(\alpha\)-methylstyrene (65 \(\mu\)L, 0.5 mmol), TMSN\(_3\) (263 \(\mu\)L, 2.0 mmol) were added successively to vial B and followed by drop-wise addition of the catalyst solution in vial A at room temperature. The reaction was kept at room temperature for 2 h and then quenched with a saturated NaHCO\(_3\) solution (0.1 mL) and further diluted with hexanes (5 mL). The mixture was stirred vigorously for 10 min and filtered through a short silica gel pad. The filtrate was concentrated in vacuo. The
residue was subsequently purified through a silica gel flash column (hexanes/Et₂O: from 200:1 to 50:1) as a colorless oil (83.9 mg, 83% yield).

(1,2-Diazidopropan-2-yl)benzene (3e): IR ν_{max} (neat)/cm⁻¹: 2934 (m), 2097 (s), 1298 (m), 699 (m); ¹H NMR (400 MHz, CDCl₃): δ 7.46–7.40 (m, 4H), 7.38–7.31 (m, 1H), 3.50 (d, J = 12.6 Hz, 1H), 3.41 (d, J = 12.6 Hz, 1H), 1.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 140.7, 129.0, 128.4, 125.9, 66.7, 61.1, 22.4.

2-Phenylpropane-1,2-diaminium ditosylate (4e). To a 3-dram vial equipped with a stir the bar was added Pd/C (6.0 mg, 10 wt%). After the vial was evacuated and backfilled twice with N₂, a solution of diazidation product 3e (60.7 mg, 0.3 mmol, dissolved in 3 mL MeOH) was added to the vial. The mixture was degassed with brief evacuation and backfilled twice with N₂ and then three times with H₂. The reaction was vigorously stirred under H₂ at room temperature until the reduction completed (the reaction was monitored by IR until the absorption of azido groups disappeared). The solution was filtered through Celite and washed with MeOH (3 mL). To the filtrate was added a solution of TsOH·H₂O (114.2 mg, 0.60 mmol) in methanol (3 mL). The mixture was concentrated in vacuo (to ca. 0.5 mL solvent left), then diluted with Et₂O (10 mL). The white precipitate was collected by filtration, washed with Et₂O (5 mL × 3) and dried in vacuo. 4e was obtained as a white solid (133.5 mg, 90% yield, m.p. 187–188 °C). IR ν_{max} (neat)/cm⁻¹: 3307 (s), 2944 (m), 2832 (w), 1449 (w), 1415 (w), 1260 (w), 1022 (s), 765 (m), 750 (m); ¹H NMR (400 MHz, CD₃OD): δ 7.74 (d, J = 8.0 Hz, 4H), 7.67–7.61 (m, 2H), 7.61–7.50 (m, 3H), 7.27 (d, J = 8.0 Hz, 4H), 3.74 (d, J = 13.5 Hz, 1H), 3.64 (d, J = 13.5 Hz, 1H), 2.41 (s, 6H),
1.95 (s, 3H); 13C NMR (100 MHz, CD$_3$OD): δ 143.2, 141.9, 138.6, 130.7, 130.5, 129.9, 126.9, 126.8, 58.0, 48.7, 23.6, 21.3; HRMS (ESI, m/z): calcd for C$_9$H$_{15}$N$_2^+$, [M + H$^+$], 151.1230, found 151.1228.

1-Octene is commercially available and was distilled before usage.

To a flame-dried sealable 2-dram vial (vial A) equipped with a stir bar were added Fe(OTf)$_2$ (5.3 mg, 0.015 mmol) and L$_2$ (4.1 mg, 0.015 mmol). After the vial was evacuated and backfilled with N$_2$ three times, anhydrous CH$_2$Cl$_2$ (0.8 mL) and MeCN (0.2 mL) were added via a syringe and the mixture was stirred at room temperature for 10 min. To another flame-dried 3-dram vial (vial B) equipped with a stir bar was added 2b (158.4 mg, 0.60 mmol). This vial was evacuated and backfilled with N$_2$ three times and anhydrous CH$_2$Cl$_2$ (4.0 mL) was added. Both vials were degassed with brief evacuation and backfilled with N$_2$ twice. Freshly distilled octene (79 μL, 0.5 mmol), TMSN$_3$ (263 μL, 2.0 mmol) were added successively to vial B and followed by drop-wise addition of the catalyst solution in vial A at room temperature. The reaction was kept at room temperature for 2 h and then quenched with saturated NaHCO$_3$ solution (0.1 mL) and further diluted with hexanes (5 mL). The mixture was stirred vigorously for 10 min and filtered through a short silica gel pad. The filtrate was concentrated in vacuo. The residue was subsequently purified through a silica gel flash column (hexanes/Et$_2$O: from 200:1 to 50:1) as colorless oil (76.5 mg, 78% yield).
1,2-Diazidooctane (3f): IR ν_{max} (neat)/cm$^{-1}$: 2930 (m), 2099 (s), 1152 (s), 820 (w); 1H NMR (400 MHz, CDCl$_3$): δ 3.50–3.41 (m, 1H), 3.38 (dd, $J = 12.6, 3.8$ Hz, 1H), 3.31 (dd, $J = 12.6, 7.4$ Hz, 1H), 1.59–1.50 (m, 2H), 1.50–1.41 (m, 1H), 1.41–1.20 (m, 7H), 0.89 (t, $J = 5.9$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 62.2, 55.0, 31.9, 31.7, 29.1, 26.0, 22.7, 14.2.

Octane-1,2-diaminium ditosylate (4f). To a 3-dram vial equipped with a stir bar were added diazidation product 3f (58.9 mg, 0.3 mmol), THF (3 mL) and H$_2$O (27 μL, 1.5 mmol). After the vial was evacuated and backfilled with N$_2$ three times, a solution of PPh$_3$ (196.8 mg, 0.75 mmol) in THF (1.5 mL) was added drop-wise at 0 °C. The mixture was warmed up to 50 °C and stirred for 6 h (the reaction was monitored by IR until the absorption of azido groups disappeared). The mixture was then concentrated in vacuo and the residue was further dissolved in Et$_2$O (5 mL). This solution was added drop-wise to another solution of TsOH\cdotH$_2$O (142.7 mg, 0.75 mmol) in Et$_2$O (3 mL). The reaction was kept stirring for 30 min and the white precipitate was collected by filtration, washed with Et$_2$O (5 mL \times 3) and dried in vacuo. 4f was obtained as a white solid (124.6 mg, 85% yield, m.p. 311–312 °C). IR ν_{max} (neat)/cm$^{-1}$: 2922 (s), 2857 (s), 1532 (w), 1168 (s), 1123 (s), 1035 (s), 1010 (s), 813 (m), 679 (s); 1H NMR (400 MHz, CD$_2$OD): δ 7.71 (d, $J = 8.1$ Hz, 4H), 7.25 (d, $J = 7.9$ Hz, 4H), 3.53 (dt, $J = 12.6, 6.2$ Hz, 1H), 3.26 (dd, $J = 12.5, 3.9$ Hz, 1H), 3.22 (dd, $J = 12.5, 5.2$ Hz, 1H), 2.37 (s, 6H), 1.81–1.55 (m, 2H), 1.50–1.19 (m, 8H), 0.90 (t, $J = 6.1$ Hz, 3H); 13C NMR (100 MHz, CD$_3$OD): δ 154.3, 147.8, 137.8, 135.0,
1,1’-(Octane-1,2-diyl)bis(4-phenyl-1H-1,2,3-triazole) (S8): Diazido compound 3f (39.2 mg, 0.2 mmol) was dissolved in a 2:1 mixture of tBuOH and water (0.6 mL). Phenylacetylene (48 µL, 0.44 mmol), CuSO₄·5H₂O (10.0 mg, 0.04 mol), sodium ascorbate (15.9 mg, 0.08 mmol) and TBTA (tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine) (2.1 mg, 0.004 mmol) were added and the solution was stirred at room temperature for 2 h. The reaction mixture was diluted with water (20 mL) and extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were dried over MgSO₄ and the solvent was evaporated. The residue was then purified through a silica gel flash column (hexanes/acetone: from 10:1 to 3:1). Bistriazole S8 was isolated as a white solid (74.4 mg, 93%). IR ν max (neat)/cm⁻¹: 3083 (m), 2924 (m), 2857 (w), 1464 (m), 1226 (m), 1075 (w), 1044 (w); ¹H NMR (400 MHz, CDCl₃): δ 7.77–7.69 (m, 2H), 7.69–7.61 (m, 2H), 7.49 (s, 1H), 7.41–7.26 (m, 6H), 7.30 (s, 1H), 5.04–4.88 (m, 3H), 2.31–2.15 (m, 1H), 2.11–1.98 (m, 1H), 1.40–1.20 (m, 8H), 0.86 (t, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 147.9, 147.6, 130.0, 129.9, 128.8, 128.4, 128.3, 125.74, 125.73, 120.72, 120.68, 62.2, 53.8, 32.7, 31.4, 28.7, 25.7, 22.5, 14.0; HRMS (ESI, m/z): calcd for C₂₄H₂₂N₆⁺ [M + H⁺], 401.2448, found 401.2450.
2-Methyl-1-nonene is commercially available and was distilled before usage.

To a flame-dried sealable 2-dram vial (vial A) equipped with a stir bar were added Fe(OTf)$_2$ (5.3 mg, 0.015 mmol) and L2 (4.1 mg, 0.015 mmol). After the vial was evacuated and backfilled with N$_2$ three times, anhydrous CH$_2$Cl$_2$ (0.8 mL) and MeCN (0.2 mL) were added via a syringe and the mixture was stirred at room temperature for 10 min. To another flame-dried 3-dram vial (vial B) equipped with a stir bar was added 2b (158.4 mg, 0.60 mmol). This vial was evacuated and backfilled with N$_2$ three times and anhydrous CH$_2$Cl$_2$ (4.0 mL) was added. Both vials were degassed with brief evacuation and backfilled with N$_2$ twice. Freshly distilled 2-methylnon-1-ene (94.1 μl, 0.5 mmol), TMSN$_3$ (263 μL, 2.0 mmol) were added successively to vial B and followed by drop-wise addition of the catalyst solution in vial A at room temperature. The reaction was kept at room temperature for 2 h and then quenched with a saturated NaHCO$_3$ solution (0.1 mL) and further diluted with hexanes (5 mL). The mixture was stirred vigorously for 10 min and filtered through a short silica gel pad. The filtrate was concentrated in vacuo. The residue was subsequently purified through a silica gel flash column (hexanes/Et$_2$O: from 200:1 to 50:1) as a colorless oil (98.7 mg, 88% yield).

1,2-Diazido-2-methylnonane (3g): IR ν_{max} (neat)/cm$^{-1}$: 2929 (s), 2857 (w), 2094 (s), 1603 (m), 1460 (m), 1256 (s), 1152 (s), 1069 (w); 1H NMR (400 MHz, CDCl$_3$): δ 3.28 (d, J =
12.4 Hz, 1H), 3.23 (d, J = 12.5 Hz, 1H), 1.54 (m, 2H), 1.30 (m, 13H), 0.89 (t, J = 6.4 Hz, 3H);

\[^{13}\text{C NMR} \text{ (100 MHz, CDCl}_3\text{): } \delta \text{ 64.0, 59.2, 37.5, 31.9, 29.9, 29.3, 23.8, 22.8, 21.4, 14.2.} \]

2-Methylnonane-1,2-diaminium ditosylate (4g). To a 3-dram vial equipped with a stir bar was added Pd/C (6.7 mg, 10 wt%). After the vial was evacuated and backfilled twice with N\(_2\), a solution of diazidation product 3g (67.3 mg, 0.3 mmol, dissolved in 3 mL MeOH) was added to the vial. The mixture was degassed with brief evacuation and backfilled twice with N\(_2\) and then three times with H\(_2\). The reaction was vigorously stirred under H\(_2\) at room temperature until the reduction completed (the reaction was monitored by IR until the absorption of azido groups disappeared). The solution was filtered through Celite and washed with MeOH (3 mL). To the filtrate was added a solution of TsOH⋅H\(_2\)O (114.2 mg, 0.60 mmol) in methanol (3 mL). The mixture was concentrated \emph{in vacuo} (to ca. 0.5 mL solvent left), then diluted with Et\(_2\)O (10 mL). The white precipitate was collected by filtration, washed with Et\(_2\)O (5 mL × 3) and dried \emph{in vacuo}. 4g was obtained as a white solid (147.3 mg, 95% yield, m.p. 236–237 °C). IR \(\nu_{\text{max}} \) (neat)/cm\(^{-1}\): 2921 (s), 2854 (s), 2271 (w), 1531 (w), 1190 (s), 1125 (s), 1036 (s), 1012 (s), 816 (m), 679 (s); \(^1\text{H NMR} \text{ (400 MHz, CD}_3\text{OD): } \delta \text{ 7.72 (d, } J = 8.1 \text{ Hz, 4H), 7.24 (d, } J = 7.9 \text{ Hz, 4H), 3.28 (d, } J = 13.8 \text{ Hz, 1H), 3.24 (d, } J = 13.8 \text{ Hz, 1H), 2.37 (s, 6H), 1.71 (m, 2H), 1.43 (s, 3H), 1.40–1.20 (m, 10H), 0.90 (t, } J = 6.8 \text{ Hz, 3H); } ^{13}\text{C NMR} \text{ (100 MHz, CD}_3\text{OD): } \delta \text{ 143.1, 142.0, 130.0, 126.9, 56.3, 46.4, 37.2, 32.9, 30.6, 30.1, 23.7, 23.6, 21.5, 21.3, 14.4; HRMS (ESI, m/z): calcd for C}_{10}\text{H}_{23}\text{N}_2^+, [M + H^+]}, 173.2012, \text{ found 173.2010.} \]
Indene is commercially available and was distilled before usage.

To a flame-dried sealable 2-dram vial (vial A) equipped with a stirring bar were added Fe(OAc)$_2$ (4.4 mg, 0.025 mmol) and L3 (13.1 mg, 0.025 mmol). After the vial was evacuated and backfilled with N$_2$ three times, anhydrous CH$_2$Cl$_2$ (0.8 mL) and MeCN (0.2 mL) were added via a syringe and the mixture was stirred at room temperature for 10 min. To another flame-dried 3-dram vial (vial B) equipped with a stirring bar was added 2b (158.4 mg, 0.60 mmol). This vial was evacuated and backfilled with N$_2$ three times and anhydrous CH$_2$Cl$_2$ (4.0 mL) was added. Both vials were degassed with brief evacuation and backfilled with N$_2$ twice. Freshly distilled indene (58 μl, 0.5 mmol), TMSN$_3$ (237 μl, 1.8 mmol) were added successively to vial B and followed by drop-wise addition of the catalyst solution in vial A at room temperature. The reaction was kept at room temperature for 4 h and then quenched with a saturated NaHCO$_3$ solution (0.1 mL) and further diluted with hexanes (5 mL). The mixture was stirred vigorously for additional 10 min and filtered through a short silica gel pad. The filtrate was concentrated in vacuo. The residue was subsequently purified through a silica gel flash column (hexanes/Et$_2$O: from 200:1 to 10:1) as a colorless oil (87.1 mg, 87 % yield, $dr > 20:1$).
1,2-Dihydronaphthalene is commercially available and was distilled before usage.

To a flame-dried sealable 2-dram vial (vial A) equipped with a stirring bar were added Fe(OAc)$_2$ (4.4 mg, 0.025 mmol) and L3 (13.1 mg, 0.025 mmol). After the vial was evacuated and backfilled with N$_2$ three times, anhydrous CH$_2$Cl$_2$ (0.8 mL) and MeCN (0.2 mL) were added via a syringe and the mixture was stirred at room temperature for 10 min. To another flame-dried 3-dram vial (vial B) equipped with a stirring bar was added 2b (158.4 mg, 0.60 mmol). This vial was evacuated and backfilled with N$_2$ three times and anhydrous CH$_2$Cl$_2$ (4.0 mL) was added. Both vials were degassed with brief evacuation and backfilled with N$_2$ twice. Freshly distilled 1,2-dihydronaphthalene (65 μl, 0.5 mmol), TMSN$_3$ (263 μl, 2.0 mmol) were added successively to vial B and followed by drop-wise addition of the catalyst solution in vial A at room temperature. The reaction was kept at room temperature for 4 h and then quenched with saturated NaHCO$_3$ solution (0.1 mL) and further diluted with hexanes (5 mL). The mixture was stirred vigorously for additional 10 min and filtered through a short silica gel pad. The filtrate was concentrated in vacuo. The residue was subsequently purified through a silica gel flash column (hexanes/Et$_2$O: from 200:1 to 10:1) as colorless oil (84.6 mg, 79 % yield, $dr = 12:1$).

trans-1,2-Diazido-1,2,3,4-tetrahydronaphthalene (trans-3h): IR ν_{max} (neat)/cm$^{-1}$: 2927
(w), 2094 (s), 1256 (m), 748 (w); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.37 (d, \(J = 3.4\) Hz, 1H), 7.31–7.22 (m, 2H), 7.15 (d, \(J = 3.0\) Hz, 1H), 4.43 (d, \(J = 6.6\) Hz, 1H), 3.87 (ddd, \(J = 8.9, 6.6, 3.1\) Hz, 1H), 3.00–2.82 (m, 2H), 2.29–2.19 (m, 1H), 2.04–1.91 (m, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 135.8, 131.7, 129.15, 129.13, 128.7, 126.9, 63.6, 61.7, 26.1, 25.3.

\textit{cis-1,2-Diazido-1,2,3,4-tetrahydronaphthalene} (\textit{cis-3h}): IR \(\nu_{\text{max}}\) (neat)/cm\(^{-1}\): 2937 (w), 2095 (s), 1252 (m), 767 (w); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.35–7.28 (m, 1H), 7.28–7.23 (m, 2H), 7.19 (d, \(J = 7.3\) Hz, 1H), 4.65 (d, \(J = 3.2\) Hz, 1H), 3.81 (dt, \(J = 11.4, 3.4\) Hz, 1H), 3.07 (ddd, \(J = 17.4, 6.1, 3.4\) Hz, 1H), 2.90 (ddd, \(J = 17.4, 10.6, 6.6\) Hz, 1H), 2.30–2.15 (m, 1H), 2.15–2.02 (m, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 135.5, 131.8, 129.8, 129.5, 129.3, 126.7, 62.7, 59.9, 27.5, 23.0.

The relative stereochemistry was determined by comparison of \(^1\)H NMR with literature data.\(^{75}\)

<table>
<thead>
<tr>
<th></th>
<th>\textit{trans-3h}</th>
<th>\textit{cis-3h}</th>
<th>((1S,2R))^5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^1)H NMR</td>
<td>(^1)H NMR (400 MHz, CDCl(_3)): (\delta) 4.43 (d, (J = 6.6) Hz, 1H), 3.87 (ddd, (J = 8.9, 6.6, 3.1) Hz, 1H), 3.00–2.82 (m, 2H), 2.29–2.19 (m, 1H), 2.04–1.91 (m, 1H).</td>
<td>(^1)H NMR (400 MHz, CDCl(_3)): (\delta) 4.65 (d, (J = 3.2) Hz, 1H), 3.81 (dt, (J = 11.4, 3.4) Hz, 1H), 3.07 (ddd, (J = 17.4, 6.1, 3.4) Hz, 1H), 2.90 (ddd, (J = 17.4, 10.6, 6.6) Hz, 1H), 2.30–2.15 (m, 1H), 2.15–2.02 (m, 1H).</td>
<td>(^1)H NMR (300 MHz, CDCl(_3)): (\delta) 4.65 (d, (J = 2.3) Hz, 1H); 3.80 (ddd, (J = 10.4, 4.6, 2.3) Hz, 1H), 3.09 (ddd, (J = 16.1, 4.0, 5.8) Hz, 1H), 2.88 (ddd, (J = 16.1, 10.4, 5.8) Hz, 1H), 2.18 (m, 2H).</td>
</tr>
</tbody>
</table>
(±)-(15,2S)-1,2,3,4-Tetrahydronaphthalene-1,2-diaminium ditosylate (trans-4h). To a 3-dram vial equipped with a stir bar were added trans-diazidation product trans-3h (64.3 mg, 0.3 mmol), THF (3 mL) and H₂O (27 μL, 1.5 mmol). After the vial was evacuated and backfilled with N₂ three times, a solution of PPh₃ (196.8 mg, 0.75 mmol) in THF (1.5 mL) was added drop-wise at 0 °C. The mixture was warmed up to 50 °C and stirred for 6 h (the reaction was monitored by IR until the absorption of azido groups disappeared). The mixture was then concentrated in vacuo and the residue was further dissolved in Et₂O (5 mL). This solution was added drop-wise to another solution of TsOH·H₂O (142.7 mg, 0.75 mmol) in Et₂O (3 mL). The reaction was kept stirring for 30 min and the white precipitate was collected by filtration, washed with Et₂O (5 mL × 3) and dried in vacuo. trans-4h was obtained as a white solid (136.7 mg, 86% yield, decomposed at 280 °C). IR ν_{max} (neat)/cm⁻¹: 3026 (s), 2919 (s), 1610 (m), 1497 (w), 1163 (s), 1125 (s), 1036 (s), 1011 (s), 814 (m), 685 (s); ¹H NMR (400 MHz, CD₃OD): δ 7.70 (d, J = 8.1 Hz, 4H), 7.48 (d, J = 7.6 Hz, 1H), 7.42 (t, J = 7.1 Hz, 1H), 7.38–7.28 (m, 2H), 7.24 (d, J = 7.9, 4H), 4.69 (d, J = 3.1 Hz, 1H), 4.07–3.95 (m, 1H), 3.04 (dt, J = 18.0, 5.5 Hz, 1H), 2.99–2.88 (m, 1H), 2.37 (s, 6H), 2.35–2.27 (m, 1H), 2.20–2.09 (m, 1H); ¹³C NMR (100 MHz, DMSO-d₆): δ 144.9, 138.3, 136.6, 129.9, 129.4, 129.3, 128.8, 128.4, 127.0, 125.6, 50.0, 48.5, 23.9, 22.2, 20.9; HRMS (ESI, m/z): calcd for C₁₀H₁₅N₂⁺, [M + H⁺], 163.1230, found 163.1223.
(±)-(1R,2S)-1,2,3,4-Tetrahydronaphthalene-1,2-diaminium ditosylate (cis-4h). To a 2-dram vial equipped with a stir bar was added Pd/C (2.1 mg, 10 wt%). After the vial was evacuated and backfilled twice with N₂, a solution of diazidation product cis-3h (21.4 mg, 0.1 mmol, dissolved in 1.5 mL MeOH) was added to the vial. The mixture was degassed with brief evacuation and backfilled twice with N₂ and then three times with H₂. The reaction was vigorously stirred under H₂ at room temperature until the reduction completed (the reaction was monitored by IR until the absorption of azido groups disappeared). The solution was filtered through Celite and washed with MeOH (3 mL). To the filtrate was added a solution of TsOH·H₂O (114.2 mg, 0.60 mmol) in methanol (3 mL). The mixture was concentrated in vacuo (to ca. 0.5 mL solvent left), then diluted with Et₂O (10 mL). The white precipitate was collected by filtration, washed with Et₂O (5 mL × 3) and dried in vacuo. cis-4h was obtained as a white solid (46.0 mg, 90% yield, decomposed at 280 °C). IR νₛₛₑₐₓ(cm⁻¹): 3401 (s), 1652 (m), 1048 (w), 994 (s), 824 (m), 762 (w); ¹H NMR (400 MHz, DMSO-d₆): δ 8.32 (brs, 6H), 7.51 (d, J = 7.9 Hz, 4H), 7.44–7.33 (m, 2H), 7.31–7.21 (m, 2H), 7.14 (d, J = 7.8 Hz, 4H), 4.61 (d, J = 2.3 Hz, 1H), 3.79 (d, J = 12.4 Hz, 1H), 3.07–2.83 (m, 2H), 2.29 (s, 6H), 2.22–2.09 (m, 1H), 2.08–1.98 (m, 1H); ¹³C NMR (100 MHz, DMSO-d₆): δ 145.0, 138.2, 136.0, 130.3, 129.3, 129.7, 129.9, 129.3, 128.3, 126.4, 125.6, 50.0, 48.7, 26.8, 20.9, 20.7; HRMS (ESI, m/z): calcd for C₁₀H₁₅N₂ [M + H⁺], 163.1230, found 163.1223.

2,2,2-Trichloroethyl quinoline-1(2H)-carboxylate (S9). To a solution of 3,4-dihydroquinoline (234.4 mg, 2.0 mmol) in CH₂Cl₂ (10 mL) cooled in an ice-water bath, Et₃N (831 µL, 6.0 mmol) and DMAP (12.2 mg, 0.1 mmol) were added, followed by drop-wise
addition of 2,2,2-trichlorethoxycarbonyl chloride (0.41 mL, 3.0 mmol). The reaction was kept stirring in an ice-water bath for 6 h until starting material was consumed. Then the reaction mixture was diluted with water (50 mL) and extracted with CH₂Cl₂ (25 mL × 3). The combined organic layer was washed with brine (25 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo. The crude product was purified through a silica gel flash column (hexanes/EtOAc = 10:1) to afford S₉ as a white solid (466.0 mg, 76% yield). IR νₘₐₓ (neat)/cm⁻¹: 3049 (w), 2850 (w), 1715 (s), 1940 (m), 1387 (s), 1334 (m), 1223 (s), 1130 (s), 754 (m); ¹H NMR (400 MHz, CD₃CN): δ 7.67 (d, J = 8.1 Hz, 1H), 7.29–7.21 (m, 1H), 7.18–7.12 (m, 2H), 6.58 (d, J = 9.6 Hz, 1H), 6.14–6.06 (m, 1H), 4.90 (s, 2H), 4.45 (dd, J = 4.1, 1.6 Hz, 2H); ¹³C NMR (100 MHz, CD₃CN): δ 152.2, 135.6, 128.3, 127.4, 126.4, 126.0, 125.1, 123.9, 117.3, 95.4, 75.1, 43.6; HRMS (ESI, m/z): calcd for C₁₂H₁₁Cl₃NO₂⁺ [M + H⁺], 305.9850, found 305.9860.

To a flame-dried sealable 2-dram vial (vial A) equipped with a stirring bar were added Fe(NTf₂)₂ (30.8 mg, 0.05 mmol) and L₃ (26.1 mg, 0.05 mmol). After the vial was evacuated and backfilled with N₂ three times, anhydrous CH₂Cl₂ (0.8 mL) and MeCN (0.2 mL) were added via a syringe and the mixture was stirred at room temperature for 10 min. To another flame-dried 3-dram vial (vial B) equipped with a stirring bar were added 2b (158.4 mg, 0.60 mmol) and S₉ (153.3 mg, 0.5 mmol). This vial was evacuated and backfilled with N₂ three times and anhydrous CH₂Cl₂ (4.0 mL) was added. Both vials were degassed with brief evacuation and backfilled with
N₂ twice. TMSN₃ (263 µl, 2.0 mmol) was added to vial B and followed by drop-wise addition of the catalyst solution in vial A at room temperature. The reaction was kept at room temperature for 2.5 h and then quenched with saturated NaHCO₃ solution (0.1 mL), and further diluted with hexanes (5 mL). The mixture was stirred vigorously for 10 min and filtered through a short silica gel pad. The filtrate was concentrated in vacuo. The residue was subsequently purified through a silica gel flash column (hexanes/Et₂O: from 200:1 to 17:1) as colorless oil (128.9 mg, 66% yield, dr > 20:1).

2,2,2-Trichloroethyl-trans-3,4-diazido-3,4-dihydroquinoline-1(2H)-carboxylate (3i): The relative stereochemistry was determined by comparison of its ¹H NMR spectra with the one obtained from 3h. IR ν max (neat)/cm⁻¹: 2956 (w), 2098 (s), 1722 (s), 1492 (s), 1391 (m), 1206 (m), 1146 (m), 760 (m); ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, J = 6.9 Hz, 1H), 7.45–7.33 (m, 2H), 7.26–7.19 (m, 1H), 4.89 (s, 2H), 4.51 (d, J = 4.9 Hz, 1H), 4.15 (dd, J = 13.5, 5.8, 1H), 4.06–3.92 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 152.7, 136.5, 129.5, 129.3, 125.3, 124.1, 123.6, 95.1, 75.7, 61.0, 59.2, 45.2; HRMS (ESI, m/z): calcd for C₁₂H₁₀Cl₃N₇O₂Na⁺, [M + Na⁺], 418.9854, found 418.9854.

(±)-(3S,4S)-1-((2,2,2-Trichloroethoxy)carbonyl)-1,2,3,4-tetrahydroquinoline-3,4-diaminium ditosylate (4i). To a 3-dram vial equipped with a stir bar were added Pd/C (11.7 mg, 10 wt%) and TsOH·H₂O (142.7 mg, 0.75 mmol). After the vial was evacuated and backfilled
twice with N₂, a solution of diazidation product 3i (117.2 mg, 0.3 mmol, dissolved in 5 mL MeOH) was added to the vial. The mixture was degassed with brief evacuation and backfilled twice with N₂ and then three times with H₂. The reaction was vigorously stirred under H₂ at room temperature until the reduction completed (the reaction was monitored by IR until the absorption of azido groups disappeared). The solution was filtered through Celite and washed with MeOH. The filtrate was concentrated in vacuo, dissolved in minimum amount of MeOH (about 0.5 mL), and then diluted with Et₂O (10 mL). The white precipitate was collected by filtration, washed with Et₂O (5 mL × 3) and dried in vacuo. 4i was obtained as a white solid (182.4 mg, 89% yield, dr > 20:1, m.p. 249–251 °C). IR νₚₑₘₚₐₓ (neat)/cm⁻¹: 2951 (brs), 1721 (m), 1498 (m), 1399 (m), 1170 (s), 1033 (m), 1011 (m), 686 (m); ¹H NMR (400 MHz, CD₃OD): δ 8.10 (d, J = 8.5 Hz, 1H), 7.71 (d, J = 8.1 Hz, 4H), 7.59 (d, J = 7.7 Hz, 1H), 7.55–7.48 (m, 1H), 7.32 (t, J = 7.6 Hz, 1H), 7.25 (d, J = 8.0 Hz, 4H), 5.00–4.92 (m, 2H), 4.86 (d, J = 2.6 Hz, 1H), 4.38 (dd, J = 15.5, 5.9 Hz, 1H), 4.27–4.19 (m, 2H), 2.39 (s, 6H); ¹³C NMR (100 MHz, CD₃OD): δ 152.2, 141.8, 140.6, 137.1, 130.3, 129.9, 128.6, 125.6, 125.5, 123.9, 120.0, 94.9, 75.5, 48.9, 47.7, 42.8, 19.9; HRMS (ESI, m/z): calcd for C₁₂H₁₅Cl₃N₃O₂⁺, [M + H⁺], 338.0224, found 338.0230.

2,2,2-Trichloroethyl-1H-indole-1-carboxylate (S10). To a solution of indole (234.4 mg, 2.0 mmol) in CH₂Cl₂ (10 mL) cooled in an ice-water bath, Bu₄NHSO₄ (34 mg, 0.1 mmol) and NaOH (320 mg, 8.0 mmol) were added, followed by drop-wise addition of 2,2,2-trichlorethoxycarbonyl chloride (0.41 mL, 3.0 mmol). The reaction was allowed to warm up to room temperature gradually, and stirred for 2 h until indole was consumed. Then the reaction mixture was diluted with water (50 mL) and extracted with CH₂Cl₂ (25 mL × 3). The combined
organic layer was washed with brine (25 mL), dried over anhydrous Na₂SO₄, and concentrated \textit{in vacuo}. The crude product was purified through a silica gel flash column (hexanes/EtOAc = 10:1) to afford the \textit{N}-Troc indole \textbf{S10} as a white solid (514.8 mg, 88% yield). IR \(\nu_{\text{max}}\) (neat)/cm\(^{-1}\): 2961 (w), 1739 (s), 1536 (w), 1455 (s), 1343 (m), 1326 (s), 1236 (s), 1211 (m), 1120 (s) 753 (s), 715 (s); \(^1\)H NMR (400 MHz, 310 K, CDCl\(_3\)): \(\delta\) 8.28 (d, \(J = 8.1\) Hz, 1H), 7.70 (d, \(J = 3.7\) Hz, 1H), 7.62 (d, \(J = 7.7\) Hz, 1H), 7.51–7.37 (m, 1H), 7.32 (td, \(J = 7.7, 0.9\) Hz, 1H), 6.69 (d, \(J = 3.7\) Hz, 1H), 5.07 (s, 2H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 149.3, 135.3, 130.8, 125.4, 125.1, 123.7, 121.3, 115.4, 109.4, 94.6, 77.4, 75.8; HRMS (ESI, m/z): calcd for C\(_{11}\)H\(_9\)Cl\(_3\)NO\(_2\)\(^+\), [M + H\(^+\)], 291.9693, found 291.9699.

\[
\begin{align*}
\text{Fe(OTf)}_2 (8.9 \text{ mg}, 0.025 \text{ mmol}) \quad &\quad \text{L3 (13.1 \text{ mg}, 0.025 \text{ mmol})} \\
\text{2b (158.4 \text{ mg}, 0.60 \text{ mmol})} \quad &\quad \text{N-Troc indole S10 (146.0 \text{ mg}, 0.5 \text{ mmol})}
\end{align*}
\]

To a flame-dried sealable 2-dram vial (vial \textbf{A}) equipped with a stirring bar were added Fe(OTf)_2 (8.9 mg, 0.025 mmol) and \textbf{L3} (13.1 mg, 0.025 mmol). After the vial was evacuated and backfilled with N\(_2\) three times, anhydrous CH\(_2\)Cl\(_2\) (0.8 mL) and MeCN (0.2 mL) were added via a syringe and the mixture was stirred at room temperature for 10 min. To another flame-dried 3-dram vial (vial \textbf{B}) equipped with a stirring bar were added 2b (158.4 mg, 0.60 mmol) and \textit{N}-Troc indole \textbf{S10} (146.0 mg, 0.5 mmol). This vial was evacuated and backfilled with N\(_2\) three times and anhydrous CH\(_2\)Cl\(_2\) (1.5 mL) was added. Both vials were degassed with brief evacuation and backfilled with N\(_2\) twice. TMSN\(_3\) (263 \(\mu\)l, 2.0 mmol) was added to vial \textbf{B} and followed by drop-wise addition of the catalyst solution in vial \textbf{A} at room temperature. The reaction was kept at
room temperature for 3 h and then quenched with saturated NaHCO₃ solution (0.1 mL), and further diluted with hexanes (5 mL). The mixture was stirred vigorously for 10 min and filtered through a short silica gel pad. The filtrate was concentrated in vacuo. The residue was subsequently purified through a silica gel flash column (hexanes/Et₂O: from 200:1 to 15:1) as white solid (151.8 mg, 81% yield, $dr > 20:1$).

![Image](image_url)

2,2,2-Trichloroethyl-trans-2,3-diazidoindoline-1-carboxylate (3j): IR ν_{max} (neat)/cm$^{-1}$: 2102 (s), 1737(w), 1605 (m), 753 (s); 1H NMR (400 MHz, CD$_3$CN, 318 K): δ 7.85 (d, $J = 8.0$ Hz, 1H), 7.56–7.46 (m, 2H), 7.24 (t, $J = 7.5$ Hz, 1H), 5.87 (s, 1H), 5.10 (d, $J = 12.2$ Hz, 1H), 4.98 (d, $J = 12.1$ Hz, 1H), 4.83 (s, 1H); 13C NMR (100 MHz, DMSO-d_6, 318 K): δ 150.4, 139.9, 131.1, 131.0, 126.3, 124.5, 115.2, 94.9, 79.8, 74.8, 64.2; HRMS (ESI, m/z): calcd for C$_{11}$H$_8$Cl$_3$N$_7$O$_2$Na$^+$, [M + Na$^+$], 397.9697, found 397.9691.

![Image](image_url)

(±)-(2S,3S)-1-((2,2,2-Trichloroethoxy)carbonyl)indoline-2,3-diaminium ditosylate (4j). To a 3-dram vial equipped with a stir bar were added Pd/C (11.3 mg, 10 wt%) and TsOH·H$_2$O (142.7 mg, 0.75 mmol). After the vial was evacuated and backfilled twice with N$_2$, a solution of diazidation product 3j (113.0 mg, 0.3 mmol, dissolved in 5 mL MeOH) was added to the vial. The mixture was degassed with brief evacuation and backfilled twice with N$_2$ and then three times with H$_2$. The reaction was vigorously stirred under H$_2$ at room temperature until the reduction completed (the reaction was monitored by IR until the absorption of azido groups
disappeared). The solution was filtered through Celite and washed with MeOH. The filtrate was concentrated in vacuo, dissolved in minimum amount of MeOH (ca. 0.5 mL), and then diluted with Et$_2$O (10 mL). The white precipitate was collected by filtration, washed with Et$_2$O (5 mL × 3) and dried in vacuo. 4j was obtained as a white solid (180.1 mg, 90% yield, dr > 20:1, m.p. 145–146 °C). IR ν_{max} (neat)/cm$^{-1}$: 2923 (s), 1721 (s), 1599 (m), 1489 (s), 1409 (m), 1328 (m), 1164 (s), 1125 (s), 1035 (s), 1010 (s), 683 (s); 1H NMR (400 MHz, DMSO-d$_6$, 318 K): δ 8.64 (brs, 3H), 7.74 (d, $J = 7.6$ Hz, 1H), 7.70 (d, $J = 7.5$ Hz, 1H), 7.57 (m, 1H), 7.52 (d, $J = 8.0$ Hz, 4H), 7.28 (t, $J = 7.5$ Hz, 1H), 7.13 (d, $J = 7.8$ Hz, 4H), 5.62 (s, 1H), 5.23 (d, $J = 12.1$ Hz, 1H), 5.01 (brs, 1H), 4.87 (s, 1H), 2.30 (s, 6H); 13C NMR (100 MHz, DMSO-d$_6$, 318 K): δ 150.6, 148.8, 144.5, 141.0, 140.2, 138.2, 131.4, 128.2, 127.1, 126.9, 125.4, 124.7, 124.3, 115.6, 114.9, 94.5, 75.4, 74.4, 68.8, 54.0, 53.4, 20.7; HRMS (ESI, m/z): calcd for C$_{11}$H$_{13}$N$_3$O$_2$Cl$_3$+[M + H$^+$], 324.0068, found 324.0057.

4j was converted to S11 for NOE analysis for relative stereochemistry determination.

![Chemical Reaction]

(±)-2,2,2-Trichloroethyl (25,3S)-2,3-diacetamidoindoline-1-carboxylate (S11). Diaminium tosylate 4j (66.9 mg, 0.1 mmol) was suspended in anhydrous CH$_2$Cl$_2$ (3 mL) in a flame-dried vial under N$_2$. The reaction was cooled to 0 °C under stirring. Et$_3$N (56 μL, 0.4 mmol) was added via a syringe followed by dropwise addition of Ac$_2$O (23.6 μL, 0.25 mmol). The reaction was then warmed up to room temperature and kept stirring for 2 hours. After quenching with saturated NaHCO$_3$ solution under vigorous stirring, the mixture was extracted with CH$_2$Cl$_2$ (2 mL × 3) and concentrated in vacuo. The crude product was purified through a silica gel column (hexanes/aceton for 3:1 to 1:1) to afford S11 as a white solid (31.9 mg, 78%
yield). IR ν_{max} (neat)/cm$^{-1}$: 2921 (s), 2851 (s), 1732 (w), 1555 (m), 1463 (m); 1H NMR (400 MHz, CD$_3$CN, 318 K): δ 7.83 (d, $J = 8.4$ Hz, 1H), 7.42–7.33 (m, 2H), 7.14 (t, $J = 7.5$ Hz, 1H), 7.06 (brd, $J = 5.8$ Hz, 1H), 6.84 (brd, $J = 5.8$ Hz, 1H), 5.87 (d, $J = 7.7$ Hz, 1H), 5.18 (d, $J = 7.9$ Hz, 1H), 5.09 (d, $J = 12.2$ Hz, 1H), 4.89 (d, $J = 11.9$ Hz, 1H), 1.89 (s, 3H), 1.86 (s, 3H); 13C NMR (100 MHz, CD$_3$CN, 318 K): δ 170.4, 170.0, 152.0, 142.9, 131.4, 130.6, 126.7, 125.1, 116.1, 96.4, 75.9, 73.3, 58.0, 23.4, 23.2; HRMS (ESI, m/z): calcd for C$_{15}$H$_{17}$N$_3$O$_4$Cl$_3^+$, [M + H$^+$], 408.0279, found 408.0273.

A strong NOE was observed between H(a) and H(b); however, there is no significant NOE observed between H(c) and H(d). Additionally, NOEs between H(a) and H(d), and between H(b) and H(c) were also observed.
2,2,2-Trichloroethyl-3-methyl-1H-indole-1-carboxylate (S12). To a solution of 3-methyl indole (262.4 mg, 2.0 mmol) in CH$_2$Cl$_2$ (10 mL) cooled in an ice-water bath, Bu$_4$NHSO$_4$ (34 mg, 0.1 mmol) and NaOH (320 mg, 8.0 mmol) were added, followed by dropwise addition of 2,2,2-trichlorethoxycarbonyl chloride (0.41 mL, 3.0 mmol). The reaction was allowed to warm up to room temperature gradually, and stirred for 2 h until 3-methyl indole was consumed.
Then the reaction mixture was diluted with water (50 mL) and extracted with CH$_2$Cl$_2$ (25 mL × 3). The combined organic layer was washed with brine (25 mL), dried over anhydrous Na$_2$SO$_4$, and concentrated in vacuo. The crude product was purified through a silica gel flash column (hexanes/EtOAc = 10:1) to afford S12 as a white solid (527.4 mg, 86% yield). IR ν_{max} (neat)/cm$^{-1}$: 2956 (w), 1739 (s), 1612 (w), 1456 (s), 1397 (s), 1348 (m), 1305 (s), 1233 (m), 1099 (s), 753 (s), 713 (s); 1H NMR (400 MHz, CDCl$_3$): δ 8.24 (d, $J = 5.1$ Hz, 1H), 7.54 (d, $J = 7.5$ Hz, 1H), 7.44 (s, 1H), 7.44–7.37 (m, 1H), 7.36–7.29 (m, 1H), 5.05 (s, 2H), 2.31 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 149.1, 135.6, 131.8, 125.0, 123.4, 122.0, 119.3, 118.6, 115.3, 94.7, 75.6, 9.7; HRMS (ESI, m/z): calcd for C$_{12}$H$_{11}$Cl$_3$NO$_2^{+}$, [M + H$^+$], 305.9850, found 305.9861.

To a flame-dried sealable 2-dram vial (vial A) equipped with a stirring bar were added Fe(OTf)$_2$ (8.9 mg, 0.025 mmol) and L3 (13.1 mg, 0.025 mmol). After the vial was evacuated and backfilled with N$_2$ three times, anhydrous CH$_2$Cl$_2$ (0.8 mL) and MeCN (0.2 mL) were added via a syringe and the mixture was stirred at room temperature for 10 min. To another flame-dried 3-dram vial (vial B) equipped with a stirring bar were added 2b (158.4 mg, 0.60 mmol) and N-Troc-3-methyl indole S12 (153 mg, 0.5 mmol). This vial was evacuated and backfilled with N$_2$ three times and anhydrous CH$_2$Cl$_2$ (1.5 mL) was added. Both vials were degassed with brief evacuation and backfilled with N$_2$ twice. TMSN$_3$ (263 μL, 2.0 mmol) was added to vial B and followed by drop-wise addition of the catalyst solution in vial A at room temperature. The
reaction was kept at room temperature for 3 h and then quenched with saturated NaHCO₃ solution (0.1 mL), and further diluted with hexanes (5 mL). The mixture was stirred vigorously for 10 min and filtered through a short silica gel pad. The filtrate was concentrated in vacuo. The residue was subsequently purified through a silica gel flash column (hexanes/Et₂O: from 200:1 to 15:1) as a white solid (160.0 mg, 82% yield, dr > 20:1). The relative stereochemistry was determined through NOE analysis of a derivatization product of S₁₃.

2,2,2-Trichloroethyl-trans-2,3-diazido-3-methylindoline-1-carboxylate (S₁₃): IR νₘₐₓ (neat)/cm⁻¹: 2113 (s), 1736 (s), 1483 (m), 1403 (m), 1256 (w), 753 (w); ¹H NMR (400 MHz, CD₂CN, 318 K): δ 7.86 (d, J = 7.9 Hz, 1H), 7.57–7.44 (m, 2H), 7.28 (td, J = 7.6, 0.8 Hz, 1H), 5.81 (s, 1H), 5.14 (d, J = 12.2 Hz, 1H), 5.02 (d, J = 12.1 Hz, 1H), 1.79 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆, 318 K): δ 150.3, 139.1, 130.9, 129.6, 124.4, 123.5, 115.1, 94.9, 82.6, 74.7, 69.5, 16.8.

(±)-(2S,3S)-1-((2,2,2-Trichloroethoxy)carbonyl)indoline-3-methyl-2,3-diaminium ditosylate ditosylate (S₁₄). To a 3-dram vial equipped with a stir bar were added Pd/C (11.7 mg, 10 wt%) and TsOH·H₂O (142.7 mg, 0.75 mmol). After the vial was evacuated and backfilled twice with N₂, a solution of diazidation product S₁₃ (117.2 mg, 0.3 mmol, dissolved in 5 mL MeOH) was added to the vial. The mixture was degassed with brief evacuation and backfilled twice with N₂ and then three times with H₂. The reaction was vigorously stirred under H₂ at room
temperature until the reduction completed (the reaction was monitored by IR until the absorption of azido groups disappeared). The solution was filtered through Celite and washed with MeOH. The filtrate was concentrated in vacuo, dissolved in minimum amount of MeOH (ca. 0.5 mL), and then diluted with Et₂O (10 mL). The white precipitate was collected by filtration, washed with Et₂O (5 mL × 3) and dried in vacuo. S14 was obtained as a white solid (171.2 mg, 83% yield, dr > 20:1, decomposed at 234°C). IR ν_{max} (neat)/cm⁻¹: 2855 (s), 1731 (s), 1532 (w), 1484 (m), 1398 (w), 1325 (w), 1192 (s), 1124 (s), 1039 (s), 1010 (s), 762 (m), 682 (s); ¹H NMR (400 MHz, DMSO-d₆, 318 K): δ 8.71 (brs, 3H), 7.76 (d, J = 7.3 Hz, 1H), 7.64–7.55 (m, 2H), 7.52 (d, J = 8.0 Hz, 4H), 7.32 (t, J = 7.6 Hz, 1H), 7.14 (d, J = 7.9 Hz, 4H), 5.58 (s, 1H), 5.24 (d, J = 12.1 Hz, 1H), 5.01 (d, J = 12.0 Hz, 1H), 2.32 (s, 6H), 1.84 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆, 318 K): δ 150.3, 144.9, 139.4, 138.0, 131.5, 128.5, 128.0, 125.4, 125.0, 124.8, 115.6, 94.7, 75.2, 71.9, 60.3, 20.6, 16.9; HRMS (ESI, m/z): calcd for C₁₂H₁₅O₂N₃Cl₃⁺ [M + H⁺], 338.0224, found 338.0209.

(±)-2,2,2-Trichloroethyl (2S,3S)-2,3-diacetamidoindoline-1-carboxylate (S15). Diaminium tosylate S14 (66.9 mg, 0.1 mmol) was suspended in anhydrous CH₂Cl₂ (3 mL) in a flame-dried vial under N₂. The reaction was cooled to 0 °C under stirring. Et₃N (56 μL, 0.4 mmol) was added via a syringe followed by drop-wise addition of Ac₂O (23.6 μL, 0.25 mmol). The reaction was then warmed up to room temperature and kept stirring for 2 hours. After quenching with saturated NaHCO₃ solution under vigorous stirring, the mixture was extracted with CH₂Cl₂ (2 mL × 3) and concentrated in vacuo. The crude product was purified through a silica gel flash column (hexanes/aceton from 3:1 to 1:1) to afford S15 as a white solid (22.0 mg,
52% yield). IR ν_{max} (neat)/cm$^{-1}$: 3275 (m), 2922 (m), 1726 (s), 1653 (s), 1543 (s), 1485 (s), 1403 (s); 1H NMR (400 MHz, CD$_3$CN): δ 7.80 (d, $J = 8.1$ Hz, 1H), 7.36–7.30 (m, 2H), 7.17–7.10 (m, 1H), 6.89 (d, $J = 8.2$ Hz, 1H), 6.76 (s, 1H), 6.40 (d, $J = 8.8$ Hz, 1H), 5.15 (d, $J = 12.4$ Hz, 1H), 4.79 (s, 1H), 1.88 (s, 3H), 1.79 (s, 3H), 1.52 (s, 3H); 13C NMR (100 MHz, CD$_3$CN): δ 169.4, 169.1, 151.0, 141.5, 134.2, 129.1, 123.7, 123.5, 114.8, 95.2, 74.6, 72.9, 61.9, 22.4, 22.1, 20.3; HRMS (ESI, m/z): calcd for C$_{16}$H$_{19}$N$_3$O$_4$Cl$_3$ $^+$, [M + H$^+$], 422.0436, found: 422.0426.

A strong NOE was observed between H(c) and H(b); however, there is no significant NOE observed between H(c) and H(d). Additionally, NOEs between H(a) and H(d), and between H(c) and H(b) were also observed.
trans-Stilbene 10b is commercially available and it was further purified upon recrystallization before usage.

To a flame-dried sealable 2-dram vial (vial A) equipped with a stirring bar were added Fe(OTf)2 (8.9 mg, 0.025 mmol) and L3 (13.1 mg, 0.025 mmol). After the vial was evacuated and backfilled with N2 three times, anhydrous CH2Cl2 (0.8 mL) and MeCN (0.2 mL) were added via
a syringe and the mixture was stirred at room temperature for 10 min. To another flame-dried 3-
 dram vial (vial B) equipped with a stirring bar were added 2b (158.4 mg, 0.60 mmol) and trans-
 stilbene 10b (90.1 mg, 0.5 mmol). This vial was evacuated and backfilled with N₂ three times
 and anhydrous CH₂Cl₂ (4.0 mL) was added. Both vials were degassed with brief evacuation and
 backfilled with N₂ twice. TMSN₃ (263 µL, 2.0 mmol) was added to vial B and followed by drop-
 wise addition of the catalyst solution in vial A at room temperature. The reaction was kept at
 room temperature for 3 h and then quenched with a saturated NaHCO₃ solution (0.1 mL) and
 further diluted with hexanes (5 mL). The mixture was stirred vigorously for additional 10 min
 and filtered through a short silica gel pad. The filtrate was concentrated in vacuo. The residue
 was subsequently purified through a silica gel flash column (hexanes/Et₂O: from 200:1 to 50:1)
 as a colorless oil (113.6 mg, 86% yield, dr = 2.5:1). Lower dr (1.5:1) was obtained when the
 Fe(OAc)₂−L₃ complex was used as the catalyst.

\[\text{1,2-Diazido-1,2-diphenylethane (11): IR } ν_{\text{max}} \text{ (neat)/cm}^{-1}: 2959 \text{ (w)}, 2100 \text{ (s)}, 1252\text{ (m)},
1116 \text{ (w), 842 (m); } ^1\text{H NMR (400 MHz, CDCl}_3\text{): } δ \text{ 7.41 (m, 6H, minor), 7.35–7.19 (m, 4H, minor and m, 6H, major), 7.10 (m, 4H, major), 4.72 (s, 2H, minor), 4.67 (s, 2H, major); } ^{13}\text{C NMR (100 MHz, CDCl}_3\text{): } δ \text{ 136.0 (minor), 135.9 (major), 129.1 (minor), 128.83 (minor), 128.79 (major), 128.7 (major), 128.1 (minor), 127.8 (major), 70.9 (major), 69.8 (minor).} \]
1,2-Diphenylethane-1,2-diaminium ditosylate (S16). To a 3-dram vial equipped with a stir bar were added diazidation product 11 (79.3 mg, 0.3 mmol), THF (3 mL) and H₂O (27 μL, 1.5 mmol). After the vial was evacuated and backfilled with N₂ three times, a solution of PPh₃ (196.8 mg, 0.75 mmol) in THF (1.5 mL) was added drop-wise at 0 °C. The mixture was warmed up to 50 °C and stirred for 6 h (the reaction was monitored by IR until the absorption of azido groups disappeared). The mixture was then concentrated *in vacuo* and the residue was further dissolved in Et₂O (5 mL). This solution was added drop-wise to another solution of TsOH·H₂O (142.7 mg, 0.75 mmol) in Et₂O (3 mL). The reaction was kept stirring for 30 min and the white precipitate was collected by filtration, washed with Et₂O (5 mL × 3) and dried *in vacuo*. S16 was obtained as a white solid (138.6 mg, 83% yield, *dr* = 2.5:1, m.p. 251–253 °C). IR *ν*_{max} (neat)/cm^{−1}: 2911 (s), 2662 (m), 1599 (w), 1538 (m), 1171 (s), 1157 (s), 1123 (s), 1032 (s), 1007 (s), 811 (m), 698 (m), 679 (s); ¹H NMR (400 MHz, DMSO-<d>₆</d>): δ 8.83 (s, 6H, major), 8.43 (s, 6H, minor), 7.72–7.67 (m, 4H, minor), 7.55 (d, *J* = 8.0 Hz, 4H), 7.57–7.42 (m, 6H, minor), 7.36–7.27 (m, 6H, major), 7.27–7.22 (m, 4H, minor), 7.18 (d, *J* = 7.8 Hz, 4H), 4.92 (s, 2H, major), 4.77 (s, 2H, minor), 2.31 (s, 6H); ¹³C NMR (100 MHz, DMSO-<d>₆</d>): δ 144.8, 138.4, 133.2, 132.6, 130.6, 129.38, 129.35, 128.69, 128.65, 128.62, 128.4, 125.6, 56.9 (major), 56.7 (minor), 20.9; HRMS (ESI, m/z): calcd for C₁₄H₁₇N₂⁺, [M + H⁺], 213.1386, found 213.1382.

The relative stereochemistry of the major diastereomer was determined by comparison of the ¹H NMR spectrum of the synthetic diamines with the one obtained from commercially available (1R,2R)-(+)1,2-diphenylethylenediamine (Aldrich 364010).
trans-2-Octene is commercially available and it was distilled before usage.

To a flame-dried sealable 2-dram vial (vial A) equipped with a stirring bar were added Fe(OTf)$_2$ (8.9 mg, 0.025 mmol) and L3 (13.1 mg, 0.015 mmol). After the vial was evacuated and backfilled with N$_2$ three times, anhydrous CH$_2$Cl$_2$ (0.8 mL) and MeCN (0.2 mL) were added via a syringe and the mixture was stirred at room temperature for 10 min. To another flame-dried 3-dram vial (vial B) equipped with a stirring bar was added 2b (158.4 mg, 0.60 mmol). This vial was evacuated and backfilled with N$_2$ three times and anhydrous CH$_2$Cl$_2$ (4.0 mL) was added. Both vials were degassed with brief evacuation and backfilled with N$_2$ twice. Freshly distilled
trans-2-octene (78 µL, 0.5 mmol), TMSN$_3$ (263 µL, 2.0 mmol) were added successively to vial B and followed by drop-wise addition of the catalyst solution in vial A at room temperature. The reaction was kept at room temperature for 2 h and then quenched with saturated NaHCO$_3$ solution (0.1 mL) and further diluted with hexanes (5 mL). The mixture was stirred vigorously for additional 10 min and filtered through a short silica gel pad. The filtrate was concentrated in vacuo. The residue was subsequently purified through a silica gel flash column (hexanes/Et$_2$O: from 200:1 to 50:1) as colorless oil (74.6 mg, 76% yield, $dr = 1.4:1$). anti- and syn-3k were separated through a silica gel flash column (hexanes/Et$_2$O: from 200:1 to 50:1).

anti-2,3-Diazidooctane (anti-3k): IR ν_{max} (neat)/cm$^{-1}$: 2931 (m), 2097 (s), 1251 (m), 1153 (m), 744 (w); 1H NMR (400 MHz, CDCl$_3$): δ 3.63–3.48 (m, 1H), 3.31 (dt, $J = 9.0, 4.6$ Hz, 1H), 1.55–1.48 (m, 3H), 1.41–1.25 (m, 8H), 0.91 (t, $J = 6.7$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 66.5, 60.4, 31.6, 30.9, 26.1, 22.6, 14.6, 14.1.

syn-2,3-Diazidooctane (syn-3k): IR ν_{max} (neat)/cm$^{-1}$: 2932 (m), 2091 (s), 1454 (w), 1249 (m), 1055 (m), 1009 (m); 1H NMR (400 MHz, CDCl$_3$): δ 3.56–3.47 (m, 1H), 3.21–3.13 (m, 1H), 1.68–1.55 (m, 2H), 1.55–1.43 (m, 2H), 1.37–1.29 (m, 7H), 0.91 (t, $J = 6.8$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 66.5, 60.3, 31.6, 31.1, 25.9, 22.6, 16.5, 14.1.
anti-Octane-2,3-diaminium ditosylate (anti-4k). To a 3-dram vial equipped with a stir bar were added diazidation product anti-3k (58.9 mg, 0.3 mmol), THF (3 mL) and H₂O (27 μL, 1.5 mmol). After the vial was evacuated and backfilled with N₂ three times, a solution of PPh₃ (196.8 mg, 0.75 mmol) in THF (1.5 mL) was added drop-wise at 0 °C. The mixture was warmed up to 50 °C and stirred for 6 h (the reaction was monitored by IR until the absorption of azido groups disappeared). The mixture was then concentrated in vacuo and the residue was further dissolved in Et₂O (5 mL). This solution was added drop-wise to another solution of TsOH·H₂O (142.7 mg, 0.75 mmol) in Et₂O (3 mL). The reaction was kept stirring for 30 min and the white precipitate was collected by filtration, washed with Et₂O (5 mL × 3) and dried in vacuo. anti-4k was obtained as a white solid (139.3 mg, 95% yield, m.p. 278–279 °C). IR ν_max (neat)/cm⁻¹: 2951 (s), 2923 (s), 2866 (s), 1622 (m), 1532 (s), 1172 (s), 1122 (s), 1035 (s), 1010 (s), 813 (s), 677 (s); ¹H NMR (400 MHz, CD₃OD): δ 7.71 (d, J = 8.2 Hz, 4H), 7.25 (d, J = 8.0 Hz, 4H), 3.64 (qd, J = 6.9, 4.8 Hz, 1H), 3.47 (dt, J = 8.1, 5.0 Hz, 1H), 2.37 (s, 6H), 1.81–1.57 (m, 2H), 1.54–1.43 (m, 1H), 1.39 (d, J = 6.9 Hz, 3H), 1.35–1.31 (m, 5H), 0.91 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CD₃OD): δ 143.2, 141.9, 129.9, 126.9, 55.1, 49.8, 32.5, 30.5, 25.8, 23.4, 21.3, 14.5, 14.3; HRMS (ESI, m/z): calcd for C₈H₂₁N₂⁺, [M + H⁺], 145.1699, found 145.1695.

syn-Octane-2,3-diaminium ditosylate (syn-4k). By following the same reduction procedure, the diamine salt syn-4k was also obtained as a white solid (139.3 mg, 95% yield, m.p. 278–279 °C). IR ν_max (neat)/cm⁻¹: 2951 (s), 2923 (s), 2866 (s), 1622 (m), 1532 (m), 1172 (s), 1122 (s), 1035 (s), 1010 (s), 813 (m), 677 (s); ¹H NMR (400 MHz, CD₃OD): δ 7.71 (d, J = 8.1 Hz, 4H), 7.24 (d, J = 7.9 Hz, 4H), 3.84–3.67 (m, 1H), 3.55 (dt, J = 7.5, 3.5 Hz, 1H), 2.37 (s, 6H),
1.77–1.66 (m, 1H), 1.66–1.55 (m, 1H), 1.55–1.42 (m, 1H), 1.40–1.27 (m, 8H), 0.91 (t, J = 6.6 Hz, 3H); 13C NMR (100 MHz, CD$_3$OD): δ 143.3, 141.9, 129.9, 126.9, 54.0, 49.5, 32.6, 27.7, 26.1, 23.4, 21.3, 14.3, 13.1; HRMS (ESI, m/z): calcd for C$_8$H$_{21}$N$_2$+, [M + H$^+$], 145.1699, found 145.1695.

The relative stereochemistry of two isomers of 4k was determined by NOE analysis of their corresponding ureas after derivatization.

* cis-4-Methyl-5-pentylimidazolidin-2-one (cis-S17).* Octane-2,3-diamonium ditosylate anti-4k (24.5 mg, 0.05 mmol) was suspended in anhydrous CH$_2$Cl$_2$ (2 mL) in a flame-dried vial under N$_2$. The mix was cooled to 0 °C under stirring. Et$_3$N (42 μL, 0.3 mmol) was added via a syringe followed by drop-wise addition of a phosgene toluene solution (57.1 μL, 0.08 mmol, 15 wt%). The reaction was then warmed up to room temperature and kept stirring for 3 hours. After quenching with the saturated NaHCO$_3$ solution under vigorous stirring, the mixture was extracted with CH$_2$Cl$_2$ (2 mL × 3) and concentrated in vacuo. The crude product was purified through a silica gel column (hexanes/acetonitrile from 2:1 to 1:1) to afford the product cis-S17 as a solid (7.2 mg, 84% yield). IR ν_{max} (neat)/cm$^{-1}$: 3205 (m), 2926 (m), 2856 (m), 1697 (s), 1454 (m), 1373 (w), 1254 (m); 1H NMR (400 MHz, CDCl$_3$): δ 4.54 (brs, 1H), 4.38 (brs, 1H), 3.89–3.79 (m, 1H), 3.75–3.66 (m, 1H), 1.54–1.41 (m, 2H), 1.39–1.26 (m, 6H), 1.14 (d, J = 6.5 Hz, 3H), 0.90 (t, J = 6.4 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 163.0, 56.1, 51.4, 31.7, 29.6, 26.2, 22.5, 15.8, 14.0; HRMS (ESI, m/z): calcd for C$_9$H$_{19}$N$_2$O$^+$, [M + H$^+$], 171.1492, found 171.1484.
The strong \textit{NOE} between the methyl H(c) and the methylene H(d) was observed.
trans-4-Methyl-5-pentylimidazolidin-2-one (trans-S17). By following the same procedure, *trans*-S17 was prepared through *syn*-4k and isolated as colorless oil (6.9 mg, 81% yield). IR ν_{max} (neat)/cm$^{-1}$: 3206 (m), 2926 (m), 2855 (m), 1697 (s), 1454 (m), 1374 (w), 1254 (m); 1H NMR (400 MHz, CDCl$_3$): δ 4.62 (brs, 1H), 4.53 (brs, 1H), 3.56–3.43 (m, 1H), 3.33–3.23 (m, 1H), 1.60–1.46 (m, 2H), 1.35 (d, $J = 15.7$ Hz, 6H), 1.26 (d, $J = 6.2$ Hz, 3H), 0.92 (t, $J = 6.7$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 162.4, 60.5, 54.3, 35.1, 31.7, 25.4, 22.5, 21.2, 14.0; HRMS (ESI, m/z): calcd for C$_9$H$_{19}$N$_2$O$^+$, [M + H$^+$], 171.1492, found 171.1484.

There is absence of NOE between H(c) and H(d) and the NOE between H(b) and H(d) was observed instead.
Methyl *trans*-cinnamate is commercially available and it was used directly.
To a flame-dried sealable 2-dram vial (vial A) equipped with a stirring bar were added Fe(OTf)$_2$ (8.9 mg, 0.025 mmol) and L$_3$ (13.1 mg, 0.025 mmol). After the vial was evacuated and backfilled with N$_2$ three times, anhydrous CH$_2$Cl$_2$ (0.8 mL) and MeCN (0.2 mL) were added via a syringe and the mixture was stirred at room temperature for 10 min. To another flame-dried 3-dram vial (vial B) equipped with a stirring bar was added 2b (158.4 mg, 0.60 mmol) and trans-methyl trans-cinnamate (81.1 mg, 0.5 mmol). This vial was evacuated and backfilled with N$_2$ three times and anhydrous CH$_2$Cl$_2$ (4.0 mL) was added. Both vials were degassed with brief evacuation and backfilled with N$_2$ twice. TMSN$_3$ (263 μl, 2.0 mmol) was added to vial B and followed by drop-wise addition of the catalyst solution in vial A at room temperature. The reaction was kept at room temperature for 3 h and then quenched with saturated NaHCO$_3$ solution (0.1 mL), and further diluted with hexanes (5 mL). The mixture was stirred vigorously for 10 min and filtered through a short silica gel pad. The filtrate was concentrated in vacuo. The residue was subsequently purified through a silica gel flash column (hexanes/Et$_2$O: from 200:1 to10:1). The major diastereomer anti-3l and minor diastereomer syn-3l were both isolated as colorless oil (70.5 mg, 57% yield and 41.5 mg, 34% yield respectively).

anti-Methyl-2,3-diazido-3-phenylpropanoate (anti-3l): IR ν_{max} (neat)/cm$^{-1}$: 2099 (s), 1744(m), 1275 (w), 764 (m); 1H NMR (400 MHz, CDCl$_3$): δ 7.48–7.40 (m, 3H), 7.40–7.33 (m, 2H), 4.90 (d, J = 8.0 Hz, 1H), 4.10 (d, J = 8.0 Hz, 1H), 3.83 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 168.4, 134.6, 129.7, 129.2, 128.0, 65.7, 65.6, 53.2.

![anti-3l](image)

![syn-3l](image)
syn-Methyl-2,3-diazido-3-phenylpropanoate (*syn-3l*): IR ν_{max} (neat)/cm$^{-1}$: 2105 (s), 1747 (m), 1275 (w), 764 (m); 1H NMR (400 MHz, CDCl$_3$): δ 7.56–7.31 (m, 5H), 5.05 (d, J = 5.7 Hz, 1H), 4.03 (d, J = 5.7 Hz, 1H), 3.74 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 168.1, 135.0, 129.4, 129.1, 127.6, 66.44, 66.40, 53.1.

anti-3-Methoxy-3-oxo-1-phenylpropane-1,2-diaminium ditosylate (*anti-4l*). To a 3-dram vial equipped with a stir bar were added diazidation product *anti-3l* (73.9 mg, 0.3 mmol), THF (3 mL) and H$_2$O (27 µL, 1.5 mmol). After the vial was evacuated and backfilled with N$_2$ three times, a solution of PPh$_3$ (196.8 mg, 0.75 mmol) in THF (1.5 mL) was added drop-wise at 0 °C. The mixture was warmed up to 50 °C and stirred for 6 h (the reaction was monitored by IR until the absorption of azido groups disappeared). The mixture was then concentrated *in vacuo* and the residue was further dissolved in Et$_2$O (5 mL). This solution was added drop-wise to another solution of TsOH·H$_2$O (142.7 mg, 0.75 mmol) in Et$_2$O (3 mL). The reaction was kept stirring for 30 min and the white precipitate was collected by filtration, washed with Et$_2$O (5 mL × 3) and dried *in vacuo*. *anti-4l* was obtained as a white solid (147.5 mg, 91% yield, m.p. 217–219 °C). IR ν_{max} (neat)/cm$^{-1}$: 2859 (s), 2681 (m), 1758 (s), 1552 (w), 1211 (s), 1175 (s), 1125 (s), 1036 (s), 1010 (s), 812 (m), 680 (s); 1H NMR (400 MHz, DMSO-d_6): δ 8.64 (brs, 6H), 7.61–7.41 (m, 9H), 7.15 (d, J = 7.7 Hz, 4H), 4.71 (d, J = 8.0 Hz, 1H), 4.51 (d, J = 8.0 Hz, 1H), 3.80 (s, 3H), 2.30 (s, 6H); 13C NMR (100 MHz, DMSO-d_6): δ 166.7, 145.0, 138.2, 132.1, 130.1, 129.4, 128.33, 128.29, 125.6, 54.7, 53.8, 53.6, 20.9; HRMS (ESI, m/z): calcd for C$_{10}$H$_{15}$O$_2$N$_2$H$^+$ [M + H$^+$], 195.1128, found 195.1123.
syn-3-Methoxy-3-oxo-1-phenylpropane-1,2-diaminium ditosylate (syn-4I). By following the same reduction procedure, the syn-diamine salt syn-4I was obtained as a white solid (153.3 mg, 95% yield, m.p. 172–174 °C). IR ν_{max} (neat)/cm^{−1}: 3482 (w), 2954 (s), 1756 (s), 1601 (w), 1530 (w), 1172 (s), 1124 (s), 1034 (s), 1010 (s), 816 (m), 683 (s); ¹H NMR (400 MHz, DMSO-d6): δ 8.72 (brs, 6H), 7.52–7.47 (m, 3H), 7.49 (d, J = 7.9 Hz, 4H), 7.37 (dd, J = 6.5, 2.8 Hz, 2H), 7.13 (d, J = 7.9 Hz, 4H), 4.75 (d, J = 4.9 Hz, 1H), 4.61 (d, J = 4.5 Hz, 1H), 3.72 (s, 3H), 2.30 (s, 6H); ¹³C NMR (100 MHz, CD₃OD): 167.2, 143.3, 141.9, 131.9, 130.94, 130.90, 129.9, 129.2, 126.9, 55.6, 55.5, 54.5, 21.3; HRMS (ESI, m/z): calcd for C₁₀H₁₅O₂N₂+, [M + H⁺], 195.1128, found 195.1122.

The relative stereochemistry of both diastereomers was determined by comparing the ¹H NMR spectra of diamines S18 with the ones obtained from the literature.^{76,77,78} The free diamines were obtained by dissolving the diamonium salts in 2 N NaOH solution and extraction with CH₂Cl₂ for three times.

<table>
<thead>
<tr>
<th></th>
<th>Ph<sub>NH<sub>2</sub></sub>CO<sub>2</sub>Me<sub>s</sub></th>
<th>Ph<sub>NH<sub>2</sub></sub>CO<sub>2</sub>Me<sub>s</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>H</sup> NMR</td>
<td>(trans-S18)</td>
<td>(2S,3S)<sup>6</sup></td>
</tr>
<tr>
<td>1<sup>H</sup> NMR (400 MHz, CDCl<sub>3</sub>): δ</td>
<td>7.37–7.24 (m, 5H), 4.27 (d, J = 5.8 Hz, 1H), 3.72 (d, J = 5.8 Hz, 1H), 3.70 (s, 3H), 1.83 (brs, 4H).</td>
<td>7.40–7.20 (m, 5H), 4.24 (d, J = 5.9, 1H), 3.70 (d, J = 5.9, 1H), 3.68 (s, 3H), 1.95 (brs, 4H).</td>
</tr>
<tr>
<td>1<sup>H</sup> NMR (200 MHz, CDCl<sub>3</sub>): δ</td>
<td>7.40–7.20 (m, 5H), 4.24 (d, J = 5.9, 1H), 3.70 (d, J = 5.9, 1H), 3.68 (s, 3H), 1.95 (brs, 4H).</td>
<td>7.40–7.23 (m, 5H), 4.30 (d, J = 4.5 Hz, 1H), 3.67 (s, 3H), 3.65 (d, J = 4.5 Hz, 1H), 1.65 (brs, 4H).</td>
</tr>
<tr>
<td>1<sup>H</sup> NMR (500 MHz, CDCl<sub>3</sub>): δ</td>
<td>7.38–7.25 (m, 5H), 4.30 (d, J = 4.5 Hz, 1H), 3.67 (s, 3H), 3.65 (d, J = 4.8 Hz, 1H).</td>
<td>7.38–7.25 (m, 5H), 4.30 (d, J = 4.5 Hz, 1H), 3.67 (s, 3H), 3.65 (d, J = 4.8 Hz, 1H).</td>
</tr>
</tbody>
</table>

⁶HRMS (ESI, m/z): calcd for C₁₀H₁₅O₂N₂+, [M + H⁺], 195.1128, found 195.1122.
1-Vinyl-2-pyrrolidinone is commercially available and was distilled before usage.

To a flame-dried sealable 2-dram vial (vial A) equipped with a stir bar were added Fe(OTf)$_2$ (5.3 mg, 0.015 mmol) and L$_2$ (4.1 mg, 0.015 mmol). After the vial was evacuated and backfilled with N$_2$ three times, anhydrous CH$_2$Cl$_2$ (0.8 mL) and MeCN (0.2 mL) were added via a syringe and the mixture was stirred at room temperature for 10 min. To another flame-dried 3-dram vial (vial B) equipped with a stir bar was added 2b (158.4 mg, 0.60 mmol). This vial was evacuated and backfilled with N$_2$ three times and anhydrous CH$_2$Cl$_2$ (4.0 mL) was added. Both vials were degassed with brief evacuation and backfilled with N$_2$ twice. Freshly distilled 1-vinyl-2-pyrrolidinone (53.4 μL, 0.5 mmol), TMSN$_3$ (263 μL, 2.0 mmol) were added successively to vial B and followed by drop-wise addition of the catalyst solution in vial A at room temperature. The reaction was kept at room temperature for 3 h and then quenched with a saturated NaHCO$_3$ solution (0.1 mL) and further diluted with hexanes (5 mL). The mixture was stirred vigorously for additional 10 min and filtered through a short silica gel pad. The filtrate was concentrated in vacuo. The residue was subsequently purified through a silica gel flash column (hexanes/EtOAc: from 20:1 to 5:1) as a colorless oil.

1-(1,2-Diazidoethyl)pyrrolidin-2-one (3m): The titled compound was isolated through a silica gel flash column (hexanes/acetone: from 20:1 to 4:1) as a colorless oil (78.1 mg, 80%
yield). IR ν\textsubscript{max} (neat)/cm-1: 2932 (m), 2107 (s), 1698 (s); 1H NMR (400 MHz, CDCl\textsubscript{3}): δ 5.81 (t, J = 6.6 Hz, 1H), 3.51 (dt, J = 9.2, 7.4 Hz, 1H), 3.46 – 3.31 (m, 3H), 2.47 (td, J = 8.1, 1.6 Hz, 2H), 2.17 – 2.05 (m, 2H); 13C NMR (101 MHz, CDCl\textsubscript{3}): δ 176.2, 67.0, 51.4, 42.6, 30.8, 18.4.

HRMS (ESI, m/z): calcd for C\textsubscript{6}H\textsubscript{9}Cl\textsubscript{3}N\textsubscript{7}ONa+, [M + Na+], 218.0761, found 218.0757.

1-(1,2-Diaminoethyl)pyrrolidin-2-one (4m): To a flame-dried sealable 2-dram vial equipped with a stir bar was added diazidation product 3m (84.1 mg, 0.3 mmol). After the vial was evacuated and backfilled with N\textsubscript{2} three times, THF (6 mL) and H\textsubscript{2}O (27 µL, 1.5 mmol) were added via syringes. The solution was cooled to 0 °C under stirring. PMe\textsubscript{3} (0.66 mL, 1M solution in THF) was added dropwise through a syringe. The reaction was then warmed up to room temperature for 15 min and further warmed up to 50 °C for additional 10 h (the reaction was monitored by IR until the absorption of azido groups disappeared). The whole mixture was concentrated \textit{in vacuo} and the residue was then dissolved in Et\textsubscript{2}O (5 mL). This solution was added drop-wise to another solution of TsOH-H\textsubscript{2}O (142.7 mg, 0.75 mmol) in Et\textsubscript{2}O (3 mL). The reaction was kept stirring for 30 min and the white precipitate was collected by filtration, washed with Et\textsubscript{2}O (5 mL × 3) and dried \textit{in vacuo}. 4m was obtained as a white solid (105.3 mg, 72% yield, m.p. 145–146 °C). IR ν\textsubscript{max} (neat)/cm-1: 3020 (s), 2921 (s), 1743 (w), 1699 (s), 1496 (w), 1173 (s), 1123 (s), 1035 (s), 1010 (s), 812 (m), 680 (s); 1H NMR (400 MHz, DMSO-\textsubscript{d}6): δ 8.29 (br, 6H), 7.52 (d, J = 7.9 Hz, 4H), 7.15 (d, J = 7.8 Hz, 4H), 5.35 (dd, J = 10.5, 3.0 Hz, 1H), 3.40 – 3.30 (m, 3H), 3.22 – 3.11 (m, 1H), 2.38-2.18 (m, 8H), 2.09 – 1.73 (m, 2H); 13C NMR (100 MHz, DMSO-\textsubscript{d}6): δ 176.3, 144.9, 138.3, 128.4, 125.6, 55.9, 41.8, 37.5, 30.4, 20.9, 17.4; HRMS (ESI, m/z): calcd for C\textsubscript{6}H\textsubscript{14}N\textsubscript{3}O+, [M + H+], 144.1131, found 144.1125.
Geranyl acetate S19 was prepared according to a literature procedure. To a flame-dried sealable 2-dram vial (vial A) equipped with a stir bar were added Fe(OTf)₂ (8.9 mg, 0.025 mmol) and L₂ (6.8 mg, 0.025 mmol). After the vial was evacuated and backfilled with N₂ three times, anhydrous CH₂Cl₂ (0.8 mL) and MeCN (0.2 mL) were added via a syringe and the mixture was stirred at room temperature for 10 min. To another flame-dried 3-dram vial (vial B) equipped with a stirring bar was added 2b (158.4 mg, 0.60 mmol) and compound S19 (98.0 mg, 0.5 mmol). This vial was evacuated and backfilled with N₂ three times and anhydrous CH₂Cl₂ (4.0 mL) was added. Both vials were degassed with brief evacuation and backfilled with N₂ twice. TMSN₃ (263 µL, 2.0 mmol) was added successively to vial B and followed by drop-wise addition of the catalyst solution in vial A at 0 °C. The reaction was kept at 0 °C for 10 h and then quenched with a saturated NaHCO₃ solution (0.1 mL) and further diluted with hexanes (5 mL). The mixture was stirred vigorously for additional 10 min and filtered through a short silica gel pad. The filtrate was concentrated in vacuo. The residue was subsequently purified through a silica gel flash column (hexanes/Et₂O: from 20:1 to 5:1) as a colorless oil (112.1 mg, 80% yield).

(E)-6,7-Diazido-3,7-dimethyloct-2-en-1-yl acetate (3n): IR ν max (neat)/cm⁻¹: 2971 (m), 2099 (s), 1740 (m), 1458 (w), 1368 (w), 1259 (s), 1140 (w), 1037 (w); ¹H NMR (400 MHz,
CDCl₃: δ 5.40 (t, J = 7.0 Hz, 1H), 4.59 (d, J = 7.0 Hz, 2H), 3.04 (dd, J = 11.1, 2.0 Hz, 1H), 2.37–2.21 (m, 1H), 2.18–2.08 (m, 1H), 2.04 (s, 3H), 1.83–1.73 (m, 1H), 1.71 (s, 3H), 1.56–1.41 (m, 1H), 1.32 (s, 3H), 1.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.1, 140.4, 120.1, 70.1, 64.7, 61.3, 36.8, 27.5, 23.0, 22.9, 21.1, 16.4.

(⁷⁻⁶⁻,⁷⁻⁶⁻)-diamino-3,⁷⁻diethyl-2⁻en-1⁻yl acetate (S20). To a flame-dried sealable 2-dram vial equipped with a stir bar was added diazidation product 3n (84.1 mg, 0.3 mmol). After the vial was evacuated and backfilled with N₂ three times, THF (6 mL) and H₂O (27 µL, 1.5 mmol) were added via syringes. The solution was cooled to 0 °C under stirring. PMe₃ (0.66 mL, 1M solution in THF) was added dropwise through a syringe. The reaction was then warmed up to room temperature for 15 min and further warmed up to 50 °C for additional 10 h (the reaction was monitored by IR until the absorption of azido groups disappeared). The whole mixture was concentrated in vacuo and diamine S20 was isolated through a silica gel flash column (CH₂Cl₂/MeOH = 10:1) as a colorless oil (63.0 mg, 92% yield). IR νₘₐₓ (neat)/cm⁻¹: 2964 (brs), 1734 (s), 1568 (m), 1446 (m), 1366 (m), 1223 (s), 1022 (m); ¹H NMR (400 MHz, CDCl₃): δ 5.36 (t, J = 7.1 Hz, 1H), 4.57 (d, J = 7.1 Hz, 2H), 2.34 (dd, J = 10.7, 1.9 Hz, 1H), 2.32–2.21 (m, 1H), 2.09–1.98 (m, 4H), 1.78–1.65 (m, 4H), 1.35 (brs, 4H), 1.20–1.09 (m, 1H), 1.07 (s, 3H), 1.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.1, 142.2, 118.6, 61.3, 60.3, 52.5, 37.5, 30.2, 28.2, 25.5, 21.1, 16.5; HRMS (ESI, m/z): calcd for C₁₂H₂₅N₂O₂⁺, [M + H⁺], 229.1911, found 229.1914.
4.2.3 Procedures for the Diazidation of Acetyl Quinine and Glycals

![Scheme 66. Procedures for the Diazidation of Acetyl Quinine]

Acetyl quinine 5 was prepared according to a literature procedure.80

To a flame-dried sealable 2-dram vial (vial A) equipped with a stirring bar were added Fe(OTf)$_2$ (17.7 mg, 0.05 mmol) and L2 (13.7 mg, 0.05 mmol). After the vial was evacuated and backfilled with N$_2$ three times, anhydrous CH$_2$Cl$_2$ (0.75 mL) and MeCN (0.25 mL) were added via a syringe and the mixture was stirred at room temperature for 10 min. To another flame-dried 3-dram vial (vial B) equipped with a stirring bar were added 2b (198.0 mg, 0.75 mmol) and 5 (183.3 mg, 0.5 mmol). This vial was evacuated and backfilled with N$_2$ three times and anhydrous CH$_2$Cl$_2$ (1.5 mL) was added. Both vials were degassed with brief evacuation and backfilled with N$_2$ twice. TMSN$_3$ (395 μl, 3.0 mmol) was added to vial B and followed by drop-wise addition of the catalyst solution in vial A at room temperature. The reaction was kept at room temperature for 2 h and then quenched with saturated NaHCO$_3$ solution (0.1 mL), and further diluted with hexanes (5 mL). The mixture was stirred vigorously for 10 min and filtered through a short silica gel pad. The filtrate was concentrated in vacuo. The residue was subsequently purified through a silica gel flash column (CH$_2$Cl$_2$/MeOH: from 50:1 to 20:1) as white foam (184.7 mg, 82% yield, $dr = 3:1$).
(R)-((1S,2S,4S,5R)-5-((R)-1,2-diazidoethyl)quinuclidin-2-yl)(6-methoxyquinolin-4-yl)methyl acetate (6a): IR ν_{max} (neat)/cm^{-1}: 3364 (w), 2928 (m), 2871 (w), 2102 (s), 1744 (s), 1622 (m), 1508 (m), 1229 (s), 1030 (m); ^1H NMR (400 MHz, CDCl\textsubscript{3}): δ 8.75 (d, J = 4.5 Hz, 1H), 8.02 (d, J = 9.0 Hz, 1H), 7.44–7.36 (m, 2H), 7.34 (d, J = 4.5 Hz, 1H), 6.49 (d, J = 7.1 Hz, 1H), 3.96 (s, 3H), 3.57 (dd, J = 15.6, 6.4 Hz, 1H), 3.44–3.31 (m, 3H), 3.15–3.06 (m, 1H), 3.02 (dd, J = 14.1, 9.9 Hz, 1H), 2.72–2.58 (m, 2H), 2.13 (s, 3H), 1.82 (s, 1H), 1.78–1.64 (m, 3H), 1.63–1.44 (m, 2H); ^13C NMR (100 MHz, CDCl\textsubscript{3}): δ 170.3, 158.4, 147.8, 145.2, 143.6, 132.3, 127.3, 122.1, 119.1, 101.7, 73.9, 65.8, 59.3, 56.0, 55.2, 54.4, 42.6, 37.4, 28.4, 24.6, 24.5, 21.4.

(R)-((1S,2S,4S,5R)-5-((S)-1,2-diazidoethyl)quinuclidin-2-yl)(6-methoxyquinolin-4-yl)methyl acetate (6b): IR ν_{max} (neat)/cm^{-1}: 3364 (w), 2929 (m), 2103 (s), 1744 (s), 1620 (m), 1508 (m), 1230 (s), 1029 (m); ^1H NMR (400 MHz, CDCl\textsubscript{3}): δ 8.75 (d, J = 4.5 Hz, 1H), 8.03 (d, J = 9.1 Hz, 1H), 7.42 (d, J = 2.5 Hz, 1H), 7.38 (dd, J = 9.1, 2.6 Hz, 1H), 7.34 (d, J = 4.5 Hz, 1H), 6.48 (d, J = 7.2 Hz, 1H), 3.96 (s, 3H), 3.50–3.39 (m, 1H), 3.35–3.19 (m, 3H), 3.14–3.04 (m, 1H), 2.99 (dd, J = 13.8, 10.0 Hz, 1H), 2.68–2.55 (m, 1H), 2.29 (dd, J = 13.6, 3.3 Hz, 1H), 2.14 (s, 3H), 2.15–2.09 (m, 1H), 1.85–1.72 (m, 2H), 1.69–1.59 (m, 2H), 1.56–1.45 (m, 1H); ^13C NMR
(100 MHz, CDCl$_3$): δ 170.4, 158.3, 147.8, 145.2, 143.7, 132.3, 127.3, 122.0, 119.2, 101.9, 73.9, 65.3, 59.9, 56.0, 55.1, 53.7, 42.6, 37.7, 28.0, 24.5, 23.8, 21.4.

![Scheme 67](image)

Scheme 67. Reduction of Acetyl Quinine

To a flame-dried sealable 2-dram vial equipped with a stir bar was added diazidation product **6** (135.2 mg, 0.3 mmol, $dr = 3:1$). After the vial was evacuated and backfilled with N$_2$ three times, THF (6 mL) and H$_2$O (27 µL, 1.5 mmol) were added via syringes. The solution was cooled to 0 °C under stirring. PMe$_3$ (0.75 mL, 1M solution in THF) was added drop-wise via a syringe. The reaction was then warmed up to room temperature and kept stirring for additional 4 h (the reaction was monitored by IR until the absorption of azido groups disappeared). The whole mixture was then concentrated and dried *in vacuo*. The crude product was dissolved in anhydrous CH$_2$Cl$_2$ (3 mL) under N$_2$. This solution was cooled to 0 °C and Et$_3$N (125 µL, 0.9 mmol) was then added followed by drop-wise addition of Ac$_2$O (71 µL, 0.75 mmol). The reaction was gradually warmed up to room temperature, stirred for 4 h and quenched with a saturated NaHCO$_3$ solution (2 mL). After the organic layer was separated, the aqueous phase was extracted with CH$_2$Cl$_2$ (5 mL × 4). The combined organic layers were dried over anhydrous Na$_2$SO$_4$ and concentrated *in vacuo*. The residue was then purified through a silica gel flash column (from CH$_2$Cl$_2$/MeOH 10:1 to CH$_2$Cl$_2$/MeOH (buffered with 5% NH$_4$OH aq.) 2:1) to afford the protected product **S21** as a viscous oil (88.3 mg, 61% yield, $dr = 3:1$). IR ν_{max} (neat)/cm$^{-1}$: 3270(w), 2937 (m), 1742 (m), 1652 (s) 1228 (s), 1027 (m), 912 (m); 1H NMR (400
MHz, CDCl$_3$): δ 8.73 (d, $J = 4.6$ Hz, 1H), 8.00 (d, $J = 9.2$ Hz, 1H, minor), 7.99 (d, $J = 9.2$ Hz, 1H), 7.44 (d, $J = 2.7$ Hz, 1H, minor), 7.43 (d, $J = 2.6$ Hz, 1H), 7.39–7.32 (m, 2H), 6.48 (d, $J = 8.0$ Hz, 1H), 6.44 (d, $J = 7.7$ Hz, 1H, minor), 6.18–6.09 (m, 1H), 5.96 (d, $J = 9.0$ Hz, 1H, minor), 5.78 (d, $J = 9.0$ Hz, 1H), 4.05 (ddd, $J = 13.0$, 9.7, 3.8 Hz, 1H), 3.96 (s, 3H), 3.94–3.88 (m, 1H, minor), 3.47 (q, $J = 8.1$ Hz, 1H), 3.34 (ddd, $J = 14.1$, 9.7, 7.1 Hz, 1H), 3.24 (dt, $J = 13.8$, 3.8 Hz, 1H), 3.13–3.00 (m, 1H), 2.85 (dd, $J = 13.9$, 9.8 Hz, 1H), 2.62–2.47 (m, 2H), 2.36 (dd, $J = 13.7$, 4.1 Hz, 1H, minor), 2.10 (s, 3H), 1.95 (s, 3H), 1.94 (s, 3H), 1.92–1.82 (m, 2H), 1.78–1.68 (m, 1H), 1.58–1.37 (m, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 171.7, 171.4 (minor), 171.2, 170.8 (minor), 170.19, 170.17 (minor), 158.0, 157.95 (minor), 147.42, 147.39 (minor), 144.72 (minor), 144.66, 143.6 (minor), 143.5, 131.7 (minor), 131.6, 127.3, 127.1 (minor), 121.9, 121.8 (minor), 119.1, 101.7 (minor), 101.5, 73.6 (minor), 73.3, 59.5 (minor), 58.6, 55.7 (minor), 55.65, 54.5, 52.6, 52.5 (minor), 43.8, 42.9 (minor), 42.2, 42.1 (minor), 38.4 (minor), 38.3, 28.0 (minor), 27.9, 24.6, 24.5 (minor), 23.9, 23.4 (minor), 23.3 (minor), 23.2, 23.14, 23.10 (minor), 21.1; HRMS (ESI, m/z): calcd for C$_{26}$H$_{35}$N$_4$O$_5$$, [M + H$^+$], 483.2602, found 483.2586.

Scheme 68. Procedures for the Diazidation of Glycals

Glycal 7 was prepared according to a literature procedure.81

To a flame-dried sealable 3-dram vial equipped with a stir bar were added Fe(NTf$_2$)$_2$ (153.7 mg, 0.25 mmol) and L2 (68.3 mg, 0.25 mmol). After the vial was evacuated and backfilled with N$_2$ three times, anhydrous CH$_2$Cl$_2$ (4 mL) and MeCN (1 mL) were added via a
syringe and the mixture was stirred at room temperature for 10 min. To a flame-dried round-bottom flask (100 mL) equipped with a stirring bar were added 2b (1.72 mg, 6.5 mmol) and compound 7 (1.50 g, 5 mmol). The flask was evacuated and backfilled with N₂ three times and anhydrous CH₂Cl₂ (45 mL) was added. Both the vial and the flask were degassed with brief evacuation and backfilled with N₂ twice. After the flask was cooled to 0 °C, TMSN₃ (3.95 ml, 30 mmol) was added into it and followed by drop-wise addition of the catalyst solution in the vial. The reaction was kept at 0 °C for 5 h and then quenched with saturated NaHCO₃ solution (1 mL). The mixture was transferred to an Erlenmeyer flask (200 mL) and diluted with hexanes (100 mL). The mixture was stirred vigorously for 10 min and filtered through a short silica gel pad. The filtrate was concentrated in vacuo and the residue was subsequently purified through a silica gel flash column (hexanes/Et₂O: from 60:1 to 25:1). Three diastereomers were isolated as colorless oil (288 mg, 15% yield for S22, 385 mg, 20% yield for 8a and 615 mg, 32% yield for 8b).

tert-Butyl(((4aR,6S,7S,8R,8aR)-6,7-diazido-2,2-dimethylhexahydropyrano[3,2-d][1,3]dioxin -8-yl)oxy)dimethylsilane (S22): IR νₘₐₓ (neat)/cm⁻¹: 2927 (w), 2856 (w), 2105 (s), 1473 (s), 1374 (w), 1247 (m), 1122 (m), 1096 (s); ¹H NMR (400 MHz, CDCl₃): δ 5.26 (d, J = 1.4 Hz, 1H), 4.04 (dd, J = 9.4, 3.8 Hz, 1H), 3.89 (t, J = 9.4 Hz, 1H), 3.86 (dd, J = 10.4, 5.1 Hz, 1H), 3.79 (t, J = 10.2 Hz, 1H), 3.75–3.69 (m, 1H), 3.68 (dd, J = 3.7, 1.4 Hz, 1H), 3.51 (s, 3H), 1.40 (s, 3H), 0.90 (s, 9H), 0.11 (s, 3H), 0.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 99.9, 89.2, 71.1, 70.3, 67.0, 64.5, 61.9, 29.1, 25.7, 19.2, 18.3, -4.4, -4.9.
\(\text{N,N'}-((4aR,6R,7S,8R,8aR)-8-((\text{tert-Butyldimethylsilyl})oxy)-2,2-
\text{dimethylhexahydropyran}[3,2-d][1,3]\text{dioxine-6,7-diyldiacetamide} \) (S23): To a 3-dram vial equipped with a stir bar was added Pd/C (3.4 mg, 10 wt%). After the vial was evacuated and backfilled twice with N\(_2\), a solution of diazidation product S22 (76.9 mg, 0.2 mmol, dissolved in 3 mL MeOH) was added to the vial. The mixture was degassed by brief evacuation and backfilled twice with N\(_2\) and then three times with H\(_2\). The reaction was vigorously stirred under H\(_2\) at room temperature until the reduction completed (the reaction was monitored by IR until the absorption of azido groups disappeared). The solution was filtered through Celite, washed with MeOH (3 mL). The filtrate was concentrated \emph{in vacuo} and the residue was re-dissolved in CH\(_2\)Cl\(_2\) (3 mL). This solution was cooled to 0 °C and Et\(_3\)N (68 \(\mu\)L, 0.5 mmol) was then added followed by drop-wise addition of Ac\(_2\)O (46 \(\mu\)L, 0.48 mmol). The reaction was gradually warmed up to room temperature, stirred for 4 h and quenched with saturated NaHCO\(_3\) solution (1 mL). After the organic layer was separated, the aqueous phase was extracted with CH\(_2\)Cl\(_2\) (5 mL \(\times\) 3). The combined organic layers were dried over anhydrous Na\(_2\)SO\(_4\) and concentrated \emph{in vacuo}. The residue was purified through a silica gel flash column (hexanes/acetone from 4:1 to 2:1) to afford S23 as colorless oil (63.3 mg, 76% yield). IR \(\nu_{\text{max}}\) (neat)/cm\(^{-1}\): 3281 (w), 2932 (w), 1661 (s), 1540 (m), 1257 (m), 1090 (s); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.42 (d, \(J = 7.7\) Hz, 1H), 5.73 (d, \(J = 6.6\) Hz, 1H), 5.21 (dd, \(J = 7.7, 1.4\) Hz, 1H), 4.24 (t, \(J = 6.0\) Hz, 1H), 3.96 (dd, \(J = 10.7, 5.0\) Hz, 1H), 3.89 (dd, \(J = 9.1, 5.1\) Hz, 1H), 3.70 (t, \(J = 10.5,\) 1H), 3.45 (t, \(J = 9.4\) Hz, 1H), 3.42–3.35 (m, 1H), 2.14 (s, 3H), 2.00 (s, 3H), 1.48 (s, 3H), 1.40 (s, 3H), 0.86 (s,
9H), 0.08 (s, 3H), 0.07 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 173.3, 170.4, 99.9, 79.1, 72.0, 70.5, 70.0, 62.0, 55.1, 29.0, 25.5, 23.6, 23.4, 19.3, 18.1, -4.6, -5.2; HRMS (ESI, m/z): calcd for C$_{19}$H$_{37}$N$_2$O$_6$Si$, [M + H]^+$, 417.2415, found 417.2425.

The stereochemistry of S23 was determined through NOE analysis. Strong NOEs were observed between H(a) and H(c), and H(a) and H(e). Additionally, a significant NOE was observed between H(d) and H(2).
tert-Butyl(((4aR,6R,7R,8R,8aR)-6,7-diazido-2,2-dimethylhexahydropyrano[3,2-d][1,3]dioxin-8-yl)oxy)dimethylsilane (8a): IR \(\nu_{\text{max}} \) (neat)/cm\(^{-1} \): 2108 (s), 1371 (w), 1248 (m), 1094 (s); \(^1\)H NMR (400 MHz, C\(_6\)D\(_6\)): \(\delta \) 3.87 (d, \(J = 9.1 \) Hz, 1H), 3.63 (dd, \(J = 10.7, 5.3 \) Hz, 1H), 3.40 (t, \(J = 10.5 \) Hz, 1H), 3.24 (t, \(J = 8.9 \) Hz, 1H), 3.15 (t, \(J = 9.2 \) Hz, 1H), 2.86 (t, \(J = 9.0 \) Hz,
1H), 2.73 (td, $J = 9.9, 5.3$ Hz, 1H), 1.34 (s, 3H), 1.13 (s, 3H), 1.03 (s, 9H), 0.21 (s, 3H), 0.15 (s, 3H); 13C NMR (100 MHz, C$_6$D$_6$): δ 99.2, 89.2, 73.7, 73.3, 69.1, 68.2, 61.4, 28.7, 25.6, 18.4, 18.1, -4.5, -5.1.

The stereochemistry of 8a was determined through NOE analysis. Strong NOEs were observed between H(a) and H(c), and H(a) and H(e). Additionally, a significant NOE was observed between H(b) and H(d).
tert-Butyl(((4aR,6S,7R,8R,8aR)-6,7-diazido-2,2-dimethylhexahydropyrano[3,2-d][1,3]dioxin-8-yl)oxy)dimethylsilane (8b): IR ν_{max} (neat)/cm⁻¹: 2106 (s), 1249 (m), 1130 (s), 1097 (s); ¹H NMR (400 MHz, C₆D₆): δ 4.54 (d, <i>J</i> = 4.3 Hz, 1H), 3.80 (t, <i>J</i> = 9.1 Hz, 1H), 3.69–3.58 (m, 2H), 3.47–3.36 (m, 1H), 3.21–3.11 (m, 1H), 2.76 (dd, <i>J</i> = 9.5, 4.3 Hz, 1H), 1.37 (s, 3H), 1.18 (s, 3H), 1.03 (s, 9H), 0.22 (s, 3H), 0.15 (s, 3H); ¹³C NMR (100 MHz, C₆D₆): δ 99.6, 88.9, 74.2, 70.6, 65.7, 64.8, 61.8, 28.8, 25.6, 18.5, 18.1, -4.3, -5.6.

The stereochemistry of 8b was determined through NOE analysis. No NOE was observed between H(a) and H(c), and H(a) and H(e). However, a significant NOE was observed between H(b) and H(d).
(4aR,6R,7R,8R,8aR)-7-Azido-8-((tert-butyldimethylsilyl)oxy)-2,2-dimethylhexahydropyran-3,2-d[1,3]dioxin-6-amine (S24). To a flame-dried sealable 2-dram vial equipped with a stir bar was added a mixture of 8b and 8a (153.8 mg, 0.4 mmol, \(dr = 1.5:1 \)). The vial was evacuated and backfilled with \(\text{N}_2 \) three times and THF (4mL) was added
through a syringe. After the solution was cooled to -60 °C under stirring, PMe₃ (0.42 mL, 1M solution in THF) was added drop-wise through a syringe and the reaction was kept at -60 °C for 4 h and warmed up gradually to room temperature. Subsequently, water (144 uL) was added, the reaction mixture was further warmed up to 40 °C and stirred for additional 5 h. The whole mixture was concentrated in vacuo and S24 was isolated through a silica gel flash column (hexanes/EtOAc: from 10:1 to 2:1) as colorless oil (109 mg, 76% yield, dr > 20:1). IR ν_max (neat)/cm⁻¹: 2106 (s), 1370 (w), 1264 (m), 1128 (m), 1090 (s); ¹H NMR (400 MHz, CDCl₃): δ 4.04 (d, J = 8.7 Hz, 1H), 3.87 (dd, J = 10.7, 5.4 Hz, 1H), 3.68 (t, J = 10.5 Hz, 1H), 3.51–3.41 (m, 2H), 3.24–3.13 (m, 1H), 3.03–2.93 (m, 1H), 1.99 (s, 2H), 1.46 (s, 3H), 1.39 (s, 3H), 0.91 (s, 9H), 0.13 (s, 3H), 0.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 99.4, 85.9, 74.3, 74.1, 70.5, 68.4, 62.2, 29.0, 25.8, 18.9, 18.3, -4.3, -4.9; HRMS (ESI, m/z): calcd for C₁₅H₃₁N₄O₄Si⁺, [M + H⁺], 359.2109, found 359.2116.

The stereochemistry of S24 was determined through NOE analysis. Strong NOEs were observed between H(a) and H(c), and H(a) and H(e).
Boc-Asp(OBz)-Phe-OEt (S27): To a stirred solution of *L*-aspartic acid β-benzyl ester S25 (647 mg, 2.0 mmol) and *L*-phenylalanine ethyl ester hydrochloride S26 (466 mg, 2.6 mmol) in DCM were added 1-hydroxybenzotriazole hydrate (HOBt) (505 mg, 2.8 mmol) and 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride (EDC) (498 mg, 2.6 mmol) at 0 °C. The mixture was stirred at room temperature for 18 h. After the solvent was removed *in vacuo*, the residue was dissolved in EtOAc and washed successively with 5% citric acid, 5% sodium...
bicarbonate and brine (5 mL each). The combined organic layers were dried over Na$_2$SO$_4$ and concentrated *in vacuo*. The residue was purified through a silica gel flash column (hexane/EtOAc = 4:1) to give amide S27 as colorless oil (748 mg, 75% yield). IR ν_{max} (neat)/cm$^{-1}$: 3335 (w), 2979 (w), 1734 (s), 1674 (s), 1497 (s), 1367 (m); 1H NMR (400 MHz, CDCl$_3$): δ 7.38–7.32 (m, 5H), 7.31–7.27 (m, 2H), 7.26–7.21 (m, 1H), 7.18–7.12 (m, 2H), 6.95 (d, $J = 6.8$ Hz, 1H), 5.64 (d, $J = 8.0$ Hz, 1H), 5.21–5.05 (m, 2H), 4.78 (dd, $J = 13.5$, 6.0 Hz, 1H), 4.54 (s, 1H), 4.13 (q, $J = 7.1$ Hz, 2H), 3.09 (d, $J = 5.9$ Hz, 2H), 3.05 (dd, $J = 17.2$, 2.7 Hz, 1H), 2.71 (dd, $J = 17.2$, 6.0 Hz, 1H), 1.42 (s, 9H), 1.20 (t, $J = 7.1$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 171.8, 170.9, 170.3, 155.4, 135.8, 135.4, 129.4, 128.6, 128.5, 128.4, 128.3, 127.1, 80.5, 66.9, 61.5, 53.5, 50.5, 37.9, 36.1, 28.3, 14.1; HRMS (ESI, m/z): calcd for C$_{27}$H$_{35}$N$_2$O$_7$$^+$, [M + H$^+$], 499.2439, found 499.2449.

Boc-Asp-Phe-OEt (S28): To a round bottom flask equipped with a stirring bar was added Pd/C (50 mg, 10 wt%). After the flask was evacuated and backfilled twice with N$_2$, a solution of dipeptide S27 (499 mg, 1.0 mmol, dissolved in 10 mL methanol) and MeOH (10 mL) was added. The mixture was degassed by brief evacuation and backfilled twice with N$_2$ and then three times with H$_2$. The reaction was then vigorously stirred under H$_2$ at room temperature for 2 h (the reaction was monitored by TLC until S27 was fully consumed). The reaction mixture was filtered through Celite. The filtrate was concentrated *in vacuo*, dissolved in minimum amount of EtOH (ca. 0.5 mL), and then diluted with Et$_2$O (10 mL). The resulting white precipitate was collected by filtration and washed with Et$_2$O (5 ml x 3) to give acid S28 as a white solid (372 mg, 91% yield, m.p. 128–129 °C). IR ν_{max} (neat)/cm$^{-1}$: 3316 (w), 2977 (m), 1711 (s) 1664 (s), 1517 (m), 1497 (m), 1368 (m), 1161 (s); 1H NMR (400 MHz, CDCl$_3$) δ 8.39 (brs, 1H), 7.34–7.18
(m, 3H), 7.13 (d, J = 6.7 Hz, 2H), 7.02 (s, 1H), 5.62 (s, 1H), 4.78 (dd, J = 13.5, 6.1 Hz, 1H), 4.49 (s, 1H), 4.12 (q, J = 7.1 Hz, 2H), 3.08 (d, J = 5.8 Hz, 2H), 2.95 (dd, J = 16.8, 4.6 Hz, 1H), 2.71 (dd, J = 16.8, 5.9 Hz, 1H), 1.42 (s, 9H), 1.19 (t, J = 7.1 Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 175.4, 171.1, 170.8, 155.6, 135.8, 129.4, 128.5, 127.1, 80.7, 61.6, 53.6, 50.4, 37.8, 36.0, 28.2, 14.0; HRMS (ESI, m/z): calcd for C\(_{20}\)H\(_{29}\)N\(_2\)O\(_7\)\(^+\), [M + H\(^+\)], 409.1969, found 409.1979.

Ethyl \(N^4-((4aR,6R,7R,8R,8aR)-7-\text{azido}-8-((\text{tert}-\text{butyldimethylsilyl})\text{oxy})-2,2-\text{dimethylhexahydropyrano}[3,2-d][1,3]dioxin-6-yl})-N^2-(\text{tert}-\text{butoxycarbonyl})-L-\text{asparaginyl-L-phenylalaninate}\) (9). To a flame-dried sealable 2-dram vial charged with a stir bar was added dipeptide S\(_{28}\) (102.1 mg, 0.25 mmol). After the vial was evacuated and backfilled with N\(_2\) three times, anhydrous DMF (2 mL) was added via a syringe. HATU and DIPEA were added to the reaction successively at 0 °C and it was stirred for 10 min before a DMF solution of amine S\(_{24}\) (71.7 mg, 0.2 mmol, 1 mL) was added. The reaction was then warmed up to room temperature and stirred for 16 h. After quenching with saturated NaHCO\(_3\) solution (2 mL), the mixture was further diluted with water (20 mL) and extracted with EtOAc (10 mL \(\times\) 4). The combined organic layers were concentrated in vacuo and subsequently purified through a silica gel flash column (hexanes/EtOAC: from 10:1 to 1:1). 9 was isolated as white foam (128.8 mg, 86% yield). IR \(\nu\)\(_{\text{max}}\) (neat)/cm\(^{-1}\): 3311 (w), 3260 (w), 3068 (w), 2110 (s), 1739 (m), 1653 (s), 1545 (s); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.54 (d, \(J = 7.8\) Hz, 1H), 7.35–7.21 (m, 3H), 7.20–7.10 (m, 3H), 6.01 (d, \(J = 6.8\) Hz, 1H), 5.00 (t, \(J = 9.4\) Hz, 1H), 4.74 (dd, \(J = 13.5, 6.0\) Hz, 1H), 4.50 (d, \(J = 5.7\) Hz, 1H), 4.12 (q, \(J = 7.1\) Hz, 2H), 3.86 (dd, \(J = 10.7, 5.3\) Hz, 1H), 3.65 (t, \(J = 10.5\) Hz, 1H), 3.56 (t, \(J = 8.9\) Hz, 1H), 3.45 (t, \(J = 9.2\) Hz, 1H), 3.34–3.20 (m, 2H), 3.16–3.02 (m, 2H), 2.85 (dd, \(J = \ldots \)
15.2, 3.0 Hz, 1H), 2.64 (dd, $J = 15.4, 5.7$ Hz, 1H), 1.43 (s, 3H), 1.41 (s, 9H), 1.38 (s, 3H), 1.18 (t, $J = 7.1$ Hz, 3H), 0.90 (s, 9H), 0.13 (s, 3H), 0.09 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 171.3, 171.2, 171.0, 155.8, 135.7, 129.4, 128.6, 127.1, 99.5, 80.5, 78.8, 74.6, 73.7, 69.3, 67.7, 61.9, 61.5, 53.7, 51.2, 37.8, 37.6, 28.9, 28.3, 25.7, 18.9, 18.2, 14.1, -4.3, -4.9; HRMS (ESI, m/z): calcd for C$_{35}$H$_{57}$N$_6$O$_{10}$Si$^+$, [M + H$^+$], 749.3900, found 749.3915.

4.2.4 Mechanistic Investigation of the Iron-Catalyzed Olefin Diazidation

![Mechanistic Investigation of the Iron-Catalyzed Olefin Diazidation](image)

To a flame-dried sealable 2-dram vial (vial A) equipped with a stir bar were added Fe(OTf)$_2$ (3.5 mg, 0.01 mmol) and L$_3$ (5.2 mg, 0.01 mmol). After the vial was evacuated and backfilled with N$_2$ three times, anhydrous CH$_2$Cl$_2$ (0.4 mL) and MeCN (0.1 mL) were added via a syringe and the mixture was stirred at room temperature for 10 min. To another flame-dried 3-dram vial (vial B) equipped with a stirring bar was added 2a (69.4 mg, 0.24 mmol). This vial was evacuated and backfilled with N$_2$ three times and anhydrous CH$_2$Cl$_2$ (1.5 mL) was added. Both vials were degassed with brief evacuation and backfilled with N$_2$ twice. cis-Stilbene 10a (36 μL, 0.2 mmol) was added via a syringe to vial B and followed by drop-wise addition of the catalyst solution in vial A, the reaction was kept at room temperature for 2 h and then quenched with saturated NaHCO$_3$ solution (0.1 mL), and further diluted with hexanes (3 mL). The mixture was stirred vigorously for 10 min and filtered through a short silica gel pad. The filtrate was concentrated in vacuo and the crude product was analyzed by 1H NMR with trimethoxybenzene as an internal standard. cis-Stilbene was almost fully recovered (>95% NMR yield).
To a flame-dried sealable 3-dram vial equipped with a stir bar was added 2a (69.4 mg, 0.24 mmol). After this vial was evacuated and backfilled with N\(_2\) three times, anhydrous CH\(_2\)Cl\(_2\) (1.9 mL) and MeCN (0.1 mL) were added. cis-Stilbene 10a (36 µL, 0.2 mmol) and TMSN\(_3\) (40 µL, 0.3 mmol) were then added into the reaction successively via syringes at room temperature. The reaction was kept stirring at room temperature for 2 h and then quenched with a saturated NaHCO\(_3\) solution (0.1 mL), and further diluted with hexanes (3 mL). The mixture was stirred vigorously for 10 min and filtered through a short silica gel pad. The filtrate was concentrated in vacuo and the crude product was analyzed by \(^1\)H NMR with trimethoxybenzene as an internal standard. cis-Stilbene 10a was fully converted to trans-stilbene 10b (75% NMR yield).

To a flame-dried sealable 2-dram vial (vial A) equipped with a stir bar were added Fe(OTf\(_2\))\(_2\) (3.5 mg, 0.01 mmol) and L\(_3\) (5.2 mg, 0.01 mmol). After the vial was evacuated and backfilled with N\(_2\) three times, anhydrous CH\(_2\)Cl\(_2\) (0.4 mL) and MeCN (0.1 mL) were added via a syringe and the mixture was stirred at room temperature for 10 min. To another flame-dried 3-dram vial (vial B) equipped with a stirring bar was added 2a (69.4 mg, 0.24 mmol). This vial was evacuated and backfilled with N\(_2\) three times and anhydrous CH\(_2\)Cl\(_2\) (1.5 mL) was added. Both vials were degassed with brief evacuation and backfilled with N\(_2\) twice. cis-Stilbene 10a (36 µL, 0.2 mmol) and TMSN\(_3\) (40 µL, 0.3 mmol) were added successively to vial B and followed by
drop-wise addition of the catalyst solution in vial A at room temperature, the reaction was kept at room temperature for 2 h and then quenched with saturated NaHCO$_3$ solution (0.1 mL), and further diluted with hexanes (3 mL). The mixture was stirred vigorously for 10 min and filtered through a short silica gel pad. The filtrate was concentrated in vacuo and the crude product was analyzed by 1H NMR with trimethoxybenzene as an internal standard (86% yield, and $dr = 2.5$).

To a flame-dried sealable 2-dram vial (vial A) equipped with a stir bar were added Fe(OTf)$_2$ (3.5 mg, 0.01 mmol) and L$_3$ (5.2 mg, 0.01 mmol). After the vial was evacuated and backfilled with N$_2$ three times, anhydrous CH$_2$Cl$_2$ (0.4 mL) and MeCN (0.1 mL) were added via a syringe and the mixture was stirred at room temperature for 10 min. To another flame-dried 3-dram vial (vial B) equipped with a stirring bar were added 2a (69.4 mg, 0.24 mmol) and TEMPO (31.3 mg, 0.2 mmol). This vial was evacuated and backfilled with N$_2$ three times and anhydrous CH$_2$Cl$_2$ (1.5 mL) was added. Both vials were degassed with brief evacuation and backfilled with N$_2$ twice. cis-Stilbene 10a (36 µL, 0.2 mmol) and TMSN$_3$ (40 µl, 0.3 mmol) were added to vial B successively and followed by drop-wise addition of the catalyst solution in vial A. The reaction was kept at room temperature for 2 h and then quenched with saturated NaHCO$_3$ solution (0.1 mL), and further diluted with hexanes (3 mL). The mixture was stirred vigorously for 10 min and filtered through a short silica gel pad. The filtrate was concentrated in vacuo and the crude product was analyzed by 1H NMR with trimethoxybenzene as an internal standard. The azido-oxygenation product 12 was identified (75% yield, $dr = 2.3$).
(±)-1-((1R,2S)-2-Azido-1,2-diphenylethoxy)-2,2,6,6-tetramethylpiperidine (12a): IR ν\text{max} (neat)/cm\(^{-1}\): 2933 (s), 2100 (s), 1455 (m), 1258 (m), 1133 (w), 757 (w), 698 (m); \(^1\)H NMR (400 MHz, CDCl\(_3\)): δ 7.26–7.14 (m, 6H), 7.10–7.01 (m, 4H), 5.18 (d, \(J = 8.0\) Hz, 1H), 5.07 (d, \(J = 8.0\) Hz, 1H), 1.91–0.88 (m, 16H), 0.65–0.18 (m, 2H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): δ 138.9, 136.8, 129.7, 128.14, 128.08, 127.9, 127.8, 127.4, 89.2, 69.3, 61.1, 59.6, 41.0, 34.8, 34.1, 20.7, 17.2.

(±)-1-((1S,2S)-2-Azido-1,2-diphenylethoxy)-2,2,6,6-tetramethylpiperidine (12b): IR ν\text{max} (neat)/cm\(^{-1}\): 2932 (s), 2100 (s), 1452 (m), 1361 (w), 1133 (w), 1025 (m), 709 (s); \(^1\)H NMR (400 MHz, CDCl\(_3\)): δ 7.25–7.12 (m, 6H), 7.00–6.88 (m, 4H), 5.62 (d, \(J = 3.5\) Hz, 1H), 4.89 (d, \(J = 3.5\) Hz, 1H), 1.70–1.20 (m, 12H), 1.19–0.95 (m, 3H), 0.83–0.34 (m, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): δ 137.3, 137.2, 129.3, 128.2, 127.7, 127.5, 127.4, 127.1, 91.6, 68.1, 60.3, 40.8, 35.3, 34.3, 20.4, 17.2.

To a flame-dried 3-dram vial equipped with a stirring bar were added 2a (69.4 mg, 0.24 mmol) and TEMPO (37.5 mg, 0.24 mmol). The vial was evacuated and backfilled with N\(_2\) three times and anhydrous CH\(_2\)Cl\(_2\) (1.5 mL) was added. After the vial was degassed with brief
evacuation and backfilled with N₂ twice, cis-stilbene 10a (36 µL, 0.2 mmol) and TMSN₃ (40 µL, 0.3 mmol) were added successively to this vial at room temperature. The reaction was kept at room temperature for 2 h and then quenched with a saturated NaHCO₃ solution (0.1 mL), and further diluted with hexanes (3 mL). The mixture was stirred vigorously for 10 min and filtered through a short silica gel pad. The filtrate was concentrated in vacuo and the crude product was analyzed by ¹H NMR with trimethoxybenzene as an internal standard. 12 was also identified (69% yield, dr: 2.3:1).

To a flame-dried sealable 2-dram vial (vial A) equipped with a stir bar were added Fe(OTf)₂ (3.5 mg, 0.01 mmol) and L3 (5.2 mg, 0.01 mmol). After the vial was evacuated and backfilled with N₂ three times, anhydrous CH₂Cl₂ (0.4 mL) and MeCN (0.1 mL) were added via a syringe and the mixture was stirred at room temperature for 10 min. To another flame-dried 3-dram vial (vial B) equipped with a stirring bar was added 2a (69.4 mg, 0.24 mmol). This vial was evacuated and backfilled with N₂ three times and anhydrous CH₂Cl₂ (1.5 mL) was added. Both vials were degassed with brief evacuation and backfilled with N₂ twice and they were cooled to -15 °C. cis-Stilbene 10a (36 µL, 0.2 mmol) and a stock solution of TBAN₃ (1.0 M in CH₂Cl₂, 300 µL, 0.3 mmol) were added to vial B successively and followed by drop-wise addition of the catalyst solution in vial A. The reaction was then kept at room temperature for 2 h and then quenched with saturated NaHCO₃ solution (0.1 mL), and further diluted with hexanes (3 mL). The mixture was stirred vigorously for 10 min and filtered through a short silica gel pad. The filtrate was concentrated in vacuo and the crude product was analyzed by ¹H NMR with
trimethoxybenzene as an internal standard. *cis*-Stilbene was almost fully recovered.

![Chemical Reaction](image)

To a flame-dried sealable 2-dram vial (vial A) equipped with a stir bar were added Fe(OTf)2 (3.5 mg, 0.01 mmol) and L2 (2.7 mg, 0.01 mmol). After the vial was evacuated and backfilled with N2 three times, anhydrous CH2Cl2 (0.4 mL) and MeCN (0.1 mL) were added via a syringe and the mixture was stirred at room temperature for 10 min. To another flame-dried 3-dram vial (vial B) equipped with a stirring bar was added 2a (69.4 mg, 0.24 mmol). This vial was evacuated and backfilled with N2 three times and anhydrous CH2Cl2 (1.5 mL) was added. Both vials were degassed with brief evacuation and backfilled with N2 twice and they were cooled to -15 °C. *cis*-Stilbene 10a (36 µL, 0.2 mmol), a stock solution of TBAN3 (1.0 M in CH2Cl2, 300 µl, 0.3 mmol) and TMSN3 (40 µl, 0.3 mmol) were added to vial B successively and followed by drop-wise addition of the catalyst solution in vial A. The reaction was kept at room temperature for 2 h and then quenched with saturated NaHCO3 solution (0.1 mL), and further diluted with hexanes (3 mL). The mixture was stirred vigorously for 10 min and filtered through a short silica gel pad. The filtrate was concentrated *in vacuo* and the crude product was analyzed by 1H NMR with trimethoxybenzene as an internal standard. *trans*-stilbene was obtained in 75% yield.
Two isomeric vinyl-cyclopropane substrates were evaluated in order to determine whether a radical species is involved in the olefin diazidation. *trans*-2-Phenyl-1-vinylcyclopropane *trans*-S29 was synthesized according to a literature procedure.10, 83 *cis*-2-Phenyl-1-vinylcyclopropane *cis*-29 was obtained according to another literature procedure.10, 83b, 84

To a flame-dried sealable 2-dram vial (vial A) equipped with a stir bar were added Fe(OTf)$_2$ (5.3 mg, 0.015 mmol) and L2 (4.1 mg, 0.015 mmol). After the vial was evacuated and backfilled with N$_2$ three times, anhydrous CH$_2$Cl$_2$ (0.8 mL) and MeCN (0.2 mL) were added via a syringe and the mixture was stirred at room temperature for 10 min. To another flame-dried 3-dram vial (vial B) equipped with a stir bar was added 2b (158.4 mg, 0.60 mmol). This vial was evacuated and backfilled with N$_2$ three times and anhydrous CH$_2$Cl$_2$ (4.0 mL) was added. Both vials were degassed with brief evacuation and backfilled with N$_2$ twice. S29 (72.1 mg, 0.5 mmol), TMSN$_3$ (263 µL, 2.0 mmol) were added successively to vial B and followed by drop-wise addition of the catalyst solution in vial A at room temperature. The reaction was kept at room temperature for 2 h and then quenched with a saturated NaHCO$_3$ solution (0.1 mL) and further diluted with hexanes (5 mL). The mixture was stirred vigorously for 10 min and filtered through a short silica gel pad. The filtrate was concentrated *in vacuo*. The residue was subsequently purified through a silica gel flash column (hexanes/Et$_2$O: from 200:1 to 50:1) and
S30 was isolated as a colorless oil (76.4 mg, 67% yield).

S30 was obtained with essentially the same yield through the same procedure with cis-2-Phenyl-1-vinylcyclopropane cis-S29. Isomerization product trans-S29 was not identified.

\[
\text{S30} \quad \begin{array}{c}
\text{Ph} \\
\text{N}_3 \\
\text{N}_3
\end{array}
\]

(1,5-Diazidopent-3-en-1-yl)benzene (S30): IR \(\nu_{\text{max}} \) (neat)/cm\(^{-1}\): 2920 (w), 2096 (s), 1245 (m), 974 (w), 700 (w); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta \) 7.43–7.28 (m, 5H), 5.74–5.53 (m, 2H), 4.54–4.45 (m, 1H), 3.71 (d, \(J = 5.9 \) Hz, 2H), 2.69–2.49 (m, 2H); \(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta \) 139.0, 131.3, 129.0, 128.6, 127.0, 126.9, 65.9, 52.6, 39.2.

\[
\text{S31} \quad \begin{array}{c}
\text{NHAc} \\
\text{Ph} \\
\text{NHAc}
\end{array}
\]

\(N,N'-(5\text{-Phenylpent-2-ene-1,5-diyl})diametamide \) (S31). To a 3-dram vial equipped with a stir bar were added diazidation product S30 (45.6 mg, 0.2 mmol), THF (2 mL) and H\(_2\)O (18 \(\mu \)L, 1.0 mmol). After the vial was evacuated and backfilled with N\(_2\) three times, a solution of PPh\(_3\) (131.2 mg, 0.5 mmol) in THF (1 mL) was added drop-wise at 0 °C. The mixture was warmed up to 50 °C and stirred for 6 h (the reaction was monitored by IR until the absorption of azido groups disappeared). The mixture was then concentrated in vacuo and the residue was dissolved in CH\(_2\)Cl\(_2\) (3 mL). This solution cooled to 0 °C and Et\(_3\)N (68 \(\mu \)L, 0.5 mmol) was then added via a syringe followed by drop-wise addition of acetyl chloride (32 \(\mu \)L, 0.44 mmol). The reaction was kept stirring for 1 h and quenched with saturated NH\(_4\)Cl solution (1 mL). After the organic layer was separated, the aqueous phase was extracted with CH\(_2\)Cl\(_2\) (5 mL \(\times \) 3). The combined organic layers were dried over anhydrous Na\(_2\)SO\(_4\) and concentrated in vacuo to afford S31 as colorless oil (31 mg, 60% yield). IR \(\nu_{\text{max}} \) (neat)/cm\(^{-1}\): 3288 (s), 1650 (s), 1549 (s), 1433
225

(w), 1374 (m), 1297 (m), 970 (w), 700 (w); 1H NMR (400 MHz, CDCl$_3$): δ 7.39–7.18 (m, 5H), 6.08 (d, J = 7.0 Hz, 1H), 5.59–5.38 (m, 3H), 5.09 (dd, $J = 14.6, 6.9$ Hz, 1H), 3.73 (t, $J = 4.0$ Hz, 2H), 2.51 (t, $J = 5.4$ Hz, 2H), 2.00 (s, 3H), 1.96 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 170.2, 169.6, 141.6, 129.6, 128.8, 128.5, 127.6, 126.7, 52.7, 41.5, 39.0, 23.5, 23.4; HRMS (ESI, m/z): calcd for C$_{15}$H$_{21}$N$_2$O$_2$, [M + H$^+$], 261.1598, found 261.1603.

4.3 RESULTS

Herein, we describe an iron-catalyzed diastereoselective olefin diazidation at room temperature with low catalyst loading (Scheme 70). 83b, 85 This new method tolerates a broad range of olefins, including those that are incompatible with existing methods. Notably, the anti-selectivity can be modulated by iron catalysts (d.r. up to >20:1). This method also provides a convenient approach to a variety of nitrogen-containing molecules, including vicinal primary diamines and 2-azido glycosyl azides, which are valuable for N-linked glycoprotein synthesis. Furthermore, preliminary mechanistic studies suggest that this reaction may proceed through a new selective pathway, which has the promise to become a general strategy for selective olefin difunctionalization.

![Scheme 70. Iron-Catalyzed Olefin Diazidation](image-url)
4.3.1 Iron Catalyst Discovery

Indene (1) was selected as a model substrate for catalyst discovery since it is incompatible with existing diastereoselective olefin diazidation methods. Azidoiodinane (2a) and Fe(OTf)₂ were initially selected as the azido-transfer reagent and the catalyst, respectively. We observed that Fe(OTf)₂ was ineffective for the azido-group transfer in the absence of TMSN₃ and both 1 and 2a were fully recovered (Table 25, entry 1). However, in the presence of TMSN₃, a catalytic amount of Fe(OTf)₂ was sufficient to turn over the catalytic cycle, thus affording the indene diazide 3 in high yields (entries 2, 4, and 5). Notably, in the absence of iron catalysts, no desired product was observed and 1 was fully recovered (entry 3). These observations suggest that TMSN₃ is necessary to activate 2a for the azido-group transfer and that iron catalysts are also necessary for the olefin diazidation.

Although the Fe(OTf)₂/L₁ complex catalyzed a moderately diastereoselective reaction (entry 2), the d.r. value was significantly improved when the ligand L₂ was used (entry 4). Notably, a bulkier ligand (L₃) induced a higher d.r. value (entry 5). Since 2a is prepared from bench-stable benziodoxole (2b) with an excess amount of TMSN₃, and 2b is barely soluble under the olefin diazidation conditions,⁸⁶ we explored using 2b as the terminal oxidant under heterogeneous conditions (entry 6). To our pleasure, 3 was obtained with essentially the same yield and d.r. value under these new reaction conditions. This observation suggests that 2a may be rapidly derived from 2b in situ. Note that precautions with regard to handling TMSN₃ should be taken during the reaction workup.

We thereby evaluated the counterion effect and discovered that Fe(NTf₂)₂ was equally effective (Table 25, entry 7). Surprisingly, the Fe(OAc)₂/L₃ complex catalyzed highly diastereoselective anti-diazidation of 1 with an excellent yield (entry 8). Since 3 is a convenient
precursor for the indene diamine, it is further converted into the anti-indene diaminium salt 4 in a high yield by a mild reduction/protonation sequence. Furthermore, standard resolution with tartaric acid readily provided the indene diamine essentially in its enantiopure form (97 % ee).

![Diagram of the reaction pathway]

<table>
<thead>
<tr>
<th>entry</th>
<th>Fe(X)₂</th>
<th>ligand</th>
<th>2</th>
<th>TMSN₃ (equiv)</th>
<th>time (h)</th>
<th>conversion</th>
<th>yield (3)</th>
<th>dr (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fe(OTf)₂</td>
<td>L1</td>
<td>2a</td>
<td>0</td>
<td>24.0</td>
<td><5%</td>
<td><5%</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>Fe(OTf)₂</td>
<td>L1</td>
<td>2a</td>
<td>1.5</td>
<td>1.0</td>
<td>>95%</td>
<td>81%</td>
<td>3.7:1</td>
</tr>
<tr>
<td>3</td>
<td>none</td>
<td>none</td>
<td>2a</td>
<td>1.5</td>
<td>1.0</td>
<td>>95%</td>
<td><5%</td>
<td>NA</td>
</tr>
<tr>
<td>4</td>
<td>Fe(OTf)₂</td>
<td>L2</td>
<td>2a</td>
<td>1.5</td>
<td>1.0</td>
<td>>95%</td>
<td>82%</td>
<td>7.1:1</td>
</tr>
<tr>
<td>5</td>
<td>Fe(OTf)₂</td>
<td>L3</td>
<td>2a</td>
<td>1.5</td>
<td>1.0</td>
<td>>95%</td>
<td>85%</td>
<td>8.5:1</td>
</tr>
<tr>
<td>6</td>
<td>Fe(OTf)₂</td>
<td>L3</td>
<td>2b</td>
<td>3.6</td>
<td>1.0</td>
<td>>95%</td>
<td>82%</td>
<td>8.6:1</td>
</tr>
<tr>
<td>7</td>
<td>Fe(NTf₂)₂</td>
<td>L3</td>
<td>2b</td>
<td>3.6</td>
<td>1.0</td>
<td>>95%</td>
<td>78%</td>
<td>8.0:1</td>
</tr>
<tr>
<td>8</td>
<td>Fe(OAc)₂</td>
<td>L3</td>
<td>2b</td>
<td>3.6</td>
<td>3.5</td>
<td>>95%</td>
<td>87%</td>
<td>>20:1</td>
</tr>
</tbody>
</table>

"Reactions were carried out under N₂ and then quenched with a saturated NaHCO₃ solution unless stated otherwise. Reaction condition: PPh₃ (2.5 equiv), H₂O (5.0 equiv), THF, 50 °C, 2 h, then TsOH (2.5 equiv). Conversion and dr were measured by ¹H NMR analysis. Isolated yield. OTf: trifluoromethanesulfonate, NTf₂: trifluoromethanesulfonimide.

Table 25. Catalyst Discovery for the Diastereoselective Indene Diazidation

4.3.2 Substrate Scope

To examine the scope of this new iron-catalyzed olefin diazidation, we explored the reactivity with a broad range of olefins (Table 26). Since the C/N ratios for these diazides generally vary from 1 to 3, careful isolation was executed strictly under small-scale (<100 mg) conditions. Additionally, direct diazide reduction without solvent concentration conveniently affords a variety of vicinal primary diamines. First, olefins with labile C-H bonds, including allyl
benzene and an allyl silane, were evaluated because they have been challenging substrates for the existing diazidation methods. For synthetic convenience, L2, with a lower molecular weight, was selected as the ligand for terminal olefins, and we discovered that the Fe(OTf)$_2$/L2 complex catalyzed the efficient diazidation: the amount of competing direct C-H azidation product is less than 5% (entries 1 and 2). Mild derivatization converted the diazides into functionalized diaminium salts with excellent yields. Styrenyl and aliphatic terminal olefins are also excellent substrates: the corresponding diazides were isolated with good yields (entries 3–6). Next, we evaluated a range of cyclic olefins and discovered that the Fe(OAc)$_2$/L3 complex is effective for highly diastereoselective diazidation of indene, dihydronaphthalene, dihydroquinoline, and indole (entries 7–10). Standard derivatization afforded a range of valuable anti-vicinal diamines, which are challenging to synthesize with existing diazidation or diamination methods. Further evaluation of acyclic internal olefins revealed that trans-2-octene is an excellent substrate for the diazidation yet with a low dr value (entry 11). Fortunately, the diastereomers were separable and the straightforward derivatization converted them into vicinal primary diamines, which are difficult to obtain with the existing olefin diamination methods. We also observed that an electron-deficient cinnamate ester is an excellent substrate, and an electron-rich enamide is also compatible with this method (entries 12 and 13). We further evaluated geranyl acetate and observed that the diazidation occurred regioselectively at the distal position with a more electron-rich olefin (entry 14).
<table>
<thead>
<tr>
<th>entry<sup>a</sup></th>
<th>olefin</th>
<th>diazide</th>
<th>yield<sup>b</sup> (1st step)</th>
<th>diammonium salt</th>
<th>yield<sup>b</sup> (2nd step)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>c,d</sup></td>
<td>Ph<sup>-</sup></td>
<td>Ph<sub>-</sub>N<sub>3</sub></td>
<td>3b 72% Ph<sub>-</sub>NH<sub>-</sub>NH<sub>-</sub>(TsO)<sub>2</sub></td>
<td>4b 93%</td>
<td></td>
</tr>
<tr>
<td>2<sup>d</sup></td>
<td>TIPS<sup>-</sup></td>
<td>TIPS<sub>-</sub>N<sub>3</sub></td>
<td>3c 89% TIPS<sub>-</sub>NH<sub>-</sub>NH<sub>-</sub>(TsO)<sub>2</sub></td>
<td>4c 90%</td>
<td></td>
</tr>
<tr>
<td>3<sup>d</sup></td>
<td>Ph<sup>-</sup></td>
<td>Ph<sub>-</sub>N<sub>3</sub></td>
<td>3d 85% Ph<sub>-</sub>NH<sub>-</sub>NH<sub>-</sub>(TsO)<sub>2</sub></td>
<td>4d 94%</td>
<td></td>
</tr>
<tr>
<td>4<sup>o</sup></td>
<td>Ph<sup>-</sup>Me</td>
<td>Me<sub>-</sub>N<sub>3</sub></td>
<td>3e 83% Me<sub>-</sub>NH<sub>-</sub>NH<sub>-</sub>(TsO)<sub>2</sub></td>
<td>4e 90%</td>
<td></td>
</tr>
<tr>
<td>5<sup>d</sup></td>
<td>C<sub>6</sub>H<sub>11</sub><sup>-</sup></td>
<td>C<sub>6</sub>H<sub>11</sub><sub>-</sub>N<sub>3</sub></td>
<td>3f 78% C<sub>6</sub>H<sub>11</sub><sub>-</sub>NH<sub>-</sub>NH<sub>-</sub>(TsO)<sub>2</sub></td>
<td>4f 85%</td>
<td></td>
</tr>
<tr>
<td>6<sup>e</sup></td>
<td>C<sub>6</sub>H<sub>13</sub><sup>-</sup>Me</td>
<td>C<sub>6</sub>H<sub>13</sub><sub>-</sub>N<sub>3</sub></td>
<td>3g 88% C<sub>6</sub>H<sub>13</sub><sub>-</sub>NH<sub>-</sub>NH<sub>-</sub>(TsO)<sub>2</sub></td>
<td>4g 94%</td>
<td></td>
</tr>
<tr>
<td>7<sup>d,f</sup></td>
<td>1,3-CB</td>
<td>1,3-CB<sub>-</sub>N<sub>3</sub></td>
<td>3a dr>20:1 1,3-CB<sub>-</sub>NH<sub>-</sub>NH<sub>-</sub>(TsO)<sub>2</sub></td>
<td>4a 92%</td>
<td></td>
</tr>
<tr>
<td>8<sup>d,f</sup></td>
<td>1,2-CB</td>
<td>1,2-CB<sub>-</sub>N<sub>3</sub></td>
<td>3h dr: 12:1 1,2-CB<sub>-</sub>NH<sub>-</sub>NH<sub>-</sub>(TsO)<sub>2</sub></td>
<td>4h 90%</td>
<td></td>
</tr>
<tr>
<td>9<sup>e,g</sup></td>
<td>1,3-NB Troc</td>
<td>1,3-NB<sub>-</sub>Troc<sub>-</sub>N<sub>3</sub></td>
<td>3i dr>20:1 1,3-NB<sub>-</sub>Troc<sub>-</sub>NH<sub>-</sub>NH<sub>-</sub>(TsO)<sub>2</sub></td>
<td>4i 89%</td>
<td></td>
</tr>
<tr>
<td>10<sup>e,h</sup></td>
<td>1,2-NB Troc</td>
<td>1,2-NB<sub>-</sub>Troc<sub>-</sub>N<sub>3</sub></td>
<td>3j dr>20:1 1,2-NB<sub>-</sub>Troc<sub>-</sub>NH<sub>-</sub>NH<sub>-</sub>(TsO)<sub>2</sub></td>
<td>4j 90%</td>
<td></td>
</tr>
<tr>
<td>11<sup>e,h</sup></td>
<td>C<sub>6</sub>H<sub>11</sub><sup>-</sup>Me<sub>-</sub></td>
<td>C<sub>6</sub>H<sub>11</sub><sub>-</sub>Me<sub>-</sub>N<sub>3</sub></td>
<td>3k dr: 1.4:1 C<sub>6</sub>H<sub>11</sub><sub>-</sub>NH<sub>-</sub>NH<sub>-</sub>(TsO)<sub>2</sub></td>
<td>4k 95%</td>
<td></td>
</tr>
</tbody>
</table>
Table 26. Substrate Scope for the Iron-Catalyzed Olefin Diazidation

4.3.3 **Late Stage Functionalization**

Furthermore, we explored this new method with densely functionalized olefins (Scheme 71). Acetyl quinone (5) smoothly participates in the diazidation to afford diazide 6, which adds a new structural motif for organocatalysis. Additionally, glycal 7 is also a reasonable substrate, which affords 2-azido glycosyl azides 8. Interestingly, both diastereomers were elaborated to 2-azido N-linked glycopeptide 9 as a single diastereomer via a reduction/ligation procedure. Notably, 9 is also a valuable building block for N-linked glycoprotein synthesis.\(^{87}\)
Fe(OTf)$_2$: L$_2$ (10 mol %), 2b, TMSN$_3$, 22 °C; 82% yield, dr: 3:1. Fe(OTf)$_2$: L$_2$ (5 mol %), 2b, TMSN$_3$, 0 °C; 52% yield, dr: 1.5:1. PMe$_3$ in THF, -60-22 °C; then H$_2$O in THF, 40 °C; 76% yield, dr>20:1; then HATU, DIPEA, the corresponding peptide acid, DMF, 22 °C, 86% yield for the ligation step.

Scheme 71. Iron-Catalyzed Diazidation of Acetyl Quinine and Glycals for N-Linked Glycopeptide Synthesis

4.3.4 Mechanistic Working Hypothesis

The observed catalyst-controlled diastereoselectivity is mechanistically important because it suggests that iron catalysts are involved in the dr-determining step. Therefore, we selected cis-stilbene 10a as a probe for several control experiments (Scheme 72). First, when TMSN$_3$ is absent, no reaction was observed and both 10a and 2a were fully recovered (equation 72a). Next, under an iron-free condition yet in the presence of TMSN$_3$, 10a was isomerized to trans-stilbene 10b and no diazidation product was observed (equation 72b). We further discovered that 10a was converted to diazide 11 under a standard condition and essentially the same dr was observed compared with the one obtained from 10b (equation 72c). Furthermore, 12 was obtained in the presence of TEMPO (equations 72d and 72e). These experiments provided several mechanistic insights. First, TMSN$_3$ is crucial to activate 2a. Next, an azido-radical species is possibly involved in the olefin diazidation and a reversible radical addition may convert 10a to a carbo-radical species under both standard and iron-free conditions. Additionally, this radical can be captured by TEMPO. Moreover, stereo-convergent diazidation of cis/trans stilbenes suggest that the second azido-group transfer may be rate-limiting.
In order to probe for the role of TMSN$_3$, it was further replaced by TBAN$_3$ (equation 72f). Surprisingly, no diazidation was observed and 10a was fully recovered. However, in the presence of both TMSN$_3$ and TBAN$_3$, 10a was isomerized to 10b and no diazidation was observed (equation 72g). These observations suggest that the Lewis-acidic TMS group is crucial for the activation of 2a and that an excess amount of azide anion may deactivate iron catalysts.

Based on the collective evidence from the aforementioned control experiments and key observations in catalyst discovery (Table 10), we propose a mechanistic working hypothesis that is supported by the experimental data (Scheme 73). First, TMSN$_3$ reacts with 2b and possibly converts 2b to 2a in situ. Next, 2a may be further activated by TMSN$_3$ to reversibly generate intermediate A. In the absence of iron catalysts, A may react with cis-stilbene 10a, presumably through reversible azido-radical addition, affording a carbo-radical species B and azidoiodobenzene C. Nevertheless, B may not be further oxidized in the absence of iron and the elimination from B will afford more stable 10b and regenerate A. However, in the presence of an
iron catalyst, it may reductively cleave the I–N$_3$ bond of A, which presumably generates a high-valent iron species and an azido-radical. The azido-radical may thereby react with 10a to afford another carbo-radical species E that is associated with the iron catalyst. Since the dr of olefin diazidation can be modulated both by the ligand and counter ion of the catalyst, it is likely that the high-valent iron species may further oxidize E through inner-sphere azido ligand-transfer to afford the diazide 11.46

![Scheme 73. Mechanistic Working Hypothesis for the Iron-Catalyzed Olefin Diazidation Using Benziodoxole and TMSN$_3$](image)

4.4 CONCLUSIONS

In conclusion, we have discovered a new iron-catalyzed diastereoselective olefin diazidation method which tolerates a broad range of olefins, including those that are incompatible with the existing methods. It can also afford a variety of synthetically valuable building blocks that are difficult to prepare with alternative methods. Our mechanistic studies suggest that the reaction may proceed through a new pathway in which Lewis-acid activation is indispensable for the first azido-group transfer and that iron catalysts are crucially involved with the second azido-group transfer. Our current efforts focus on the mechanistic understanding of this new reaction and achieving effective asymmetric induction through new catalyst discovery.
REFERENCES

APPENDICES

Appendix A 1H and 13C Spectra of Compounds in Chapter I
\[\text{L3} \]
\(\text{(CDCl}_3, 400 \text{ MHz}) \)

\[\text{L3} \]
\(\text{(CDCl}_3, 100 \text{ MHz}) \)
Appendix B 1H and 13C Spectra of Compounds in Chapter II
Ar = \text{p-CO}_2\text{MePh}

S4-3 (CDCl$_3$, 400 MHz)
Ar = 3-Py

S4-5 (CD$_3$OD, 400 MHz)

Ar = 3-Py

S4-5 (CD$_2$OD, 100 MHz)
$\text{Ar} = p$-CO_2Me-benzoyl

S4-11 (CDCl$_3$, 400 MHz)

$\text{Ar} = p$-CO_2Me-benzoyl

S4-11 ((CD$_3)$_2SO, 100 MHz)
$\text{Ar = 2,4-Cl}_2\text{-Ph}$

11 (CDCl$_3$, 400 MHz)

$\text{Ar = 2,4-Cl}_2\text{-Ph}$

11 (CDCl$_3$, 100 MHz)
13 (CDCl₃, 100 MHz)
Appendix C 1H and 13C Spectra of Compounds in Chapter III

1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

IA4

13C NMR (100 MHz, CDCl$_3$)

IA4
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

IA6

13C NMR (100 MHz, CDCl$_3$)

IA6
1H NMR (400 MHz, CDCl$_3$)

IA7

13C NMR (100 MHz, CDCl$_3$)

IA7
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)

$\text{^1H NMR (}400\text{ MHz, CDCl}_3\text{)}$

$\text{^13C NMR (}100\text{ MHz, CDCl}_3\text{)}$
1H NMR (400 MHz, d_6-DMSO)

13C NMR (100 MHz, d_6-DMSO)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
\[^{1}\text{H NMR (400 MHz, } d_6\text{-DMSO)}\]

\[
\begin{align*}
\text{R} &= \text{2,4-Cl}_2\text{-benzoyl} \\
\text{2}
\end{align*}
\]

\[^{13}\text{C NMR (100 MHz, } d_6\text{-DMSO)}\]

\[
\begin{align*}
\text{R} &= \text{2,4-Cl}_2\text{-benzoyl} \\
\text{2}
\end{align*}
\]
1H NMR (400 MHz, d_6-DMSO)

\begin{align*}
\text{Me} & \quad \text{N} \\
\text{O} & \quad \text{NH} \\
\text{OR} & \quad \text{SO}_2\text{Ph}
\end{align*}

$R = p-\text{CO}_2\text{Me}-\text{benzoyl}$

P2

13C NMR (100 MHz, d_6-DMSO)

\begin{align*}
\text{Me} & \quad \text{N} \\
\text{O} & \quad \text{NH} \\
\text{OR} & \quad \text{SO}_2\text{Ph}
\end{align*}

$R = p-\text{CO}_2\text{Me}-\text{benzoyl}$

P2
1H NMR (400 MHz, d$_6$-DMSO)

R = p-CO$_2$Me-benzoyl

13C NMR (100 MHz, d$_6$-DMSO)

R = p-CO$_2$Me-benzoyl
1H NMR (400 MHz, d_6-DMSO)

13C NMR (100 MHz, d_6-DMSO)
1H NMR (400 MHz, d_2-DMSO)

R = 2,4-Cl$_2$-benzoyl

13C NMR (100 MHz, d_2-DMSO)

R = 2,4-Cl$_2$-benzoyl
1H NMR (400 MHz, d_6-DMSO)

\[\text{R = 2,4-Cl}_2\text{-benzoyl} \]

13C NMR (100 MHz, d_6-DMSO)

\[\text{R = 2,4-Cl}_2\text{-benzoyl} \]
$^1\text{H NMR (400 MHz, d$_6$-DMSO)}$

$^1\text{C NMR (100 MHz, d$_6$-DMSO)}$
1H NMR (400 MHz, d_6-DMSO)

1H NMR (400 MHz, d_6-DMSO)

13C NMR (100 MHz, d_6-DMSO)

13C NMR (100 MHz, d_6-DMSO)

R = p-CO$_2$Me-benzoyl

P8
1H NMR (400 MHz, d_2-DMSO)

![NMR spectrum image]

1H NMR (400 MHz, d_2-DMSO)

13C NMR (100 MHz, d_2-DMSO)

![NMR spectrum image]
1H NMR (400 MHz, CDCl$_3$)

R = 2,4-Cl$_2$-benzoyl

5

13C NMR (100 MHz, CDCl$_3$)

R = 2,4-Cl$_2$-benzoyl

5
^{1}H NMR (400 MHz, CDCl$_3$)

![NMR spectrum](image)

13C NMR (100 MHz, CDCl$_3$)

![NMR spectrum](image)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (400 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

\[
\text{NHCbz}
\]

\[
\text{SO}_2\text{Ph}
\]

\[
R = 2,4-\text{Cl}_2\text{-benzoyl}
\]

1H NMR (400 MHz, CDCl$_3$)

\[
\text{NHCbz}
\]

\[
\text{SO}_2\text{Ph}
\]

\[
R = 2,4-\text{Cl}_2\text{-benzoyl}
\]

1C NMR (400 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

\[
\text{NHCOz} \quad \text{O} \\
\text{N} \quad \text{NH} \\
\text{SO$_2$Ph}
\]

$R = 2,4$-Cl$_2$-benzoyl

8

13C NMR (100 MHz, CDCl$_3$)

\[
\text{NHCOz} \quad \text{O} \\
\text{N} \quad \text{NH} \\
\text{SO$_2$Ph}
\]

$R = 2,4$-Cl$_2$-benzoyl

8
1H NMR (400 MHz, d_6-acetone)

\[
\begin{align*}
\text{Cbz} & \\
\text{SO}_2\text{Ph} & \\
R & = 2,4-\text{Cl}_2\text{-benzoyl}
\end{align*}
\]

1C NMR (100 MHz, d_6-acetone)

\[
\begin{align*}
\text{Cbz} & \\
\text{SO}_2\text{Ph} & \\
R & = 2,4-\text{Cl}_2\text{-benzoyl}
\end{align*}
\]
1H NMR (400 MHz, CDCl$_3$)

R = 2,4-Cl$_2$-benzoyl

1H NMR (400 MHz, CDCl$_3$)

R = 2,4-Cl$_2$-benzoyl

13C NMR (100 MHz, CDCl$_3$)

R = 2,4-Cl$_2$-benzoyl
Appendix D 1H and 13C Spectra of Compounds in Chapter IV

trans-3a
(CDCl$_3$, 400 MHz)

trans-3a
(CDCl$_3$, 100 MHz)
trans-4a
(DMSO-d6, 400 MHz)

trans-4a
(DMSO-d6, 100 MHz)
(CDCl$_3$, 318K, 400 MHz)

(CDCl$_3$, 318K, 100 MHz)
\[
\text{Ph} - \text{NH}_3 @ (\text{TsO})_2
\]

\[
\text{4b}
\]

\[(\text{CD}_3\text{OD}, 400 \text{ MHz})\]

\[
\text{Ph} - \text{NH}_3 @ (\text{TsO})_2
\]

\[
\text{4b}
\]

\[(\text{CD}_3\text{OD}, 100 \text{ MHz})\]
S4, $dr = 1.8:1$
(CDC$_3$, 400 MHz)
(CD$_3$OD, 400 MHz)

(DMSO-d_6, 100 MHz)
(DMSO-\textit{d}6, 400 MHz, 323K)

(DMSO-\textit{d}6, 100 MHz, 323K)
$\text{MeNH}_3\text{TsO}_2^-$

NH_3

Ph

4e

$(\text{CD}_3\text{OD}, 400 \text{ MHz})$

$\text{MeNH}_3\text{TsO}_2^-$

NH_3

Ph

4e

$(\text{CD}_3\text{OD}, 100 \text{ MHz})$
\[\begin{align*}
\text{C}_2\text{H}_4\text{NH}_3 \quad (\text{CD}_2\text{OD, 400 MHz}) \\
\text{C}_2\text{H}_4\text{NH}_3 \quad (\text{CD}_2\text{OD, 100 MHz})
\end{align*} \]
3g

(CDC$_3$, 400 MHz)

3g

(CDC$_3$, 100 MHz)
4_g (CD$_3$OD, 400 MHz)

4_g (CD$_3$OD, 100 MHz)
cis-3h
(CDCl₃, 400 MHz)

cis-3h
(CDCl₃, 100 MHz)
trans-4h
(CD$_3$OD, 400 MHz)
cis-4h
(DMSO-d6, 100 MHz)

S9
(CD3CN, 400 MHz)
S9
(CD$_3$CN, 100 MHz)

3i
(CDCl$_3$, 400 MHz)
3i
(CDC\textsubscript{3}, 100 MHz)

4i
(CD\textsubscript{3}OD, 400 MHz)
(CD$_3$OD, 100 MHz)

S10
(CDC$_3$, 400 MHz)
N3
N3
Troc

3j
(CD3CN, 400 MHz, 318 K)
dr > 20:1
S11
(CD$_3$CN, 100 MHz, 318K)

S12
(CDC$_3$, 400 MHz)
S13
(DMSO-d6, 100 MHz, 318 K)
dr = 20:1

S14
(DMSO-d6, 400 MHz, 318 K)
dr > 20:1
S14
(DMSO-d6, 100 MHz, 318 K)

S15
(CD$_3$CN, 400 MHz)
S16
(DMSO-d6, 100 MHz)
dr = 2.5:1

\text{C}_6\text{H}_{11}\text{N}_3\text{Me}
\begin{align*}
\text{anti-3k} \\
(\text{CDCl}_3, 400 \text{ MHz})
\end{align*}
anti-4k
(CD$_3$OD, 190 MHz)

syn-4k
(CD$_3$OD, 400 MHz)
syn-4k
(CD$_3$OD, 100 MHz)

 cis-S17
(CDC$_3$, 400 MHz)
cis-S17
(CDCl₃, 100 MHz)

trans-S17
(CDCl₃, 400 MHz)
cis-S17
(CDCl₃, 100 MHz)

anti-SI
(CDCl₃, 400 MHz)
anti-3I
(CDC$_2$, 100 MHz)

syn-3I
(CDC$_2$, 400 MHz)
anti-4l
(DMSO-d6, 100 MHz)

syn-4l
(DMSO-d6, 400 MHz)
syn-4I
(CD$_3$OD, 100 MHz)

3m
(CDCl$_3$, 400 MHz)
(DMSO-δ6, 100 MHz)

(CDC13, 400 MHz)
S20
(CDCl₃, 100 MHz)

6a
(CDCl₃, 400 MHz)

grease
S21
(CDC$_3$, 100 MHz)
$dr = 3:1$

S22
(CDC$_3$, 400 MHz)
S30
(CDCl₃, 100 MHz)

S31
(CDCl₃, 400 MHz)
\[
\text{S31}
\]
(CDC\textsubscript{3}, 100 MHz)
Appendix E X-ray Crystallographic Analysis for Product Absolute Stereochemistry Determination

![Chemical Structure](image)

Table 1. Crystal data and structure refinement for B302_0m

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>B302_0m</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>$\text{C}{26}\text{H}{22}\text{Cl}{2}\text{N}{2}\text{O}_{7}$</td>
</tr>
<tr>
<td>Formula weight</td>
<td>577.41</td>
</tr>
<tr>
<td>Temperature/K</td>
<td>173(2)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>$\text{P}_{2_1}2_12_1$</td>
</tr>
<tr>
<td>a/Å</td>
<td>9.6790(7)</td>
</tr>
<tr>
<td>b/Å</td>
<td>11.8883(8)</td>
</tr>
<tr>
<td>c/Å</td>
<td>22.4824(16)</td>
</tr>
<tr>
<td>α/°</td>
<td>90</td>
</tr>
<tr>
<td>β/°</td>
<td>90</td>
</tr>
<tr>
<td>γ/°</td>
<td>90</td>
</tr>
<tr>
<td>Volume/Å³</td>
<td>2587.0(3)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
</tbody>
</table>
\[\rho_{\text{calc}} \text{mg/mm}^3 \quad 1.483 \]
\[m/\text{mm}^-1 \quad 0.382 \]
\[F(000) \quad 1192.0 \]
\[\text{Crystal size/mm}^3 \quad 0.698 \times 0.309 \times 0.23 \]
\[2\Theta \text{ range for data collection} \quad 3.624 \text{ to } 61.158^\circ \]
\[\text{Index ranges} \quad -13 \leq h \leq 13, \quad -16 \leq k \leq 17, \quad -28 \leq l \leq 32 \]
\[\text{Reflections collected} \quad 20608 \]
\[\text{Independent reflections} \quad 7834[R(\text{int}) = 0.0289] \]
\[\text{Data/restraints/parameters} \quad 7834/1/349 \]
\[\text{Goodness-of-fit on } F^2 \quad 1.033 \]
\[\text{Final R indexes} [I \geq 2\sigma (I)] \quad R_1 = 0.0482, \quad wR_2 = 0.1153 \]
\[\text{Final R indexes} \text{ [all data]} \quad R_1 = 0.0572, \quad wR_2 = 0.1218 \]
\[\text{Largest diff. peak/hole } / \text{e Å}^{-3} \quad 0.77/-0.42 \]
\[\text{Flack parameter} \quad 0.012(18) \]

Table 2. Fractional Atomic Coordinates (×10^4) and Equivalent Isotropic Displacement Parameters (Å^2×10^3) for B302_0m. \(U_{\text{eq}} \) is defined as 1/3 of the trace of the orthogonalised \(U_{ij} \) tensor.

<table>
<thead>
<tr>
<th>Atom</th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
<th>(U(\text{eq}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>-3467.1(8)</td>
<td>-6310.7(7)</td>
<td>-3791.5(3)</td>
<td>28.52(17)</td>
</tr>
<tr>
<td>Cl2</td>
<td>-2358.9(8)</td>
<td>-7597.4(6)</td>
<td>-7753.5(3)</td>
<td>31.40(17)</td>
</tr>
<tr>
<td>Cl1</td>
<td>-4886.0(12)</td>
<td>-4143.1(9)</td>
<td>-6739.3(4)</td>
<td>53.7(3)</td>
</tr>
<tr>
<td>O2</td>
<td>-2651(2)</td>
<td>-5279.5(17)</td>
<td>-5088.2(8)</td>
<td>23.5(4)</td>
</tr>
<tr>
<td>O3</td>
<td>-2056(2)</td>
<td>-1889.3(19)</td>
<td>-4968.4(9)</td>
<td>28.9(5)</td>
</tr>
<tr>
<td>O1</td>
<td>-3946(2)</td>
<td>-3947.3(19)</td>
<td>-5525.3(9)</td>
<td>29.7(5)</td>
</tr>
<tr>
<td>O5</td>
<td>-4628(3)</td>
<td>-6284(2)</td>
<td>-4184.8(10)</td>
<td>40.3(6)</td>
</tr>
<tr>
<td>O4</td>
<td>-792(2)</td>
<td>-2090(2)</td>
<td>-5804.8(10)</td>
<td>34.5(5)</td>
</tr>
<tr>
<td>N2</td>
<td>-2383(3)</td>
<td>-5384(2)</td>
<td>-4066(1)</td>
<td>27.1(5)</td>
</tr>
<tr>
<td>O7</td>
<td>-8934(3)</td>
<td>-5021(2)</td>
<td>-5587.2(10)</td>
<td>40.0(6)</td>
</tr>
<tr>
<td>O6</td>
<td>-2724(3)</td>
<td>-7335(2)</td>
<td>-3698.5(12)</td>
<td>45.2(6)</td>
</tr>
<tr>
<td>N1</td>
<td>-957(2)</td>
<td>-3498(2)</td>
<td>-5107(1)</td>
<td>23.9(5)</td>
</tr>
<tr>
<td>C3</td>
<td>-2683(3)</td>
<td>-6833(2)</td>
<td>-7111.8(12)</td>
<td>23.2(5)</td>
</tr>
<tr>
<td>C18</td>
<td>-3989(3)</td>
<td>-5812(3)</td>
<td>-3090.3(12)</td>
<td>25.3(6)</td>
</tr>
<tr>
<td>C7</td>
<td>-3316(3)</td>
<td>-4817(3)</td>
<td>-5560.3(12)</td>
<td>22.8(5)</td>
</tr>
<tr>
<td>C5</td>
<td>-3802(3)</td>
<td>-5279(3)</td>
<td>-6640.2(13)</td>
<td>26.9(6)</td>
</tr>
<tr>
<td>C12</td>
<td>-603(3)</td>
<td>-4115(2)</td>
<td>-4071.7(12)</td>
<td>21.9(5)</td>
</tr>
<tr>
<td>C9</td>
<td>-1605(3)</td>
<td>-3683(2)</td>
<td>-4536.0(11)</td>
<td>20.4(5)</td>
</tr>
<tr>
<td>Atom</td>
<td>U_{11}</td>
<td>U_{22}</td>
<td>U_{33}</td>
<td>U_{23}</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>S1</td>
<td>38.2(4)</td>
<td>26.5(4)</td>
<td>20.8(3)</td>
<td>-3.5(3)</td>
</tr>
<tr>
<td>Cl2</td>
<td>38.6(4)</td>
<td>29.8(4)</td>
<td>25.8(3)</td>
<td>-9.0(3)</td>
</tr>
<tr>
<td>Cl1</td>
<td>74.9(6)</td>
<td>58.7(6)</td>
<td>27.5(4)</td>
<td>-11.9(4)</td>
</tr>
<tr>
<td>O2</td>
<td>30.3(9)</td>
<td>26.1(1)</td>
<td>14.3(8)</td>
<td>-0.9(7)</td>
</tr>
<tr>
<td>O3</td>
<td>37.8(11)</td>
<td>25.4(11)</td>
<td>23.5(10)</td>
<td>2.8(8)</td>
</tr>
<tr>
<td>O1</td>
<td>34.7(10)</td>
<td>30.6(12)</td>
<td>23.9(10)</td>
<td>-3.8(8)</td>
</tr>
<tr>
<td>O5</td>
<td>45.3(13)</td>
<td>52.5(16)</td>
<td>23(1)</td>
<td>-4.4(11)</td>
</tr>
<tr>
<td>O4</td>
<td>42.0(12)</td>
<td>35.7(13)</td>
<td>25.8(10)</td>
<td>8.8(9)</td>
</tr>
<tr>
<td>N2</td>
<td>31.1(12)</td>
<td>34.1(13)</td>
<td>16.1(10)</td>
<td>4.7(9)</td>
</tr>
<tr>
<td>O7</td>
<td>44.2(13)</td>
<td>45.6(15)</td>
<td>30.4(12)</td>
<td>-5.8(10)</td>
</tr>
<tr>
<td>O6</td>
<td>63.2(16)</td>
<td>24.5(11)</td>
<td>48.0(15)</td>
<td>-5(1)</td>
</tr>
<tr>
<td>N1</td>
<td>25.1(11)</td>
<td>29.1(13)</td>
<td>17.4(10)</td>
<td>2.5(9)</td>
</tr>
<tr>
<td>C3</td>
<td>25.2(12)</td>
<td>23.8(13)</td>
<td>20.6(12)</td>
<td>-5.2(10)</td>
</tr>
</tbody>
</table>

Table 3. Anisotropic Displacement Parameters ($\AA^2 \times 10^3$) for B302_0m. The Anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2a^2U_{11} + ... + 2hka'b'U_{12}]$
Table 4. Bond Lengths for B302_0m.

<table>
<thead>
<tr>
<th>Atom</th>
<th>Atom</th>
<th>Length/Å</th>
<th>Atom</th>
<th>Atom</th>
<th>Length/Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>O5</td>
<td>1.430(3)</td>
<td>C7</td>
<td>C6</td>
<td>1.493(4)</td>
</tr>
<tr>
<td>S1</td>
<td>N2</td>
<td>1.642(2)</td>
<td>C5</td>
<td>C4</td>
<td>1.394(4)</td>
</tr>
<tr>
<td>S1</td>
<td>O6</td>
<td>1.429(3)</td>
<td>C5</td>
<td>C6</td>
<td>1.400(4)</td>
</tr>
<tr>
<td>S1</td>
<td>C18</td>
<td>1.758(3)</td>
<td>C12</td>
<td>C9</td>
<td>1.514(4)</td>
</tr>
<tr>
<td>Cl2</td>
<td>C3</td>
<td>1.734(3)</td>
<td>C12</td>
<td>C17</td>
<td>1.386(4)</td>
</tr>
<tr>
<td>Cl1</td>
<td>C5</td>
<td>1.724(3)</td>
<td>C12</td>
<td>C13</td>
<td>1.379(4)</td>
</tr>
<tr>
<td>O2</td>
<td>C7</td>
<td>1.358(3)</td>
<td>C9</td>
<td>C8</td>
<td>1.573(4)</td>
</tr>
<tr>
<td>O2</td>
<td>C8</td>
<td>1.448(3)</td>
<td>C9</td>
<td>C11</td>
<td>1.551(4)</td>
</tr>
</tbody>
</table>
Table 5. Bond Angles for B302_0m.

<table>
<thead>
<tr>
<th>Atom</th>
<th>Atom</th>
<th>Atom</th>
<th>Angle/°</th>
<th>Atom</th>
<th>Atom</th>
<th>Atom</th>
<th>Angle/°</th>
</tr>
</thead>
<tbody>
<tr>
<td>O5</td>
<td>S1</td>
<td>N2</td>
<td>104.78(14)</td>
<td>C12</td>
<td>C9</td>
<td>C1</td>
<td>114.8(2)</td>
</tr>
<tr>
<td>O5</td>
<td>S1</td>
<td>C18</td>
<td>108.74(15)</td>
<td>C11</td>
<td>C9</td>
<td>C8</td>
<td>113.5(2)</td>
</tr>
<tr>
<td>N2</td>
<td>S1</td>
<td>C18</td>
<td>107.13(13)</td>
<td>O4</td>
<td>C10</td>
<td>O3</td>
<td>122.9(3)</td>
</tr>
<tr>
<td>O6</td>
<td>S1</td>
<td>O5</td>
<td>120.29(17)</td>
<td>O4</td>
<td>C10</td>
<td>N1</td>
<td>127.5(3)</td>
</tr>
<tr>
<td>O6</td>
<td>S1</td>
<td>N2</td>
<td>107.74(15)</td>
<td>N1</td>
<td>C10</td>
<td>O3</td>
<td>109.6(2)</td>
</tr>
<tr>
<td>O6</td>
<td>S1</td>
<td>C18</td>
<td>107.49(16)</td>
<td>C3</td>
<td>C2</td>
<td>C1</td>
<td>118.9(3)</td>
</tr>
<tr>
<td>C7</td>
<td>O2</td>
<td>C8</td>
<td>114.1(2)</td>
<td>C3</td>
<td>C4</td>
<td>C5</td>
<td>119.0(2)</td>
</tr>
<tr>
<td>C10</td>
<td>O3</td>
<td>C11</td>
<td>109.3(2)</td>
<td>C5</td>
<td>C6</td>
<td>C7</td>
<td>122.2(2)</td>
</tr>
<tr>
<td>C8</td>
<td>N2</td>
<td>S1</td>
<td>122.8(2)</td>
<td>C1</td>
<td>C6</td>
<td>C7</td>
<td>119.9(2)</td>
</tr>
<tr>
<td>C17</td>
<td>N2</td>
<td>S1</td>
<td>125.23(19)</td>
<td>C1</td>
<td>C6</td>
<td>C5</td>
<td>117.8(2)</td>
</tr>
<tr>
<td>C17</td>
<td>N2</td>
<td>C8</td>
<td>111.3(2)</td>
<td>O2</td>
<td>C8</td>
<td>N2</td>
<td>105.9(2)</td>
</tr>
<tr>
<td>C10</td>
<td>N1</td>
<td>C9</td>
<td>113.6(2)</td>
<td>O2</td>
<td>C8</td>
<td>C9</td>
<td>110.6(2)</td>
</tr>
<tr>
<td>C2</td>
<td>C3</td>
<td>C12</td>
<td>120.1(2)</td>
<td>N2</td>
<td>C8</td>
<td>C9</td>
<td>105.1(2)</td>
</tr>
<tr>
<td>C4</td>
<td>C3</td>
<td>C12</td>
<td>118.4(2)</td>
<td>C12</td>
<td>C17</td>
<td>N2</td>
<td>109.2(2)</td>
</tr>
<tr>
<td>C4</td>
<td>C3</td>
<td>C2</td>
<td>121.5(3)</td>
<td>C16</td>
<td>C17</td>
<td>N2</td>
<td>129.0(3)</td>
</tr>
<tr>
<td>C19</td>
<td>C18</td>
<td>S1</td>
<td>119.3(3)</td>
<td>C16</td>
<td>C17</td>
<td>C12</td>
<td>121.8(3)</td>
</tr>
<tr>
<td>C23</td>
<td>C18</td>
<td>S1</td>
<td>118.8(2)</td>
<td>C2</td>
<td>C1</td>
<td>C6</td>
<td>121.7(2)</td>
</tr>
<tr>
<td>C23</td>
<td>C18</td>
<td>C19</td>
<td>121.7(3)</td>
<td>C17</td>
<td>C16</td>
<td>C15</td>
<td>116.7(3)</td>
</tr>
<tr>
<td>O2</td>
<td>C7</td>
<td>C6</td>
<td>110.8(2)</td>
<td>O7</td>
<td>C25</td>
<td>C26</td>
<td>120.2(4)</td>
</tr>
<tr>
<td>O1</td>
<td>C7</td>
<td>O2</td>
<td>122.5(3)</td>
<td>O7</td>
<td>C25</td>
<td>C24</td>
<td>121.5(4)</td>
</tr>
</tbody>
</table>
Table 6. Hydrogen Bonds for B302_0m.

<table>
<thead>
<tr>
<th>D</th>
<th>H</th>
<th>A</th>
<th>d(D-H)/Å</th>
<th>d(H-A)/Å</th>
<th>d(D-A)/Å</th>
<th>D-H-A/°</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>H1</td>
<td>O7^1</td>
<td>0.985(7)</td>
<td>1.909(11)</td>
<td>2.877(3)</td>
<td>167(3)</td>
</tr>
</tbody>
</table>

^1_X+Y+Z

Table 7. Hydrogen Atom Coordinates (Å×10^4) and Isotropic Displacement Parameters (Å²×10^3) for B302_0m.

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2</td>
<td>-1427</td>
<td>-7723</td>
<td>-6571</td>
<td>32</td>
</tr>
<tr>
<td>H4</td>
<td>-4065</td>
<td>-5789</td>
<td>-7495</td>
<td>33</td>
</tr>
<tr>
<td>H8</td>
<td>-3674</td>
<td>-4307</td>
<td>-4494</td>
<td>27</td>
</tr>
<tr>
<td>H1A</td>
<td>-1794</td>
<td>-6631</td>
<td>-5738</td>
<td>29</td>
</tr>
<tr>
<td>H16</td>
<td>-618</td>
<td>-6354</td>
<td>-3233</td>
<td>33</td>
</tr>
<tr>
<td>H11A</td>
<td>-3144</td>
<td>-2529</td>
<td>-4291</td>
<td>30</td>
</tr>
<tr>
<td>H11B</td>
<td>-1658</td>
<td>-2119</td>
<td>-4103</td>
<td>30</td>
</tr>
<tr>
<td>H19</td>
<td>-2988</td>
<td>-7000</td>
<td>-2607</td>
<td>41</td>
</tr>
<tr>
<td>H13</td>
<td>991</td>
<td>-3018</td>
<td>-4101</td>
<td>34</td>
</tr>
<tr>
<td>H23</td>
<td>-5122</td>
<td>-4509</td>
<td>-3406</td>
<td>39</td>
</tr>
<tr>
<td>H22</td>
<td>-5940</td>
<td>-3941</td>
<td>-2479</td>
<td>50</td>
</tr>
<tr>
<td>H14</td>
<td>2313</td>
<td>-3955</td>
<td>-3387</td>
<td>40</td>
</tr>
<tr>
<td>H15</td>
<td>1531</td>
<td>-5594</td>
<td>-2969</td>
<td>38</td>
</tr>
<tr>
<td>H20</td>
<td>-3877</td>
<td>-6441</td>
<td>-1694</td>
<td>53</td>
</tr>
</tbody>
</table>
Experimental

Single crystals of C$_{26}$H$_{22}$Cl$_2$N$_2$O$_7$S [B302_0m] were []. A suitable crystal was selected and [] on a apex2_Mo diffractometer. The crystal was kept at 173(2) K during data collection. Using Olex2 [1], the structure was solved with the Superflip [2] structure solution program using Charge Flipping and refined with the ShelXL [3] refinement package using Least Squares minimisation.

2. SHELXS-97 (Sheldrick, 2008)
3. SHELXL-97 (Sheldrick, 2008)

Crystal structure determination of [B302_0m]

Crystal Data for C$_{26}$H$_{22}$Cl$_2$N$_2$O$_7$S ($M = 577.41$): orthorhombic, space group P2$_1$2$_1$2$_1$ (no. 19), $a = 9.6790(7)$ Å, $b = 11.8883(8)$ Å, $c = 22.4824(16)$ Å, $V = 2587.0(3)$ Å3, $Z = 4$, $T = 173(2)$ K, μ(MoKα) = 0.382 mm$^{-1}$, $D_{calc} = 1.483$ g/mm3, 20608 reflections measured (3.624 ≤ 2Θ ≤ 61.158), 7834 unique ($R_{int} = 0.0289$) which were used in all calculations. The final R_1 was 0.0482 (I >2σ(I)) and wR_2 was 0.1218 (all data).
Table 8. Crystal data and structure refinement for trypt

<table>
<thead>
<tr>
<th>Identification code</th>
<th>trypt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C\textsubscript{33}H\textsubscript{28}Cl\textsubscript{5}N\textsubscript{3}O\textsubscript{7}S</td>
</tr>
<tr>
<td>Formula weight</td>
<td>785.88</td>
</tr>
<tr>
<td>Temperature/K</td>
<td>172.3</td>
</tr>
<tr>
<td>Crystal system</td>
<td>orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>P\textsubscript{2}1\textsubscript{2}1\textsubscript{2}1</td>
</tr>
<tr>
<td>a/Å</td>
<td>9.6220(13)</td>
</tr>
<tr>
<td>b/Å</td>
<td>18.082(2)</td>
</tr>
<tr>
<td>c/Å</td>
<td>19.975(3)</td>
</tr>
</tbody>
</table>
\[\alpha/° = 90\]
\[\beta/° = 90\]
\[\gamma/° = 90\]

Volume/Å\(^3\) = 3475.4(8)

\(Z = 4\)

\(\rho_{calc}\) mg/mm\(^3\) = 1.502

\(m/mm^{-1} = 0.530\)

\(F(000) = 1608.0\)

Crystal size/mm\(^3\) = 0.928 \times 0.331 \times 0.19

2\(\Theta\) range for data collection = 4.078 to 63.784°

Index ranges

-14 \(\leq h \leq 13\), -26 \(\leq k \leq 18\), -28 \(\leq l \leq 25\)

Reflections collected = 30478

Independent reflections = 11170\([R(int) = 0.0350]\)

Data/restraints/parameters = 11170/158/476

Goodness-of-fit on \(F^2\) = 1.030

Final R indexes \([I>=2\sigma (I)]\)

\(R_1 = 0.0561\), \(wR_2 = 0.1352\)

Final R indexes \([all\ data]\)

\(R_1 = 0.0706\), \(wR_2 = 0.1451\)

Largest diff. peak/hole / e Å\(^{-3}\) = 0.65/-0.53

Flack parameter = -0.01(7)

Table 9. Fractional Atomic Coordinates (\(\times 10^4\)) and Equivalent Isotropic Displacement Parameters (Å\(^2\times 10^3\)) for trypt. \(U_{eq}\) is defined as 1/3 of the trace of the orthogonalised \(U_{ij}\) tensor.

<table>
<thead>
<tr>
<th>Atom</th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
<th>(U(eq))</th>
</tr>
</thead>
<tbody>
<tr>
<td>N3B</td>
<td>-4670(9)</td>
<td>-8722(3)</td>
<td>-4607(5)</td>
<td>31(2)</td>
</tr>
<tr>
<td>C24B</td>
<td>-3588(10)</td>
<td>-9184(6)</td>
<td>-4559(8)</td>
<td>26.8(10)</td>
</tr>
<tr>
<td>O6B</td>
<td>-2523(6)</td>
<td>-9171(4)</td>
<td>-4891(3)</td>
<td>27.6(9)</td>
</tr>
<tr>
<td>O7B</td>
<td>-3834(5)</td>
<td>-9676(3)</td>
<td>-4064(4)</td>
<td>35.7(14)</td>
</tr>
<tr>
<td>C25B</td>
<td>-2702(6)</td>
<td>-10190(4)</td>
<td>-3954(3)</td>
<td>39.4(14)</td>
</tr>
<tr>
<td>C26B</td>
<td>-3009(9)</td>
<td>-10611(3)</td>
<td>-3316(3)</td>
<td>28.2(15)</td>
</tr>
<tr>
<td>C27B</td>
<td>-3103(6)</td>
<td>-11379(3)</td>
<td>-3349(3)</td>
<td>36.4(11)</td>
</tr>
<tr>
<td>C28B</td>
<td>-3319(7)</td>
<td>-11785(3)</td>
<td>-2767(3)</td>
<td>46.5(14)</td>
</tr>
<tr>
<td>C29B</td>
<td>-3456(9)</td>
<td>-11422(4)</td>
<td>-2168(4)</td>
<td>49.2(14)</td>
</tr>
<tr>
<td>C30B</td>
<td>-3411(7)</td>
<td>-10662(5)</td>
<td>-2125(3)</td>
<td>50.2(13)</td>
</tr>
<tr>
<td>C31B</td>
<td>-3185(13)</td>
<td>-10261(4)</td>
<td>-2715(3)</td>
<td>41.2(13)</td>
</tr>
<tr>
<td>N3A</td>
<td>-4580(20)</td>
<td>-8805(8)</td>
<td>-4729(14)</td>
<td>31(2)</td>
</tr>
<tr>
<td>C24A</td>
<td>-3610(20)</td>
<td>-9300(15)</td>
<td>-4522(17)</td>
<td>26.8(10)</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>O6A</td>
<td>-2406(14)</td>
<td>-9268(10)</td>
<td>-4728(7)</td>
<td>27.6(9)</td>
</tr>
<tr>
<td>O7A</td>
<td>-4114(13)</td>
<td>-9848(7)</td>
<td>-4142(9)</td>
<td>35.7(14)</td>
</tr>
<tr>
<td>C25A</td>
<td>-3127(14)</td>
<td>-10437(7)</td>
<td>-3971(6)</td>
<td>39.4(14)</td>
</tr>
<tr>
<td>C26A</td>
<td>-3280(30)</td>
<td>-10624(6)</td>
<td>-3242(6)</td>
<td>28.2(15)</td>
</tr>
<tr>
<td>C27A</td>
<td>-3299(14)</td>
<td>-11352(6)</td>
<td>-3026(6)</td>
<td>36.4(14)</td>
</tr>
<tr>
<td>C28A</td>
<td>-3310(20)</td>
<td>-11544(7)</td>
<td>-2355(6)</td>
<td>46.5(14)</td>
</tr>
<tr>
<td>C29A</td>
<td>-3306(14)</td>
<td>-10964(6)</td>
<td>-1903(6)</td>
<td>49.2(14)</td>
</tr>
<tr>
<td>C30A</td>
<td>-3257(15)</td>
<td>-10230(7)</td>
<td>-2098(6)</td>
<td>50.2(13)</td>
</tr>
<tr>
<td>C31A</td>
<td>-3230(30)</td>
<td>-10060(7)</td>
<td>-2774(6)</td>
<td>41.2(13)</td>
</tr>
<tr>
<td>S1</td>
<td>-2949.4(8)</td>
<td>-6225.1(4)</td>
<td>-7293.1(4)</td>
<td>24.94(16)</td>
</tr>
<tr>
<td>Cl1</td>
<td>-3177.4(12)</td>
<td>-5698.9(6)</td>
<td>-3673.0(4)</td>
<td>45.5(2)</td>
</tr>
<tr>
<td>Cl2</td>
<td>-4927.1(14)</td>
<td>-2953.5(6)</td>
<td>-4139.6(6)</td>
<td>55.3(3)</td>
</tr>
<tr>
<td>Cl3</td>
<td>-3677(2)</td>
<td>-11782.6(13)</td>
<td>-5566.1(7)</td>
<td>99.3(7)</td>
</tr>
<tr>
<td>Cl4</td>
<td>-5967.1(16)</td>
<td>-11143.8(11)</td>
<td>-4841.5(7)</td>
<td>85.2(5)</td>
</tr>
<tr>
<td>Cl5</td>
<td>-4615(3)</td>
<td>-10310.4(10)</td>
<td>-5859.4(8)</td>
<td>107.6(7)</td>
</tr>
<tr>
<td>O2</td>
<td>-4086(2)</td>
<td>-6043.8(11)</td>
<td>-5829.8(10)</td>
<td>23.2(4)</td>
</tr>
<tr>
<td>O4</td>
<td>-3285(3)</td>
<td>-6384.0(14)</td>
<td>-7979.1(12)</td>
<td>35.9(5)</td>
</tr>
<tr>
<td>N1</td>
<td>-4122(3)</td>
<td>-6671.1(14)</td>
<td>-6844.3(12)</td>
<td>20.8(5)</td>
</tr>
<tr>
<td>O3</td>
<td>-1628(2)</td>
<td>-6429.3(14)</td>
<td>-7021.8(14)</td>
<td>35.7(6)</td>
</tr>
<tr>
<td>O5</td>
<td>-5847(3)</td>
<td>-7425.0(15)</td>
<td>-4183.2(11)</td>
<td>33.3(5)</td>
</tr>
<tr>
<td>O1</td>
<td>-2767(2)</td>
<td>-6415.7(15)</td>
<td>-4962.9(12)</td>
<td>34.7(5)</td>
</tr>
<tr>
<td>N2</td>
<td>-5748(3)</td>
<td>-7039.0(15)</td>
<td>-5275.6(12)</td>
<td>22.4(5)</td>
</tr>
<tr>
<td>C7</td>
<td>-3912(3)</td>
<td>-6768.1(16)</td>
<td>-6130.7(13)</td>
<td>18.9(5)</td>
</tr>
<tr>
<td>C23</td>
<td>-5431(3)</td>
<td>-7480.3(18)</td>
<td>-4757.6(15)</td>
<td>25.2(6)</td>
</tr>
<tr>
<td>C13</td>
<td>-6178(3)</td>
<td>-7158.9(16)</td>
<td>-6486.8(14)</td>
<td>20.9(5)</td>
</tr>
<tr>
<td>C20</td>
<td>-5172(3)</td>
<td>-7265.7(15)</td>
<td>-5914.1(13)</td>
<td>19.0(5)</td>
</tr>
<tr>
<td>C14</td>
<td>-3169(3)</td>
<td>-5265.3(17)</td>
<td>-7161.0(15)</td>
<td>24.6(6)</td>
</tr>
<tr>
<td>C6</td>
<td>-3484(3)</td>
<td>-5952.8(18)</td>
<td>-5219.7(15)</td>
<td>24.5(6)</td>
</tr>
<tr>
<td>C12</td>
<td>-7569(3)</td>
<td>-7353.9(18)</td>
<td>-6518.9(16)</td>
<td>26.0(6)</td>
</tr>
<tr>
<td>C8</td>
<td>-5534(3)</td>
<td>-6805.8(15)</td>
<td>-7018.3(14)</td>
<td>20.4(5)</td>
</tr>
<tr>
<td>C21</td>
<td>-4757(3)</td>
<td>-8081.2(16)</td>
<td>-5772.9(15)</td>
<td>23.6(6)</td>
</tr>
<tr>
<td>C22</td>
<td>-4445(3)</td>
<td>-8068.1(18)</td>
<td>-5020.2(16)</td>
<td>27.0(6)</td>
</tr>
<tr>
<td>C10</td>
<td>-7662(4)</td>
<td>-6833.0(19)</td>
<td>-7626.2(17)</td>
<td>31.1(7)</td>
</tr>
<tr>
<td>C3</td>
<td>-3850(3)</td>
<td>-5214.5(18)</td>
<td>-4940.9(16)</td>
<td>26.7(6)</td>
</tr>
<tr>
<td>C11</td>
<td>-8317(3)</td>
<td>-7179.7(19)</td>
<td>-7095.1(17)</td>
<td>31.2(7)</td>
</tr>
<tr>
<td>C9</td>
<td>-6258(4)</td>
<td>-6641.9(17)</td>
<td>-7602.4(15)</td>
<td>27.4(6)</td>
</tr>
<tr>
<td>C1</td>
<td>-4669(4)</td>
<td>-3963(2)</td>
<td>-5130(2)</td>
<td>38.1(8)</td>
</tr>
</tbody>
</table>
Table 10. Anisotropic Displacement Parameters (Å²×10³) for trypt. The Anisotropic displacement factor exponent takes the form: -2\pi²[h^2a^2U_{11}+...+2hka×b×U_{12}]

<table>
<thead>
<tr>
<th>Atom</th>
<th>U_{11}</th>
<th>U_{22}</th>
<th>U_{33}</th>
<th>U_{23}</th>
<th>U_{13}</th>
<th>U_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>N3B</td>
<td>21.3(16)</td>
<td>41(2)</td>
<td>29(5)</td>
<td>20(3)</td>
<td>4.8(17)</td>
<td>2.8(14)</td>
</tr>
<tr>
<td>C24B</td>
<td>27.8(14)</td>
<td>26(4)</td>
<td>26(2)</td>
<td>8(2)</td>
<td>-3.7(11)</td>
<td>-0.9(18)</td>
</tr>
<tr>
<td>O6B</td>
<td>29.0(14)</td>
<td>24(2)</td>
<td>30(3)</td>
<td>11.3(18)</td>
<td>-1.8(18)</td>
<td>2.8(13)</td>
</tr>
<tr>
<td>O7B</td>
<td>22(2)</td>
<td>37(3)</td>
<td>49(2)</td>
<td>24(2)</td>
<td>1.3(18)</td>
<td>3.3(17)</td>
</tr>
<tr>
<td>C25B</td>
<td>28(3)</td>
<td>41(3)</td>
<td>49(2)</td>
<td>24(2)</td>
<td>6(2)</td>
<td>10(2)</td>
</tr>
<tr>
<td>C26B</td>
<td>16(4)</td>
<td>24.6(14)</td>
<td>43.8(19)</td>
<td>14.4(13)</td>
<td>0.3(18)</td>
<td>-1.7(14)</td>
</tr>
<tr>
<td>C27B</td>
<td>34(2)</td>
<td>27.6(17)</td>
<td>48(3)</td>
<td>15(2)</td>
<td>-7(2)</td>
<td>-2.6(16)</td>
</tr>
<tr>
<td>C28B</td>
<td>42(3)</td>
<td>40(3)</td>
<td>58(3)</td>
<td>26(2)</td>
<td>-6(2)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>C29B</td>
<td>37(3)</td>
<td>59(3)</td>
<td>52(3)</td>
<td>21(2)</td>
<td>-5(2)</td>
<td>0(2)</td>
</tr>
<tr>
<td>C30B</td>
<td>39(3)</td>
<td>61(3)</td>
<td>50(2)</td>
<td>10(2)</td>
<td>-1(2)</td>
<td>-3(3)</td>
</tr>
<tr>
<td>C31B</td>
<td>32(2)</td>
<td>39(3)</td>
<td>53(2)</td>
<td>4(2)</td>
<td>-1.2(19)</td>
<td>-1(3)</td>
</tr>
<tr>
<td>N3A</td>
<td>21.3(16)</td>
<td>41(2)</td>
<td>29(5)</td>
<td>20(3)</td>
<td>4.8(17)</td>
<td>2.8(14)</td>
</tr>
<tr>
<td>C24A</td>
<td>27.8(14)</td>
<td>26(4)</td>
<td>26(2)</td>
<td>8(2)</td>
<td>-3.7(11)</td>
<td>-0.9(18)</td>
</tr>
<tr>
<td>O6A</td>
<td>29.0(14)</td>
<td>24(2)</td>
<td>30(3)</td>
<td>11.3(18)</td>
<td>-1.8(18)</td>
<td>2.8(13)</td>
</tr>
<tr>
<td>O7A</td>
<td>22(2)</td>
<td>37(3)</td>
<td>49(2)</td>
<td>24(2)</td>
<td>1.3(18)</td>
<td>3.3(17)</td>
</tr>
<tr>
<td>C25A</td>
<td>28(3)</td>
<td>41(3)</td>
<td>49(2)</td>
<td>24(2)</td>
<td>6(2)</td>
<td>10(2)</td>
</tr>
<tr>
<td>C26A</td>
<td>16(4)</td>
<td>24.6(14)</td>
<td>43.8(19)</td>
<td>14.4(13)</td>
<td>0.3(18)</td>
<td>-1.7(14)</td>
</tr>
<tr>
<td>C27A</td>
<td>34(2)</td>
<td>27.6(17)</td>
<td>48(3)</td>
<td>15(2)</td>
<td>-7(2)</td>
<td>-2.6(16)</td>
</tr>
<tr>
<td>C28A</td>
<td>42(3)</td>
<td>40(3)</td>
<td>58(3)</td>
<td>26(2)</td>
<td>-6(2)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>C29A</td>
<td>37(3)</td>
<td>59(3)</td>
<td>52(3)</td>
<td>21(2)</td>
<td>-5(2)</td>
<td>0(2)</td>
</tr>
<tr>
<td>C30A</td>
<td>39(3)</td>
<td>61(3)</td>
<td>50(2)</td>
<td>10(2)</td>
<td>-1(2)</td>
<td>-3(3)</td>
</tr>
<tr>
<td>C31A</td>
<td>32(2)</td>
<td>39(3)</td>
<td>53(2)</td>
<td>4(2)</td>
<td>-1.2(19)</td>
<td>-1(3)</td>
</tr>
<tr>
<td>S1</td>
<td>24.0(3)</td>
<td>27.0(3)</td>
<td>23.8(3)</td>
<td>3.3(3)</td>
<td>7.1(3)</td>
<td>-1.0(3)</td>
</tr>
</tbody>
</table>
| Cl1 | 60.3(6) | 53.2(6) | 23.1(3) | -3.0(4) | -5.4(4) | 2.9(5)
| Cl2 | 72.3(7) | 34.0(5) | 59.7(6) | -19.4(4) | 18.1(6) | -8.8(5)
| Cl3 | 93.4(11) | 155.1(17) | 49.4(7) | 17.6(9) | 23.7(7) | 66.0(12)
| Cl4 | 71.4(9) | 127.9(14) | 56.4(7) | 8.2(8) | 12.6(7) | 50.4(10)
| Cl5 | 188(2) | 82.3(11) | 52.8(8) | -10.8(7) | -8.5(11) | -30.9(13)
| O2 | 25.6(10) | 21.9(10) | 22.0(9) | -1.4(8) | -3.6(8) | -2.2(8)
| O4 | 45.5(14) | 37.9(13) | 24.3(11) | 0.3(9) | 11.5(10) | -2.9(11)
| N1 | 20.9(11) | 23.9(12) | 17.7(10) | 3.6(9) | 1.2(8) | -4.8(9)
| O3 | 23.9(11) | 37.1(13) | 46.1(14) | 7.3(11) | 8.8(10) | 2.9(9)
| O5 | 32.2(12) | 50.0(15) | 17.7(9) | 1.7(9) | 1.5(9) | -9.2(11)
| O1 | 29.7(12) | 44.9(14) | 29.5(11) | -6.3(10) | -7.3(10) | 8.6(10)
| N2 | 19.6(11) | 29.5(13) | 18(1) | 0.6(9) | 2.4(8) | 2.4(9)
| C7 | 19.7(12) | 21.5(13) | 15.6(11) | 0.8(9) | -0.5(9) | 0.5(10)
| C23 | 17.7(12) | 34.6(16) | 23.3(13) | 2.0(11) | -0.2(10) | -7.2(11)
| C13 | 23.3(13) | 20.2(13) | 19.1(12) | -1.1(10) | -2.7(10) | 2(1)
| C20 | 18.2(12) | 21.9(12) | 16.8(11) | 0.7(9) | 2.3(9) | -1(1)
| C14 | 25.6(14) | 24.4(14) | 23.7(13) | 4.5(10) | 4.2(11) | -4.4(11)
| C6 | 19.1(12) | 32.3(15) | 21.9(13) | -3.5(11) | 1.1(10) | -6.0(11)
| C12 | 22.8(13) | 29.8(15) | 25.6(13) | -1.6(11) | 0.6(11) | -0.2(11)
| C8 | 22.3(13) | 18.9(12) | 20.1(12) | -0.7(10) | -2(1) | -0.8(10)
| C21 | 24.6(13) | 22.1(13) | 24.1(13) | 4.3(10) | 0.3(11) | 1.7(11)
| C22 | 22.2(13) | 33.3(16) | 25.6(14) | 10.6(12) | -1.8(11) | -2.1(12)
| C10 | 35.2(17) | 29.2(15) | 29.1(15) | -1.8(12) | -13.8(13) | 0.5(13)
| C3 | 24.8(14) | 30.4(16) | 24.7(13) | -5.7(11) | 1.5(11) | -8.1(12)
| C11 | 24.1(15) | 31.4(16) | 38.1(17) | -4.2(13) | -7.3(13) | -1.4(12)
| C9 | 37.2(16) | 22.9(14) | 22.1(13) | 1.5(11) | -5.7(12) | -1.9(12)
| C1 | 40.5(19) | 33.7(18) | 40.2(19) | -5.6(14) | 3.8(15) | -4.8(15)
| C4 | 31.8(16) | 37.8(18) | 24.9(14) | -4.6(13) | -0.5(12) | -7.5(14)
| C2 | 33.9(17) | 30.8(16) | 26.9(15) | -3.2(12) | -0.1(12) | -6.5(13)
| C19 | 29.3(15) | 34.3(17) | 32.1(15) | 4.2(13) | -1.2(13) | -8.0(13)
| C15 | 31.1(15) | 27.9(15) | 35.8(16) | 1.6(13) | -1.1(13) | -1.9(12)
| C1D | 40.3(18) | 32.2(17) | 41.4(19) | -14.0(15) | 9.4(15) | -10.6(15)
| C16 | 39.7(19) | 30.1(17) | 48(2) | 7.7(15) | 6.6(16) | 3.0(14)
| C5 | 38.4(18) | 42.0(19) | 29.6(16) | -12.4(14) | 4.1(14) | -9.8(15)
| C17 | 57(2) | 23.3(16) | 48(2) | 3.6(15) | 11.7(18) | -8.3(16)
| C18 | 49(2) | 38(2) | 37.3(18) | -1.4(14) | 1.6(17) | -19.8(17)
| C1L | 63(3) | 74(3) | 33.5(19) | 0(2) | -10.2(19) | 15(3)

Table 11. Bond Lengths for trypt.

<table>
<thead>
<tr>
<th>Atom</th>
<th>Atom</th>
<th>Length/Å</th>
<th>Atom</th>
<th>Atom</th>
<th>Length/Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>N3B</td>
<td>C24B</td>
<td>1.338(8)</td>
<td>O2</td>
<td>C7</td>
<td>1.451(3)</td>
</tr>
<tr>
<td>N3B</td>
<td>C22</td>
<td>1.459(4)</td>
<td>O2</td>
<td>C6</td>
<td>1.359(4)</td>
</tr>
<tr>
<td>C24B</td>
<td>O6B</td>
<td>1.221(8)</td>
<td>N1</td>
<td>C7</td>
<td>1.450(3)</td>
</tr>
<tr>
<td>C24B</td>
<td>O7B</td>
<td>1.352(8)</td>
<td>N1</td>
<td>C8</td>
<td>1.424(4)</td>
</tr>
<tr>
<td>O7B</td>
<td>C25B</td>
<td>1.447(7)</td>
<td>O5</td>
<td>C23</td>
<td>1.219(4)</td>
</tr>
<tr>
<td>C25B</td>
<td>C26B</td>
<td>1.515(7)</td>
<td>O1</td>
<td>C6</td>
<td>1.200(4)</td>
</tr>
<tr>
<td>C26B</td>
<td>C27B</td>
<td>1.393(7)</td>
<td>N2</td>
<td>C23</td>
<td>1.342(4)</td>
</tr>
<tr>
<td>C26B</td>
<td>C31B</td>
<td>1.367(8)</td>
<td>N2</td>
<td>C20</td>
<td>1.450(4)</td>
</tr>
<tr>
<td>C27B</td>
<td>C28B</td>
<td>1.390(8)</td>
<td>C7</td>
<td>C20</td>
<td>1.570(4)</td>
</tr>
<tr>
<td>C28B</td>
<td>C29B</td>
<td>1.372(10)</td>
<td>C23</td>
<td>C22</td>
<td>1.518(5)</td>
</tr>
<tr>
<td>C29B</td>
<td>C30B</td>
<td>1.376(11)</td>
<td>C13</td>
<td>C20</td>
<td>1.511(4)</td>
</tr>
<tr>
<td>C30B</td>
<td>C31B</td>
<td>1.400(9)</td>
<td>C13</td>
<td>C12</td>
<td>1.386(4)</td>
</tr>
<tr>
<td>N3A</td>
<td>C24A</td>
<td>1.357(15)</td>
<td>C13</td>
<td>C8</td>
<td>1.385(4)</td>
</tr>
<tr>
<td>N3A</td>
<td>C22</td>
<td>1.460(5)</td>
<td>C20</td>
<td>C21</td>
<td>1.553(4)</td>
</tr>
<tr>
<td>C24A</td>
<td>O7A</td>
<td>1.338(14)</td>
<td>C14</td>
<td>C15</td>
<td>1.385(5)</td>
</tr>
<tr>
<td>O7A</td>
<td>C25A</td>
<td>1.466(13)</td>
<td>C6</td>
<td>C3</td>
<td>1.489(5)</td>
</tr>
<tr>
<td>C25A</td>
<td>C26A</td>
<td>1.503(13)</td>
<td>C12</td>
<td>C11</td>
<td>1.394(4)</td>
</tr>
<tr>
<td>C26A</td>
<td>C27A</td>
<td>1.386(6)</td>
<td>C8</td>
<td>C9</td>
<td>1.390(4)</td>
</tr>
<tr>
<td>C26A</td>
<td>C31A</td>
<td>1.385(6)</td>
<td>C21</td>
<td>C22</td>
<td>1.533(4)</td>
</tr>
<tr>
<td>C27A</td>
<td>C28A</td>
<td>1.385(6)</td>
<td>C10</td>
<td>C11</td>
<td>1.384(5)</td>
</tr>
<tr>
<td>C28A</td>
<td>C29A</td>
<td>1.385(6)</td>
<td>C10</td>
<td>C9</td>
<td>1.396(5)</td>
</tr>
<tr>
<td>C29A</td>
<td>C30A</td>
<td>1.383(6)</td>
<td>C3</td>
<td>C4</td>
<td>1.400(4)</td>
</tr>
<tr>
<td>C30A</td>
<td>C31A</td>
<td>1.385(6)</td>
<td>C3</td>
<td>C2</td>
<td>1.397(5)</td>
</tr>
<tr>
<td>S1</td>
<td>O4</td>
<td>1.437(3)</td>
<td>C1</td>
<td>C2</td>
<td>1.380(5)</td>
</tr>
<tr>
<td>S1</td>
<td>N1</td>
<td>1.651(2)</td>
<td>C1</td>
<td>C1D</td>
<td>1.394(5)</td>
</tr>
<tr>
<td>S1</td>
<td>O3</td>
<td>1.430(3)</td>
<td>C4</td>
<td>C5</td>
<td>1.385(5)</td>
</tr>
<tr>
<td>S1</td>
<td>C14</td>
<td>1.768(3)</td>
<td>C19</td>
<td>C18</td>
<td>1.386(5)</td>
</tr>
<tr>
<td>Cl1</td>
<td>C4</td>
<td>1.732(4)</td>
<td>C15</td>
<td>C16</td>
<td>1.394(5)</td>
</tr>
<tr>
<td>Cl2</td>
<td>C1D</td>
<td>1.738(4)</td>
<td>C1D</td>
<td>C5</td>
<td>1.368(6)</td>
</tr>
<tr>
<td>Cl3</td>
<td>C1L</td>
<td>1.764(5)</td>
<td>C16</td>
<td>C17</td>
<td>1.386(6)</td>
</tr>
<tr>
<td>Cl4</td>
<td>C1L</td>
<td>1.754(5)</td>
<td>C17</td>
<td>C18</td>
<td>1.377(6)</td>
</tr>
<tr>
<td>Cl5</td>
<td>C1L</td>
<td>1.720(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 12. Bond Angles for trypt.

<table>
<thead>
<tr>
<th>Atom</th>
<th>Atom</th>
<th>Atom</th>
<th>Angle/°</th>
<th>Atom</th>
<th>Atom</th>
<th>Atom</th>
<th>Angle/°</th>
</tr>
</thead>
<tbody>
<tr>
<td>C24B</td>
<td>N3B</td>
<td>C22</td>
<td>115.5(5)</td>
<td>C8</td>
<td>C13</td>
<td>C12</td>
<td>120.9(3)</td>
</tr>
<tr>
<td>N3B</td>
<td>C24B</td>
<td>O7B</td>
<td>109.1(7)</td>
<td>N2</td>
<td>C20</td>
<td>C7</td>
<td>112.1(2)</td>
</tr>
<tr>
<td>O6B</td>
<td>C24B</td>
<td>N3B</td>
<td>127.1(6)</td>
<td>N2</td>
<td>C20</td>
<td>C13</td>
<td>112.6(2)</td>
</tr>
<tr>
<td>O6B</td>
<td>C24B</td>
<td>O7B</td>
<td>123.8(6)</td>
<td>N2</td>
<td>C20</td>
<td>C21</td>
<td>102.0(2)</td>
</tr>
<tr>
<td>C24B</td>
<td>O7B</td>
<td>C25B</td>
<td>113.7(5)</td>
<td>C13</td>
<td>C20</td>
<td>C7</td>
<td>102.3(2)</td>
</tr>
<tr>
<td>O7B</td>
<td>C25B</td>
<td>C26B</td>
<td>107.7(5)</td>
<td>C13</td>
<td>C20</td>
<td>C21</td>
<td>115.1(2)</td>
</tr>
<tr>
<td>C27B</td>
<td>C26B</td>
<td>C25B</td>
<td>118.3(6)</td>
<td>C21</td>
<td>C20</td>
<td>C7</td>
<td>113.3(2)</td>
</tr>
<tr>
<td>C31B</td>
<td>C26B</td>
<td>C27B</td>
<td>119.7(6)</td>
<td>C15</td>
<td>C14</td>
<td>S1</td>
<td>118.8(3)</td>
</tr>
<tr>
<td>C31B</td>
<td>C26B</td>
<td>C27B</td>
<td>119.7(6)</td>
<td>C15</td>
<td>C14</td>
<td>S1</td>
<td>119.5(2)</td>
</tr>
<tr>
<td>C28B</td>
<td>C27B</td>
<td>C26B</td>
<td>119.7(6)</td>
<td>C15</td>
<td>C14</td>
<td>C19</td>
<td>121.5(3)</td>
</tr>
<tr>
<td>C29B</td>
<td>C28B</td>
<td>C27B</td>
<td>119.5(6)</td>
<td>O2</td>
<td>C6</td>
<td>C3</td>
<td>110.1(3)</td>
</tr>
<tr>
<td>C28B</td>
<td>C29B</td>
<td>C30B</td>
<td>121.9(7)</td>
<td>O1</td>
<td>C6</td>
<td>O2</td>
<td>122.9(3)</td>
</tr>
<tr>
<td>C29B</td>
<td>C30B</td>
<td>C31B</td>
<td>118.0(7)</td>
<td>O1</td>
<td>C6</td>
<td>C3</td>
<td>127.0(3)</td>
</tr>
<tr>
<td>C26B</td>
<td>C31B</td>
<td>C30B</td>
<td>121.2(6)</td>
<td>C13</td>
<td>C12</td>
<td>C11</td>
<td>118.7(3)</td>
</tr>
<tr>
<td>C24A</td>
<td>N3A</td>
<td>C22</td>
<td>131.4(15)</td>
<td>C13</td>
<td>C8</td>
<td>N1</td>
<td>108.6(2)</td>
</tr>
<tr>
<td>O6A</td>
<td>C24A</td>
<td>N3A</td>
<td>120.9(13)</td>
<td>C13</td>
<td>C8</td>
<td>C9</td>
<td>121.2(3)</td>
</tr>
<tr>
<td>O6A</td>
<td>C24A</td>
<td>O7A</td>
<td>124.3(13)</td>
<td>C9</td>
<td>C8</td>
<td>N1</td>
<td>130.3(3)</td>
</tr>
<tr>
<td>O7A</td>
<td>C24A</td>
<td>N3A</td>
<td>114.4(13)</td>
<td>C22</td>
<td>C21</td>
<td>C20</td>
<td>102.3(2)</td>
</tr>
<tr>
<td>C24A</td>
<td>O7A</td>
<td>C25A</td>
<td>115.9(11)</td>
<td>N3B</td>
<td>C22</td>
<td>C23</td>
<td>106.2(4)</td>
</tr>
<tr>
<td>O7A</td>
<td>C25A</td>
<td>C26A</td>
<td>109.0(12)</td>
<td>N3B</td>
<td>C22</td>
<td>C21</td>
<td>120.9(6)</td>
</tr>
<tr>
<td>C27A</td>
<td>C26A</td>
<td>C25A</td>
<td>120.2(10)</td>
<td>N3A</td>
<td>C22</td>
<td>C23</td>
<td>116.4(8)</td>
</tr>
<tr>
<td>C31A</td>
<td>C26A</td>
<td>C25A</td>
<td>119.0(9)</td>
<td>N3A</td>
<td>C22</td>
<td>C21</td>
<td>111.1(13)</td>
</tr>
<tr>
<td>C31A</td>
<td>C26A</td>
<td>C27A</td>
<td>119.4(10)</td>
<td>C23</td>
<td>C22</td>
<td>C21</td>
<td>103.1(2)</td>
</tr>
<tr>
<td>C28A</td>
<td>C27A</td>
<td>C26A</td>
<td>122.7(10)</td>
<td>C11</td>
<td>C10</td>
<td>C9</td>
<td>121.8(3)</td>
</tr>
<tr>
<td>C29A</td>
<td>C28A</td>
<td>C27A</td>
<td>116.2(11)</td>
<td>C4</td>
<td>C3</td>
<td>C6</td>
<td>122.0(3)</td>
</tr>
<tr>
<td>C30A</td>
<td>C29A</td>
<td>C28A</td>
<td>122.9(11)</td>
<td>C2</td>
<td>C3</td>
<td>C6</td>
<td>119.8(3)</td>
</tr>
<tr>
<td>C29A</td>
<td>C30A</td>
<td>C31A</td>
<td>119.3(11)</td>
<td>C2</td>
<td>C3</td>
<td>C4</td>
<td>118.2(3)</td>
</tr>
<tr>
<td>C30A</td>
<td>C31A</td>
<td>C26A</td>
<td>119.6(10)</td>
<td>C10</td>
<td>C11</td>
<td>C12</td>
<td>120.0(3)</td>
</tr>
<tr>
<td>O4</td>
<td>S1</td>
<td>N1</td>
<td>105.48(14)</td>
<td>C8</td>
<td>C9</td>
<td>C10</td>
<td>117.4(3)</td>
</tr>
<tr>
<td>O4</td>
<td>S1</td>
<td>C14</td>
<td>108.17(15)</td>
<td>C2</td>
<td>C1</td>
<td>C1D</td>
<td>118.1(4)</td>
</tr>
<tr>
<td>N1</td>
<td>S1</td>
<td>C14</td>
<td>108.46(13)</td>
<td>C3</td>
<td>C4</td>
<td>C1I</td>
<td>123.0(3)</td>
</tr>
<tr>
<td>O3</td>
<td>S1</td>
<td>O4</td>
<td>120.61(16)</td>
<td>C5</td>
<td>C4</td>
<td>C1I</td>
<td>116.5(3)</td>
</tr>
<tr>
<td>O3</td>
<td>S1</td>
<td>N1</td>
<td>105.98(14)</td>
<td>C5</td>
<td>C4</td>
<td>C3</td>
<td>120.5(3)</td>
</tr>
<tr>
<td>O3</td>
<td>S1</td>
<td>C14</td>
<td>107.64(16)</td>
<td>C1</td>
<td>C2</td>
<td>C3</td>
<td>121.8(3)</td>
</tr>
<tr>
<td>C6</td>
<td>O2</td>
<td>C7</td>
<td>115.6(2)</td>
<td>C18</td>
<td>C19</td>
<td>C14</td>
<td>118.7(3)</td>
</tr>
<tr>
<td>C7</td>
<td>N1</td>
<td>S1</td>
<td>119.87(19)</td>
<td>C14</td>
<td>C15</td>
<td>C16</td>
<td>118.9(3)</td>
</tr>
</tbody>
</table>
Table 13. Hydrogen Atom Coordinates (Å×10^4) and Isotropic Displacement Parameters (Å^2×10^3) for trypt.

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H3B</td>
<td>-5464</td>
<td>-8807</td>
<td>-4402</td>
<td>37</td>
</tr>
<tr>
<td>H25A</td>
<td>-1814</td>
<td>-9918</td>
<td>-3911</td>
<td>47</td>
</tr>
<tr>
<td>H25B</td>
<td>-2626</td>
<td>-10536</td>
<td>-4336</td>
<td>47</td>
</tr>
<tr>
<td>H27B</td>
<td>-3020</td>
<td>-11625</td>
<td>-3768</td>
<td>44</td>
</tr>
<tr>
<td>H28B</td>
<td>-3370</td>
<td>-12309</td>
<td>-2784</td>
<td>56</td>
</tr>
<tr>
<td>H29B</td>
<td>-3586</td>
<td>-11702</td>
<td>-1771</td>
<td>59</td>
</tr>
<tr>
<td>H30B</td>
<td>-3530</td>
<td>-10418</td>
<td>-1708</td>
<td>60</td>
</tr>
<tr>
<td>H31B</td>
<td>-3153</td>
<td>-9737</td>
<td>-2697</td>
<td>49</td>
</tr>
<tr>
<td>H3A</td>
<td>-5446</td>
<td>-8954</td>
<td>-4678</td>
<td>37</td>
</tr>
<tr>
<td>H25C</td>
<td>-2166</td>
<td>-10269</td>
<td>-4063</td>
<td>47</td>
</tr>
<tr>
<td>H25D</td>
<td>-3315</td>
<td>-10880</td>
<td>-4248</td>
<td>47</td>
</tr>
<tr>
<td>H27A</td>
<td>-3301</td>
<td>-11735</td>
<td>-3352</td>
<td>44</td>
</tr>
<tr>
<td>H28A</td>
<td>-3331</td>
<td>-12046</td>
<td>-2213</td>
<td>56</td>
</tr>
<tr>
<td>H29A</td>
<td>-3335</td>
<td>-11074</td>
<td>-1438</td>
<td>59</td>
</tr>
<tr>
<td>H30A</td>
<td>-3244</td>
<td>-9848</td>
<td>-1772</td>
<td>60</td>
</tr>
<tr>
<td>H31A</td>
<td>-3173</td>
<td>-9559</td>
<td>-2915</td>
<td>49</td>
</tr>
<tr>
<td>H2</td>
<td>-6268</td>
<td>-6641</td>
<td>-5231</td>
<td>27</td>
</tr>
<tr>
<td>H7</td>
<td>-2993</td>
<td>-6997</td>
<td>-6022</td>
<td>23</td>
</tr>
<tr>
<td>H12</td>
<td>-8004</td>
<td>-7601</td>
<td>-6155</td>
<td>31</td>
</tr>
<tr>
<td>H21A</td>
<td>-5529</td>
<td>-8424</td>
<td>-5877</td>
<td>28</td>
</tr>
<tr>
<td>H21B</td>
<td>-3926</td>
<td>-8226</td>
<td>-6034</td>
<td>28</td>
</tr>
<tr>
<td>H22A</td>
<td>-3468</td>
<td>-7894</td>
<td>-4953</td>
<td>32</td>
</tr>
<tr>
<td>H22</td>
<td>-3468</td>
<td>-7894</td>
<td>-4953</td>
<td>32</td>
</tr>
</tbody>
</table>
Experimental

Single crystals of C$_{33}$H$_{26}$Cl$_5$N$_3$O$_7$S [trypt] were []. A suitable crystal was selected and [] on a apex2_Mo diffractometer. The crystal was kept at 172.3 K during data collection. Using Olex2 [1], the structure was solved with the Superflip [2] structure solution program using Charge Flipping and refined with the ShelXL [3] refinement package using Least Squares minimisation.

2. SHELXS-97 (Sheldrick, 2008)
3. SHELXL-97 (Sheldrick, 2008)

Crystal structure determination of [trypt]

Crystal Data for C$_{33}$H$_{26}$Cl$_5$N$_3$O$_7$S ($M =$785.88): orthorhombic, space group P2$_1$2$_1$2$_1$ (no. 19), a = 9.6220(13) Å, b = 18.082(2) Å, c = 19.975(3) Å, V = 3475.4(8) Å3, Z = 4, T = 172.3 K, μ(MoKα) = 0.530 mm$^{-1}$, Dcalc = 1.502 g/mm3, 30478 reflections measured (4.078 ≤ 2Θ ≤
63.784), 11170 unique ($R_{int} = 0.0350$) which were used in all calculations. The final R_1 was 0.0561 ($I > 2\sigma(I)$) and wR_2 was 0.1451 (all data).