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ABSTRACT 

Retinal pigment epithelium (RPE) is a principal site of pathogenesis in age-related macular de-

generation (AMD). AMD is a main source of vision loss even blindness in the elderly and there is no 

effective treatment right now. Our aim is to describe the relationship between the morphology of RPE 

cells and the age and genotype of the eyes. We use principal component analysis (PCA) or functional 

principal component method (FPCA), support vector machine (SVM), and random forest (RF) methods to 

analyze the morphological data of RPE cells in mouse eyes to classify their age and genotype.  Our 

analyses show that amongst all morphometric measures of RPE cells, cell shape measurements 

(eccentricity and solidity) are good for classification. But combination of cell shape and size (perimeter) 

provide best classification. 

 

 

INDEX WORDS: Principal component analysis, Functional principal component analysis, Support vector 
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1     INTRODUCTION  

Age-related macular de-generation (AMD) is the leading cause of severe irreversible central 

vision loss and legal blindness in individuals 65 years of age or older in the United States and other 

developed countries [1-3]. Since the number of elderly persons will double by 2020, AMD is expected to 

become a major public health problem.  Two forms of AMD are recognized [4, 5]. The non-neovascular 

form (also known as ‘‘dry’’ or ‘‘nonexudative’’) represents an early form of AMD usually associated with 

little visual acuity loss. It is characterized by atrophic abnormalities of the retinal pigment epithelium 

(RPE) and drusen, small lesions at the level of the RPE that contain granular and vesicular lipid-rich 

material. Over time, however, this form of AMD often progresses to the neovascular (also known as 

‘‘wet’’ or ‘‘exudative’’) form of AMD that results in significant vision loss due to the appearance of 

choroidal neovascularization (CNV). Although the precise events that contribute to the development of 

AMD remain uncertain, recent studies have implicated various immunological and inflammatory 

mechanisms [6] and adhesion failure [7].  

RPE is a principal site of pathogenesis of AMD.  Situated just outside the neurosensory retina, 

firmly attached to the underlying choroid and overlying retinal visual cells, RPE not only shields the 

retina from excess light, but also nourishes retinal visual cells.  Aging and disease progression, including 

lipofuscin deposition, drusen formation, and inflammation, all pose many different stresses on the RPE. 

Our hypothesis is that different stresses cause different deformations on the RPE cells, such that the RPE 

morphology reflects the various underlying causes and thus is descriptive of AMD status and age.  To 

test this hypothesis, we will analyze the relationship between RPE cell morphology and the age and 

disease progression of the eye.  This thesis focuses on the classification analysis of age and genotype of 

the eye using RPE morphometric data in mouse eyes from different ages and two genotypes.  
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Available to us through collaboration with Emory Eye Center are a large data set of mouse RPE 

flatmount images and the morphometric measurements. The morphometric analysis for RPE has only 

very recently commenced [8]. Professor Xin Qi has performed classification of age and genotype of the 

mouse eyes using RPE  cells according to Genotype and age based on the parameters area (a measure of 

size) and aspect ratio (a measure of cell shape) [9].  We will extend this work to testing other cell 

morphometric parameters, including number of neighbors, eccentricity, solidity, and perimeter, to 

classify the genotype and age of the mouse eyes.  I will use principal component analysis, in junction 

with support vector machine, and random forest methods. 

Principal component analysis (PCA) is a mathematical procedure that uses an orthogonal trans-

formation to convert a set of observations of possibly correlated variables into a set of values of linearly 

uncorrelated variables called principal components [10]. The number of principal components is less 

than or equal to the number of original variables. This transformation is defined in such a way that the 

first principal component has the largest possible variance (that is, accounts for as much of the 

variability in the data as possible), and each succeeding component in turn has the highest variance 

possible under the constraint that it be orthogonal to (i.e., uncorrelated with) the preceding 

components. By using only the first two principal components, the dimensionality of the data is 

significantly reduced. For discrete variables, PCA is applied in order to reduce the dimensionality. For the 

RPE data set that we used, the original sample size is large. Because each variable is measured for all 

individual cells identified from the RPE, we have approximately 10000 data points for every variable for 

each of the 123 eyes. By applying PCA, the size of the data is reduced to 2 principal components for 

every variable for each of the 123 eyes. For continuous variables, functional principal component 

analysis (FPCA) is applied in order to reduce the dimensionality and keep its property of functional data. 

In FPCA, an eigenfunction is associated with each eigenvalue, rather than an eigenvector in PCA. These 

eigenfunctions describe major variational components. Applying a rotation to them often results in a 
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more interpretable picture of the dominant modes of variation in the functional data, without changing 

the total amount of variation [11]. Similar to principal component analysis, FPCA also reduces the data 

from around 10000 to 2 principal components for every variable for each of the 123 eyes.   

Supervised classification algorithms have been developed to classify data according to some 

given learning samples. Linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), 

support vector machine (SVM) and random forest (RF) are some of the representatives of supervised 

classification methods. LDA and QDA are parametric methods, while SVM is distribution-free, and RF is a 

voting method.  LDA is used in statistics, pattern recognition and machine learning to find a linear 

combination of features that characterizes or separates two or more classes. The resulting combination 

of features may be used as a linear classifier, or more commonly, for dimensionality reduction before 

further classification [12]. QDA is closely related to LDA, but with the assumption that the 

measurements from each class are normally distributed and no assumption that the covariance of each 

of the classes is identical [13]. SVM is a set of related supervised learning methods that analyze data and 

recognize patterns, used for classification and regression analysis [14]. RF is an ensemble classifier that 

consists of many decision trees and outputs the class that is the mode of the classes output by individual 

trees [15]. Different methods have their pros and cons. Mr Folarinde has recently performed a series of 

LDA and QDA analysis on the RPE data [16].  

1.1 Purpose of the Study  

The main purpose of the study is to classify the genotype and age of mouse eyes using RPE cell 

morphology data. In particular we will test cell size and shape measures, including number of neighbors, 

eccentricity, solidity and perimeter to identify which ones best classify the RPE cells according to 

Genotype and age. 
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1.2 Expected Results  

We expect that some of the morphometric measures for RPE cells will act as better classifiers 

than others; and that some combination of the morphometric measures will serve as much better 

classifiers for genotype and age of the eyes.  We expect the results will confirm the central hypothesis 

by demonstrating the connection between RPE morphology and age and AMD status of the eye. 
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2     METHODOLOGY AND RESULTS 

2.1 Data description 

The flatmount RPE images were obtained at John Nickerson’s Lab at the Emory Eye Center. The 

protocols for obtaining flatmount RPE images are briefly as follows. 

The mouse eye was fixed with formalin for 10 minutes. Then on a microscope slide, any extra 

scleral tissue from eye including optic nerve was cut away. From puncture 4 cuts were extended using 3 

mm scissors from cornea back towards optic nerve; each section was unfurled to reveal and remove the 

lens. 4.5 l of Zymed rabbit anti-ZO-1 antibody and 0.45 l of Oregon green conjugated anti-rabbit IgG 

(Invitrogen) was added to 450 l of antibody buffer. The images were taken using a Nikon C1 confocal 

microscopy with 3 optical sections 5 m apart as the Z-stacks; each image was 1024x1024 pixels in size.  

Confocal images were stitched together using Adobe Photoshop CS2. Cut-boxes of equal size 

(181 x 266 pixels, or 225 x 331 m) were cropped from the merged flatmount image from areas devoid 

of dissection artifacts.  As many cut-boxes as possible were taken from each image (45-60 cut-boxes per 

image). Figure 1 shows a typical merged flatmount image of a C57BL/6J eye.  Over all 123 eyes of three 

genotypes were collected. C57BL/6J is a wildtype,  RD10 and RPE65 are mutants with deletions in the 

RPE related genes.   

Twenty-one (21) morphometric measurements, including cell location, cell area, solidity, 

eccentricity, form factor, and number of neighbors were calculated using CellProfiler [17]. 
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Figure 1 Flatmount RPE image of the whole mouse eye, photomerged from individual high resolution 

microscopy images. Green represents the cell boundary while red represents the cell nucleus. 

Each eye contains 28 variables and approximately 8500 observations, each observation 

representing one cell in the eye. There are a total of 123 eyes belonging to three different genotypes 

and two age groups. We used genotype and one cutoff value of age for each genotype to classify the 

eyes into the following six groups. 400 days (post natal) was the best to differentiate for the genotype 

RPE65-/-. 70 days was the best cutoff value in age for c57BL/6J and rd10 [9]. We then segregated the 

data into two age groups: below the cutoff age (Young) and above the cutoff age (Old).   
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Table 1 Definition and sample size of the six groups. Sample size refers to number of eyes. 

Group Sample Size Genotype Age (days) 

1 16 RPE65-/- <400 

2 3 RPE65-/- >=400 

3 23 c57BL/6J <70 

4 20 c57BL/6J >=70 

5 27 rd10 <70 

6 34 rd10 >=70 

 

2.2      Cell number of neighbors alone is not a good classifier 

We first chose the number of neighbors as a potential good classifier for the eyes based on close 

observations of the RPE images (Figure 1).  We see that RPE cells in a C57BL/6J eye would have more 

homogeneous size and rather hexagonal packing, while RPE cells in an rd10 eye would have more varied 

sizes and distorted shapes, and the cell packing is far from hexagonal.   

For each eye, there are approximately 8500 cells, which mean that there are around 8500 

observations. Since the number of neighbors is a discrete variable, the range of the value for the 

number of neighbors is from 3 to 15. Each eye has one such frequency. As a result, there are a total of 

123 of such frequencies. 

The following three steps were followed to classify the six groups. 

(a) Frequencies were generated for the number of neighbors for each eye. 

(b) Principal component analysis (PCA) method was applied to the frequencies for all eyes to 

reduce the dimension. The first two principal components which have the largest variance were chosen. 

(c) Four classification methods were applied to the two components obtained from step (b): 

Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Support Vector Machine 
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(SVM) and Random Forest (RF).One observation is selected as the testing set and the rest of the 

observations are selected as the training set. This is iterated until all the observations have been 

selected as the testing set. 

The plot of the first and second principal component scores were shown below. 

 

Figure 2 Scatterplot of the 1st and 2nd PC scores of the number of neighbors for all six classes 

The scatterplot (figure 2) of the first and second PC scores shows that all the six groups are 

mixed together and cannot be distinguished cleanly. 
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The accuracies of classification using LDA, QDA, SVM and RF are listed in Table 2. Note that they 

are better than random guesses of 1/6, but even the highest prediction rate (83.2% by RF) is not very 

impressive. 

Table 2 Average prediction rate for six groups using number of neighbors 

Methods LDA QDA SVM RF 

Prediction Rate 58.5% 61.8% 62% 83.2% 

 

One of the problems that I noticed while classifying the six groups is that the two groups with 

genotype: RPE65-/- has limited numbers of observations, which makes them difficult to be distinguished 

from other groups. As a result, excluding these two groups from the classification might be the best way 

to improve the prediction rate. 

2.3 Cell perimeters alone is not a good classifier 

Cells of different genotypes and different ages have different sizes, so the perimeters are 

different. We test if perimeter could be a good classification parameter. The tools used to analyze the 

perimeter are a little different from the tools used to analyze the number of neighbors, because the 

number of neighbors is a discrete variable and perimeter is continuous. It is better to treat perimeter as 

functional data and use the density of perimeter. We use functional principal component analysis for 

perimeters. We follow the following four steps to classify the six groups. 

(a) Density functions of perimeters were generated for the perimeters for all cells in each eye. 

Density curves of perimeters were shown below. 
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Figure 3 Density Curves of Perimeters 

(b) Functional Principal component analysis (FPCA) method was applied to the density functions 

for all eyes to reduce the dimension. The first two principal components which have the largest variance 

were chosen. 

(c) SVM method was applied to the two components obtained from step (b).  

(d) One observation is selected as the testing set and the rest of the observations are selected as 

the training set. This is iterated until all the observations have been selected as the testing set. 
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From the scatter plot of the first and second principal component scores, we see that the six 

groups are without clear distinction between the groups. 

 

Figure 4 Scatterplot of 1st and 2nd PC scores of the perimeter for all six groups 

The prediction rate using the support vector machine method is 58%. This is similar to the num-

ber of neighbors. 

Again, in order to improve the prediction rate, only the last four groups were included. 

Steps (a) and (b) are the same as before. 

(c) LDA, QDA, SVM and RF methods were applied to the two components obtained from step (b) 
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The new classification results are listed in Table 3. We see similar accuracy in predicting these 

groups.  Based on these analyses, we suggest that perimeter is not a good variable for classifying 

genotype and age of the mouse eyes. 

Table 3 Prediction rate using Perimeter on four groups  

Group Method c57BL/6J& Age<70 c57BL/6J& Age>=70 rd10& Age<70 rd10& Age>=70 

Prediction Rate LDA 75% 66.7% 50% 89.1% 

QDA 64.3% 72.2% 45% 86.8% 

SVM 73.9% 77.7% 53.8% 86.5% 

RF 42.6% 23.8% 25.4% 70.6% 

 

2.4 Cell orientation alone is not a good classifier based on four groups 

              The orientation of an object is defined as the imaginary rotation that is needed to move the 

object from a reference placement to its current placement. It is a good description of how a cell is 

placed in space.  

In order to improve the prediction rate, only the last four groups were included. 

 We follow the four steps as in 2.3 to classify the four groups.  We see the scatter plot of the first 

two PC scores (Figure 4) the four groups are mixed together, making it impossible to distinguish the four 

groups.  
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Figure 5 Scatterplot of the 1st and 2nd PC scores of orientation for four groups 

 (c) LDA, QDA, SVM and RF methods were applied to the two components obtained from step 

(b) 

Results: 
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Table 4 Prediction rate using Orientation 

Group Method c57BL/6J& Age<70 c57BL/6J& Age>=70 rd10& Age<70 rd10& Age>=70 

Prediction Rate LDA 0% 28.6% 24.4% 48.9% 

QDA 0% 20% 27.3% 50% 

SVM 0% 25% 33% 44.9% 

RF 7.3% 16% 17.8% 50% 

 

From the table, we can see that the prediction rate is very low, confirms that orientation is not a 

good variable for prediction. 

2.5 Cell eccentricity is a good classifier based on four groups 

Then we tried with the variable eccentricity. Eccentricity is the amount by which its orbit 

deviates from a perfect circle. Eccentricity is a shape parameter with the potential to differentiate cells 

according to genotype and age. 

In order to improve the prediction rate, only the last four groups were included. 

We followed the four steps described in section 2.4 to classify the four steps. 

The plot of the first and second principal component scores were shown below. 

http://en.wikipedia.org/wiki/Circle
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Figure 6 Scatterplot of the 1st and 2nd PC scores of eccentricity for four groups 

It can be seen that the four groups can be easily classified according to this plot. This proved 

that eccentricity might be a good variable for classification.  

(c) LDA, QDA, SVM and RF methods were applied to the two components obtained from step (b) 

Results: 
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Table 5 Prediction rate using eccentricity 

Group Method c57BL/6J& Age<70 c57BL/6J& Age>=70 rd10& Age<70 rd10& Age>=70 

Prediction Rate LDA 74% 80% 89.3% 94.1% 

QDA 100% 100% 96.1% 94.4% 

SVM 73.3% 91.7% 96.2% 94.4% 

RF 95.45% 85.71% 95.83% 91.89% 

 

From the table, we can see that eccentricity is a good variable for prediction. 

2.6 Cell solidity is a good classifier based on four groups 

Solidity is a variable with similar characteristic of Eccentricity. Therefore, it has the potential to 

be a good classifier.  

In order to improve the prediction rate, only the last four groups were included. 

We followed the four steps described in section 2.4 to classify the four steps. 

The plot of the first and second principal component scores were shown below. 
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Figure 7 Scatterplot of the 1st and 2nd PC scores of solidity for four groups 

It can be seen that the four groups can be easily classified according to this plot. This proved 

that solidity might be a good variable for classification.  

(c) LDA, QDA, SVM and RF methods were applied to the two components obtained from step (b) 

Results: 
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Table 6 Prediction rate using Solidity 

Group Method c57BL/6J& Age<70 c57BL/6J& Age>=70 rd10& Age<70 rd10& Age>=70 

Prediction Rate LDA 76.7% 100% 85.7% 91.7% 

QDA 87.5% 100% 88% 91.7% 

SVM 76.7% 100% 94.4% 89.2% 

RF 87.5% 94.4% 86.3% 86.6% 

 

From the table, we can see that solidity is a good variable for prediction. 

2.7 Combination of cell solidity, cell eccentricity and cell perimeter provide to be the best classifier 

in our study 

              Combination of solidity, eccentricity and perimeter together might produce a better result since 

they contain more information than one variable or two variables. As can be seen from previous results, 

solidity and eccentricity have proven to be very good classifier alone. However, both of them are shape 

parameters while perimeter describes the cells in a different aspect. It might be better to include 

perimeter in the combination. 

The following three steps were followed to classify the four groups. 

(a) Density functions were generated for solidity, eccentricity and perimeter separately for all 

cells in each eye. 

(b) Functional Principal component analysis (FPCA) method was applied to the density functions 

of solidity, eccentricity and perimeter separately for all eyes to reduce the dimension. The first two 

principal components which have the largest variance were chosen for each variable. 

(c) LDA, QDA, SVM and RF methods were applied to the six components (6 by 123 matrix) 

obtained from step (b) 

Results: 
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Table 7 Prediction rate using Eccentricity, Solidity and Perimeter 

Group Method c57BL/6J& Age<70 c57BL/6J& Age>=70 rd10& Age<70 rd10& Age>=70 

Prediction Rate LDA 95.8% 100% 92.3% 94.1% 

QDA 100% 95% 85.7% 94.1% 

SVM 100% 100% 88.9% 91.9% 

RF 100 % 100% 100% 94.4% 

 

From the table, we can see that the combination of solidity, eccentricity and perimeter maximizes 

the predictive power.  
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3     CONCLUSIONS 

We used PCA and FPCA to reduce the dimension of the raw data. LDA, QDA, SVM and RF 

methods were then applied to classify the cells according to genotype and age. Eccentricity and solidity 

proved to be relatively good classifier. Numbers of neighbors, perimeter and orientation cannot classify 

the cells very accurately. This suggests that shape parameters might be good classifiers in our case. 

Parameters like number of neighbors or perimeter are not very good for classification. On the other 

hand, this also implies that cells of different genotype and different age different greatly in shape but 

are similar in terms of area. 

In terms of which method is the best for prediction, there is no clear winner in our cases. LDA, 

QDA, SVM, and RF methods showed similar prediction rates. In building predictive models, parameter is 

a more important factor than method. 

Combining more variables could improve the prediction rate since more information is 

incorporated. By combining eccentricity, solidity and perimeter, the prediction rate is almost 100% for 

three groups, indicating that there is little room for improvement. However, there is a trade-off of the 

accuracy and the computing time. When three variables are selected, the computing time would be at 

least tripled while the improvement in prediction rate is not significant. It all depends on the need. If 

accuracy is the most important factor in consideration, then perhaps more variables, not just three 

variables should be used. 
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APPENDIX  

R code: 

#Using Linear Discriminant Analysis and Quadratic Discriminant Analysis to classify cells based 

on Number of neighbors 

library(foreign)  

setwd("C:/Users/matyyx/Dropbox/Jie Yu/RPE/original") 

a<-list.files() 

length<-length(a) 

min=5; 

max=5; 

for (x in a) 

{u<-read.csv(x) 

if (min(u$Neighbors_NumberOfNeighbors_0)<min) 

{min=min(u$Neighbors_NumberOfNeighbors_0)} 

if (max(u$Neighbors_NumberOfNeighbors_0)>max) 

{max=max(u$Neighbors_NumberOfNeighbors_0)} 

} 

width<-max-min+2 

b<-matrix(1:length*width,length,width) 

i<-1 

for (x in a) 

{u<-read.csv(x) 

for (y in (min:max)) 

{b[i,y-min+1]<-sum(u$Neighbors_NumberOfNeighbors_0==y)} 
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b[i,width]<-1*sum(u$Genotype[1]=="RPE65-/-

")+2*sum(u$Genotype[1]=="c57BL/6J")+3*sum(u$Genotype[1]=="rd10") 

i<-i+1 

} 

library(MASS)  

pc.cov1<-prcomp(b[,-width]) 

pca.point.color = function(model.id) { 

        if (model.id == 1) { 

            return("black") 

        } else if (model.id == 2) { 

            return("red") 

        } else if (model.id == 3) { 

            return("blue") 

        }  

    } 

plot(pc.cov1$x[,1],pc.cov1$x[,2],col=sapply(b[,width], pca.point.color)) 

summary(pc.cov1) 

cov<-as.matrix(pc.cov1$rotation[,1:2]) 

score<-as.matrix(b[,-width])%*%cov 

predict<-as.matrix(b[,width]) 

lda1<-lda(score,predict,CV=TRUE) 

error1<-sum(lda1$class!=predict)/length(b[,width]) 

qda1<-qda(score,predict,CV=TRUE) 

error2<-sum(qda1$class!=predict)/length(b[,width]) 
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#Using support vector machine to classify cells based on Number of neighbors 

library(foreign)  

setwd("C:/Users/JIE YU/Dropbox/Jie Yu/RPE/original") 

a<-list.files() 

length<-length(a) 

 

 

min=6; 

max=6; 

for (x in a) 

{u<-read.csv(x) 

if (min(u$Neighbors_NumberOfNeighbors_0)<min) 

{min=min(u$Neighbors_NumberOfNeighbors_0)} 

if (max(u$Neighbors_NumberOfNeighbors_0)>max) 

{max=max(u$Neighbors_NumberOfNeighbors_0)} 

} 

 

max<-max-3 

width<-max-min+2 

b<-matrix(1:length*width,length,width) 

i<-1 
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for (x in a) 

{u<-read.csv(x) 

for (y in (min:max)) 

{b[i,y-min+1]<-

sum(u$Neighbors_NumberOfNeighbors_0==y)/length(u$Neighbors_NumberOfNeighbors_0)} 

b[i,width]<-1*sum(u$Genotype[1]=="RPE65-/-

")*sum(u$Age[1]<400)+2*sum(u$Genotype[1]=="RPE65-/-

")*sum(u$Age[1]>=400)+3*sum(u$Genotype[1]=="c57BL/6J")*sum(u$Age[1]<70)+4*sum(u$Genotype[1

]=="c57BL/6J")*sum(u$Age[1]>=70)+5*sum(u$Genotype[1]=="rd10")*sum(u$Age[1]<70)+6*sum(u$Gen

otype[1]=="rd10")*sum(u$Age[1]>=70) 

i<-i+1 

} 

 

b[,width]<-as.vector(b[,width]) 

 

library(MASS)  

pc.cov1<-prcomp(b[,-13]) 

cov<-as.matrix(pc.cov1$rotation[,1:2]) 

score<-as.matrix(b[,-width])%*%cov 

 

 

c<-matrix(1:length*3,length,3) 

for (x in 1:length) 

{c[x,1]=as.matrix(score[x,1]) 
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c[x,2]=as.matrix(score[x,2]) 

c[x,3]=b[x,13] 

} 

 

c[,3]<-as.vector(c[,3]) 

 

width<-3 

 

library(e1071) 

 

c[,3]<-as.factor(c[,3]) 

width<-3 

sum1<-0 

times<-1000 

for (x in 1:times) 

{index<-1:length                                                  

testindex <- sample(index,2) 

testset <- c[testindex,] 

names(testset)<-c("V1","V2","V3") 

testset<-as.data.frame(testset) 

 

 

 

trainset <- c[-testindex,] 
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names(trainset)<-c("V1","V2","V3") 

trainset<-as.data.frame(trainset) 

trainset[,width]<-as.factor(trainset[,width]) 

 

model <- svm(V3~., data = trainset) 

prediction <- predict(model, testset[,-width]) 

prediction<-as.data.frame(prediction) 

sum1<-sum1+sum(prediction==testset[,width])/2 

} 

rate<-sum1/times 

prediction 

rate 

 

 

model <- rpart(V3~., data = trainset) 

model <- svm(formula=V3~., data = trainset) 

 

index<-1:length 

 

testindex <- sample(index, trunc(length(index)/3)) 

testset <- c[testindex,] 

trainset <- c[-testindex,] 

e<-as.matrix(lm(V2~V1,trainset)$coefficients) 

f<-round(as.matrix(testset[,-2])%*%as.matrix(e[2,1])+as.matrix(e[1,1]*rep(1,34),34,1),digits=0) 
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sum(f+1==testset[,2])/34 

 

# Using random forest to classify cells based on number of neighbors 

library(foreign)  

setwd("C:/Users/JIE YU/Dropbox/Jie Yu/RPE/original") 

a<-list.files() 

length<-length(a) 

 

 

min=6; 

max=6; 

for (x in a) 

{u<-read.csv(x) 

if (min(u$Neighbors_NumberOfNeighbors_0)<min) 

{min=min(u$Neighbors_NumberOfNeighbors_0)} 

if (max(u$Neighbors_NumberOfNeighbors_0)>max) 

{max=max(u$Neighbors_NumberOfNeighbors_0)} 

} 

 

max<-max-3 

width<-max-min+2 

b<-matrix(1:length*width,length,width) 

i<-1 
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sumofindex<-0 

for (x in a) 

{u<-read.csv(x) 

for (y in (min:max)) 

{b[i,y-min+1]<-

sum(u$Neighbors_NumberOfNeighbors_0==y)/length(u$Neighbors_NumberOfNeighbors_0)} 

b[i,width]<-1*sum(u$Genotype[1]=="RPE65-/-

")*sum(u$Age[1]<400)+2*sum(u$Genotype[1]=="RPE65-/-

")*sum(u$Age[1]>=400)+3*sum(u$Genotype[1]=="c57BL/6J")*sum(u$Age[1]<70)+4*sum(u$Genotype[1

]=="c57BL/6J")*sum(u$Age[1]>=70)+5*sum(u$Genotype[1]=="rd10")*sum(u$Age[1]<70)+6*sum(u$Gen

otype[1]=="rd10")*sum(u$Age[1]>=70) 

if (sum(u$Genotype[1]=="RPE65-/-")==1) {sumofindex<-sumofindex+1} 

i<-i+1 

} 

 

length2<-length-sumofindex 

h<-matrix(1:length2*width,length2,width) 

j<-1 

for (x in 1:length) 

{ if (b[x,width]==3) {h[j,]<-b[x,] 

 j<-j+1} 

else if (b[x,width]==4) {h[j,]<-b[x,] 

 j<-j+1} 

else if (b[x,width]==5) {h[j,]<-b[x,]  
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j<-j+1} 

else if (b[x,width]==6) {h[j,]<-b[x,]  

j<-j+1} 

} 

 

 

 

 

h<-as.data.frame(h) 

h$V13<-as.factor(h$V13) 

b.rf<-randomForest(V13 ~., data=h,importance=TRUE, 

                        proximity=TRUE) 

print(b.rf) 

 

 

 

 

 

b<-h 

b<-as.data.frame(b) 

sum3<-0 

t3<-0 

sum4<-0 

t4<-0 
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sum5<-0 

t5<-0 

sum6<-0 

t6<-0 

sum7<-0 

t7<-0 

times<-1000 

length<-dim(b)[1] 

b[,width]<-as.factor(b[,width]) 

for (x in 1:times) 

{index<-1:length 

testindex <- sample(index,1) 

c<-b 

train<-c[-testindex,] 

test<-c[testindex,] 

b.rf<-randomForest(V13 ~., data=train,xtest=test[,-width],ytest=test[,width],importance=TRUE, 

                        proximity=TRUE) 

if (b.rf$test$predicted == 3) { 

            sum3<-sum3+sum(b.rf$test$predicted==test[,width]) 

            t3<-t3+1 

        } else if (b.rf$test$predicted == 4) { 

            sum4<-sum4+sum(b.rf$test$predicted==test[,width]) 

            t4<-t4+1 

        } else if (b.rf$test$predicted  == 5) { 
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            sum5<-sum5+sum(b.rf$test$predicted==test[,width]) 

            t5<-t5+1 

        } else if (b.rf$test$predicted == 6) { 

            sum6<-sum6+sum(b.rf$test$predicted==test[,width]) 

            t6<-t6+1 

        }  

if (b.rf$test$predicted == 5 || b.rf$test$predicted == 4) { 

            sum7<-sum7+sum(test[,width]==5)+sum(test[,width]==4) 

            t7<-t7+1 

        }  

 

} 

rate3<-sum3/t3 

rate4<-sum4/t4 

rate5<-sum5/t5 

rate6<-sum6/t6 

rate7<-sum7/t7 

rate3 

rate4 

rate5 

rate6 

rate7 

 

# Using random forest to classify cells based on perimeter 
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library(foreign)  

library(fda) 

memory.limit(size=4095) 

setwd("C:/Users/JIE YU/Dropbox/Jie Yu/RPE/original") 

a<-list.files() 

length<-length(a) 

 

i<-1 

sumofindex<-0 

max<-0 

min<-10000000 

for (x in a) 

{u<-read.csv(x) 

if (max(density(u$AreaShape_Perimeter)$x)>max) {max<-

max(density(u$AreaShape_Perimeter)$x)} 

if (min(density(u$AreaShape_Perimeter)$x)<min) {min<-

min(density(u$AreaShape_Perimeter)$x)} 

} 

 

 

d<-density(u$AreaShape_Perimeter) 

 

b<-matrix(1:length,length,1) 
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b[1,1]<-1*sum(u$Genotype[1]=="RPE65-/-

")*sum(u$Age[1]<400)+2*sum(u$Genotype[1]=="RPE65-/-

")*sum(u$Age[1]>=400)+3*sum(u$Genotype[1]=="c57BL/6J")*sum(u$Age[1]<70)+4*sum(u$Genotype[1

]=="c57BL/6J")*sum(u$Age[1]>=70)+5*sum(u$Genotype[1]=="rd10")*sum(u$Age[1]<70)+6*sum(u$Gen

otype[1]=="rd10")*sum(u$Age[1]>=70) 

i<-2 

 

for (y in a) 

{if (y!=x) { 

u<-read.csv(y) 

d$x<-cbind(d$x,density(u$AreaShape_Perimeter)$x) 

d$y<-cbind(d$y,density(u$AreaShape_Perimeter)$y) 

b[i,1]<-1*sum(u$Genotype[1]=="RPE65-/-

")*sum(u$Age[1]<400)+2*sum(u$Genotype[1]=="RPE65-/-

")*sum(u$Age[1]>=400)+3*sum(u$Genotype[1]=="c57BL/6J")*sum(u$Age[1]<70)+4*sum(u$Genotype[1

]=="c57BL/6J")*sum(u$Age[1]>=70)+5*sum(u$Genotype[1]=="rd10")*sum(u$Age[1]<70)+6*sum(u$Gen

otype[1]=="rd10")*sum(u$Age[1]>=70) 

i<-i+1 

} 

} 

 

 

datarange<-c(min,max) 

bsp <- create.bspline.basis(datarange, 80) 
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f<-Data2fd(d$x,d$y,bsp) 

g1<-pca.fd(f, nharm = 2) 

g1<-cbind(g1$scores,b) 

length<-dim(g1)[1] 

 

sumofindex<-0 

for (x in 1:length) 

{if (g1[x,3]==1) {sumofindex<-sumofindex+1} 

if (g1[x,3]==2) {sumofindex<-sumofindex+1} 

} 

 

length2<-length-sumofindex 

width<-3 

h<-matrix(1:length2*3,length2,3) 

j<-1 

for (x in 1:length) 

{ if (g1[x,width]==3) {h[j,]<-g1[x,] 

 j<-j+1} 

else if (g1[x,width]==4) {h[j,]<-g1[x,] 

 j<-j+1} 

else if (g1[x,width]==5) {h[j,]<-g1[x,]  

j<-j+1} 

else if (g1[x,width]==6) {h[j,]<-g1[x,]  

j<-j+1} 
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} 

 

 

b<-h 

b<-as.data.frame(b) 

b[,width]<-as.factor(b[,width]) 

sum3<-0 

t3<-0 

sum4<-0 

t4<-0 

sum5<-0 

t5<-0 

sum6<-0 

t6<-0 

times<-1000 

length<-dim(b)[1] 

for (x in 1:times) 

{index<-1:length 

testindex <- sample(index,1) 

c<-b 

train<-c[-testindex,] 

test<-c[testindex,] 

b.rf<-randomForest(V3 ~., data=train,xtest=test[,-width],ytest=test[,width],importance=TRUE, 

                        proximity=TRUE) 
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if (b.rf$test$predicted == 3) { 

            sum3<-sum3+sum(b.rf$test$predicted==test[,width]) 

            t3<-t3+1 

        } else if (b.rf$test$predicted == 4) { 

            sum4<-sum4+sum(b.rf$test$predicted==test[,width]) 

            t4<-t4+1 

        } else if (b.rf$test$predicted  == 5) { 

            sum5<-sum5+sum(b.rf$test$predicted==test[,width]) 

            t5<-t5+1 

        } else if (b.rf$test$predicted == 6) { 

            sum6<-sum6+sum(b.rf$test$predicted==test[,width]) 

            t6<-t6+1 

        }  

 

} 

rate3<-sum3/t3 

rate4<-sum4/t4 

rate5<-sum5/t5 

rate6<-sum6/t6 

rate3 

rate4 

rate5 

rate6 
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# Using random forest to classify cells based on Orientation 

library(foreign)  

library(fda) 

memory.limit(size=4095) 

setwd("C:/Users/JIE YU/Dropbox/Jie Yu/RPE/original") 

a<-list.files() 

length<-length(a) 

 

i<-1 

sumofindex<-0 

max<-0 

min<-10000000 

for (x in a) 

{u<-read.csv(x) 

if (max(density(u$AreaShape_Orientation)$x)>max) {max<-

max(density(u$AreaShape_Orientation)$x)} 

if (min(density(u$AreaShape_Orientation)$x)<min) {min<-

min(density(u$AreaShape_Orientation)$x)} 

} 

 

 

d<-density(u$AreaShape_Orientation) 

 

b<-matrix(1:length,length,1) 
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b[1,1]<-1*sum(u$Genotype[1]=="RPE65-/-

")*sum(u$Age[1]<400)+2*sum(u$Genotype[1]=="RPE65-/-

")*sum(u$Age[1]>=400)+3*sum(u$Genotype[1]=="c57BL/6J")*sum(u$Age[1]<70)+4*sum(u$Genotype[1

]=="c57BL/6J")*sum(u$Age[1]>=70)+5*sum(u$Genotype[1]=="rd10")*sum(u$Age[1]<70)+6*sum(u$Gen

otype[1]=="rd10")*sum(u$Age[1]>=70) 

i<-2 

 

for (y in a) 

{if (y!=x) { 

u<-read.csv(y) 

d$x<-cbind(d$x,density(u$AreaShape_Orientation)$x) 

d$y<-cbind(d$y,density(u$AreaShape_Orientation)$y) 

b[i,1]<-1*sum(u$Genotype[1]=="RPE65-/-

")*sum(u$Age[1]<400)+2*sum(u$Genotype[1]=="RPE65-/-

")*sum(u$Age[1]>=400)+3*sum(u$Genotype[1]=="c57BL/6J")*sum(u$Age[1]<70)+4*sum(u$Genotype[1

]=="c57BL/6J")*sum(u$Age[1]>=70)+5*sum(u$Genotype[1]=="rd10")*sum(u$Age[1]<70)+6*sum(u$Gen

otype[1]=="rd10")*sum(u$Age[1]>=70) 

i<-i+1 

} 

} 

 

 

datarange<-c(min,max) 

bsp <- create.bspline.basis(datarange, 800) 
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f<-Data2fd(d$x,d$y,bsp) 

g1<-pca.fd(f, nharm = 2) 

g1<-cbind(g1$scores,b) 

length<-dim(g1)[1] 

 

sumofindex<-0 

for (x in 1:length) 

{if (g1[x,3]==1) {sumofindex<-sumofindex+1} 

if (g1[x,3]==2) {sumofindex<-sumofindex+1} 

} 

 

length2<-length-sumofindex 

width<-3 

h<-matrix(1:length2*3,length2,3) 

j<-1 

for (x in 1:length) 

{ if (g1[x,width]==3) {h[j,]<-g1[x,] 

 j<-j+1} 

else if (g1[x,width]==4) {h[j,]<-g1[x,] 

 j<-j+1} 

else if (g1[x,width]==5) {h[j,]<-g1[x,]  

j<-j+1} 

else if (g1[x,width]==6) {h[j,]<-g1[x,]  

j<-j+1} 
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} 

 

 

b<-h 

b<-as.data.frame(b) 

b[,width]<-as.factor(b[,width]) 

sum3<-0 

t3<-0 

sum4<-0 

t4<-0 

sum5<-0 

t5<-0 

sum6<-0 

t6<-0 

times<-1000 

length<-dim(b)[1] 

for (x in 1:times) 

{index<-1:length 

testindex <- sample(index,1) 

c<-b 

train<-c[-testindex,] 

test<-c[testindex,] 

b.rf<-randomForest(V3 ~., data=train,xtest=test[,-width],ytest=test[,width],importance=TRUE, 

                        proximity=TRUE) 
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if (b.rf$test$predicted == 3) { 

            sum3<-sum3+sum(b.rf$test$predicted==test[,width]) 

            t3<-t3+1 

        } else if (b.rf$test$predicted == 4) { 

            sum4<-sum4+sum(b.rf$test$predicted==test[,width]) 

            t4<-t4+1 

        } else if (b.rf$test$predicted  == 5) { 

            sum5<-sum5+sum(b.rf$test$predicted==test[,width]) 

            t5<-t5+1 

        } else if (b.rf$test$predicted == 6) { 

            sum6<-sum6+sum(b.rf$test$predicted==test[,width]) 

            t6<-t6+1 

        }  

 

} 

rate3<-sum3/t3 

rate4<-sum4/t4 

rate5<-sum5/t5 

rate6<-sum6/t6 

rate3 

rate4 

rate5 

rate6 
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# Using random forest to classify cells based on Eccentricity 

library(foreign)  

library(fda) 

memory.limit(size=4095) 

setwd("C:/Users/JIE YU/Dropbox/Jie Yu/RPE/original") 

a<-list.files() 

length<-length(a) 

 

i<-1 

sumofindex<-0 

max<-0 

min<-10000000 

for (x in a) 

{u<-read.csv(x) 

if (max(density(u$AreaShape_Eccentricity)$x)>max) {max<-

max(density(u$AreaShape_Eccentricity)$x)} 

if (min(density(u$AreaShape_Eccentricity)$x)<min) {min<-

min(density(u$AreaShape_Eccentricity)$x)} 

} 

 

 

d<-density(u$AreaShape_Eccentricity) 

 

b<-matrix(1:length,length,1) 
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b[1,1]<-1*sum(u$Genotype[1]=="RPE65-/-

")*sum(u$Age[1]<400)+2*sum(u$Genotype[1]=="RPE65-/-

")*sum(u$Age[1]>=400)+3*sum(u$Genotype[1]=="c57BL/6J")*sum(u$Age[1]<70)+4*sum(u$Genotype[1

]=="c57BL/6J")*sum(u$Age[1]>=70)+5*sum(u$Genotype[1]=="rd10")*sum(u$Age[1]<70)+6*sum(u$Gen

otype[1]=="rd10")*sum(u$Age[1]>=70) 

i<-2 

 

for (y in a) 

{if (y!=x) { 

u<-read.csv(y) 

d$x<-cbind(d$x,density(u$AreaShape_Eccentricity)$x) 

d$y<-cbind(d$y,density(u$AreaShape_Eccentricity)$y) 

b[i,1]<-1*sum(u$Genotype[1]=="RPE65-/-

")*sum(u$Age[1]<400)+2*sum(u$Genotype[1]=="RPE65-/-

")*sum(u$Age[1]>=400)+3*sum(u$Genotype[1]=="c57BL/6J")*sum(u$Age[1]<70)+4*sum(u$Genotype[1

]=="c57BL/6J")*sum(u$Age[1]>=70)+5*sum(u$Genotype[1]=="rd10")*sum(u$Age[1]<70)+6*sum(u$Gen

otype[1]=="rd10")*sum(u$Age[1]>=70) 

i<-i+1 

} 

} 

 

 

datarange<-c(min,max) 

bsp <- create.bspline.basis(datarange, 800) 
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f<-Data2fd(d$x,d$y,bsp) 

g1<-pca.fd(f, nharm = 2) 

g1<-cbind(g1$scores,b) 

length<-dim(g1)[1] 

 

sumofindex<-0 

for (x in 1:length) 

{if (g1[x,3]==1) {sumofindex<-sumofindex+1} 

if (g1[x,3]==2) {sumofindex<-sumofindex+1} 

} 

 

length2<-length-sumofindex 

width<-3 

h<-matrix(1:length2*3,length2,3) 

j<-1 

for (x in 1:length) 

{ if (g1[x,width]==3) {h[j,]<-g1[x,] 

 j<-j+1} 

else if (g1[x,width]==4) {h[j,]<-g1[x,] 

 j<-j+1} 

else if (g1[x,width]==5) {h[j,]<-g1[x,]  

j<-j+1} 

else if (g1[x,width]==6) {h[j,]<-g1[x,]  

j<-j+1} 
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} 

 

 

b<-h 

b<-as.data.frame(b) 

b[,width]<-as.factor(b[,width]) 

sum3<-0 

t3<-0 

sum4<-0 

t4<-0 

sum5<-0 

t5<-0 

sum6<-0 

t6<-0 

times<-1000 

length<-dim(b)[1] 

for (x in 1:times) 

{index<-1:length 

testindex <- sample(index,1) 

c<-b 

train<-c[-testindex,] 

test<-c[testindex,] 

b.rf<-randomForest(V3 ~., data=train,xtest=test[,-width],ytest=test[,width],importance=TRUE, 

                        proximity=TRUE) 
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if (b.rf$test$predicted == 3 && b.rf$test$votes[1]>0.85) { 

            sum3<-sum3+sum(b.rf$test$predicted==test[,width]) 

            t3<-t3+1 

        } else if (b.rf$test$predicted == 4 && b.rf$test$votes[2]>0.85) { 

            sum4<-sum4+sum(b.rf$test$predicted==test[,width]) 

            t4<-t4+1 

        } else if (b.rf$test$predicted  == 5  && b.rf$test$votes[3]>0.85) { 

            sum5<-sum5+sum(b.rf$test$predicted==test[,width]) 

            t5<-t5+1 

        } else if (b.rf$test$predicted == 6  && b.rf$test$votes[4]>0.85) { 

            sum6<-sum6+sum(b.rf$test$predicted==test[,width]) 

            t6<-t6+1 

        }  

 

} 

rate3<-sum3/t3 

rate4<-sum4/t4 

rate5<-sum5/t5 

rate6<-sum6/t6 

rate3 

rate4 

rate5 

rate6 
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# Using random forest to classify cells based on solidity 

library(foreign)  

library(fda) 

memory.limit(size=4095) 

setwd("C:/Users/JIE YU/Dropbox/Jie Yu/RPE/original") 

a<-list.files() 

length<-length(a) 

 

i<-1 

sumofindex<-0 

max<-0 

min<-10000000 

for (x in a) 

{u<-read.csv(x) 

if (max(density(u$AreaShape_Solidity)$x)>max) {max<-max(density(u$AreaShape_Solidity)$x)} 

if (min(density(u$AreaShape_Solidity)$x)<min) {min<-min(density(u$AreaShape_Solidity)$x)} 

} 

 

 

d<-density(u$AreaShape_Solidity) 

 

b<-matrix(1:length,length,1) 

b[1,1]<-1*sum(u$Genotype[1]=="RPE65-/-

")*sum(u$Age[1]<400)+2*sum(u$Genotype[1]=="RPE65-/-
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")*sum(u$Age[1]>=400)+3*sum(u$Genotype[1]=="c57BL/6J")*sum(u$Age[1]<70)+4*sum(u$Genotype[1

]=="c57BL/6J")*sum(u$Age[1]>=70)+5*sum(u$Genotype[1]=="rd10")*sum(u$Age[1]<70)+6*sum(u$Gen

otype[1]=="rd10")*sum(u$Age[1]>=70) 

i<-2 

 

for (y in a) 

{if (y!=x) { 

u<-read.csv(y) 

d$x<-cbind(d$x,density(u$AreaShape_Solidity)$x) 

d$y<-cbind(d$y,density(u$AreaShape_Solidity)$y) 

b[i,1]<-1*sum(u$Genotype[1]=="RPE65-/-

")*sum(u$Age[1]<400)+2*sum(u$Genotype[1]=="RPE65-/-

")*sum(u$Age[1]>=400)+3*sum(u$Genotype[1]=="c57BL/6J")*sum(u$Age[1]<70)+4*sum(u$Genotype[1

]=="c57BL/6J")*sum(u$Age[1]>=70)+5*sum(u$Genotype[1]=="rd10")*sum(u$Age[1]<70)+6*sum(u$Gen

otype[1]=="rd10")*sum(u$Age[1]>=70) 

i<-i+1 

} 

} 

 

 

datarange<-c(min,max) 

bsp <- create.bspline.basis(datarange, 800) 

f<-Data2fd(d$x,d$y,bsp) 

g1<-pca.fd(f, nharm = 2) 
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g1<-cbind(g1$scores,b) 

length<-dim(g1)[1] 

 

sumofindex<-0 

for (x in 1:length) 

{if (g1[x,3]==1) {sumofindex<-sumofindex+1} 

if (g1[x,3]==2) {sumofindex<-sumofindex+1} 

} 

 

length2<-length-sumofindex 

width<-3 

h<-matrix(1:length2*3,length2,3) 

j<-1 

for (x in 1:length) 

{ if (g1[x,width]==3) {h[j,]<-g1[x,] 

 j<-j+1} 

else if (g1[x,width]==4) {h[j,]<-g1[x,] 

 j<-j+1} 

else if (g1[x,width]==5) {h[j,]<-g1[x,]  

j<-j+1} 

else if (g1[x,width]==6) {h[j,]<-g1[x,]  

j<-j+1} 

} 
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b<-h 

b<-as.data.frame(b) 

b[,width]<-as.factor(b[,width]) 

sum3<-0 

t3<-0 

sum4<-0 

t4<-0 

sum5<-0 

t5<-0 

sum6<-0 

t6<-0 

times<-1000 

length<-dim(b)[1] 

for (x in 1:times) 

{index<-1:length 

testindex <- sample(index,1) 

c<-b 

train<-c[-testindex,] 

test<-c[testindex,] 

b.rf<-randomForest(V3 ~., data=train,xtest=test[,-width],ytest=test[,width],importance=TRUE, 

                        proximity=TRUE) 

if (b.rf$test$predicted == 3) { 

            sum3<-sum3+sum(b.rf$test$predicted==test[,width]) 
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            t3<-t3+1 

        } else if (b.rf$test$predicted == 4) { 

            sum4<-sum4+sum(b.rf$test$predicted==test[,width]) 

            t4<-t4+1 

        } else if (b.rf$test$predicted  == 5) { 

            sum5<-sum5+sum(b.rf$test$predicted==test[,width]) 

            t5<-t5+1 

        } else if (b.rf$test$predicted == 6) { 

            sum6<-sum6+sum(b.rf$test$predicted==test[,width]) 

            t6<-t6+1 

        }  

 

} 

rate3<-sum3/t3 

rate4<-sum4/t4 

rate5<-sum5/t5 

rate6<-sum6/t6 

rate3 

rate4 

rate5 

rate6 

 

# Using random forest to classify cells based on the combination of eccentricity, solidity and 

perimeter 
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X=read.csv("C:/Users/admin/Desktop/Dropbox/Jie Yu/RPE/R Code/Scores.csv",header=T) 

b<-X 

b<-as.data.frame(b) 

width<-8 

b[,width]<-as.factor(b[,width]) 

sum3<-0 

t3<-0 

sum4<-0 

t4<-0 

sum5<-0 

t5<-0 

sum6<-0 

t6<-0 

length<-dim(b)[1] 

for (x in 1:length) 

{ 

c<-b 

train<-c[-x,] 

test<-c[x,] 

b.rf<-randomForest(V7 ~., data=train,xtest=test[,-width],ytest=test[,width],importance=TRUE, 

                        proximity=TRUE) 

if (b.rf$test$predicted == 3 && b.rf$test$votes[1]>0) { 

            sum3<-sum3+sum(b.rf$test$predicted==test[,width]) 

            t3<-t3+1 
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        } else if (b.rf$test$predicted == 4 && b.rf$test$votes[2]>0) { 

            sum4<-sum4+sum(b.rf$test$predicted==test[,width]) 

            t4<-t4+1 

        } else if (b.rf$test$predicted  == 5  && b.rf$test$votes[3]>0) { 

            sum5<-sum5+sum(b.rf$test$predicted==test[,width]) 

            t5<-t5+1 

        } else if (b.rf$test$predicted == 6  && b.rf$test$votes[4]>0) { 

            sum6<-sum6+sum(b.rf$test$predicted==test[,width]) 

            t6<-t6+1 

        }  

 

} 

rate3<-sum3/t3 

rate4<-sum4/t4 

rate5<-sum5/t5 

rate6<-sum6/t6 

rate3 

rate4 

rate5 

rate6 
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