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Under the Direction of Dr. Yuanhui Xiao 

 

ABSTRACT 

 The Kolmogorov-Smirnov (K-S) test is widely used as a goodness-of-fit test. This thesis 

consists of two parts to describe ways to improve the classical K-S test in both 1-dimensional 

and 2-dimensional data. The first part is about how to improve the accuracy of the classical K-S 

goodness-of-fit test in 1-dimensional data. We replace the p-values estimated by the asymptot-

ic distribution with near-exact p-values. In the second part, we propose two new methods to 

increase power of the widely used 2-dimensional two-sample Fasano and Franceschini test. 

Simulation studies show the new methods are significantly more powerful than the Fasano and 

Franceschini’s test.   

 

INDEX WORDS: K-S test, Cramér-von Mises test, 2-Dimensional K-S test, Goodness-of-fit, Near-

exact distribution of K-S statistics 
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This thesis has two distinct sections. The first section focuses on how to improve the ac-

curacy of the estimated distribution of the classical Kolmogorov-Smirnov (K-S) test statistics. 

The second section is dedicated to improve the power of the 2-dimensional two-sample K-S test 

with two proposed Crámer-von Mises (CVM) type test statistics. Throughout this paper, 1-

dimensional and 2-dimensional data are abbreviated as 1D and 2D respectively. 

1 Improving 1-Dimensional One-Sample K-S Test  

1.1 Introduction 

In practical research, there are needs to test hypothesis about the agreement between 

the underlying distribution of a sample and a hypothetical distribution. This type of test is fre-

quently labeled as “goodness-of-fit” test, i.e. checking if data are normally distributed. Fur-

thermore, there are two-sample tests about the hypothesis of the agreement of the underlying 

distributions of two samples. The K-S goodness-of-fit test was developed by the work from 

Kolmogorov (1933), Smirnov (1939a), Scheffe (1943), and Wolfowitz (1949), etc. 

The one-sample K-S test can be defined as the follows. Given an independently identi-

cally distributed random sample ��,  ��, … , �� with unknown distribution F, to test if the distri-

bution F is significantly different from a specified distribution �	,  

(2.1) 
	: � � �	. 

Kolgomorov (1933 and 1941) suggested a test of 
	 that is based on the test statistic 

(2.2) 
� � ��
��� � ��

� · sup
������

|����� � ����|. 

Where  ����� in (2.2) is defined as, 
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(2.3) ����� � 1
� � ��� ! ��

�

"#�
. 

It is termed the empirical distribution function (EDF) based on the random sample 

 ��,  ��, … , �� . Obviously, ����� is the proportion of the sample points  �"  such that �" ! �. 

|����� � ����| is actually the vertical difference between the hypothetical distribution func-

tion and the EDF. Therefore, in essence, the one-sample K-S test was based on the largest (ver-

tical) difference,�$, between these two distributions. Even though, the exact distribution of �$ 

is hard to track, Kolmogorov (1933) and Smirnov (1939b) proved that the limiting distribution of 


$is (2.5), 

(2.4) �� � sup
������

|����� � ����|, 

(2.5) lim Pr *
� + �|
	, � 1 - 2 ���1�/0��/1�1 , 0 + � +
�

3#�
∞. 

If 
� is sufficiently large, 
	 will be rejected. Feller (1948) and Doob (1949) rederived (2.4) with 

a simpler and more general approach. The short table of this limiting distribution was first given 

by Smirnov (1939b) and later expanded by himself in 1948. The table was further modified by 

Kunisawa et al. (1951 and 1955).   

The one-sample K-S test is very attractive due to its non-parametric nature. It is also 

generally regarded as more powerful than the well known Chi-Square test. Kolmogorov (1933) 

proved the limiting distribution (2.4) can even be applied to the two-sample K-S test statistic. 

However, the K-S test requires a continuous underlying distribution and the specified hypothet-

ical distribution. The asymptotic approximation of the probabilities of 
� works well with large 

sample. However, using it to approximate p-values of the probabilities of 
� can be problemat-
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ic when sample size is small. The direct impact is that the classical one-sample K-S test based on 

asymptotic approximation will be very conservative. The problem was later validated in the 

numerical study and the results are summarized in Figure 1.3 and Table 1.1. 

To improve the accuracy of the approximated distribution of one-sample K-S test statis-

tics, we propose a new approach to compute 
� by replace ���� with an EDF based on a ran-

dom sample drawn from the hypothetical distribution. The accurate estimation of ���� by an 

EDF requires a very large sample. This computing process may be time consuming. However, 

the computing power of contemporary computers makes it possible to compute the improved 


� with large numbers of iterations and thus in turn to make the estimation of the near-exact 

distribution of 
� possible. 

1.2 Method and Numerical Study for Improving 1-Dimensional One-Sample K-S test 

The proposed replacement of ���� in (2.4) with an EDF approximated from a large ran-

dom sample of a hypothetical distribution is an application of the law of large numbers of EDFs. 

If the true underlying distribution of a random sample is ����, the law of large numbers implies 

that ���� is consistent: ����� converges to ���� as �� 5 ∞� almost surely for every value 

of �, 

(2.6) ����� 6.7.89 ����, every �. 
The Glivenko-Cantelli theorem extends the law of large numbers and states that the conver-

gence in (2.5) happens uniformly over � (van der Varrt, 1998), 

(2.7) ||�$ � �||� � sup
:;<

|����� � ����| 6.7.89 0  . 
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The theorem basically points out that the distribution of random variable =>?�;@ |����� �
����| converges in probability to zero when sample size is at infinity.  In addition, if ���� is con-

tinuous then the distribution of random variable =>?�;@ |����� � ����| does not depend on F. 

For one-sample K-S test, to implement the proposed improvement, we can draw a ran-

dom sample of size m from a hypothetical distribution. The resulting EDF is denoted 

by ��A����. ��A���� clearly depends on the random draws and is different from sample to 

sample. However, with the aid of the computing power of contemporary computers, we can 

quickly draw a large sample of size m, such as m = 10000, with ease. Thus, ��A���� is a good 

approximation of ���� as stated in (2.6) and (2.7) according to the law of large numbers. By re-

placing ���� with ��A���� in (2.2) and (2.4), we can compute 

(2.8) ��
�A� � sup

������
|����� � ��A����| , 

(2.9) 
�
�A� � �B

1��
�A�

. 

The distribution of ��
�A�

 can be computed exactly (Xiao et al., 2007), so is the normalized ver-

sion 
�
�A� � ��/���

�A�
. The exact distribution of ��/���

�A�
 is a good approximation of the K-S 

test statistics 
� and it will be termed the near-exact distribution of 
� .   
A series of simulations was conducted to assess the proposed improvement to the one-

sample K-S test. The random samples generation for the study was based on idea of integral 

probability transformation. If a random variable D has a continuous distribution for which the 

cumulative distributive function is �E, the probability integral transformation F � �E�D�  has a 

uniform distribution on (0, 1).  Thus, we may assume the hypothetical distribution is uniform on 

(0, 1), and regard the sample points ��,  ��, … , ��  as random draws from the uniform distribu-
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tion on (0, 1) without loss of generality if the null hypothesis is true. From now on we will as-

sume that the random sample ��,  ��, … , �� is uniform on (0, 1). 

To investigate the relationship between the near-exact tail probability and the asymp-

totic distribution of  
� at various sample sizes. ����� was approximated from the random 

samples of size N drawn from Uniform(0, 1), where N=5, 10, 15, 20, 25, 40 and 100. For each N, 

��A���� was approximated from random samples of size m drawn from Uniform(0, 1), where m 

= 10,000. By repeating the process k=10,000 times, we can compute the asymptotic tail proba-

bility and the near-exact tail probability of 
�. The results are presented in Table 1.1 and Fig-

ures 1.1.  

To validate how well the exact distribution of 
�
�A�

 can approximate the near-exact dis-

tribution of 
�, we did a simulation study with random samples drawn from Uniform(0, 1) of 

size N, where N = 5, 10, 20, and 40, to approximate �����. ��A���� was approximated with 

random samples drawn from Uniform(0, 1) of size m, where m = 1000 and 2500. The exact tail 

probability of 
�
�A�

 was computed with k = 1000 iterations. The near-exact distribution of 
� 

was computed in the simulation described previously. The results are presented in Figures 1.2 

to 1.3 and they confirmed that the exact distribution of 
�
�A�

 is a good approximation to the 

near-exact distribution of 
�. 

1.3 Results and Discussions of Improving 1-Dimensional One-Sample K-S test 

 In Figure 1.1, the differences between the near-exact and asymptotic distribution of im-

proved 
� are impacted by sample size. The differences between the two distributions become 

greater with the decrease of sample size and reach the maximum when N = 5. The differences 
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become non-detectable when the sample size reaches 100, which implies that the asymptotic 

approximation works very well for sample size greater than 100. The simulation results confirm 

that using the asymptotic distribution tends to give greater p-values to 
� than those from its 

near-exact distribution when sample size is less than 100. Apparently, using the asymptotic to 

approximate of p-values will result in overly conservative one-sample K-S test for small sample 

size. The proposed method will be able to facilitate more powerful test with the near-exact dis-

tribution of 
�. 

Table 1.1 summarized the critical values of 
� from the near-exact distribution as a 

function of sample size at various G levels, 0.01, 0.05 and 0.10. The critical values are retrieved 

from the near-exact and asymptotic distributions of 
�. In each alpha level, 
$ becomes great-

er with the increase of sample size and reaches the maximum value when it was from the as-

ymptotic distribution. For instance, the critical values from the near-exact and asymptotic dis-

tributions are 1.242 and 1.358 respectively for G � 0.05 and n = 5, which indicates that the ef-

fective significant region from the near-exact distribution is much larger than the one from the 

asymptotic approximation.  The evidence exhibits the advantage of the near-exact distribution 

of 
� over the asymptotic distribution of one-sample K-S statistics for small sample size. 

 Figures 1.2 and 1.3 clearly demonstrates that the exact distribution of 
�
�A�

 is a good 

approximation to the near-exact distribution of 
� even when m and k are as low as 1000. The 

close similarity between the two distributions in Figures 1.2 and 1.3 is highly noticeable, which 

demonstrates that using ��A���� to replace ���� is a practical choice to compute the near-

exact distribution of 
�.  If we use the random samples generated with m = 10000 and k = 

10000 from the hypothetical distribution to compute ��A����, we can be highly certain that we 



7 

will obtain the exact distribution of 
�
�A�

 that will real a good representation of the near-exact 

distribution of 
�. 

 In summary, replacing ���� in (2.4) with an EDF approximated from a large random 

sample of the hypothetical distribution is an effective approach to compute the near-exact dis-

tribution of 
�. The numerical study confirmed that the near-exact distribution of 
�
�A�

 is a 

good approximate to the near-exact distribution of 
� for m as low as 1000. The near-exact dis-

tribution of 
� can considerably improve the power of the one-sample K-S test for small sample 

size. 
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Table 1.1 The near-exact and asymptotic critical values of the classical 1D one-sample K-S test  

Sample Size α = 0.01 α = 0.05 α = 0.10 

5 1.4904 1.2420 1.1395 

10 1.5591 1.2993 1.1685 

15 1.5608 1.3084 1.1803 

20 1.5836 1.3159 1.1876 

25 1.5899 1.3223 1.1829 

40 1.5809 1.3240 1.1962 

100 1.6101 1.3462 1.2028 

Asymptotic 1.6275 1.3581 1.2238 
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Figure 1.1 The near-exact and asymptotic tail probabilities of the modified 1D one-sample K-S test by sample size 
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Figure 1.2 Tail probabilities of the classical and improved test statistics for one-sample K-S test (m= 1000 and k=1000) 
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Figure 1.3 Tail probabilities of the classical and improved test statistics for one-sample K-S test (m=2500 and k=1000) 
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2 Improving 2-Dimensional Two-Sample K-S Test 

2.1 Introduction 

In Section I of this thesis, we discussed the properties of and improvement to the classi-

cal one-sample K-S test. These discussions are under the domain of one-dimensional distribu-

tion. If the research objects have to be characterized by two random quantities or 

comes ��, H�, comparing the similarity of the empirical bivariate distribution of ��, H� in ��, H� 

plane to a hypothetical bivariate distribution is the one-sample case of 2-dimensional (2D) K-S 

test. The comparison of the similarity of two bivariate distributions of 2D data is the two-

sample case of 2D two-sample K-S test. Let’s denote the 2D random quantities for the two 

samples case as, 

(2.1)  

 

IJ�"K, H"KL,  where M � 1 and 2, and 1 !  ! NKO for two-sample, 
with unknown bivariate distribution F and G. The goal is to test the null hypothesis whether F is 

the same as G. One difficulty of the 2D K-S test is to define the cumulative probability distribu-

tions since there is more than one direction to define EDFs. For instance, there are 3 independ-

ent ways to define cumulative distribution for 2D data. 

Peacock (1983) developed an approach to compute the absolute maximum difference 

for 2D data between two bivariate distributions. Peacock’s method considers all combinations 

of ��, H� and uses the four natural quadrants created by coordinates using J�", H/L as the origin. 

The approach uses the four quadrants in turn to integrate the cumulative distributions and 

compute the maximum of the four differences between the EDF and hypothetical cumulative 

distribution over all data points. Since Peacock’s method will consider all combinations of 
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J�" , H/L, where 1 !  , S ! N� - N�,  it is very expensive in terms of computing time if sample 

size gets large. Fasano and Franceschini (1987) modified Peacock’s method by only considering 

observed data points ��" , H"�, where 1 !  ! N� - N� for the two-sample test. 

 To describe the EDFs of 2D data for the Fasano and Franceschini method, we start with 

the denotation of l for � ! �" or H + H" and g for � T �"  or H U H" and follow that by defining 

the EDF of each quadrant as these,  

(2.2) 

VWWK��, H� � X� �� �K T �", HK U H", 1 !  ! NK�Y /NK, 

VWZK��, H� � X� �� �K T �", HK + H", 1 !  ! NK�Y /NK, 

VZWK��, H� � X� �� �K ! �" , HK U H", 1 !  ! NK�Y /NK, 

VZZK��, H� � X� �� �K ! �" , HK + H", 1 !  ! NK�Y /NK, 

where M � 1 and 2. After the pooled sample is defined to be  

(2.3) *��[	, H[	�,  where and 1 ! \ ! N� - N�,, 
 

we can define the distance between two EDFs of each quadrant as 

(2.4) 

�$7]][ � |VWW���[	, H[	� � VWW���[	, H[	�|, 
�$7]^[ � |VWZ���[	, H[	� � VWZ���[	, H[	�|, 
�$7^][ � |VZW���[	, H[	� � VZW���[	, H[	�|, 
�$7^^[ � |VZZ���[	, H[	� � VZZ���[	, H[	�|. 

where 1 ! \ ! N� - N�. Thus, the test statistics of the 2D two-sample K-S test is, 

(2.5)  

 

�$7 � max *�$7aa[ , �$7a^[ , �$7^a[ , �$7^^[ ,. 
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 In this section, two new test statistics, T1 and T2, are proposed to improve the power of 

the 2D two-sample K-S test. Based on (2.4), T1 and T2 can then be expressed as, 

(2.6a) b� � � �$7aa[ - �$7a^[ - �$7^a[ - �$7^^[
�c[c$Bd$1

, 

b� � � �$7aa[ � - �$7a^[ � - �$7^a[ � - �$7^^[ �
�c[c$Bd$1

. (2.6b) 

2.2 Method and Numerical Study for Improving 2-Dimensional Two-Sample K-S Test 

For 1D data, the classical K-S test is usually cited for lack of power and thus in practice it 

needs large sample size to reject the null hypothesis. CVM test is one of the distribution free 

tests that is proved to be more powerful than the classical K-S test. In this paper, we intend to 

apply CVM type approach to introduce two new statistics as described in (2.6a) and (2.6b) to 

the 2D two-sample K-S test and assess any improvements can be achieved in terms of testing 

power.  

The CVM test was originally proposed by Cramer (1928) and von Mises (1931), which 

uses the summation of squared distances between an EDF and a hypothetical distribution (or 

another EDF) as its test statistics e��. The critical values of CVM test were tabulated by Ander-

son and Darling (1954). Anderson and Darling (1954) also extended (2.7) into a more general 

form. 

(2.7) e�� � f ������ � ������g����hi����
�

��
 for one‐sample case. 

 For a hypothesis about whether two random samples with sample size N and M respec-

tively are from the same unspecified continuous distribution, the test statistics can be ex-

pressed as 
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(2.8) e�� � �o/�� - o� f ������ � pq�����i
�dq���
�

��
, 

where ����� and pq��� are the EDFs of two random samples and 
�dq��� � ������� �
opq����/�� - o� is the pooled distribution of the two samples. The critical values of the 

two-sample CVM test were tabled by Smirnov (1948) and improved and expanded by Massey 

(1951b), and Anderson and Darling (1952). 

 The CVM test is more powerful than classical K-S test, and Chi-Square test. The distribu-

tion free is also a very appealing trait. However, the implementation of CVM test is limited by 

lack of efficient algorithm and programming. Xiao et al. (2007) developed an efficient algorithm 

and C++ program package to compute the CVM test efficiently. Leveraging the algorithm im-

proved by Xiao et al., we compute the two proposed b� and b� statistics by using the method 

proposed by Fasano and Franceschini (1987) to integrate cumulative probabilities of the four 

natural quadrants formed by each observed data points.  
 To confirm if these two new test statistics can improve the power of the 2D two-sample 

K-S test, a numerical study was conducted using the random samples generated from two 

standard bivariate normal distributions, one uncorrelated and one correlated between two da-

ta dimensions. The random samples were generated with n1 = n2 = 10 to 100 by increment of 10 

from the un-correlated distribution. For each n, random samples were generated from the cor-

related distribution with correlation coefficients range from 0.1 to 0.9 by increment of 0.1. Each 

random sample had 5000 pairs of data points from both distributions. Because multi-

dimensional K-S and CVM test are no longer distribution-free, 1000 permutations were used to 

estimate p-values. The power was estimated for the 2D two-sample K-S test with T1, T2 and �$7 

test statistics at significant levels 0.05 and 0.10.  
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2.3 Results and Discussions of Improving 2-Dimensional Two-Sample K-S Test 

The simulation results apparently show that T1 and T2 statistics are superior to �$7 in 

terms of increase the power of the 2D two-sample K-S test under given setting. Figures 2.4 and 

2.5 present the comparisons of testing power of three test statistics. Both figures display similar 

trends and patterns of test power as a function of correlation coefficients and sample size (Fig-

ure 2.4 will be discussed). Throughout the range of the correlation coefficients from 0.1 to 0.9, 

T1 and T2 statistics significantly improve the power of the 2D two-sample K-S test over �$7 over 

all sample size tested. Both T1 and T2 raise the power more steeply than �$7 does when the cor-

relation coefficients are greater than 50%. The power curves of T1 and T2 start to converge to 

100% at the high end of the correlation scale for the sample size 80 or greater, whereas �$7 

shows no signs of such convergence. One unexpected finding is that T1 statistics performs bet-

ter than T2 statistics in raising the power of the 2D two-sample K-S test regardless the correla-

tion coefficients, sample size, and alpha levels evaluated.  

The power of the 2D two-sample K-S test highly dependent on both sample size and cor-

relation coefficient regardless the test statistics involved (Figure 2.1, Figure 2.2 and Figure 2.3). 

Such dependency shown by �$7 is presented in Figure 2.1. The classical 2D two-sample K-S test 

has very low power and it can’t reach meaningful power, such as 80%, until the sample size is 

greater than or equal to n = 70 at high correlation level. The power increases with the increase 

of correlation regardless of the sample sizes and alpha level simulated. We also observed accel-

erated increase of power between correlation coefficients 0.4 and 0.8 for sample sizes 20 or 

greater.  
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Figure 2.2 and Figure 2.3 summarizes the effect of T1 and T2 test statistics on the power 

in relationship to the correlation coefficients and sample size. The patterns and trends of power 

from T1 and T2 test statistics are similar to those from �$7. T1 and T2 statistics also promote the 

power of the 2D two-sample K-S test to above 80% at the high correlation level for sample size 

as small as 40, which is a substantial improvement over the �$7. T1 and T2 show signs of con-

vergence to the power level of 100% at the 90% correlation for the sample size 70 and 80 re-

spectively over the two alpha levels analyzed.  

The dependence of the power of the test on the correlation is evident for the 2D two-

sample K-S test. The fast increase of testing power at the higher end of the correlation scale has 

been observed for all three test statistics and the phenomenon may be from the methodology 

itself. The power is more sensitive to the change of correlation when the test uses T1 and T2 as 

test statistics than uses �$7. Fasano and Franceschini’s (1987) algorithm to integrate probability 

of the four quadrants around the observed data pairs was conceived to be capable to reduce 

the number of quadrants contributing to computing 
$7 to 2 as the correlation between data 

points increase. If the perfect correlation exists, the distribution of the 2D test statistics collaps-

es into a one-dimensional case. Such reduction in contributing quadrants and data dimensions 

might dependency of power and correlation. 

In general, T1 and T2 statistics have been shown by the numerical study are far more su-

perior to �$7 in terms of increasing power of the 2D two-sample K-S test regardless of sample 

size and correlation coefficients tested. T1 performs even better than T2 in increasing the testing 

power for the 2D two-sample K-S test.  
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Figure 2.1 The power of the classical 2D two-sample K-S test as a function of correlation by sample size and alpha level 
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Figure 2.2 The power of 2D two-sample K-S test with T1 statistics as a function of correlation by sample size and alpha level 
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Figure 2.3 The power of 2D two-sample K-S test with T2 statistics as a function of correlation by sample size and alpha level 

 



26 

 

 

Figure 2.4 The power of 2D two-sample K-S test with three test statistics as functions of correlation by sample size for alpha = 

0.05 
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Figure 2.5 The power of 2D two-sample K-S test with three test statistics as functions of correlation by sample size for alpha = 

0.10 
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