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JACKKNIFE EMPIRICAL LIKELIHOOD INFERENCE FOR THE ABSOLUTE MEAN

DEVIATION

by

XUEPING MENG

Under the Direction of Dr. Yichuan Zhao

ABSTRACT

In statistics it is of interest to find a better interval estimator of the absolute mean

deviation. In this thesis, we focus on using the jackknife, the adjusted and the extended

jackknife empirical likelihood methods to construct confidence intervals for the mean absolute

deviation θ of a random variable. The empirical log-likelihood ratio statistic is derived whose

asymptotic distribution is a standard chi-square distribution. The results of simulation

study show the comparison of the average length and coverage probability by using jackknife

empirical likelihood methods and normal approximation method. The proposed adjusted

and extended jackknife empirical likelihood methods perform better than other methods

for symmetric and skewed distributions. We use real data sets to illustrate the proposed

jackknife empirical likelihood methods.

INDEX WORDS: Confidence interval, Coverage probability, Jackknife empirical likeli-
hood, Adjusted jackknife empirical likelihood, Extended jackknife em-
pirical likelihood.
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CHAPTER 1

INTRODUCTION

In this chapter, we will introduce some basic concept and methods we used in the thesis

research. In a data set, for an element, the absolute mean deviation is the difference between

that element and a given point [see wikipedia]. Large sample theory is introduced by the

central limit theory. We elaborate the concept of absolute mean deviation which is the main

research target of this thesis. Also we need to use Newton-Raphson and bisection methods

when we solve out the key step nonlinear equations. In addition to the empirical likelihood

method, we also introduce several jackknife empirical likelihood related methods to compare

with the normal approximation based method in terms of coverage probability and average

length of confidence intervals.

1.1 Central limit theory

In probability theory, the central limit theorem (CLT) states that, given certain condi-

tions, the mean of a sufficiently large number of independent random variables, each with

a well-defined mean and well-defined variance, will be approximately normally distributed.

Let {X1, ..., Xn} be a random sample of size n—that is, a sequence of independent and

identically distributed (iid) random variables drawn from distributions of expected values

given by µ and finite variance given by σ2. Suppose we are interested in the sample mean

Sn = X1+X2+...+Xn

n
of these random variables. By the law of large numbers, the sample means

converge in probability to µ as n goes to infinity. The classical central limit theorem describes

the distributional form of the stochastic fluctuations around µ during this convergence.
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1.2 Large sample theory

Large sample theory (LST), also called asymptotic theory, is used to approximate the

distribution of an estimator when the sample size is large. This theory demonstrates the

advantage if the sampling distribution of the estimator is complicated or unknown. Before

using this theory, one must determine which estimator is used. The rate of convergence,

asymptotic distribution, and sample size must be assumed for the approximation. Moreover,

if the estimator is to be useful for inference, the asymptotic standard error (SE), an estimator

of the asymptotic standard deviation, must be computable.

We can express the idea as follow: If F(X) is a cumulative distribution function, and

X1, X2 . . . Xn form a sequence of independent identically distributed (iid) random variables

with the mean µ and variance σ2. One measure of “spread ”of a cumulative distribution

function, F(x) is the absolute mean deviation proposed by Gastwirth (1974) as follows:

θ=

∫ ∞
−∞
|x−µ| dF(x) = E |X− E(X)| . (1.1)

Since we have [see Gastwirth (1974)] :

θ̂ = n−1
n∑

i=1

∣∣Xi−X
∣∣=n−1

∑
Xi<X

∣∣X−Xi

∣∣+n−1
∑
Xi>X

∣∣X−Xi

∣∣, (1.2)

where X=n−1
∑n

i=1 Xi. Using the same methods as those in Gastwirth (1974), denote N as

the number of the observations which are less than X, Xi< X. Gastwirth (1974) shows:

n∑
i=1

∣∣X−Xi

∣∣= 2[NX−
∑
Xi<X

Xi]. (1.3)

We have the following result given by Gastwirth (1974):

v2=4 ∗
{

p2

∫ ∞
µ

(x−µ)2dF(x)+(1− p)2
∫ µ

−∞
(x−µ)2dF (x)−θ

2

4

}
, (1.4)

and

p = F(µ). (1.5)
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The asymptotic normality of θ̂ is given by Gastwirth (1974).

n
1
2

(
θ̂−θ

)
→ N

(
0, v2

)
. (1.6)

Then we construct a 100(1 − α)% normal approximation based confidence interval for

θ:

R=
{
θ : θ̂ ± Za/2 ∗ v/

√
n
}
. (1.7)

1.3 Empirical likelihood

Empirical likelihood (EL) method was first introduced by Owen (1988). It is the method

to construct confidence regions for the mean of a random vector. This nonparametric infer-

ence method is based on a data-driven likelihood ratio function, rather than an assumption

that the entire data from a known distribution. The empirical likelihood can be thought

of as a bootstrap that does not resample, and as “likelihood without parametric assump-

tions ” [see Owen (2001)]. It also has better asymptotic power properties and small sample

performance compared to other methods.

Since Owen (1988) derived the asymptotic χ2 distribution of empirical likelihood ratio

statistic for the mean µ, there have been many important contributions to the development

of the EL method in mainstream statistics. This is an evidence from Owen (2001) on

empirical likelihood. Among other results, Qin and Lawless (1994), which showed that side

information in the form of a set of estimating equations can be used to improve the maximum

EL estimators and the EL ratio confidence intervals, is particularly appealing for inference

from survey data in the presence of auxiliary information. Hall (1990) and DiCiccio et al.

(1991) have developed the empirical likelihood regions. Qin and Lawless (1994) proposed an

empirical likelihood for a parameter solved by general estimating equations, which established

the Wilks theorem. Ren (2008) and Keziou and Leoni-Aubin (2008) worked on the two-

sample problem. Recent censored linear regression models have been extensively discussed

by Zhao (2011) and Zhou and Li (2008), etc. And Tsao (2013) proposed the extended
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empirical likelihood for general estimating equations.

Empirical likelihood has been widely utilized in many settings, when data subjects to

constraints are linear. However, there exist a lot of computational difficulties when applied

to complicated statistics, such as nonlinear functional.

To overcome the computational difficulties, a modified empirical likelihood method was

proposed by Jing et al. (2009) and Wang (2010), which was called jackknife empirical like-

lihood (JEL). This method combines two of the popular nonparametric approaches: the

jackknife and the empirical likelihood. The main idea of the JEL is to “ turn the statistic

of interest into a sample mean based on jackknife pseudo-values” [see Quenouille (1956)]. If

we can prove that these pseudo-values are asymptotically independent, Owen’s [see Owen

(1988), Owen (1990)] empirical likelihood should be applied for the mean of the jackknife

pseudo-values.

As a new approach, jackknife empirical likelihood method has the most brilliant feature

- simplicity, and it is a simple application of empirical likelihood to simplify the computation

to complicated statistics. Also, some other new methods from jackknife empirical likelihood

method having better performance in terms of coverage probability and average length,

are adjusted jackknife empirical likelihood proposed by Chen et al. (2008) and extended

jackknife empirical likelihood proposed by Tsao (2013). Our main contribution in this thesis

is to develop new jackknife empirical likelihood methods for the absolute mean deviation to

achieve better small sample performance.

1.4 Structure

We develop the jackknife empirical likelihood (JEL), adjusted jackknife empirical likeli-

hood (AJEL), extended jackknife empirical likelihood (EJEL) method for the absolute mean

deviation in chapter 2.

In chapter 3, we will report that the results of simulation studies on the finite sample

performance in terms of coverage probability, average length of standard method, jackknife
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empirical likelihood, adjusted jackknife empirical likelihood and extended jackknife empirical

likelihood based confidence interval on the absolute mean deviation θ. We will further apply

these methods to four real data with different sample sizes to check the performance in

chapter 4. In chapter 5, we make the conclusion, and propose some ideas for the future

work.
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CHAPTER 2

INFERENCE PROCEDURE

2.1 Jackknife empirical likelihood

We plug the estimator (1.3) in JEL method:

θ̂
(−i)
n−1=

1

(n− 1)

n∑
j6=i

∣∣Xj−X̄(−i)
∣∣, (2.1)

where X̄(−i)=
1

n−1
∑n

j=i Xj.

This equation means that we estimate the estimator by removing the i-th item, where

θ̂
(−i)
n−1=θ̂(X1, X2, . . . Xi−1, Xi+1, . . . Xn). We define our jackknife pseudo-values by:

V̂i= nθ̂− (n− 1) θ̂
(−i)
n−1. (2.2)

The jackknife estimator of θ is the average of preudo-values defined as follows:

̂̂θn,jack=
1

n

n∑
i=1

V̂i. (2.3)

Since we know that Owen’s empirical likelihood is particularly easy to apply for the sample

mean, we will proceed as follows: Let P = (P1,P2, . . .Pn) be the probability vector, we have

that:
∑n

i=1 Pi= 1 and Pi > 0 for 1 ≤ i ≤ n. Then following Owen (1988, 1990) and Qin

and Lawless (1994), we have

L(θ) = max

{
n∏

i=1

Pi:
n∑

i=1

Pi= 1,
n∑

i=1

Pi(V̂i − θ)= 0 , Pi > 0

}
. (2.4)

Note:
∏n

i=1 Pi reaches its maximum when Pi=1/n. Next, we can define the jackknife empir-

ical likelihood ratio at θ by:
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R (θ) = max

{
n∏

i=1

(nPi):
n∑

i=1

Pi= 1,
n∑

i=1

Pi(V̂i − θ)= 0 , Pi > 0

}
. (2.5)

and

logR(θ) = max

{
n∏

i=1

log(nPi):
n∑

i=1

Pi= 1,
n∑

i=1

Pi(V̂i − θ)= 0 , Pi > 0

}
. (2.6)

By using the Lagrange multipliers method, we have:

Pi=
1

n

n∑
i=1

V̂i−θ
1+λ(V̂i−θ)

, (2.7)

where λ satisfies:

f (λ) =
1

n

n∑
i=1

V̂i−θ
1+λ(V̂i−θ)

= 0. (2.8)

Next, we plug equation (2.7) into equation (2.5), then take log:

log R(θ)= −
n∑

i=1

log
{

1+λ
(

V̂i−θ
)}
. (2.9)

We plug equation (2.7) into equation (2.6), we have:

l (θ) = −2logR (θ) = −2
n∑

i=1

log (nPi) . (2.10)

Thus, we establish the following Wilk’s theorem and show how the result can be used to

construct confidence interval for θ. Let θ0 be the true value of θ.

Theorem 1: Under the above conditions, l(θ0) converges in distribution to χ2, where χ2 is

a chi-square random variable with 1 degree of freedom.

An asymptotic 100(1-α) % JEL confidence interval can be constructed with the above the-

orem:
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Rc= {θ: −2logR (θ) ≤ C} , (2.11)

where C is chosen to satisfy P (χ2 ≤ C) = 1−α.

2.2 Adjusted jackknife empirical likelihood

When the sample size is not significantly large, the coverage probability could be de-

viated significantly from the corresponding nominal level. Chen et al. (2008) developed an

adjusted empirical likelihood method. This method significantly improves the performance

of the empirical likelihood method. They showed that “ the first-order asymptotic properties

of the adjusted empirical likelihood remains the same while the error of coverage probability

could be reduced significantly when the sample size is small for the first-order asymptotic

properties of the adjusted empirical likelihood under the population mean case”[see Chen et

al. (2008)].

Moreover, this method could efficiently avoid convex hull restriction and guarantees a

sensible value of the empirical likelihood when the parameter value varies. So it will be very

easy for the algorithm of the standard empirical likelihood to be extended to the adjusted

method. We adapt their approach to the jackknife empirical likelihood for θ.

The adjusted jackknife empirical likelihood function for fixed θ is defined to be as Chen

et al. (2008) did:

L (θ) = max{
n+1∏
i=1

pi, subject to
n+1∑
i=1

pig
ad
i (θ) = 0,

n+1∑
i=1

pi= 1, Pi > 0}, (2.12)

where: i = 1, 2, . . . ,n, gad
i (θ) =

(
V̂i−θ

)
, and gad

n+1 (θ) = −angn(θ). Here an = max(1, log(n)/2),

which is recommended by Chen et al. (2008),
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gn (θ) =
1

n

n∑
i=1

gi(θ). (2.13)

The resulting adjusted jackknife empirical likelihood is:

Rad (θ) =
n+1∏
i=1

{
(n + 1)pad

i (θ)
}
, (2.14)

where

pad
i (θ) =

1

n + 1

1

1+λgad
i (θ)

, (2.15)

i= 1, 2, 3, . . ., n+1, and λ satisfies

f (λ) =
n+1∑
i=1

gad
i (θ)

1+λgad
i (θ)

= 0. (2.16)

Next, we plug equation (2.15) into equation (2.14), then take log:

logRad(θ) = −
n+1∑
i=1

log(1+λgad
i (θ) ). (2.17)

For the adjusted jackknife empirical likelihood method, we can combine Chen et al.

(2008) and the Jing et al. (2009) to get the following Wilk’s theorem.

Theorem 2: Under the above conditions, −2logRad(θ0) converges in distribution to χ2.

For the adjusted jackknife empirical likelihood (AJEL) method, an asymptotic 100(1-α)

% confidence interval for θ can be constructed with the above theorem:

Rad=
{
θ: −2logRad (θ) ≤ C

}
, (2.18)

where C is chosen by P (χ2 ≤ C) = 1−α.
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2.3 Extended jackknife empirical likelihood

Tsao and Wu (2013) proposed a new empirical likelihood by extending the empirical

likelihood domain expansion. They extended the empirical likelihood beyond its domain

Θn by expanding its contours nested inside the domain with a similarity transformation.

At the same time, the extended empirical likelihood achieves two objectives. The first one

is to escape the “convex hull constrain” on the empirical likelihood. The second one is to

improve the coverage accuracy of the empirical likelihood ratio confidence region to O(1/n2)

[see Tsao and Wu (2013)].

The extended empirical likelihood [see Tsao and Wu (2013)] achieved the second objec-

tive through a special transformation. The extended EL confidence region not only retains

the shape of the EL confidence region but also works efficiently on the small sample size [see

Tsao (2013) and Tsao and Wu (2013)].

Following Tsao and Wu (2013), we define hc
n by using JEL l( θ) at θ:

hc
n (θ) =θ̂+ γ(n, l(θ))(θ−θ̂), (2.19)

where γ (n, l (θ)) is the expansion factor given as

γ (n, l (θ)) = 1+
l(θ)

2n
. (2.20)

Applying the method of Lagrange multipliers, we have extended jackknife EL ratio as

follows:

−2logRed(θ)=l

{
θ̂+

(
1+

l (θ)

2n

)(
θ−θ̂

)}
(2.21)

=2
n∑

i=1

log

{
1+

(
1+

l (θ)

2n

)(
θ−θ̂

)}
.
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Theorem 3: Under the above conditions, −2logRad (θ0) converges in distribution to χ2.

Thus, the 100(1-α)% EJEL confidence interval for θ is

Red=
{
θ: −2logRed (θ) ≤ C

}
, (2.23)

where C is defined as before.
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CHAPTER 3

NUMERICAL STUDIES

Based on the result in the proposed inference procedure, two groups of simulation studies

are conducted to explore the performance of standard normal approximation method, JEL,

adjusted JEL and extended JEL methods for the absolute mean deviation with different

sample sizes. In this chapter, we simulate the data from normal distribution and exponential

distribution, then compare the performance of 4 different methods.

In the simulation study, we simulate a group of data with standard normal distribu-

tion with mean 0 and standard deviation 1. Also we simulate another group of data with

exponential distribution with λ =1.

For the standard normal approximation (NA) based method, in order to find the cu-

mulative p, we compare it with the mean for each individual X. If the X is greater than X,

we count once. Then we plug p into the variance function to find each of the upper and

lower bounds. We compare the true value of the absolute mean deviation with the upper

and lower bounds. If it is inside, we count once.

For the JEL method, we need to check whether -2logR( θ0) is less or equal to χ2
1(α) to

calculate the coverage probability. Here we choose α to be 0.1, 0.05 and 0.01 to define three

nominal levels 90%, 95% and 99%. For example, we check if -2logR( θ0) ≤ 1.962, when α is

0.05. The length of the confidence interval is also very important because the shorter length

means higher accuracy in obtaining the true value of an absolute mean deviation. We choose

our sample size from smaller to larger: 30, 50, 100, 200 and 300. For each different sample

size, the repetition is 5000 times.
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3.1 Simulation for normal distribution

We simulate a group of data in the standard normal distribution, with mean µ=0 and

standard deviation σ=1. From Table 3.1, we can find the following results.

The coverage probability is not satisfied on the normal approximation methods (NA)

when the sample size is small and moderate. However, JEL, AJEL and EJEL have much

better coverage probability for the same sample size. For example, when the sample size

n=30, and nominal level =95%, coverage probability of NA method is 81.64%, coverage

probability of JEL method is 93.02%, coverage probability of AJEL method is 94.62% and

coverage probability of EJEL method is 95.12%. From the results, we can see AJEL and

EJEL are very close to nominal level 95%. Thus we say AJEL and EJEL have better

performance than JEL on the small sample size.

When the sample size is large, NA, JEL, AJEL and EJEL have similar performance in

terms of coverage probability. For example when the sample size n=300, and nominal level

=95%, coverage probability of NA method is 93.82%, coverage probability of JEL confidence

interval is 95.12%, coverage probability of AJEL confidence interval is 95.40% and coverage

probability of EJEL confidence interval is 95.20%.

For all the methods, the length of confidence interval becomes shorter when the sample

size becomes larger. When the sample size is from moderate to large, the length of confidence

interval for all the methods is very close. When the sample size is smaller, the length of

the NA method is slight shorter than other three methods due to serious under coverage

problem for the NA method.
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Table 3.1 : Coverage probability under normal distribution

n Nominal NA JEL AJEL EJEL

Level
99% 85.18% 98.16% 98.64% 99.64%

30 95% 81.64% 93.02% 94.62% 95.12%
90% 79.02% 87.42% 89.74% 89.48%
99% 90.44% 98.72% 98.98% 99.98%

50 95% 86.44% 94.28% 95.60% 95.10%
90% 83.06% 88.84% 90.44% 89.60%
99% 94.70% 98.72% 99.14% 98.78%

100 95% 90.48% 94.78% 95.12% 94.94%
90% 86.12% 89.80% 90.54% 90.20%
99% 96.88% 99.02% 99.10% 99.06%

200 95% 93.00% 95.28% 95.80% 95.32%
90% 88.74% 90.10% 90.56% 90.22%
99% 97.56% 99.00% 99.04% 99.04%

300 95% 93.82% 95.12% 95.40% 95.20%
90% 88.88% 90.60% 91.24% 90.70%

Note:

NA: Normal approximation method

JEL: Jackknife empirical likelihood

AJEL: Adjusted Jackknife empirical likelihood

EJEL: Extended Jackknife empirical likelihood
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Table 3.2 : Average length under normal distribution

n Nominal NA JEL AJEL EJEL

Level
99% 0.507 0.583 0.585 0.584

30 95% 0.386 0.446 0.442 0.448
90% 0.324 0.367 0.366 0.371
99% 0.411 0.456 0.446 0.447

50 95% 0.313 0.340 0.340 0.339
90% 0.263 0.281 0.283 0.283
99% 0.303 0.316 0.313 0.316

100 95% 0.230 0.239 0.237 0.238
90% 0.193 0.200 0.198 0.199
99% 0.217 0.222 0.222 0.221

200 95% 0.165 0.169 0.168 0.168
90% 0.138 0.141 0.140 0.141
99% 0.178 0.181 0.180 0.181

300 95% 0.135 0.137 0.137 0.137
90% 0.114 0.115 0.115 0.115

Note:

NA: Normal approximation method

JEL: Jackknife empirical likelihood

AJEL: Adjusted Jackknife empirical likelihood

EJEL: Extended Jackknife empirical likelihood
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3.2 Simulation for exponential distribution

We simulate a group of data in exponential distribution, with λ=1. From Table 3.2, we

have the following findings:

The coverage probability is not satisfied with the NA method at all sample sizes we tried.

However, JEL, AJEL and EJEL methods have much better coverage probability even when

the sample size is small. Also, AJEL and EJEL methods are slightly better than JEL method

when we compare these three methods on small sample size. For example, when the sample

size n=30, and the nominal level =95%, coverage probability of NA confidence interval is

69.68%, coverage probability of JEL confidence interval is 92.00%, coverage probability of

AJEL confidence interval is 94.30% and coverage probability of EJEL confidence interval is

95.04%. From the simulation results, we can see that the AJEL and EJEL methods are very

close to the nominal level 95%. Thus we can say that AJEL and EJEL method have better

performance than JEL and NA methods for the small sample sizes.

When the sample size is large, JEL, AJEL and EJEL methods have similar performance

in terms of coverage probability. For example when the sample size n=300, and nominal level

=95%, the coverage probability of NA confidence interval is 84.88%, the coverage probability

of JEL confidence interval is 93.64%, the coverage probability of AJEL confidence interval

is 93.98% and the coverage probability of EJEL confidence interval is 93.72%. We can see

all the jackknife methods have better coverage probability than the normal approximation

method. The results are close to our expectation for all sample sizes.

For all the methods, the length becomes shorter when the sample size becomes larger.

When the sample size changes from smaller to larger, the length of JEL, AJEL and EJEL

methods are very close and the length converges faster than normal distribution. When the

sample size is small, the length of NA method is shorter than other methods, but when the

sample size is large, the length of NA method is longer than other methods.
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Table 3.3 : Coverage probability under exponential distribution

n Nominal NA JEL AJEL EJEL

Level
99% 73.52% 98.20% 99.50% 98.94%

30 95% 69.68% 92.00% 94.30% 95.04%
90% 66.76% 86.00% 89.20% 87.82%
99% 80.60% 97.46% 98.20% 98.70%

50 95% 76.46% 92.44% 93.84% 93.58%
90% 72.18% 87.08% 88.98% 87.08%
99% 85.62% 98.00% 98.44% 98.42%

100 95% 80.54% 93.02% 94.08% 93.14%
90% 75.12% 87.60% 88.60% 87.52%
99% 90.94% 98.34% 98.64% 98.40%

200 95% 84.56% 94.16% 94.82% 94.22%
90% 78.26% 88.98% 89.84% 88.98%
99% 91.76% 98.46% 98.70% 98.42%

300 95% 84.88% 93.64% 93.98% 93.72%
90% 78.18% 87.88% 88.70% 88.06%

Note:

NA: Normal approximation method

JEL: Jackknife empirical likelihood

AJEL: Adjusted Jackknife empirical likelihood

EJEL: Extended Jackknife empirical likelihood
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Table 3.4 : Average length under exponential distribution

n Nominal NA JEL AJEL EJEL

Level
99% 0.447 0.783 0.787 0.770

30 95% 0.333 0.619 0.565 0.595
90% 0.362 0.502 0.491 0.490
99% 0.343 0.635 0.617 0.624

50 95% 0.260 0.488 0.485 0.474
90% 0.221 0.395 0.398 0.392
99% 0.342 0.470 0.466 0.469

100 95% 0.273 0.350 0.349 0.345
90% 0.220 0.291 0.289 0.290
99% 0.343 0.331 0.330 0.332

200 95% 0.262 0.247 0.247 0.246
90% 0.221 0.206 0.206 0.205
99% 0.342 0.269 0.269 0.268

300 95% 0.262 0.202 0.202 0.201
90% 0.225 0.169 0.168 0.168

Note:

NA: Normal approximation method

JEL: Jackknife empirical likelihood

AJEL: Adjusted Jackknife empirical likelihood

EJEL: Extended Jackknife empirical likelihood
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CHAPTER 4

REAL DATA ANALYSIS

In this chapter, we studied four real data sets with the sample size small, moderate and

large to illustrate the proposed methods in chapter 3.

The first data set named “pottery” has 26 observations and the second data set named

“hotdogs” has 54 observations. These two data sets were obtained from the Data and Story

Library (DASL) at Carnegie Mellon University. The third data set named “discoveries ” has

114 observations and the last data set named “faithful ” has 272 observations. These two

data sets were obtained from R dataset package in R program.

In order to compare the results with the simulation study, we check the normality of

each dataset, the normality test called Shapiro-Wilk test has been conducted. The null

hypothesis of Shapiro-Wilk test is that sample data distribution is normal distribution. We

check the p-value to reject or accept the null hypothesis. If the p-value is smaller than the

nominal level, we reject null hypothesis which means the sample data is from non-normal

distribution. Otherwise we can treat the sample data are from normal distribution. Thus

we can compare the result with the normal distribution result.



20

4.1 Pottery data analysis

For the data set “pottery”, 26 observations are 26 samples of Romano-British pottery

which were found at four different kiln sites in Wales, Gwent and the New Forest. The

6 variables are the percentage of oxides of various metals measured by atomic absorption

spectrophotometry. The data were collected in order to see if different sites contained pottery

of different chemical compositions.

The size 26 is similar to small sample size that we simulated in chapter 3, therefore we

can use this data set to illustrate the proposed methods. Among the 6 variables, we only

choose one variable which is the percentage of aluminum oxide in sample to illustrate our

methods.

We obtain the lower bound, upper bound and length by using the NA, JEL, AJEL and

EJEL methods. From the results, we can see that the lengths of JEL, AJEL, EJEL methods

are very close and are clearly longer than one of the normal approximation method.

After using the Shapiro-Wilk test, the calculated p-value is 0.09447 which has very

weak evidence to support the data is from a normal distribution. Thus we need to check the

histogram of the data and it shows the distribution is close to a exponential distribution.

We also can see our result is coherent to the simulation result of exponential distribution.
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Table 4.1 : Length of confidence intervals of pottery data set

Nominal NA JEL AJEL EJEL

Level UB LB UB LB UB LB UB LB
3.234 1.795 3.578 1.761 3.571 1.810 3.598 1.747

99% Length 1.739 1.817 1.761 1.851
3.062 1.967 3.303 1.943 3.306 1.989 3.318 1.932

95% Length 1.095 1.3560 1.317 1.386
2.974 2.055 3.171 2.038 3.179 2.083 3.183 2.030

90% Length 0.919 1.133 1.096 1.153

Note:

NA: Normal approximation method

JEL: Jackknife empirical likelihood

AJEL: Adjusted Jackknife empirical likelihood

EJEL: Extended Jackknife empirical likelihood

UB: Upper bound

LB: lower bound
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4.2 Hot dogs data analysis

The data set “hot dogs” is about the results of a laboratory analysis of calories and

sodium content of major hot dog brands. Researchers for Consumer Reports analyzed three

types of hot dog: beef, poultry, and meat (mostly pork and beef, but up to 15% poultry

meat).

There are 54 observations in this dataset which are similar to small sample size. We

have two variables calories and sodium in this data set, but we only choose sodium in sample

to analysis it.

Similar to the data set “pottery”, we also find the lower bound, upper bound and length

by using the NA, JEL, AJEL and EJEL methods. From the results, we can see the lengths

of all the methods are almost the same.

Regarding to Shapiro-Wilk test, the calculated p-value is 0.4836. We fail to reject null

hypothesis, which means this sample data is from a normal distribution. Also the histogram

of the data is shown colse to a normal distribution. Our result is coherent to the simulation

result with the normal distribution.
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Table 4.2 : Length of confidence intervals of hot dogs data set

Nominal NA JEL AJEL EJEL

Level UB LB UB LB UB LB UB LB
96.815 58.469 99.392 60.101 100.476 61.365 99.283 60.189

99% Length 38.346 39.291 39.111 39.094
92.230 63.053 93.411 63.941 94.605 65.238 93.331 64.011

95% Length 29.177 29.470 29.367 29.320
89.885 65.399 90.535 65.956 91.773 67.268 90.470 66.015

90% Length 24.486 24.579 24.505 24.455

Note:

NA: Normal approximation method

JEL: Jackknife empirical likelihood

AJEL: Adjusted Jackknife empirical likelihood

EJEL: Extended Jackknife empirical likelihood

UB: Upper bound

LB: lower bound
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4.3 Discoveries data analysis

The data set “discoveries” is a group of time series data. The number is the “great”

inventions and scientific discoveries in each year from 1860 to 1959.

There are 114 observations in this dataset which are similar to moderate sample size. In

this data set, we have only one variable which means the number of discoveries were found

in each year.

Similar to the data set in sections 4.1 and 4.2, we also find the lower bound, upper

bound and length by using the NA, JEL, AJEL and EJEL methods.

We can see the lengths of JEL, AJEL and EJEL are longer than one of the NA method

from the results. Thus we can get a conclusion there is no big difference among the lengthes

of JEL, AJEL and EJEL methods.

According to Shapiro-Wilk test, the calculated p-value is 0.000001524. Since the p-value

is very small, so we reject null hypothesis, which means this sample data is from a non-normal

distribution. Also the histogram of the data is shown very skewed. We can compare our

result with the simulation result of exponential distribution. Under the same sample size,

the length of NA method is slightly shorter than those of JEL, AJEL and EJEL methods.

These two results are also coherent.



25

Table 4.3 : Length of confidence intervals of discoveries data set

Nominal NA JEL AJEL EJEL

Level UB LB UB LB UB LB UB LB
2.007 1.341 2.352 1.268 2.343 1.270 2.355 1.267

99% Length 0.666 1.084 1.073 1.088
1.928 1.421 2.163 1.356 2.156 1.357 2.164 1.355

95% Length 0.507 0.807 0.799 0.809
1.887 1.461 2.074 1.403 2.068 1.404 2.075 1.402

90% Length 0.426 0.671 0.664 0.673

Note:

NA: Normal approximation method

JEL: Jackknife empirical likelihood

AJEL: Adjusted Jackknife empirical likelihood

EJEL: Extended Jackknife empirical likelihood

UB: Upper bound

LB: lower bound
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4.4 Faithful data analysis

The data set “faithful ”is also from R dataset in R program. This data set has two

variables. One is waiting time between eruptions and another one is the duration of the

eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA.

There are 272 observations in this dataset which are similar to large sample size. We

choose the duration of the eruption as our parameter to study in this data set.

We also check the normality of this dataset by Shapiro-Wilk test. The calculated p-value

is 9.036e-16 which is close to 0. We reject null hypothesis, and it means this sample data

are from a non-normal distribution. The histogram of the data is shown skewed and it looks

like a mixed normal distribution. Thus we can not compare the result with the simulation

results of exponential distribution or normal distribution.

By each of the method, we also find the lower bound, upper bound and length at nominal

level 99%, 95% and 90%.

We can see the lengths of JEL, AJEL and EJEL are almost same and are much longer

than one of the NA method in the table. We should try the simulation study of mixed

normal distribution and compare with this result in the future.
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Table 4.4 : Length of confidence intervals of faithful data set

Nominal NA JEL AJEL EJEL

Level UB LB UB LB UB LB UB LB
1.106 0.979 1.148 0.949 1.150 0.951 1.148 0.949

99% Length 0.127 0.199 0.199 0.199
1.090 0.994 1.123 0.972 1.125 0.974 1.123 0.972

95% Length 0.096 0.151 0.151 0.151
1.083 1.002 1.110 0.984 1.113 0.986 1.111 0.983

90% Length 0.081 0.126 0.127 0.128

Note:

NA: Normal approximation method

JEL: Jackknife empirical likelihood

AJEL: Adjusted Jackknife empirical likelihood

EJEL: Extended Jackknife empirical likelihood

UB: Upper bound

LB: lower bound
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CHAPTER 5

SUMMARY AND FUTURE WORK

5.1 Summary

In this thesis, we used three types of JEL methods to construct confidence interval for

the absolute mean deviation.

According to the simulation study, we can easily conclude that JEL, AJEL and EJEL

methods have much better performance than the standard normal approximation method

in terms of coverage probability when the sample size is small. Lengths for all the JEL,

AJEL and EJEL methods are very close. Therefore it is hard to say which method is

better. Especially under exponential assumption, the coverage probability of the standard

normal approximation method is far away from our expectation when the sample size is

small. However, the coverage probability of JEL, AJEL and EJEL methods is very close to

nominal level 95%.

For the real data analysis part, we calculated the interval lengths for each data set, but

the result is not very satisfied since the length of all the JEL methods we used are similar,

and we could not choose which one is better. We also check the normality of data, the

dataset “pottery” and dataset “hotdog” follows a normal distribution, and the results are

coherent with the simulation results of normal distribution. The datasets “discoveries”and

“faithful” do not follow normal distribution. Thus we compare the result with exponential

distribution simulation. These two results are also comparable.

Therefore, we conclude that JEL, AJEL and EJEL methods perform better than stan-

dard normal approximation based method in terms of coverage probability when the sample

size is small. In practice, we recommend AJEL and EJEL methods. From computational

issue, we find the AJEL method is easy and shares the very good small sample performance.
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5.2 Future work

From the result, we can see the JEL and AJEL methods have very good performance no

matter the sample size is small or large. Theoritically, the EJEL method should have better

performance than other methods when the sample size is small [see Tsao and Wu (2013)].

However, the result of EJEL method is comparable with AJEL method when the smaller

sample size is small. In order to overcome this drawback, we need to improve this method

in the future.

In addition to normal and exponential distributions, we also can try simulation of other

distributions, such as mixed normal distributions.

In addition, we also can try other empirical likelihood methods, such as bootstrap

method to explore the accuracy by jackknife empirical likelihood method.
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