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ABSTRACT

Skewness and kurtosis are measures used to describe shape characteristics of distribu-

tions. In this thesis, we examine the interval estimates about the skewness and kurtosis by

using jackknife empirical likelihood (JEL), adjusted JEL, extended JEL, traditional boot-

strap, percentile bootstrap, and BCa bootstrap methods. The limiting distribution of the

JEL ratio is the standard chi-squared distribution. The simulation study of this thesis makes

a comparison of different methods in terms of the coverage probabilities and interval lengths

under the standard normal distribution and exponential distribution. The proposed adjusted

JEL and extended JEL perform better than the other methods. Finally we illustrate the

proposed JEL methods and different bootstrap methods with three real data sets.
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CHAPTER 1

INTRODUCTION

Skewness and kurtosis are measurements which are used to describe the shape charac-

teristics of a distribution. Skewness is a measure of symmetry, and kurtosis is a measure

of whether the data are peaked or flat relative to a normal distribution. The data set will

have a distinct peak near the mean, decline rather rapidly, and have heavy tails when the

kurtosis is large. Balanda and MacGillivray (1988) suggested a vague concept for skewness

and kurtosis. Wilcox (1990) used skewness and kurtosis in tests of normality and in studies

of robustness in normal theory procedures. The kurtosis depends on peakedness near the

center and tail weight. The influence function (IF) which was proposed by Hampel (1968)

suggests a quantitative understanding of kurtosis. It reveals accurately how kurtosis changes

with slight deviation from the Gaussian distribution.

In theory and statistics, bootstrap is used as a resampling method to get a more ac-

curate result. The bootstrap, which was inspired by earlier work on the jackknife, was first

introduced by Efron (1979). “The bootstrap is a data-based simulation method for statistical

inference, which involves repeatedly drawing random samples from the original data, with

replacement” [see Ankarali et al. (2009)]. The bootstrap method is a resampling technique

that allows estimation of almost any sampling distributions in statistics. One advantage of

the bootstrap is that it derives estimates of variance and confidence intervals for complex

estimators of parameters of interest.

Empirical likelihood (EL) is an inference method in statistics. EL method was first

used by Thomas and Grunkemeier (1975) for constructing confidence intervals and was

introduced by Owen (1988), who looked into the relationship between EL and non-parametric

statistics. EL can deal with the independent and identically distributed (iid) data well

and also performs well with the asymmetric distribution, which was first used by Thomas
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and Grunkemeier (1975) for constructing confidence intervals for survival functions with

censored data. Recently, based on the asymptotic χ2 distribution of empirical likelihood

ratio statistics, more and more important research results of the EL method have been

developed.

In statistics, the empirical distribution function is the empirical estimate of the cumula-

tive distribution function (CDF), which is a step function jumping up by 1/n at each of the

n data points. According to the Gilvenko-Cantelli theorem, it estimates the true underlying

cumulative distribution function of the points in the sample and converges to distribution

function with probability 1. Let X1, X2, ..., Xn be independent and identically distributed

(iid) real random variables with common cumulative distribution function F (t). Then the

empirical distribution function is defined as

Fn(t) =
1

n

n∑
i=1

I[xi ≤ t], (1.1)

where IA is the indicator random variable. It is equal to 1 when the property A holds, and

equal to 0 otherwise. Appealing to the Law of Large Numbers, the empirical distribution

function Fn(t) accurately estimates the true distribution F (t).

Owen (1988) and Owen (1990) introduced the empirical likelihood (EL). It is used

to determine the shape of the confidence intervals without estimating the variance [see

Bouadoumou et al. (2014)]. We review it as follows. Suppose we have an independent iden-

tically distributed sample of (U1, ..., Un) random variables. The objective of the empirical

likelihood is the construction of tests and confidence intervals for the parameter θ = E[Ui].

Based on Owen (2001), at the θ, the empirical likelihood is defined by

L(θ) = max

{
n∏
i=1

pi :
n∑
i=1

pi = 1,
∑

PiUi = θ, Pi > 0

}
.

The profile empirical likelihood ratio function for θ can be rewritten as
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R (θ) =
L(θ)

n−n = max

{
n∏
i=1

npi :
n∑
i=1

pi = 1,
∑

PiUi = θ, Pi > 0

}
.

Based on the Lagrange multipliers method, we have

pi =
1

n

1

1 + λ (Ui − θ)
,

where λ satisfies

f(λ) ≡ 1

n

n∑
i=1

Ui − θ
1 + λ(Ui − θ)

= 0.

The Wilks’ theorem holds. For the skewness and kurtosis, the estimators are nonlinear

functions. The standard EL leads to the scaled chi-squared distribution. We need to estimate

the scale factor by a simulation study. “When EL is applied to more complicated statis-

tics such as U-statistics, it runs into serious computational difficulties” [see Bouadoumou

et al. (2014) about JEL for the ATF model]. Jing et al. (2009) proposed the jackknife EL

method for U-statistics. These proposed JEL methods determined some improvements when

compared with the current EL methods based on computational issues [see Yang and Zhao

(2013)]. Yang and Zhao (2013) proved that the smoothed jackknife empirical log likelihood

ratio for the difference of 2 ROC curves is asymptotically chi-squared distributed. Their

method can be adapted to the skewness and kurtosis.

The organization of this thesis is as follows. In Chapter 2, we will review some basic

concepts of skewness and kurtosis. Three kinds of bootstrap methods are proposed for

interval estimates. We will also introduce jackknife empirical likelihood (JEL) method,

adjusted jackknife empirical likelihood (AJEL) method, and extended jackknife empirical

likelihood (EJEL) method.

In Chapter 3, we will carry out the results of simulation studies. Three methods in-

cluding jackknife empirical likelihood (JEL), adjusted jackknife empirical likelihood (AJEL),

and extended jackknife empirical likelihood (EJEL) will be compared with the nonparametric

bootstrap, bootstrap percentile, and bootstrap BCa methods in terms of coverage probabil-
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ity and average length of confidence intervals under the standard normal distribution and

exponential distribution.

In Chapter 4, we make a conclusion of this thesis and discuss some disadvantages of the

study. In addition, we give some insights for future work.
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CHAPTER 2

METHODOLOGY

2.1 Skewness and Kurtosis

The skewness of a random variable X is the third standardized moment, which is defined

as

g1 = E[(
X − µ
σ

)3] =
µ3

σ3
=

E[(X − µ)3]

(E[(X − µ)2])3/2
, (2.1)

where E is the expectation, µ3 is the third central moment, and σ is the standard deviation.

The kurtosis is defined as

g2 =
E[(X − µ)4]

(E[(X − µ)2])2
− 3 =

µ4

σ4
− 3, (2.2)

where µ4 is the fourth moment about the mean and σ is the standard deviation.

The traditional measures of skewness g1 and kurtosis g2 are proposed by Cramer (1946).

They have been compared with various other measures, which are adopted by SAS and

MINITAB. For a sample size n, Cramer (1946) proposed the sample skewness to estimate g1

ĝ1 =
m3

m
3/2
2

=
1
n

∑n
i=1(xi − x)3

( 1
n

∑n
i=1(xi − x)2)3/2

, (2.3)

where x̄ is the sample mean, m3 is the sample third central moment, and m2 is the sample

variance. When the second and third cumulants are infinite, the skewness is undefined.

The variance of the skewness estimate of a sample of size n from a normal distribution

is approximately equal to

V ar(ĝ1) =
6n(n− 1)

(n− 2)(n+ 1)(n+ 3)
. (2.4)
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For a sample size n, the sample kurtosis is defined as follows

ĝ2 =
m4

m2
2

− 3 =
1
n

∑n
i=1(xi − x)4

( 1
n

∑n
i=1(xi − x)2)2

− 3, (2.5)

where the m4 is the fourth sample moment about the mean and m2 is the second sample

moment about the mean.

The variance of the sample kurtosis of a sample size n from the normal distribution is

approximately equal to

V ar(ĝ2) =
24n(n− 1)2

(n− 3)(n− 2)(n+ 5)(n+ 3)
. (2.6)

2.2 Proposed bootstrap methods for the skewness and kurtosis

In practice, it is unknown if the population is normal or skewed. Hence we cannot

use the variance estimators mentioned above. Let θ denote the skewness g1 or kurtosis g2.

The bootstrap is defined in statistics as, an approach for assigning degrees of accuracy to

sample estimates. Bootstrapping lets estimation of the sampling distribution of essentially

any statistic using alternative techniques. Typically, this technique is part of the resampling

method family. This family includes bootstrapping, jackknifing, and permutation tests.

The bootstrap method uses the original sample of the population and draws a large

number B of bootstrap samples with replacement from the original sample. The bootstrap

sample has n observations as the original sample that some observations show few times and

some do not ever show. In this thesis, we do B = 400 replications. The 400 samples with

replacement would be
{
x∗1,1, x

∗
2,1, ...., x

∗
n,1

}
,
{
x∗1,2, x

∗
2,2, ...., x

∗
n,2

}
, ...,

{
x∗1,400, x

∗
2,400, ...., x

∗
n,400

}
.

The estimate of θ for each bootstrap sample would be
{
θ̂∗1, θ̂

∗
2, ...., θ̂

∗
B

}
. According to DiCiccio

and Efron (1996), the 1− α nonparametric bootstrap confidence interval is defined by

θ̂∗ ± z1−α/2ŜE, (2.7)

where the standard error ŜE of the estimator θ̂ is defined as
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ŜE =

√√√√ 1

B − 1

B∑
B=1

(θ̂∗B − θ̂∗)2, (2.8)

where θ̂∗ = 1
B

∑B
B=1 θ̂

∗
B.

The bootstrap percentile method is a very simple alternative method for constructing a

bootstrap confidence interval. The advantage of it is the computational efficiency. We order

the B = 400 values of the bootstrap replications as
{
θ̂∗1 < θ̂∗2 < .... < θ̂∗B

}
. The ordered

element B ∗α/2− th is the lower bound, while the ordered element B ∗ (1−α/2)− th is the

upper bound. Based on DiCiccio and Efron (1996), the 1−α bootstrap percentile confidence

interval for θ would be:

[θ̂∗α/2, θ̂
∗
1−α/2]. (2.9)

However, some sample statistics are biased estimators of their corresponding population

parameters [see DiCiccio and Efron (1996) and Efron (1979)]. The standard error of an

estimate of θ may not be independent of the value of θ. Therefore, unbiased lower and upper

percentile cut-offs may not be the same number of standard-error units from θ̂ [see DiCiccio

and Efron (1996)].

The bias corrected and accelerated (BCa) bootstrap method was introduced by Efron

(1987). It adjusts the percentile cut-offs in the distribution of the resampled θ̂∗ for both

bias and for the rate of change. The coverage error for the BCa bootstrap method goes to

zero at a rate of 1/n when the sample size n increases. According to Efron and Tibshirani

(1994), “the Monte Carlo research has shown that BCa intervals yield small coverage error

for means, medians, and variances.” The boot.ci function, which was written by Canty and

Ripley (2012), is an implementation of BCa bootstrap method. The BCa method produces

smaller coverage error, which is considered as its advantage [see Efron and Tibshirani (1994)].

According to Wang and Zhao (2009), “The bootstrap BCa method adjusts the

percentiles selected from the bootstrap percentile method to be the endpoints of the

confidence intervals.” We order the B = 400 values of the bootstrap replications as
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{
θ̂∗1 < θ̂∗2 < .... < θ̂∗B

}
. Based on Efron and Tibshirani (1986), Efron (1987), and Carpenter

and Bithell (2000), the ordered element B ∗ αL − th is the lower bound, while the ordered

element B ∗ αU − th is the upper bound. αL and αU are the adjusted percentiles of the

bootstrap replicates θ̂∗ [see Wang and Zhao (2009)]. The 1 − α bootstrap BCa confidence

interval for θ is shown as follows:

[θ̂∗αL
, θ̂∗αU

]. (2.10)

The values αL and αU are given as:

αL = Φ(
z0 + zα/2

1− a(z0 + azα/2)
+ z0), (2.11)

and

αU = Φ(
z0 + z1−α/2

1− a(z0 + az1−α/2)
+ z0), (2.12)

where Φ denotes the standard normal cumulative distribution function and

z0 = Φ−1
(

#
{
θ̂∗b ≤ θ̂

}
/B
)
, (2.13)

here b=1,2,...,B. z0 is used to adjust for the bias of the estimator θ̂ [see Wang and Zhao

(2009)]. Based on Carpenter and Bithell (2000), the value a is obtained by

a =

∑
(θ̂() − θ̂−i)3

6[
∑

(θ̂() − θ̂−i)3]3/2
, (2.14)

where θ̂−i is the estimate of θ computed without the ith observation. θ̂() is the mean of the

θ̂−i values. When a=0 and z0=0, there is no difference between the BCa method and the

percentile method.
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2.3 Jackknife Empirical Likelihood

According to Jing et al. (2009), the jackknife empirical likelihood (JEL) method com-

bines two nonparametric approaches: jackknife method and empirical likelihood method.

The jackknife method was invented by Quenouille (1956) and developed further by Tukey

(1958). The key steps and the general context of the JEL method are given as follows. The

consistent estimator of the parameter θ, which denotes the skewness g1 or kurtosis g2, is

given by

Tn = T (Z1, ..., Zn) . (2.15)

The jackknife pseudo-values function is defined as:

V̂i = nTn − (n− 1)T
(−i)
n−1 , i = 1, ..., n, (2.16)

where T
(−i)
n−1 is computed from the original data set by removing the i-th observation, i. e,

T
(−i)
n−1 := T (Z1, ..., Zi−1, Zi+1, ..., Zn). (2.17)

The jackknife estimator T̂n,jack of θ is the average of all the pseudo-values

T̂n,jack :=
1

n

n∑
i=1

V̂i. (2.18)

The estimators Tn and T̂n,jack do not differ much. Based on Owen (1988), Owen (1990),

and Jing et al. (2009), we have the estimator θ evaluated by the function L(θ)

L(θ) = max

{
n∏
i=1

pi :
n∑
i=1

piV̂i = θ,

n∑
i=1

pi = 1, pi ≥ 0

}
(2.19)

where
∑n

i=1 pi = 1, pi ≥ 0. So the jackknife empirical likelihood ratio at θ is as follows:
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R (θ) =
L(θ)

n−n = max

{
n∏
i=1

npi :
n∑
i=1

piV̂i = θ,

n∑
i=1

pi = 1, pi ≥ 0

}
. (2.20)

We use the Lagrange multipliers method to get

pi =
1

n

1

1 + λ(V̂i − θ)
, (2.21)

and λ satisfies the following nonlinear equation

f(λ) ≡ 1

n

n∑
i=1

V̂i − θ
1 + λ(V̂i − θ)

= 0. (2.22)

We plug pi into R(θ). We have the nonparametric jackknife empirical log-likelihood

ratio, which is

logR(θ) = −
n∑
i=1

log
{

1 + λ(V̂i − θ)
}
.

Then we can get

l(θ) = −2logR(θ) (2.23)

Let θ0 be the true value of θ. We have the following Wilks’ theorem using the technique

given by Jing et al. (2009). We display the following regularity conditions which are µ3 =

E[(X − µ)3] <∞, µ4 = E[(X − µ)4] <∞, and σ 6= 0.

Theorem 1: Under the regularity conditions, l(θ0)
d→ χ2, where χ2 is a chi-square random

variable with 1 degree of freedom.

An asymptotic 100(1-α)% JEL confidence interval can be constructed as follows:

R =
{
θ : l(θ) ≤ χ2(α)

}
, (2.24)

where χ2(α) is the upper α quantile of χ2 distribution.



11

2.4 Adjusted Jackknife Empirical Likelihood

Chen et al. (2008) proposed an adjusted empirical likelihood by adding a good point

to make the shape data better. It performs better than the original EL method since it

reduces the amount of deviation. In this thesis, we investigate adjusted jackknife empirical

likelihood (AJEL) method. One of the advantages is that the AJEL method can avoid

convex hull restriction for the jackknife empirical likelihood. We let θ denote the skewness

g1 or kurtosis g2, respectively. Then the adjusted jackknife empirical likelihood at θ is given

by

L(θ) = max

{
n+1∏
i=1

Pi,
n+1∑
i=1

Pig
ad
i (θ) = 0,

n+1∑
i=1

Pi = 1, Pi > 0

}
, (2.25)

here i = 1, 2, .., n and gadi (θ) = V̂i− θ, gadn+1(θ) = −anḡn(θ), where an = max(1, log(n)/2) was

proposed by Chen et al. (2008), and ḡn(θ) is given by

gn (θ) =
1

n

n∑
i=1

gi(θ). (2.26)

The adjusted jackknife empirical likelihood at θ is defined as:

Rad (θ) =
n+1∏
i=1

{
(n + 1)pad

i (θ)
}
, (2.27)

where

pad
i (θ) =

1

n + 1

1

1+λgad
i (θ)

, (2.28)

where i= 1, 2, 3, . . ., n+1, and λ satisfies the following nonlinear equation

f (λ) =
n+1∑
i=1

gad
i (θ)

1+λgad
i (θ)

= 0. (2.29)

Next, we plug the equation pad
i (θ) into equation Rad (θ) , then we can get the adjusted

jackknife empirical log-likelihood ratio:
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logRad(θ) = −
n+1∑
i=1

log(1+λgad
i (θ) ). (2.30)

From the results of Chen et al. (2008) and Jing et al. (2009), we obtain the following

Wilk’s theorem.

Theorem 2: Under the regularity conditions which are µ3 = E[(X − µ)3] < ∞, µ4 =

E[(X − µ)4] <∞, and σ 6= 0, we have

− 2logRad(θ0)
d→ χ2

1. (2.31)

Then using Theorem 2, one asymptotic 100(1-α)% AJEL confidence interval is

Rad =
{
θ : −2logRad ≤ χ2(α)

}
, (2.32)

where χ2(α) is the upper α quantile of the χ2 distribution.

2.5 Extended Jackknife Empirical Likelihood

We let θ denote the skewness g1 or kurtosis g2, respectively. In order to avoid the convex

hull constraint on the classical EL, Tsao (2013) proposed the extended empirical likelihood

for general estimation equations. The method is very general and powerful for the small

sample size. It can also improve the coverage accuracy of the EL ratio confidence region to

O(n−2). Comparing with JEL, we use hCn (θ) instead of the true value of θ for EJEL. Based

on Tsao and Wu (2014) and Tsao and Wu (2013), EJEL method broadens the JEL method

domain to get passed the constraint and the discrepancy. Since the EJEL has identically

shaped curves as the JEL method, it is a more natural generalization [see Tsao and Wu

(2014)]. Similar to Tsao (2013), we have

hCn (θ) = T̂n,jack + γ(n, l(θ))(θ − T̂n,jack), (2.33)

where γ(n, l(θ)) is the expansion factor given by Tsao (2013),



13

γ (n, l (θ)) = 1 +
l (θ)

2n
. (2.34)

The proposed extended jackknife empirical likelihood ratio for θ is defined by

RE(θ) = sup

{
n∑
i=1

npi :
n∑
i=1

pi(V̂i − hCn (θ)) = 0,
n∑
i=1

pi = 1, pi ≥ 0

}
. (2.35)

We have

pi =
1

n

1

1 + λ
[
V̂i − hCn (θ)

] , (2.36)

where λ satisfies

f(λ) ≡
n∑
i=1

V̂i − hCn (θ)

1 + λ
[
V̂i − hCn (θ)

] = 0. (2.37)

We plug pi back into RE(θ) and get the extended jackknife empirical log-likelihood ratio

l∗ (θ) = −2logRE(θ) = 2
n∑
i=1

log
{

1 + λ
[
V̂i − hCn (θ)

]}
. (2.38)

Theorem 3: The regularity conditions are µ3 = E[(X − µ)3] <∞, µ4 = E[(X − µ)4] <∞,

and σ 6= 0, l(θ0)
d→ χ2, where χ2 is a chi-square random variable with 1 degree of freedom.

The extended JEL confidence interval for θ is constructed as follows:

RE =
{
θ : l∗(θ) ≤ χ2(α)

}
, (2.39)

where χ2(α) is defined as before.
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CHAPTER 3

SIMULATION STUDY

In this chapter, we report the finite-sample performance of JEL methods for the skewness

and kurtosis compared with bootstrap methods under the normal and exponential distribu-

tions. There are three JEL methods and three bootstrap methods used to calculate the

coverage probability and average length of confidence intervals. For the bootstrap methods,

B = 400 bootstrap samples with replacement are taken from the population. All simulation

results are based on 5000 repetitions.

Table 3.1 - Table 3.8 display the result of coverage probabilities and average lengths for

the skewness and kurtosis under the normal and exponential distributions. As the sample

size increases, the coverage probability and average length of all methods improve. The

JEL methods outperform the bootstrap methods in general. All the methods have better

performance under the normal distribution than under the exponential distribution. The

bootstrap BCa method does not obtain good results, as we expected.

In terms of coverage probability, the JEL methods outperform the bootstrap methods

and keep performing consistently. The original nonparametric bootstrap and bootstrap

percentile methods produce results very well with the small sample sizes. We can observe

that the coverage probabilities of JEL methods are close to the nominal level 1−α as sample

sizes increase. The coverage probability for the large sample works well.

In terms of the average length, it is clear that JEL methods have shorter lengths than

bootstrap methods do. The adjusted JEL and extended JEL produce the shortest average

length of confidence intervals. The bootstrap BCa method has slightly shorter average

lengths than another two bootstrap methods. When sample size increases, the average

length gets shorter.
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Table (3.1) Coverage probability under a normal distribution for the skewness

n 1-α JEL AJEL EJEL Bootstrap Percentile Bca

30
99% 97.58% 98.72% 98.54% 97.92% 98.22% 96.72%
95% 89.06% 91.80% 93.36% 92.68% 94.84% 91.60%
90% 82.40% 84.60% 85.14% 87.00% 89.52% 86.02%

60
99% 96.90% 97.76% 97.62% 97.64% 98.50% 96.00%
95% 90.00% 92.07% 92.96% 92.08% 93.50% 91.32%
90% 84.70% 84.96% 88.40% 86.12% 87.92% 85.74%

120
99% 97.70% 97.80% 98.30% 98.16% 98.26% 96.80%
95% 93.38% 94.08% 94.46% 93.08% 93.16% 92.02%
90% 87.84% 89.24% 89.80% 86.36% 88.18% 85.06%

240
99% 98.90% 99.02% 99.02% 98.42% 99.00% 97.78%
95% 94.22% 94.58% 94.70% 94.04% 94.18% 93.04%
90% 89.89% 90.00% 90.04% 87.90% 89.96% 86.32%

Table (3.2) Average length under a normal distribution for the skewness

n 1-α JEL AJEL EJEL Bootstrap Percentile Bca

30
99% 1.1729 1.1689 1.1387 1.2794 1.2087 1.2077
95% 1.0787 1.0476 1.0354 1.1873 1.1588 1.1357
90% 0.9543 0.8553 0.8510 1.0477 0.9178 0.8827

60
99% 0.9603 0.9538 0.9175 1.1356 1.0422 1.0697
95% 0.8536 0.8491 0.8459 0.9825 0.9024 0.8692
90% 0.7802 0.7453 0.7428 0.8647 0.8119 0.7973

120
99% 0.8608 0.8499 0.8301 0.9026 0.8908 0.8648
95% 0.6771 0.6492 0.6451 0.7749 0.7512 0.7467
90% 0.5855 0.5340 0.5305 0.6487 0.6356 0.5963

240
99% 0.6588 0.6428 0.6243 0.7066 0.6835 0.6658
95% 0.5677 0.5307 0.5191 0.5772 0.5709 0.5688
90% 0.4454 0.4158 0.4138 0.4858 0.4720 0.4610

Note:

JEL: Jackknife empirical likelihood

AJEL: Adjusted Jackknife empirical likelihood

EJEL: Extended Jackknife empirical likelihood

Percentile: Bootstrap percentile

BCa: Bootstrap BCa
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Table (3.3) Coverage probability under a normal distribution for the kurtosis

n 1-α JEL AJEL EJEL Bootstrap Percentile Bca

30
99% 95.26% 96.20% 96.72% 90.58% 94.42% 90.84%
95% 89.90% 90.16% 90.86% 84.66% 87.22% 84.50%
90% 85.40% 86.30% 86.88% 78.68% 79.48% 77.90%

60
99% 96.42% 97.40% 97.58% 91.16% 95.26% 89.00%
95% 90.78% 91.36% 91.64% 84.40% 87.74% 83.98%
90% 87.40% 88.30% 88.92% 80.92% 81.06% 80.70%

120
99% 97.28% 97.84% 98.88% 92.42% 94.48% 90.52%
95% 91.40% 92.50% 92.98% 85.36% 88.04% 84.84%
90% 88.00% 88.84% 88.16% 81.46% 82.46% 80.62%

240
99% 98.08% 98.54% 99.80% 94.16% 96.18% 92.48%
95% 93.18% 93.30% 93.74% 88.00% 90.62% 86.04%
90% 88.82% 89.12% 89.30% 82.36% 84.62% 81.50%

Table (3.4) Average length under a normal distribution for the kurtosis

n 1-α JEL AJEL EJEL Bootstrap Percentile Bca

30
99% 1.0518 1.0233 1.0339 1.1648 1.1585 1.1399
95% 0.8912 0.8657 0.8750 0.9540 0.9353 0.8920
90% 0.7498 0.7160 0.7391 0.8377 0.7992 0.7696

60
99% 0.9512 0.9333 0.9439 0.9854 0.9679 0.9588
95% 0.8409 0.8252 0.8398 0.9071 0.8757 0.8609
90% 0.7111 0.7013 0.7024 0.8396 0.8043 0.7607

120
99% 0.7461 0.7345 0.7405 0.8502 0.8318 0.8280
95% 0.6193 0.6013 0.6142 0.6591 0.6437 0.6362
90% 0.5351 0.5252 0.5335 0.5743 0.5509 0.5362

240
99% 0.5940 0.5894 0.5925 0.6227 0.6153 0.6032
95% 0.4772 0.4702 0.4729 0.5382 0.5067 0.4921
90% 0.3781 0.3679 0.3725 0.4213 0.4012 0.3970

Note:

JEL: Jackknife empirical likelihood

AJEL: Adjusted Jackknife empirical likelihood

EJEL: Extended Jackknife empirical likelihood

Percentile: Bootstrap percentile

BCa: Bootstrap BCa
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Table (3.5) Coverage probability under an exponential distribution for the skewness

n 1-α JEL AJEL EJEL Bootstrap Percentile Bca

30
99% 88.22% 88.70% 90.82% 83.84% 84.94% 83.68%
95% 78.58% 79.30% 80.18% 78.16% 78.36% 77.28%
90% 71.70% 73.04% 73.04% 70.30% 71.28% 70.18%

60
99% 91.04% 92.32% 92.94% 88.00% 86.24% 87.24%
95% 87.16% 88.50% 88.68% 83.48% 84.64% 83.02%
90% 80.90% 82.42% 83.36% 78.78% 79.38% 78.04%

120
99% 95.54% 96.28% 96.60% 91.58% 93.46% 91.34%
95% 90.72% 90.68% 91.86% 86.86% 87.12% 86.00%
90% 84.30% 85.82% 87.10% 80.46% 83.20% 80.10%

240
99% 96.08% 96.20% 97.22% 93.18% 95.46% 92.92%
95% 91.06% 91.24% 91.76% 88.90% 89.10% 88.70%
90% 85.60% 86.78% 86.90% 82.36% 84.18% 82.06%

Table (3.6) Average length under an exponential distribution for the skewness

n 1-α JEL AJEL EJEL Bootstrap Percentile Bca

30
99% 1.1804 1.1471 1.1205 1.2981 1.2338 1.2283
95% 0.8708 0.8946 0.8493 1.0100 0.9325 0.9251
90% 0.7166 0.7316 0.7054 0.9279 0.8912 0.8951

60
99% 0.8597 0.8768 0.8340 0.9427 0.9280 0.9118
95% 0.6385 0.6407 0.6221 0.7617 0.7257 0.7008
90% 0.5687 0.5657 0.5462 0.6557 0.6121 0.6022

120
99% 0.5799 0.5950 0.5587 0.6722 0.6170 0.5973
95% 0.4990 0.5068 0.4823 0.5558 0.5122 0.5010
90% 0.4618 0.4732 0.4215 0.4966 0.4720 0.4614

240
99% 0.5036 0.5643 0.4917 0.5745 0.5150 0.4946
95% 0.4605 0.4871 0.4035 0.5273 0.4621 0.4474
90% 0.4072 0.4216 0.3654 0.4690 0.4197 0.3943

Note:

JEL: Jackknife empirical likelihood

AJEL: Adjusted Jackknife empirical likelihood

EJEL: Extended Jackknife empirical likelihood

Percentile: Bootstrap percentile

BCa: Bootstrap BCa
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Table (3.7) Coverage probability under an exponential distribution for the kurtosis

n 1-α JEL AJEL EJEL Bootstrap Percentile Bca

30
99% 85.46% 87.36% 91.40% 80.18% 81.40% 80.44%
95% 78.00% 79.72% 83.72% 75.34% 76.24% 75.10%
90% 73.50% 75.24% 77.06% 70.30% 72.76% 71.08%

60
99% 88.54% 89.50% 92.16% 85.74% 86.46% 85.50%
95% 80.60% 81.68% 82.00% 80.12% 82.44% 80.02%
90% 76.14% 77.30% 77.42% 75.98% 76.19% 75.04%

120
99% 90.68% 91.24% 92.54% 87.60% 88.24% 87.62%
95% 84.72% 84.90% 85.34% 83.74% 84.28% 83.20%
90% 78.66% 78.97% 80.46% 77.06% 78.38% 76.16%

240
99% 93.38% 94.18% 94.40% 89.28% 91.94% 88.82%
95% 87.52% 89.14% 90.00% 84.70% 86.50% 84.54%
90% 81.04% 82.56% 83.72% 80.12% 81.08% 80.20%

Table (3.8) Average length under an exponential distribution for the kurtosis

n 1-α JEL AJEL EJEL Bootstrap Percentile Bca

30
99% 0.9894 0.9050 0.9248 1.1498 1.1281 1.1155
95% 0.8917 0.8906 0.8823 0.9514 0.9428 0.9162
90% 0.8175 0.8170 0.8120 0.8712 0.8613 0.8229

60
99% 0.8430 0.8268 0.8291 0.9074 0.8897 0.8623
95% 0.7767 0.7611 0.7513 0.8602 0.8179 0.7898
90% 0.6840 0.6657 0.6322 0.7242 0.7189 0.7041

120
99% 0.7586 0.7409 0.7190 0.8255 0.7932 0.7369
95% 0.6133 0.5994 0.5871 0.6984 0.6728 0.6335
90% 0.5499 0.5374 0.4231 0.5832 0.5609 0.5517

240
99% 0.6763 0.6237 0.6209 0.7291 0.7041 0.6780
95% 0.5816 0.5438 0.5266 0.6486 0.6232 0.6133
90% 0.4941 0.4690 0.4312 0.5364 0.5235 0.5045

Note:

JEL: Jackknife empirical likelihood

AJEL: Adjusted Jackknife empirical likelihood

EJEL: Extended Jackknife empirical likelihood

Percentile: Bootstrap percentile

BCa: Bootstrap BCa
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CHAPTER 4

REAL DATA ANALYSIS

In this chapter, we apply the JEL and bootstrap methods to three real data sets, which

come from the R dataset package in R program. We calculate the interval length with three

different significance levels, α =0.01, 0.05, and 0.1.

The first data set, “Rivers,” has 141 observations. This data set gives the lengths

(in miles) of 141 major rivers in North America, as compiled by the US Geological Survey.

There are 50 observations in the second data set, “LifeCycleSavings,” which gives the savings

ratio (aggregate personal saving divided by disposable income). The third data set has 100

observations, which are the numbers of users connected to the Internet through a server

every minute. We calculated the lower bound, upper bound and length by the JEL, AJEL,

EJEL, nonparametric bootstrap, bootstrap percentile, and bootstrap BCa methods.

We apply the Shapiro-Wilk test with the three real data sets so that we can check the

normality of them. The null hypothesis of the Shapiro-Wilk test is that the sample data

follows the normal distribution. Referencing the Shapiro-Wilk test, we can get the p-value.

If the p-value is lower than 0.05, which is a cutoff for the normal distribution, we reject the

null hypothesis. If we cannot reject the Shapiro-Wilk null hypothesis for a data set, we will

compare its result with Table 3.2 and Table 3.4.
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4.1 Rivers Data

Table (4.1) Interval length of confidence intervals of the skewness and kurtosis for the rivers
data

Skewness JEL AJEL EJEL Bootstrap Percentile Bca

1-α UB LB UB LB UB LB UB LB UB LB UB LB

0.99
4.650 1.696 4.622 1.677 4.614 1.682 4.679 1.688 4.682 1.685 4.680 1.682

Length Length Length Length Length Length
2.954 2.944 2.932 2.991 2.997 2.999

0.95
4.533 2.138 4.510 2.138 4.459 2.106 4.464 2.033 4.473 2.035 4.472 2.019

Length Length Length Length Length Length
2.395 2.372 2.353 2.431 2.438 2.454

0.90
4.484 2.356 4.442 2.332 4.408 2.302 4.386 2.208 4.396 2.210 4.392 2.204

Length Length Length Length Length Length
2.128 2.110 2.107 2.178 2.186 2.188

Kurtosis JEL AJEL EJEL Bootstrap Percentile Bca
1-α UB LB UB LB UB LB UB LB UB LB UB LB

0.99
14.812 12.576 14.807 12.584 14.792 12.596 14.459 12.197 14.461 12.205 14.531 12.275

Length Length Length Length Length Length
2.236 2.223 2.196 2.262 2.257 2.256

0.95
14.561 12.677 14.542 12.686 14.555 12.755 14.247 12.348 14.334 12.450 14.361 12.487

Length Length Length Length Length Length
1.884 1.856 1.800 1.899 1.884 1.874

0.90
14.239 12.719 14.419 12.900 14.357 12.852 13.957 12.409 14.066 12.531 14.049 12.518

Length Length Length Length Length Length
1.520 1.519 1.505 1.549 1.535 1.530

Note:

JEL: Jackknife empirical likelihood

AJEL: Adjusted Jackknife empirical likelihood

EJEL: Extended Jackknife empirical likelihood

Percentile: Bootstrap percentile

BCa: Bootstrap BCa
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4.2 LifeCycleSavings Data

Table (4.2) Interval length of confidence intervals of the skewness and kurtosis for the Life-
CycleSavings data

Skewness JEL AJEL EJEL Bootstrap Percentile Bca

1-α UB LB UB LB UB LB UB LB UB LB UB LB

0.99
0.709 -0.641 0.703 -0.631 0.703 -0.629 0.742 -0.653 0.705 -0.686 0.725 -0.660

Length Length Length Length Length Length
1.350 1.333 1.332 1.395 1.391 1.385

0.95
0.495 -0.581 0.488 -0.582 0.478 -0.584 0.516 -0.578 0.561 -0.530 0.567 -0.517

Length Length Length Length Length Length
1.075 1.070 1.062 1.094 1.091 1.083

0.90
0.439 -0.491 0.421 -0.493 0.415 -0.497 0.456 -0.484 0.476 -0.488 0.488 -0.448

Length Length Length Length Length Length
0.930 0.914 0.912 0.940 0.964 0.936

Kurtosis JEL AJEL EJEL Bootstrap Percentile Bca
1-α UB LB UB LB UB LB UB LB UB LB UB LB

0.99
0.487 -0.967 0.495 -0.955 0.480 -0.957 0.526 -0.953 0.517 -0.943 0.533 -0.926

Length Length Length Length Length Length
1.454 1.449 1.437 1.479 1.460 1.458

0.95
0.313 -0.801 0.311 -0.802 0.309 -0.796 0.368 -0.794 0.356 -0.796 0.354 -0.801

Length Length Length Length Length Length
1.114 1.113 1.105 1.162 1.152 1.155

0.90
0.207 -0.707 0.205 -0.708 0.203 -0.703 0.259 -0.685 0.262 -0.688 0.216 -0.715

Length Length Length Length Length Length
0.914 0.912 0.906 0.944 0.950 0.931

Note:

JEL: Jackknife empirical likelihood

AJEL: Adjusted Jackknife empirical likelihood

EJEL: Extended Jackknife empirical likelihood

Percentile: Bootstrap percentile

BCa: Bootstrap BCa
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4.3 WWWusage Data

Table (4.3) Interval length of confidence intervals of the skewness and kurtosis for the
WWWusage data

Skewness JEL AJEL EJEL Bootstrap Percentile Bca

1-α UB LB UB LB UB LB UB LB UB LB UB LB

0.99
0.727 0.031 0.726 0.031 0.725 0.031 0.741 0.025 0.744 0.023 0.749 0.023

Length Length Length Length Length Length
0.696 0.695 0.694 0.716 0.721 0.726

0.95
0.627 0.154 0.619 0.159 0.617 0.161 0.605 0.128 0.615 0.132 0.640 0.154

Length Length Length Length Length Length
0.473 0.460 0.455 0.478 0.483 0.486

0.90
0.584 0.173 0.579 0.175 0.575 0.172 0.593 0.153 0.585 0.158 0.592 0.163

Length Length Length Length Length Length
0.411 0.405 0.403 0.439 0.427 0.429

Kurtosis JEL AJEL EJEL Bootstrap Percentile Bca
1-α UB LB UB LB UB LB UB LB UB LB UB LB

0.99
-0.196 -0.908 -0.201 -0.905 -0.207 -0.908 -0.264 -0.991 -0.258 -0.997 -0.220 -0.945

Length Length Length Length Length Length
0.712 0.704 0.701 0.728 0.739 0.725

0.95
-0.289 -0.841 -0.297 -0.844 -0.309 -0.835 -0.350 -0.906 -0.351 -0.905 -0.303 -0.861

Length Length Length Length Length Length
0.552 0.546 0.526 0.556 0.554 0.558

0.90
-0.377 -0.809 -0.371 -0.805 -0.381 -0.791 -0.391 -0.865 -0.400 -0.855 -0.378 -0.831

Length Length Length Length Length Length
0.433 0.434 0.411 0.474 0.455 0.454

Note:

JEL: Jackknife empirical likelihood

AJEL: Adjusted Jackknife empirical likelihood

EJEL: Extended Jackknife empirical likelihood

Percentile: Bootstrap percentile

BCa: Bootstrap BCa
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4.4 Conclusion

The shorter interval length means more accurate interval estimate of a parameter. Ap-

plying the Shapiro-Wilk test to the Rivers data, the calculated p-value is 2.2e-16, which is

strong evidence to reject the Shapiro null hypothesis. We conclude that the Rivers data

is not normally distributed. According to Table 4.1, the results of the six methods have a

very small difference. The extended JEL method has the shortest length for the skewness

and kurtosis, which shows much consistency with the result of simulation study. For the

bootstrap methods, the original nonparametric bootstrap method produces better lengths

for the skewness and the BCa bootstrap method has shorter lengths for the kurtosis.

For the LifeCycleSavings data, the Shapiro-Wilk test calculates the p-value as 0.5836,

which means we can not reject the Shapiro null hypothesis. We can say the LifeCycleSavings

data is normally distributed. From Table 4.2, the average lengths are very close to the

lengths of Table 3.2 and Table 3.4. In Table 4.2, the results are very similar to each other.

The extended JEL method produces more accurate interval estimates than the other five

methods. For the bootstrap methods, the bootstrap BCa method has a better performance.

The p-value of the third data is 0.0001325 by using the Shapiro-Wilk test. Thus we

can reject the Shapiro null hypothesis. Hence the third data set is not normally distributed.

Based on Table 4.3, the results are very close to each other. The bootstrap BCa method

produces more accurate interval estimates than the other two bootstrap methods. The

lengths calculated by the extended JEL method are always shorter than the lengths of the

other five methods.

Consequently, we conclude that the extended JEL method is the most accurate and

useful method for interval estimates of the skewness and kurtosis.
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CHAPTER 5

SUMMARY AND FUTURE WORK

5.1 Summary

In this thesis, we proposed interval estimates for the skewness and the kurtosis by

using JEL, adjusted JEL, extended JEL, original bootstrap, percentile bootstrap, and BCa

boostrap methods.

According to the extensive simulation study, we can conclude that the JEL methods

are more useful and more accurate than the bootstrap methods under the standard normal

distribution and exponential distribution. Table 3.5 and Table 3.7 provide strong evidence

that JEL methods perform much better with skewed distribution of data sets in terms

of coverage probability. According to Davison (1997), bootstrap confidence intervals may

not perform very well with small sample sizes. Bootstrap confidence intervals rely much on

sample values in the tails of the sample distribution. So the coverage probability of bootstrap

methods for small sample sizes may still differ substantially from the nominal level 1-α [see

Davison (1997)]. Since the adjusted cut-offs can move further into the tails of a distribution,

the BCa boostrap method may not calculate better results compared with the original and

percentile boostrap methods.

The JEL methods produce better coverage probabilities than the bootstrap method

most of the time with small sample sizes. In addition, the JEL methods lead to shorter

average lengths than the bootstrap methods which means JEL methods are more accurate.

For the real data analysis, the JEL methods calculate shorter interval lengths than the

bootstrap methods. With the JEL methods, high accurate estimators can be produced with

small sample size. We conclude that the JEL methods provide better interval estimates of

the skewness and kurtosis compared to the boostrap methods.



25

5.2 Future Work

As we mentioned above, we know the JEL, adjusted JEL, and extended JEL are highly

accurate and useful. However, in this thesis, the extended JEL method does not have

the best performance on all average lengths. From Tsao (2013) the extended JEL has

better performance than other methods, no matter if the sample size is small or large. The

bootstrap BCa method does not have good results, as we expected. The larger number B

for replications may help to achieve better results. Therefore, we should try to tackle those

problems in the future.
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