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and genotype. The age groups were created to evenly distribute the sample size among three groups 

thus representing young, middle, and old ages. 

          Table 1: Number of mice in various genotype and age groups 

   Genotype   

  C57BL/6J Rd10 RPE65 Total 

 p ≤ 60 6 27 0 33 

Age (days) 60 < p ≤ 180 8 26 3 37 

 p > 180 12 5 16 33 

 Total 26 58 19 103 

 

 The sample size in this analysis is the one hundred and three (103). The three genotypes serve 

as examples of various states of disease progression. Mice are used as a model organism for the study of 

this disease despite not having a macula. However, mice are a model for AMD because biological 

changes in the mouse retina from specific induced mutations are similar to what is found in humans 

with the disease, specifically in the RPE layer [8]. Associated with using mice as a model are advantages 

including cost-effectiveness, the ease of genetic manipulation, and accelerated life cycles [9]. 

 The C57BL/6J genotype is the wild-type for this study. It is the most widely used inbred strain 

and it is a general purpose and background strain [10]. It is the control, the healthy model. The retinal 

degeneration 10 (rd10) mutant phenotype results from a missense point mutation in the Pde6b protein 

[10]. This phenotype shows retinal degeneration beginning as early as sixteen days after birth.  This 

mutant strain is commonly used to study retinal diseases. It represents the diseased state in this analysis. 

The third genotype RPE65 is also a disease model but with more slow retinal degeneration and 

represents an intermediate phase of disease progression [10].  

 Previous analysis has shown quantitative differences in RPE sheet morphology can be used to 

accurately discriminate rd10 from C57BL/6J strains, despite age acting as a confounding variable. 

Functional principal component analysis (FPCA) is used to reduce the dimensions of the data while 

several classification methods are used to distinguish between genotype groups. These analyses show 
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that morphometric variables from the RPE layer can be used to accurately classify genotypes at nearly 

one hundred percent. This work implies that RPE sheet morphology can act as an early biomarker for 

the diagnosis of eye disease even at early stages when disease symptoms are subtle [6, 7]. 

1.2 Explanation of analysis: 

 In this thesis study, we extended previous analysis [6] to specifically include spatial information 

to investigate the potential differences in classification. We partition the RPE sheet into flaps (N,E,S,W) 

and zones (1,2,3,4,5). The predictive abilities of the zones are of particular interest, because cellular 

degeneration is often manifested more in the outer zones 

  We also consider three genotypes instead of the original two, with the inclusion of the RPE65 

mutant. We expect genotype classification to be more difficult having to distinguish between three 

classes instead of two. Previous research is limited to discriminating between two age groups, young 

and old. We will have three age groups of young, middle, and old. One would expect area and shape 

variables to prove the most significant as they have done in previous research. Spatially we would 

expect zones further from the center to be better at classification [5]. All flaps would likely perform 

equally well with potentially the North flap (superior) being the most significant.   

 In addition, different methodology and statistical procedures are used in this study. Instead of 

FPCA, traditional principal component analysis is used for dimension reduction. This approach, while not 

as detailed at capturing variable information, is computationally efficient. Classification analysis is done 

by k-NN, a simple machine learning algorithm that is also computationally efficient. These methods are 

sufficient to reveal the important information from the data.. 

2 METHODOLOGY AND RESULTS 

 The cellular morphometric variables used in this study come from digital images of flatmounts 

from the RPE layer of the one hundred and three mice. This process involves dissection of the eyes, 
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exposure of the RPE layer, staining of the samples, cutbox samples taken from the layer, imaging under 

a confocal imaging system, and finally conversion to digital images and output to comma separated 

values files.   

 2.1 RPE Flatmount Technique, Staining and Imaging [6]:  

 The mice used for this study were euthanized with CO2 in accordance with Emory University 

IACUC guideline and ARVO guideline for treatment of animals. The left eye from each mouse was 

extracted and the superior side (north flap) labeled with a fine point permanent ink pen. Four radial cuts 

were made from the center of the cornea followed by removal of the lens, iris, and retina. From the 

exposed retinal layer the RPE flatmounts were stained by anti-ZO-1 tight junction to allow visualization 

of cells. Imaging of the flatmounts was performed using a Nikon C1 confocal imaging system. Adobe 

Photoshop CS2 was used to stitch together images. Cut boxes were then taken from each image [6]. The 

digital conversion of these cut boxes was performed using Cell Profiler [13]. The two Cell Profiler 

modules applied to the images were Measure Object Size Shape and Measure Object Neighbors. 

Eighteen of the cellular variables generated for each cell using the Cell Profiler modules are used in this 

analysis. These cellular variables are further organized into three types to describe the kind of 

information they provide. The Neighbor type gives information about the relationship of the cell to the 

surrounding cells, where the Area and Shape types provide information about the area and shape of the 

cell, respectively.  
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Table 2: Description of Variables 

Measurement 

Variable 

Variable Description Variable 

Type 

   

Number of 

Neighbors 

Number of Neighboring cells Neighbor 

Percent Touching Percent of the object’s boundary pixels that 

touch neighboring cells 

Neighbor 

First Closest 

Object Number 

The index of the closest object Neighbor 

First Closest X 

Vector 

Distance in the X direction to the closest object Neighbor 

First Closest Y 

Vector 

Distance in the Y direction to the closest object Neighbor 

Second Closest 

Object Number 

The index of the second closest object Neighbor 

Second Closest X 

Vector 

Distance in the X direction to the second closest 

object 

Neighbor 

Second Closest Y 

Vector 

Distance in the Y direction to the second closest 

object 

Neighbor 

Angle Between 

Neighbors 

The angle formed with the object center as the 

vertex and the first and second closest object 

centers along the vectors 

Neighbor 

Form Factor The area of the cell divided by the area of a circle 

with the same perimeter 

Shape 

Eccentricity The eccentricity of the ellipse is calculated as the 

foci length divided by the major axis length 

Shape 

Solidity The proportion of the pixels in the convex hull 

that are also in the region 

Shape 

Extent The proportion of the pixels in the bounding box 

that are also in the region 

Shape 

Orientation The angle between the x-axis and the major axis 

of the ellipse 

Shape 

Area The actually number of pixels in the region Area 

Major Axis Length The length (in pixels) of the major axis of the 

ellipse  

Area 

Minor Axis Length The length (in pixels) of the minor axis of the 

ellipse  

Area 

Perimeter The total number of pixels around the boundary 

of each region in the image 

Area 

 

2.2 Statistical Analysis: 

The statistical analysis consists of three parts. First some graphical analysis is used to understand the 

nature of the variables in question and explore their discriminating potential. Second dimension 



 

reduction is achieved using principal component analy

the reduced dimensional data set for both age and genotype classes.

 The kernel smoothing density function in R is applied to every variable for each spatial region. 

Some examples are shown in figures 1 (E

density curves of C57BL/6J and rd10 suggesting that Extent can be used to easily discriminate between 

these two genotypes from east flap cellular data.

Figure 2: Kernel smoothed density graphs 

Distinction between 

possible using this vari

 

 

Figure 3 shows a more dispersed graph of densities suggesting weaker age discrimination by the 

Form Factor variable from North Flap data.  However, there are still some regions where the two sets of 

reduction is achieved using principal component analysis (PCA). Third k-NN classification is applied to 

the reduced dimensional data set for both age and genotype classes. 

The kernel smoothing density function in R is applied to every variable for each spatial region. 

Some examples are shown in figures 1 (Extent) and 2 (Form Factor). Figure 2 shows separation in the 

density curves of C57BL/6J and rd10 suggesting that Extent can be used to easily discriminate between 

these two genotypes from east flap cellular data. 

 

: Kernel smoothed density graphs of the Extent variable from the East Flap

Distinction between curves suggest discrimination between C57BL/6J and rd10 is 

possible using this variable from the East Flap spatial region. 

shows a more dispersed graph of densities suggesting weaker age discrimination by the 

Form Factor variable from North Flap data.  However, there are still some regions where the two sets of 
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The kernel smoothing density function in R is applied to every variable for each spatial region. 
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density curves of C57BL/6J and rd10 suggesting that Extent can be used to easily discriminate between 

e Extent variable from the East Flap. 

suggest discrimination between C57BL/6J and rd10 is 

shows a more dispersed graph of densities suggesting weaker age discrimination by the 

Form Factor variable from North Flap data.  However, there are still some regions where the two sets of 



 

curves can be separated. These figures are examples from a more t

first phase of the analysis. 

 

 

Figure 3: Kernel smoothed density graphs of the Form Factor variable.

 

 

The second part of this analysis involves extraction of quantile

reduction. A vector of length sixteen is created to store the quantile data for the variable in question. 

The quantile data consists of the 20

between. This quantile vector holds information that represents the trend in the distribution. This 

sixteen-dimensional vector is further reduced to two dimensions by principal component analysis (PCA). 

PCA is a statistical technique that reduces the dimensions of a data set

curves can be separated. These figures are examples from a more thorough graphical exploration as the 

: Kernel smoothed density graphs of the Form Factor variable.

The second part of this analysis involves extraction of quantile information and variable 

reduction. A vector of length sixteen is created to store the quantile data for the variable in question. 

The quantile data consists of the 20
th

 quantile to the 80
th

 quantile and every 4
th

 quantile increment in 

ile vector holds information that represents the trend in the distribution. This 

dimensional vector is further reduced to two dimensions by principal component analysis (PCA). 

PCA is a statistical technique that reduces the dimensions of a data set while retaining the major 
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: Kernel smoothed density graphs of the Form Factor variable. 

information and variable 

reduction. A vector of length sixteen is created to store the quantile data for the variable in question. 

quantile increment in 

ile vector holds information that represents the trend in the distribution. This 

dimensional vector is further reduced to two dimensions by principal component analysis (PCA). 

while retaining the major 



9 

 

differences in variation among the observations [14]. Classification analysis can now be more easily 

achieved with a smaller dimensional data set. For all of the one hundred and three observations, the 

data for a particular variable from a particular spatial region is reduced to a two dimensional vector that 

can plotted as a point. Figures 3 and 4 show the graphical representation of this reduced data set. The 

first principle component score is plotted on the x-axis against the second principal component score on 

the y-axis.  These figures further highlight classification abilities by spatial regions.  

 

Figure 4 shows grouping of principal component scores for the Eccentricity variable. Here we 

can see the wild type and rd10 genotypes principal component scores clump separately from one 

another, suggesting distinguishing classification is possible. Every flap shows a fairly equal ability to 

distinguish between the groups for this variable. This figure is an example of more extensive graphical 

analysis done at this stage of the thesis research.  

 



 

Figure 4: Plots of the first two 

coded by genotype.  All four flaps are 

 

 

 

Figure 5 (below) shows principal component scores for the Solidity variable in all five spatial 

zones. It can be noted that the points for each genotype separate more from one another as we move 

outward through the zones. In particular the points for the rd10 mice

away from the other two, particularly in Zone 5. This graphical trend can be seen in many of the 

variables, particularly the shape variables. 

 

 

: Plots of the first two principal component scores for the Eccentricity variable color 

genotype.  All four flaps are presented for comparison 

(below) shows principal component scores for the Solidity variable in all five spatial 

zones. It can be noted that the points for each genotype separate more from one another as we move 

outward through the zones. In particular the points for the rd10 mice begin to spread out and move 

away from the other two, particularly in Zone 5. This graphical trend can be seen in many of the 

variables, particularly the shape variables. Figure 5 shows this trend using the Solidity variable.
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(below) shows principal component scores for the Solidity variable in all five spatial 

zones. It can be noted that the points for each genotype separate more from one another as we move 

begin to spread out and move 

away from the other two, particularly in Zone 5. This graphical trend can be seen in many of the 

shows this trend using the Solidity variable. 



 

Figure 5: Plots for the first two 

all five zones are plotted for comparison.

 

 

 

In the third part of the analysis t

K-NN is a non-parametric classificat

algorithms [12].  This algorithm works by using some distance metric, here and most commonly the 

standard Euclidean metric, to find the k

Deciding which class this new instance belongs is done

example.  

 

 

rst two principal component scores for the Solidity variable. Data from 

all five zones are plotted for comparison. 

In the third part of the analysis the k-nearest neighbor (k-NN) algorithm is used for classification. 

parametric classification method that is among the simplest of all machine learning 

This algorithm works by using some distance metric, here and most commonly the 

the k-th nearest neighbors in the feature space to a new insta

Deciding which class this new instance belongs is done by a simple majority vote. Figure 6
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component scores for the Solidity variable. Data from 

algorithm is used for classification. 

machine learning 

This algorithm works by using some distance metric, here and most commonly the 

to a new instance. 

Figure 6 provides an 



 

Figure 6: A graphical example of the k

class, classified as being from the red class when k is equal to three and the blue class when k is equal 

For each variable in each spatial region the predictive algorithm is applied in the following 

manner. The best parameter value for k is found

this the R package caret is used [11]

cast broad possibilities for the parameter

Once a particular k is found, the data is split into 

again the caret package is used to create this partition. Here there is a

the attempt to preserve the overall class 

percent of the data, the remaining twenty percent serve as the testing set. Roughly then eighty

observations are used to build the training model to predict the c

observations. The class prediction for the testing set is compa

misclassification error rate is calculate

k-NN Classification Example 

 

: A graphical example of the k-NN algorithm. The green circle is data from a

the red class when k is equal to three and the blue class when k is equal 

to five [12]. 

 

 

For each variable in each spatial region the predictive algorithm is applied in the following 

best parameter value for k is found using the leave one out cross validation method. For 

[11]. Parameter values for k are tested from one to fifteen 

possibilities for the parameter. 

found, the data is split into a training group and a testing group. Once 

again the caret package is used to create this partition. Here there is a balanced split of the data with 

to preserve the overall class distribution [11]. The training set is created using eighty 

nt of the data, the remaining twenty percent serve as the testing set. Roughly then eighty

observations are used to build the training model to predict the class output of the remaining twenty 

observations. The class prediction for the testing set is compared against the actual classes and a 

misclassification error rate is calculated. The prediction rate is taken to be the compliment of the 
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NN algorithm. The green circle is data from an unknown 

the red class when k is equal to three and the blue class when k is equal 

For each variable in each spatial region the predictive algorithm is applied in the following 

using the leave one out cross validation method. For 

from one to fifteen in order to 

a training group and a testing group. Once 

balanced split of the data with 

is created using eighty 

nt of the data, the remaining twenty percent serve as the testing set. Roughly then eighty 

lass output of the remaining twenty 

red against the actual classes and a 

The prediction rate is taken to be the compliment of the 
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misclassification error rate. This procedure is looped one thousand times and the mean and standard 

deviation are taken to represent the overall prediction rate for the variable.  This procedure, including 

parameter tuning, is repeated for every one of the eighteen variables in all nine spatial regions for both 

genotype and age group classes. The resulting three hundred and twenty four prediction rates are 

summarized in the tables that follow.   

2.3 General Description of Results: 

 The mean and standard deviation of the prediction rate is the primary means of labeling a 

variable a good predictor. To analyze how the spatial regions differ in their overall classification abilities, 

a cutoff rate for what is a good predictor is established. This cutoff rate for a good predictor variable is 

any rate within one standard deviation of seventy percent and every rate above that level. This seventy 

percent level is relatively arbitrary and is chosen to more effectively demonstrate different classification 

abilities of the regions. Since the prediction is between three classes, a random guess would provide a 

prediction rate of 33%. Seventy percent is relatively good considering the nature of the data.  

 The next four tables describe the predictive abilities of the spatial regions. Table 3 and Table 4 

show the ability of the flaps and zones to predict genotype, respectively. Table 5 and Table 6 show the 

age prediction of these same regions. Additional analysis is provided to explain which of the three 

variable types and individual variables themselves predict the most often. 
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Table 3      

Genotype Classification Power by Flap 

Flap # Above Cutoff Best Predictor 

Variable 

Variable Type Prediction 

Rate 

Rate Standard 

Deviation 

      

East 13 Form Factor Shape 0.790684 

 

0.057887 

 

North 11 Extent Shape 0.821211 

 

0.042106 

 

South 12 Form Factor Shape 0.785 

 

0.067266 

 

West 11 First Closest X 

Vector 

Neighbor 0.779684 

 

0.055713 

 

 

 From Table 3 we can see that all flaps predict quite well and in relatively the same numbers. 

More than half of the eighteen variables predict above the cutoff value in every flap region. In the east 

and south flaps the top three variables are all of the shape type. In all flaps every one of the five shape 

variables are above the cutoff value. The neighbor type variables are more often not significant and the 

area variables are almost all above the cutoff, except for the area variable (table 2) itself, which is not 

over the cutoff in any of the flaps. 

Table 4 

Genotype Classification Power by Zone 

Zone # Above Cutoff Best Predictor 

Variable 

Variable Type Prediction 

Rate 

Rate Standard 

Deviation 

      

Zone 1 8 Minor Axis 

Length 

Area 0.885611 

 

0.05949 

 

Zone 2 10 Minor Axis 

Length 

Area 0.847789 

 

0.06069 

 

Zone 3 9 Eccentricity Shape 0.811 

 

0.061358 

 

Zone 4 9 Form Factor Shape 0.813421 

 

0.035791 

 

Zone 5 7 Eccentricity Shape 0.828947 

 

0.144915 
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 Table 4 presents some surprising results with Zone 5 having the least number of significant 

variables. Despite this the top four variables in Zone 5 were all shape variables with predictive rates 

above eighty percent before adding standard deviation. All four are among the top ten in the total best 

predictors of genotype by Zone. In general, the variables that are good predictors of genotype are higher 

than those from the flaps. The shape variables appear more often than those of the other types. 

Table 5 

Age Group Classification Power by Flap 

Flap # Above Cutoff Best Predictor 

Variable 

Variable Type Prediction 

Rate 

Rate Standard 

Deviation 

      

East 2 Percent 

Touching 

Neighbor 0.65545 

 

0.089531 

 

North 3 Solidity Shape 0.66435 

 

0.054356 

 

South 6 Solidity Shape 0.64195 

 

0.101725 

 

West 2 Form Factor Shape 0.699895 

 

0.078374 

 

 

Age classification is much less than genotype classification.  The variables that do make the cutoff are 

primarily of the shape type. The rates are considerable lower than in genotype classification 

 

Table 6 

Age Group Classification Power by Zone 

Zone # Above Cutoff Best Predictor 

Variable 

Variable Type Prediction 

Rate 

Rate Standard 

Deviation 

      

Zone 1 0 Second Closest 

Object Number 

Neighbor 0.592778 0.052528475 

 

Zone 2 9 Major Axis 

Length 

Area 0.74575 

 

0.091639704 

 

Zone 3 6 Eccentricity Shape 0.73005 

 

0.052030805 

 

Zone 4 4 Perimeter Area 0.7197 

 

0.105655445 

 

Zone 5 4 Solidity Shape 0.684211 

 

0.045175458 
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 The zones have many more significant predictor variables. The prediction rates are generally 

higher as well. Area and shape variables once again perform the best. Zone 1 has no significant variables 

whereas Zone 2 has the most for any spatial region in prediction of age group. This might suggest the 

cells closer to the macula are more similar across ages but not across genotypes, and that ageing itself 

does not bring about as much significant differences in the macular RPE as disease does. 

3 CONCLUSION AND DISCUSSION 

 The classification analysis shows that, between the two spatial regions, zones are better 

predictors than flaps. There are more significant variables from flaps in the classification of genotypes, 

meaning there are more above the established cutoff value. However, the significant variables from the 

zones have higher prediction rates. The variables from the zones that are significant, in particular the 

shape variables, recorded the highest prediction rates in the entire analysis. The flaps are relatively poor 

predictors of age while the zones are reasonably good, except for zone 1 which showed no significant 

variables. 

 The morphometric RPE data classifies genotype more easily than age, as indicated by the higher 

prediction rates and the number of variables that are found to be significant. Age was treated as a 

confounding variable in the previous analysis. The ability to classify genotype is the more important part 

of the classification, in that it more directly detects the disease state. These results support the previous 

finding in that the focus should be on genotype classification. 

  In all four classification analyses the shape variables perform the best, with the area variables 

second best. This supports both previous research and biological expectations. The primary differences 

that show up in the cellular RPE layer with the degenerative condition are in the distortion of the regular 

hexagonal pattern of the cells. 
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 The zonal classification results did not show the most outer region to be the best predictor. This 

despite graphical evidence from plots like figure 5 showing increased separation of principal component 

coordinates in zone 5. In the genotype classification the zones appear to be relatively equal at 

discrimination, at least in the number of significant variables. It is possible the zones are equally good at 

classifying, but it is also possible there exists differential classification abilities that were not discovered 

by this analysis. Different methods, including functional principal component analysis along with various 

classification techniques such as linear discriminant analysis and support vector machine, may be used 

in addition to this analysis to find a more definitive answer. The biological plausibility that outer zones 

show greater variation between healthy and diseased tissue is strong enough that further analysis is 

needed to reach a final conclusion. 

 The classification rates in this analysis were lower than those in previous work. There are 

perhaps several reasons for this discrepancy. The additional of a third genotype, the RPE65 strain, 

created difficulty in discrimination. When this genotype is removed the classification rate between 

C57BL/6J and rd10 moves into the high nineties, in more general agreement with the previous work.  It 

would make more sense to separately classify rd10 and RPE65 with the wild-type, as opposed to a three 

genotype classification. 

  There are numerous options for future work in this field and even with this particular set of data. 

Testing the wild-type genotype against each of the other two genotypes separately would be an obvious 

first analysis. This analysis would act more like a controlled scientific experiment, changing one variable 

at a time instead of two. The classification directly between C57BL/6J and RPE65 would provide 

information about abilities to detect even more subtle differences in RPE sheet morphology using these 

types of methods.   
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APPENDIX 

R Code: 

## Start Code: Read in data, Create age variable, etc… 

 

setwd("/Users/michaelboring/Desktop/Thesis Project") 

filename <- read.table("filename.txt",stringsAsFactors=FALSE) 

file.des <- read.csv("RPE_profile_description.csv") 

d.list <- list() 

for(i in 1:123){ 

d.list[[i]] <- read.csv(filename[i,1]) 

} 

age <- file.des$age 

file.des1 <- file.des 

file.des1$agecat <- NA 

file.des1$agecat[age <= 61] <- 1 

file.des1$agecat[age <= 180 & age > 61] <- 2 

file.des1$agecat[age > 180] <- 3 

t <- which(file.des$colnumbers==28) 

s <- c(10:22,24:28) 

col.names <- colnames(d.list[[1]]) 
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## Density Plots: Figures 1 and 2 

 

# Figure 3: East Flap Extent Genotype 

flap = 1 

for(i in t){ 

data.z <- d.list[[i]] 

ab <- which((data.z[,4] == levels(data.z[,4])[flap])) 

d.z <- density(data.z[ab,20])  

if(i == 1){ 

plot(d.z,col=file.des[i,2],ylim=c(0,4),main="East Flap: \nExtent",xlab="") 

legend( "topleft", c("C57BL/6J","rd10","RPE65"), lty= 1,col = c('black', 'red', 'green'),title = 

"Genotypes") 

} 

if (i>1){ 

lines(d.z,col = file.des[i,2]) 

} 

} 

 

# Figure 4: North Flap Form Factor Age 

flap = 2 

for(i in t){ 

data.z <- d.list[[i]] 

ab <- which((data.z[,4] == levels(data.z[,4])[flap])) 

d.z <- density(data.z[ab,25])  

if(i == 1){ 

plot(d.z,col=file.des1[i,5],ylim=c(0,8),main=" North Flap: \nForm Factor",xlab="") 

legend( "topleft", c("p • 60" 60","60 < p • 180" 180","p > 180"), lty= 1,col = c('black', 'red', 'green'),title = 
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"Age: Postnatal days") 

} 

if (i>1){ 

lines(d.z,col = file.des1[i,5]) 

} 

} 

 

 

## Principal Component Plots: Figures 3 and 4 

 

# Plotting function by flap/genotype 

 

plotPCA <- function(flap,variable){ 

 

if (flap==1){ 

 Q <- c(col.names[variable],"East") 

} 

if (flap==2){ 

 Q <-c(col.names[variable],"North") 

} 

if (flap==3){ 

 Q <- c(col.names[variable],"South") 

} 

if (flap==4){ 

 Q <- c(col.names[variable],"West") 

} 
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S <- matrix(NA,nrow=123,ncol=16) 

  for(i in t){ 

   data.z <- d.list[[i]] 

   ab <- which((data.z[,4] == levels(data.z[,4])[flap])) 

   qt <- quantile(data.z[ab,variable],seq(0.20,0.8,0.04)) 

   S[i,] <- qt 

  } 

 z <- file.des[,2] 

 c <- which(!is.na(S[,1])) 

 z <- z[c] 

 S <- na.omit(S) 

 class <- as.factor(z)  

 pca <- princomp(S,cor=TRUE) 

 pc.comp <- pca$scores 

plot(pc.comp[ ,1],pc.comp[ ,2],col=class,pch = c(15,16,17)[class] ,main=Q[2],xlab="1st PC 

score",ylab="2nd PC score")  

 

} 

# Multiplot Code 

par(oma = c(0,0,3,0), mfrow=c(2,2)) 

plotPCA(1,20) 

plotPCA(2,20) 

plotPCA(3,20) 

plotPCA(4,20) 

par(op) 

mtext("Principal Component Scores for Eccentricity \n by 

Flap",side=3,line=0,font=2,cex=1.2,outer=TRUE) 
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op <- par(usr = c(0,1,0,1), xpd=NA) 

legend( -0.425,1.7, c("c57BL/6J","rd10","RPE65"), lty= 1, pch = c(15,16,17),col = c('black', 'red', 

'green'),title = "Genotypes") 

 

 

###Classification Analysis Code 

 

library(caret) 

library(class) 

 

## Classification Functions 

 

# Genotype by flap 

 

ClassKnnGeno1.2 <- function(flap,variable){ 

S <- matrix(NA,nrow=123,ncol=16) 

  for(i in t){ 

   data.z <- d.list[[i]] 

   ab <- which((data.z[,4] == levels(data.z[,4])[flap])) 

   qt <- quantile(data.z[ab,variable],seq(0.20,0.8,0.04)) 

   S[i,] <- qt 

  } 

 z <- file.des[,2] 

 c <- which(!is.na(S[,1])) 

 z <- z[c] 

 S <- na.omit(S) 

 class <- as.factor(z) 
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     pca <- princomp(S,scale.=TRUE) 

  pc.comp <- pca$scores 

  X.train <- cbind(pc.comp[,1],pc.comp[,2]) 

 AB <- matrix(NA,nrow=15,ncol=1) 

 AB[,1] <- 1:15 

 AB <- as.data.frame(AB) 

 names(AB) <- "k" 

 fitcontrol <- trainControl(method="LOOCV") 

 gg <- train(X.train,class,method="knn",trControl=fitcontrol,tuneGrid=AB) 

 k <- gg$bestTune[1,] 

 v <- vector() 

  for(i in 1:1000){ 

   set.seed(floor(runif(1,1,5000))) 

   trainIndex <- createDataPartition(z, p = 0.8, list = FALSE, times = 1) 

   tr <- trainIndex[,1] 

   train <- X.train[tr, ] 

   test <- X.train[-tr,] 

   cl <- z[tr] 

   model.knn <- knn(train,test,cl,k) 

   v[i] <- sum(model.knn==z[-tr])/length(z[-tr]) 

  } 

 ms <- c(mean(v),sd(v),k) 

 return(ms) 

} 

 

## ClassKnnGeno1.0 is a similar function, not listed for brevity 



25 

 

 

## Classification function for Genotype by Zone 

 

ClassKnnGeno2.0 <- function(zone,variable){ 

S <- matrix(NA,nrow=123,ncol=16) 

  for(i in t){ 

   data.z <- d.list[[i]] 

   ab <- which(data.z[,5] == zone) 

   qt <- quantile(data.z[ab,variable],seq(0.20,0.8,0.04)) 

   S[i,] <- qt 

  } 

 z <- file.des[,2] 

 c <- which(!is.na(S[,1])) 

 z <- z[c] 

 S <- na.omit(S) 

 class <- as.factor(z)  

  pca <- princomp(S,cor=TRUE) 

  pc.comp <- pca$scores 

  X.train <- cbind(pc.comp[,1],pc.comp[,2]) 

 AB <- matrix(NA,nrow=15,ncol=1) 

 AB[,1] <- 1:15 

 AB <- as.data.frame(AB) 

 names(AB) <- "k" 

 fitcontrol <- trainControl(method="LOOCV") 

 gg <- train(X.train,class,method="knn",trControl=fitcontrol,tuneGrid=AB) 

 k <- gg$bestTune[1,]   
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v <- vector() 

  for(i in 1:1000){ 

   set.seed(floor(runif(1,1,5000))) 

   trainIndex <- createDataPartition(z, p = 0.8, list = FALSE, times = 1) 

   tr <- trainIndex[,1] 

   train <- X.train[tr, ] 

   test <- X.train[-tr,] 

   cl <- z[tr] 

   model.knn <- knn(train,test,cl,k) 

   v[i] <- sum(model.knn==z[-tr])/length(z[-tr]) 

  } 

 ms <- c(mean(v),sd(v),k) 

 return(ms) 

} 

 

 

 

## Age Classification by Flap 

 

ClassKnnAge1.0 <- function(flap,variable){ 

S <- matrix(NA,nrow=123,ncol=16) 

  for(i in t){ 

   data.z <- d.list[[i]] 

   ab <- which((data.z[,4] == levels(data.z[,4])[flap])) 

   qt <- quantile(data.z[ab,variable],seq(0.20,0.8,0.04)) 

   S[i,] <- qt 
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  } 

 z <- file.des1[,5] 

 c <- which(!is.na(S[,1])) 

 z <- z[c] 

 S <- na.omit(S) 

 class <- as.factor(z)  

  pca <- princomp(S,cor=TRUE) 

  pc.comp <- pca$scores 

  X.train <- cbind(pc.comp[,1],pc.comp[,2]) 

 AB <- matrix(NA,nrow=15,ncol=1) 

 AB[,1] <- 1:15 

 AB <- as.data.frame(AB) 

 names(AB) <- "k" 

 fitcontrol <- trainControl(method="LOOCV") 

 gg <- train(X.train,class,method="knn",trControl=fitcontrol,tuneGrid=AB) 

 k <- gg$bestTune[1,]  

v <- vector() 

  for(i in 1:1000){ 

   set.seed(floor(runif(1,1,5000))) 

   trainIndex <- createDataPartition(z, p = 0.8, list = FALSE, times = 1) 

   tr <- trainIndex[,1] 

   train <- X.train[tr, ] 

   test <- X.train[-tr,] 

   cl <- z[tr] 

   model.knn <- knn(train,test,cl,k) 

   v[i] <- sum(model.knn==z[-tr])/length(z[-tr]) 
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  } 

 ms <- c(mean(v),sd(v),k) 

 return(ms) 

} 

## ClassKnnAge1.2 is similar function, not listed for brevity 

 

## Classification Function for Age by Zone 

ClassKnnAge2.0 <- function(zone,variable){ 

S <- matrix(NA,nrow=123,ncol=16) 

  for(i in t){ 

   data.z <- d.list[[i]] 

   ab <- which(data.z[,5] == zone) 

   qt <- quantile(data.z[ab,variable],seq(0.20,0.8,0.04)) 

   S[i,] <- qt 

  } 

 z <- file.des1[,5] 

 c <- which(!is.na(S[,1])) 

 z <- z[c] 

 S <- na.omit(S) 

 class <- as.factor(z)  

  pca <- princomp(S,cor=TRUE) 

  pc.comp <- pca$scores 

  X.train <- cbind(pc.comp[,1],pc.comp[,2]) 

 AB <- matrix(NA,nrow=15,ncol=1) 

 AB[,1] <- 1:15 

 AB <- as.data.frame(AB) 
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 names(AB) <- "k" 

 fitcontrol <- trainControl(method="LOOCV") 

 gg <- train(X.train,class,method="knn",trControl=fitcontrol,tuneGrid=AB) 

 k <- gg$bestTune[1,]  

v <- vector() 

  for(i in 1:1000){ 

   set.seed(floor(runif(1,1,5000))) 

   trainIndex <- createDataPartition(z, p = 0.8, list = FALSE, times = 1) 

   tr <- trainIndex[,1] 

   train <- X.train[tr, ] 

   test <- X.train[-tr,] 

   cl <- z[tr] 

   model.knn <- knn(train,test,cl,k) 

   v[i] <- sum(model.knn==z[-tr])/length(z[-tr]) 

  } 

 ms <- c(mean(v),sd(v),k) 

 return(ms) 

} 

## ClassKnnAge2.2 is similar function, not listed for brevity 

 

### Create Data frame for Rates, export to CSV file 

# Genotype by Flap 

D<- matrix(NA,nrow=4,ncol=5) 

for(i in 1:4){ 

D[i,1] <- 10 

D[i,2] <- i 
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D[i,3:5 ]<- ClassKnnGeno1.2(i,10) 

} 

for(j in s[-c(1,9:18)]){ 

D1 <- matrix(NA,nrow=4,ncol=5) 

for(i in 1:4){ 

D1[i,1] <- j 

D1[i,2] <- i 

D1[i,3:5 ]<- ClassKnnGeno1.2(i,j) 

} 

D <- rbind(D,D1) 

} 

 

for(j in s[-c(1:8)]){ 

D1 <- matrix(NA,nrow=4,ncol=5) 

for(i in 1:4){ 

D1[i,1] <- j 

D1[i,2] <- i 

D1[i,3:5 ]<- ClassKnnGeno1.0(i,j) 

} 

D <- rbind(D,D1) 

} 

 

D.df <- as.data.frame(D) 

D.df 

nam <- c("var","flap","predRate","stdev","k") 

names(D.df) <- nam 
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write.table(D.df,file="RatesFlap.csv",sep=",",row.names=FALSE,quote=FALSE) 

 

 

# Genotype by Zone 

D<- matrix(NA,nrow=5,ncol=5) 

for(i in 1:5){ 

D[i,1] <- 10 

D[i,2] <- i 

D[i,3:5 ]<- ClassKnnGeno2.2(i,10) 

} 

for(j in s[-c(1,9:18)]){ 

D1 <- matrix(NA,nrow=5,ncol=5) 

for(i in 1:5){ 

D1[i,1] <- j 

D1[i,2] <- i 

D1[i,3:5 ]<- ClassKnnGeno2.2(i,j) 

} 

D <- rbind(D,D1) 

} 

 

for(j in s[-c(1:8)]){ 

D1 <- matrix(NA,nrow=5,ncol=5) 

for(i in 1:5){ 

D1[i,1] <- j 

D1[i,2] <- i 
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D1[i,3:5 ]<- ClassKnnGeno2.0(i,j) 

} 

D <- rbind(D,D1) 

} 

 

D.df <- as.data.frame(D) 

D.df 

nam <- c("var","zone","predRate","stdev","k") 

names(D.df) <- nam 

write.table(D.df,file="RatesZone.csv",sep=",",row.names=FALSE,quote=FALSE) 

 

# Age by Flap 

D<- matrix(NA,nrow=4,ncol=5) 

for(i in 1:4){ 

D[i,1] <- 10 

D[i,2] <- i 

D[i,3:5 ]<- ClassKnnAge1.2(i,10) 

} 

for(j in s[-c(1,9:18)]){ 

D1 <- matrix(NA,nrow=4,ncol=5) 

for(i in 1:4){ 

D1[i,1] <- j 

D1[i,2] <- i 

D1[i,3:5 ]<- ClassKnnAge1.2(i,j) 

} 

D <- rbind(D,D1) 
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} 

 

for(j in s[-c(1:8)]){ 

D1 <- matrix(NA,nrow=4,ncol=5) 

for(i in 1:4){ 

D1[i,1] <- j 

D1[i,2] <- i 

D1[i,3:5 ]<- ClassKnnAge1.0(i,j) 

} 

D <- rbind(D,D1) 

} 

 

D.df <- as.data.frame(D) 

D.df 

nam <- c("var","flap","predRate","stdev","k") 

names(D.df) <- nam 

 

write.table(D.df,file="RatesFlapAge.csv",sep=",",row.names=FALSE,quote=FALSE) 
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# Age by Zone 

D<- matrix(NA,nrow=5,ncol=5) 

for(i in 1:5){ 

D[i,1] <- 10 

D[i,2] <- i 

D[i,3:5 ]<- ClassKnnAge2.2(i,10) 

} 

for(j in s[-c(1,9:18)]){ 

D1 <- matrix(NA,nrow=5,ncol=5) 

for(i in 1:5){ 

D1[i,1] <- j 

D1[i,2] <- i 

D1[i,3:5 ]<- ClassKnnAge2.2(i,j) 

} 

D <- rbind(D,D1) 

} 

 

for(j in s[-c(1:8)]){ 

D1 <- matrix(NA,nrow=5,ncol=5) 

for(i in 1:5){ 

D1[i,1] <- j 

D1[i,2] <- i 

D1[i,3:5 ]<- ClassKnnAge2.0(i,j) 

} 

D <- rbind(D,D1) 
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} 

 

D.df <- as.data.frame(D) 

D.df 

nam <- c("var","zone","predRate","stdev","k") 

names(D.df) <- nam 

 

write.table(D.df,file="RatesZoneAge.csv",sep=",",row.names=FALSE,quote=FALSE) 

 


