12-18-2014

Maintenance of Neuron Activity by Homeostatic Alterations in Receptors and Ion Channels in a Rett Syndrome Mouse Model

Max Oginsky
MAINTENANCE OF NEURON ACTIVITY BY HOMEOSTATIC ALTERATIONS IN RECEPTORS AND ION CHANNELS IN A RETT SYNDROME MOUSE MODEL

by

MAX F. OGINSKY

Under the Direction of Chun Jiang, PhD

ABSTRACT

Rett Syndrome (RTT) is a developmental disorder that affects numerous neuronal systems that underlie problems with breathing, movement, cognition and sleep. RTT is caused by mutations in the methyl-CpG-binding protein 2 (MeCP2) gene. MeCP2 is a ubiquitous protein that is found in all mature neurons and binds to methylated DNA to repress transcription; thus regulating protein expression levels in neurons. The mutations in MeCP2 affect a large number of proteins that are crucial for regulating neuronal activity. Despite the abnormal expression of many of these proteins, mice with a total loss of MeCP2 can live to adulthood and some people with RTT can live to a very late age as well. It is possible that mutations in the MeCP2 gene not only cause widespread defects, but also elicit neuroadaptive
processes that may limit the impact of the MeCP2 dysfunction. To test this
hypothesis we performed these studies in which we focused on how synaptic and
membrane currents were altered to maintain normal neuronal activity in *Mecp2*-null
mice. We show two examples from different neurons where neuroadaptations of ion
current expression allowed the neuron to remain viable. First, the properties of the
nicotinic acetylcholine receptor (nAChR) current were altered in LC neurons in
Mecp2-null mice. This was caused by changes in the nicotinic receptor subunit
expression. Despite the changes in the nAChR current, the cholinergic modulation of
LC neuron activity in WT and *Mecp2*-null mice were similar. Secondly, we show that
the fast Na\(^+\) voltage-gated and the hyperpolarization-activated currents were altered
in mesencephalic trigeminal V (Me5) propriosensory neurons. The changes in the
hyperpolarization-activated current caused a smaller sag and post-inhibitory
rebound. Opposite to what we expected, these cells were hyperexcitable. The
hyperexcitability was due to changes in the fast Na\(^+\) voltage-gated current causing a
decreased action potential threshold. Alterations in the ionic currents in Me5 neurons
seem to be due to changes in subunit expression patterns. These results indicate
that despite the complications caused by defects in the *Mecp2* gene, neurons
respond by rearranging receptor / ion channel expression. This reorganization allows
neurons to remain viable despite the MeCP2 deficiency.

INDEX WORDS: Rett syndrome, Homeostasis, Nicotinic receptor, Hyperpolarization-
activated current, Voltage-gated sodium current, *Mecp2*
MAINTENANCE OF NEURON ACTIVITY BY HOMEOSTATIC ALTERATIONS IN RECEPTORS AND ION CHANNELS IN A RETT SYNDROME MOUSE MODEL

by

Max F. Oginsky

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2014
MAINTENANCE OF NEURON ACTIVITY BY HOMEOSTATIC ALTERATIONS IN RECEPTORS AND ION CHANNELS IN A RETT SYNDROME MOUSE MODEL

by

Max F. Oginsky

Committee Chair: Chun Jiang

Committee: William Walthall

Vincent Rehder

Electronic Version Approved:

Office of Graduate Studies
College of Arts and Sciences
Georgia State University
December 2014
DEDICATION

To my Wife Dana and my Daughter Amelia. Both of who I am eternally blessed and forever grateful to have in my life.

To my Mother Patricia
A lovely, lovely woman who has always been there for me and showed me how to persevere through all of life’s trials, a significant key to my success.

To my Father Robert and step-Mother Rosanne
A couple who has instilled a hard work ethic and love of music in me, both of which have been crucial to my well-being

To my Brother Robert
A wonderful source of inspiration at a critical time in my life

To my Brother Daniel
My Rock of Gibraltar

To my in-laws Russell and Eileen
Both have been a wonderful addition to my life and have been very supportive in my educational pursuits
ACKNOWLEDGEMENTS

I will do my best to mention everyone that has helped me and guided me through this entire process of earning my PhD. Please forgive me if I forget to acknowledge someone. There are so many people at GSU that have provided either words of wisdom, helped me with a problem or pushed me to excel. For that, I am forever grateful.

First and foremost, I would like to express my appreciation for my Ph.D. advisor, Chun Jiang. He has been a constant source of guidance and motivation throughout my time in his lab. Each day he pushed me to become a better scientist. Without his support and mentorship, I would not be where I am today.

Secondly, I would like to thank my committee members, Dr. William Walthall and Dr. Vincent Rehder. Dr. Walthall was the first person I met here at GSU when I started as a Master's student. He has always been supportive and gone above and beyond with helping me during my time here at GSU. Dr. Rehder is wonderful person who has offered me sage advice and helpful comments during my dissertation experience.

I would also like to thank other faculty members at GSU. Thanks to Dr. Deborah Baro for giving me a start in the GSU PhD program. I am not sure I would be having the career I am having without her help and for that I am very grateful. Thanks to Dr. Yuan Liu for her guidance when I first came to GSU as a Master's student and during my qualification exam. Thanks to Dr. Gennady Cymbalyuk for taking a lot of time out of his schedule to teach me computational neuroscience skills. I am confident this will very useful in my future. Thank you to Dr. Julia Hilliard for being very helpful when it was extremely needed. Thank you to Dr. Timothy Bartness for helping me with me to secure
a postdoc position. Dr. Robert Simmons for his help with my microscopy experiments and good conversations. Dr. Blaustein and Nancy Russell for providing a wonderful student teaching experience.

I would also like to thank the staff at GSU. LaTesha Warren has always been there to provide professional assistance and helpful guidance. Barry Grant for his help with some maintenance repairs. Elizabeth Weaver for her help with all Brains and Behavior events and issues. Debby Walthall, Sonja Young and Ping Jiang have been very helpful throughout the years.

Thank you to the many friends and colleagues I have made during my time at GSU. From the early days, Dr. Wulf Krenz, Dr. Edmund Rodgers, Dr. Hongmei Zhang, Amarallys Citron, Kimi Kent, Anna Huff and Jingjing Fu. Members of the Jiang lab, Dr. Ningren Cui, Dr. Xin Jin, Dr. Yang Yang, Dr. Xiaotao Jin, Dr. Shanshan Li, Christopher M. Johnson, Shuang Zhang, Vivian Zhong, Dawn Wu, Casey Trower. Also, Johnny Garretson for all his help with problems, difficulties, issues, complications, crises and conundrums, Dr. Lei Zhong, Stephen Estes, Dr. Liana Artinian, William Barnett, Hasti Ghabel, Jill Weathington, Devaleena Pradham, Lori Eidson, Dr. Tim Balmer, Katherine Sturman and Anna Dunigan.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. v

LIST OF TABLES .. xii

LIST OF FIGURES .. xiii

1 SPECIFIC AIMS OF THE DISSERTATION ... 1

2 INTRODUCTION .. 5

2.1 Definition of key concepts ... 5

2.2 Signaling in the CNS is governed by synaptic transmission and neuron activity ... 6

2.2.1 Overview of chemical synaptic transmission in the mammalian CNS 7

2.2.2 Presynaptic mechanisms of neurotransmitter release ... 8

2.2.3 Postsynaptic mechanisms mediating the chemical message ... 9

2.2.4 Intrinsic Membrane ionic currents affect neuronal activity ... 11

2.2.5 Overview of K⁺ currents role in neuronal activity .. 13

2.2.6 Role of Ih in neuron firing properties .. 16

2.2.7 Voltage-gated Na⁺ channels are crucial for action potential generation 17

2.2.8 Membrane ionic current regulation of mesencephalic trigeminal V neuron activity 18

2.3 Brainstem circuitry underlying autonomic behaviors ... 19
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1</td>
<td>LC-ACh-GABA brainstem circuit</td>
<td>19</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Neuronal activity during autonomic behavior</td>
<td>21</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Expression of nAChRs in LC neurons</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>Rett Syndrome</td>
<td>24</td>
</tr>
<tr>
<td>2.4.1</td>
<td>History</td>
<td>24</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Progression and symptoms of RTT</td>
<td>24</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Mutations in the MECP2 gene underlies RTT</td>
<td>25</td>
</tr>
<tr>
<td>2.4.4</td>
<td>NE deficiencies contribute to RTT symptoms</td>
<td>26</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Motor system deficiencies underlie RTT symptoms</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>MeCP2<sup>−/−</sup> mice as a model system</td>
<td>28</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Benefits and drawbacks of the system</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>SIGNIFICANCE</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>METHODS</td>
<td>32</td>
</tr>
<tr>
<td>4.1</td>
<td>Animals</td>
<td>32</td>
</tr>
<tr>
<td>4.2</td>
<td>Brain Slice Preparation</td>
<td>32</td>
</tr>
<tr>
<td>4.3</td>
<td>Identification of LC neurons</td>
<td>33</td>
</tr>
<tr>
<td>4.4</td>
<td>Identification of Me5 neurons</td>
<td>33</td>
</tr>
<tr>
<td>4.5</td>
<td>Electrophysiology in LC neurons</td>
<td>33</td>
</tr>
<tr>
<td>4.6</td>
<td>Electrophysiology in Me5 neurons</td>
<td>35</td>
</tr>
<tr>
<td>4.7</td>
<td>Reverse Transcription</td>
<td>37</td>
</tr>
</tbody>
</table>
4.8 Single-cell PCR ... 37
4.9 Quantitative PCR .. 38
4.10 Data Analysis ... 38

5 ALTERATIONS IN THE CHOLINERGIC SYSTEM OF BRAINSTEM
NEURONS IN A MOUSE MODEL OF RETT SYNDROME 39

5.1 Acknowledgements .. 39
5.2 Abstract .. 39
5.3 Introduction .. 40
5.4 Results .. 44

5.4.1 The whole-cell nAChR currents were altered in Mecp2−/Y mice .. 44
5.4.2 The increase in decay time was attributable to alterations in nAChR subunit expression ... 45
5.4.3 GABA-ergic input but not glutamatergic input was augmented by nicotinic presynaptic modulation in Mecp2−/Y mice 49
5.4.4 Cholinergic modulation of LC neuronal activity was sustained in Mecp2−/Y mice despite a large decrease in nAChR currents 50

5.5 Discussion .. 51

5.5.1 Changes in nAChR subunit expression may be responsible for altered current... 51
5.5.2 Adaptations in LC neurons of Mecp2−/Y mice 53

5.6 Figures ... 58
6 HOMEOSTATIC REORGANIZATION OF HCN AND VOLTAGE-GATED NA⁺ CHANNELS IN MESENCEPHALIC TRIGEMINAL PROPRIOSENSORY NEURONS OF A RETT SYNDROME MOUSE MODEL AND ITS IMPACT ON MEMBRANE EXCITABILITY ... 72

6.1 Acknowledgements .. 72

6.2 Abstract .. 72

6.3 Introduction ... 73

6.4 Results ... 75

6.4.1 Post-inhibitory rebound and sag in WT mice ... 75

6.4.2 Decreases of PIR and sag in Mecp2⁻/⁻ mice ... 76

6.4.3 Reduction in I₇ in Mecp2⁻/⁻ mice .. 77

6.4.4 Impact on firing and repetitive firing activity ... 78

6.4.5 Alteration of voltage-gated Na⁺ currents in Mecp2⁻/⁻ mice 79

6.4.6 Evidence for altered expression of HCN and Na⁺ channels in
Mecp2⁻/⁻ mice ... 80

6.5 Discussion .. 82

6.5.1 I₇ alterations in Mecp2⁻/⁻ mice ... 82

6.5.2 I₇Na alterations in Mecp2⁻/⁻ mice .. 83

6.5.3 Homeostatic reorganization of HCN and voltage-gated Na⁺
channels in Mecp2⁻/⁻ mice ... 84

6.5.4 Other possible contributors to the intrinsic hyperexcitability 85
6.6 Figures ... 87

7 GENERAL DISCUSSION .. 103

7.1 Homeostatic compensation in animal models ... 103

7.1.1 Gene knockout mouse models ... 103

7.1.2 Parkinson’s disease mouse models ... 104

7.1.3 Rett Syndrome mouse models .. 105

7.2 Evolutionary considerations ... 107

7.2.1 Degeneracy of ionic currents ... 108

7.2.2 Ionic currents change depending on the presence of modulatory input .. 109

7.2.3 Protein expression from cell to cell and animal to animal 109

7.2.4 Similarities between WT animals and animal models of disease .. 110

7.3 Conclusion .. 111

REFERENCES .. 111

APPENDIX ... 126
LIST OF TABLES

Table 5.1 Nicotinic Receptor PCR Primers... 71
Table 6.1 Na⁺ Channel PCR Primers... 102
LIST OF FIGURES

Figure 5.1 The nAChR currents were altered in LC neurons from $\text{Mecp}2^{-/Y}$ mice. ... 58

Figure 5.2 Nicotine elicited a similar current to ACh in WT and $\text{Mecp}2^{-/Y}$ mice. ... 60

Figure 5.3 Receptor subunit expression in identified LC neurons. 62

Figure 5.4 LC neurons from $\text{Mecp}2^{-/Y}$ mice expressing the α_5 subunit had longer decay times than β_3-expressing neurons. .. 63

Figure 5.5 Presence of the α_7 subunit affects the current amplitude and decay time constant in LC neurons from WT mice. 64

Figure 5.6 Cholinergic modulation of GABA-ergic input to LC neurons with nAChR agonist in $\text{Mecp}2^{-/Y}$ mice is enhanced compared to WT mice........ 65

Figure 5.7 Cholinergic modulation of GABA inputs to the LC neurons with a nAChR antagonist is enhanced in $\text{Mecp}2^{-/Y}$ mice... 67

Figure 5.8 There is a small but insignificant difference in nicotinic modulation of LC neurons from WT and $\text{Mecp}2^{-/Y}$ mice. 69

Figure 6.1 ZD7288 blocks the strong sag and PIR in Me5 trigeminal neurons. ... 87

Figure 6.2 PIR and sag are less in Me5 trigeminal neurons from $\text{Mecp}2^{-/Y}$ mice. ... 89

Figure 6.3 The hyperpolarization-activated current in Me5 trigeminal propriosensory neurons. .. 91
Figure 6.4 The hyperpolarization-activated current was altered in Me5 trigeminal neurons from $\text{Mecp2}^{-/Y}$ mice. ... 93
Figure 6.5 Excitability was increased in Me5 neurons of $\text{Mecp2}^{-/Y}$ mice..... 95
Figure 6.6 The steady state half-activation of voltage-gated sodium current was shifted in the hyperpolarized direction in $\text{Mecp2}^{-/Y}$ mice...................... 97
Figure 6.7 Alterations in HCN subunit expression in Me5 neurons.............. 98
Figure 6.8 Alterations in NaV and SCN subunit expression in Me5 neurons... 100
1 SPECIFIC AIMS OF THE DISSERTATION

The loss of proper Methyl-CpG-binding protein 2 (MeCP2) function is the molecular basis of Rett syndrome (RTT). RTT is characterized by abnormalities in breathing, motor function, cognition and sleep, in addition to other autistic features. These problems have largely been linked to dysfunction in signaling between neurons as well as neuronal intrinsic membrane properties. The decrease in GABA and norepinephrine (NE) signaling has been shown to be associated with breathing disorders, characteristics of RTT that underlie the high (26%) sudden and unexpected death rates (Abdala et al. 2010; Viemari et al. 2005). This may be partially due to the decrease in the expression of the NE-synthesizing enzymes, tyrosine hydroxylase and dopamine-β-hydroxylase in locus coeruleus (LC) neurons, and the GABA-synthesizing enzyme glutamic acid decarboxylase in GABAergic neurons (Chao et al. 2010; Zhang et al. 2010b). Abnormalities in LC neuronal intrinsic membrane properties also contribute to the defects in breathing (Zhang et al. 2010a; Zhang et al. 2011). The coexistence of the defects in NE and GABA systems suggest that brainstem neuronal networks are affected by the MeCP2 disruption, which may involve other neurotransmitter systems such as serotonin and acetylcholine (ACh) as well. ACh regulates the expression of enzymes for NE and GABA biosynthesis and may be involved in the problems associated with the NE and GABAergic systems (Gueorguiev et al. 2000; Maloku et al. 2011). Indeed, ACh signaling has been shown to be defective in RTT (Nag and Berger-Sweeney 2007; Weng et al. 2011; Wenk and Hauss-Wegrzyniak 1999; Wenk and Mobley 1996). The NE, GABA and cholinergic systems regulate certain behaviors
including arousal state and sleep/wake cycles. Experimental evidence suggests that the modulation of the NE system by GABA is deficient and contributes to neuronal hyperexcitability. A similar defect may occur in the cholinergic system, a hypothesis that we have proposed experiments to test.

The involvement of multiple neurotransmitter systems in the development of RTT-like disorders in MeCP2-null mice suggests that an appropriate regulation of these neurotransmitter systems is necessary to maintain them in a homeostatic state. Homeostasis of neurotransmitter systems will not only allow a better control of neurotransmission, but also enable potential compensatory neuroadaptations to the defects in receptors and ion channels. The latter may be in action in RTT mouse models to limit the impact of the loss of MeCP2 function, a novel hypothesis that we have proposed in these studies.

The homeostatic adaptive mechanism is known to occur in response to genetic perturbation. In animals with a specific ion channel gene knocked out, neurons alter the expression of other ion channels to maintain normal function. (Bonin et al. 2013; Kim and Hoffman 2012; Ortinski et al. 2006). There is evidence for neuroadaptations in Parkinson’s disease animal models as well (Golden et al. 2013; Lloyd 1977; McCallum et al. 2006). Therefore, it is possible that similar types of alterations in channel expression may be occurring in RTT mouse models to maintain normal function.

Despite the belief of its existence, it was unclear how the homeostatic compensatory mechanism would work. Since RTT affects signaling between neurons, we investigated the mechanisms for neuronal activity and communication, in which receptors and ionic channels are known to play an important role.
To validate the homeostatic neuroadaptation hypothesis, we investigated receptors and ion channels in two different neuron types, i.e., cholinergic synaptic currents in LC neurons and membrane ionic currents in mesencephalic trigeminal V (Me5) neurons. The LC is the center for NE production in the CNS, whereas the Me5 neurons are propriosensory cells that are crucial for coordinated movement. They function in autonomic regulation and motor behaviors, respectively. These two systems show the most severe defects in RTT. Therefore, we have proposed studies to address two specific aims:

Specific Aim 1 (tested in Chapter 5): How does ACh modulate LC neurons through presynaptic and postsynaptic mechanisms in WT and MeCP2−/Y mice?

NE is deficient in humans with RTT and mouse models (Panayotis et al. 2011; Zoghbi et al. 1989). This seems to be due to inherent defects and abnormal synaptic inputs in LC neurons (Jin et al. 2013a; Zhang et al. 2010a; Zhang et al. 2011). ACh has several functional overlaps with the NE system. ACh is a classical neurotransmitter involved with many functions in the CNS and peripheral nervous system. It plays a role in CNS function by regulating attention, memory function, arousal, transitions in sleep cycles and mood. These behaviors are dysregulated in RTT (Carotenuto et al. 2013; Maloku et al. 2011; Schaevitz et al. 2012). The loss of MeCP2 function on cholinergic signaling is unclear. Few have focused on the dysfunction of the cholinergic system caused by the knockout of the MeCP2 gene. However, it is clear that NE and ACh regulate similar behaviors. In one example, LC neurons and ACh neurons regulate each other resulting in alternations between non-REM and REM sleep states. It is unclear,
however, whether the modulation of LC neurons by ACh is altered in \textit{Mecp2}^{+/Y} mice. Therefore, in this study we investigated the cholinergic modulation of LC neurons in these mice. These experiments may provide insight into how the knockout of the \textit{Mecp2} gene alters the expression of nicotinic acetylcholine receptors (nAChR) in LC neurons, and whether neurons can alter the expression of synaptic receptors to maintain normal modulation.

\textit{Specific Aim 2 (tested in Chapter 6): How does the loss of MeCP2 affect ionic currents and firing activity in mesencephalic trigeminal V propriosensory neurons?}

Motor dysfunction is a characteristic of RTT, which may result from motor, extrapyramidal and propriosensory neuron dysfunction. Propriosensory neurons are important for relaying information to the brain about the position of the limb in space. This is critically important for coordinated and directed movement such as locomotion and mastication. Girls with RTT have problems chewing and swallowing which leads to malnutrition and poor health (Motil et al. 2012). Whereas most work has been focused on motor neurons to determine the underlying causes of movement problems, little is known about how the loss of MeCP2 impairs propriosensory function. In these experiments we took advantage of the presence of Me5 neurons in the brainstem to test the homeostatic neuroadaptation hypothesis by focusing on ion channels and intrinsic member properties. The experiments herein test the hypothesis that the Me5 neurons from \textit{Mecp2}^{+/Y} mice are dysfunctional due the knockout of the gene. This study provides
insight into the membrane ionic currents that affect the intrinsic membrane properties of Me5 neurons in Mecp2/Y mice.

Taken together, this dissertation addresses the effects of the Mecp2 knockout on synaptic and membrane ionic currents. It addresses two important questions: 1) how does the disruption of Mecp2 impair ion channels and receptors? 2) Do neurons respond to these defects by rearranging other ion channels and receptors to minimize and compensate for the defects? The NE-ergic system and the Me5 propriosensory system were chosen as they represent major defective functions in RTT. Ion channels and receptors were studied in these neurons as they underlie the intrinsic membrane properties of neurons as well as neuronal communication, both of which are known to be defective in RTT. Therefore, this dissertation provides evidence that the loss of proper MeCP2 function affects neuronal communication by changing synaptic transmission and by altering membrane ionic currents. It is possible that these types of neuroadaptations may exist in other diseases with a basis in genetic defects.

2 INTRODUCTION

2.1 Definition of key concepts

There is growing evidence suggesting the reason that some diseases progress through different stages, instead of the victims dying quickly, is because neurons are able to compensate for the problems caused by the disease. Compensation can be described as a neuroadaptive mechanism by which one attribute is altered to limit the problems created by a deficiency in another attribute. For example, in Parkinson’s disease, the decrease in dopamine in the striatum is caused the death of substantia
nigra pars compacta neurons. The remaining dopaminergic neurons compensate by increasing their production of dopamine. This is done by increasing expression of tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis (Zigmond et al. 1984). Here, we provide evidence of compensation done by homeostatic reorganization of receptors and ion channels. The reorganization refers to the increase in one subunit of the receptor/ion channel family while another is decreased, or vice versa. These changes in expression seem to be a homeostatic mechanism because it provides a way for the neuron to remain viable. These concepts provide a basis for understanding how neurons adapt to perturbation caused by a disease.

2.2 Signaling in the CNS is governed by synaptic transmission and neuron activity

There are two major components that regulate how a neuron communicates to other neurons. First, the release of neurotransmitters from a presynaptic neuron and the subsequent binding of the transmitter to its receptor on the postsynaptic neuron has been widely studied. Secondly, the intrinsic membrane properties of the neuron governs how it fires action potentials and how the neuron responds to input from presynaptic neurons. While not a focus of the thesis, electrical synapses are found in a small number of neurons. These synapses are formed by gap junctions and allow neurons to communicate by directly passing electrical current from one cell to another. Because there is no chemical intermediary, the communication is very fast and usually involved in simple behaviors such as the escape reflex in lobsters and crayfish. Understanding how these processes underlie normal communication is essential for understanding neuron signaling problems found in disease.
2.2.1 Overview of chemical synaptic transmission in the mammalian CNS

The synapse is the basic structure of chemical neurotransmission in the CNS. The synapse consists of a presynaptic neuron that releases transmitters and a postsynaptic neuron that has ligand-gated receptors that convert the chemical message into an electrical signal. Depending on whether the electrical signal is made up of cations or anions, the neuron becomes excited or inhibited.

The synaptic communication between two neurons is modified by modulatory inputs. These inputs can change the amount of neurotransmitter released at the presynaptic terminal (Garcia-Ramirez et al. 2014). The modulatory inputs can influence the movement of receptors in and out of the synapse in the postsynaptic neuron (Gao et al. 2006; Zou et al. 2005). These mechanisms are involved with increasing or decreasing the synaptic strength and ultimately are thought to underlie compensatory neuroadaptations such as long term potentiation (LTP) and long term depression (LTD) (Bassani et al. 2013; Castillo 2012).

It is unclear how certain genetic diseases that affect signaling between neurons affect these normal neuromodulatory processes. Experimental evidence from transgenic animals indicate that the defect in a given gene produces a phenotype that lacks function (Drago et al. 2003). Whereas in other animals, molecular and systemic compensation occurs by activating other gene(s) that have similar functions, reducing and in some cases even masking the defect (Bonin et al. 2013). Evolutionarily, it is reasonable to believe that compensatory neuroadaptations are necessary for survival or preservation of a biological system when a crucial gene is mutated.
The transcription repressor protein, methyl-CpG-binding protein 2 (MeCP2) plays a role in the expression of enzymes crucial for the synthesis of neurotransmitters (Maloku et al. 2011). As a result, its defect can affect a large number of downstream genes including several neurotransmitter systems (Chao et al. 2010; Zhang et al. 2010b). In this thesis we elucidate some of the effects that the loss of functioning MeCP2 has on neuronal activity.

2.2.2 Presynaptic mechanisms of neurotransmitter release

The release of neurotransmitters from a nerve terminal occurs through action potential dependent and action potential independent mechanisms. The action potential induced release of neurotransmitters from a presynaptic terminal involves many events to occur in a choreographed manner. The invasion of the action potential into the presynaptic terminal causes local depolarization and opening of voltage-gated Ca\(^{2+}\) channels. The influx of Ca\(^{2+}\) into the cell is critical for neurotransmitter release and blocking of these channels or reducing extracellular Ca\(^{2+}\) prevents the release of the transmitters. Further, even when the action potential is blocked with tetrodotoxin, neurotransmitter release at the presynaptic terminal can occur. Depolarization of the membrane potential at the presynaptic terminal, without the influence from an action potential, can activate Ca\(^{2+}\) channels (Nakamura and Jang 2010; Yang et al. 2011). Therefore, action potential independent mechanisms are in place to regulate the release of neurotransmitters.

Ca\(^{2+}\) binds to molecular targets in the terminal causing the release of neurotransmitters into the synapse. The vesicles that store the neurotransmitter at the terminal present at the active zone or site of release. Ca\(^{2+}\) entry causes these vesicles
to fuse to the membrane and release the neurotransmitters into the synapse (Sudhof 2012). However, since some neurons can respond to stimuli by firing at > 200Hz, it is important to know how this is possible. Vesicles are tethered and stored in compartments that are distant from the active zone. Ca^{2+} binds to synapsin, a protein that tethers the vesicles, and initiates the vesicle movement to the active zone (Kile et al. 2010).

Neurotransmitters are released as discrete units called quanta. Each quantum results in a fixed postsynaptic potential. A single quantum has been linked to the release of neurotransmitters in a single vesicle. After the action potential invades the terminal, many quanta are released at once and can affect the membrane potential of the postsynaptic neuron. However, the release of neurotransmitters independent of an action potential can be modulated by other inputs at the presynaptic terminal. Acetylcholine alters the amount of GABA and glutamate released at terminals by depolarizing the membrane potential. This causes an increase in the frequency of quanta release. Therefore, increasing the quanta release enhances the effect the presynaptic neuron has on the postsynaptic neuron.

2.2.3 Postsynaptic mechanisms mediating the chemical message

The ligand-gated ionotropic receptors found in the postsynaptic membrane are the most common mode of converting the chemical signal from the presynaptic neuron to an electrical signal in the postsynaptic neuron. In the mammalian CNS, glutamate mediates the excitatory signal by binding to NMDA and AMPA receptors in the postsynaptic membrane. Opening of these receptors allows Na^+ and Ca^{2+} to enter and depolarize the cell. GABA mediates the inhibitory signal by binding to GABA_A receptors.
causing Cl^- to pass into the cell. Also, GABA may bind to GABA_B receptors and initiate a second messenger cascade resulting in activation of K^+ currents. In both instances, GABA can hyperpolarize the cell. Another class of signaling molecule is acetylcholine (ACh), which is most commonly associated with signaling between motoneurons and muscles in the peripheral nervous system. In the CNS, ACh acts through the ionotropic nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors and is involved with diverse behaviors such as attention, cognition, sleep as well as others (Romanelli et al. 2007).

Glutamate, GABA and ACh elicit postsynaptic currents that affect the firing activity of the postsynaptic neuron. Since NMDA, AMPA and nicotinic acetylcholine receptors allow Na^+ and Ca^{2+} into the cell, the cell depolarizes increasing the likelihood of an action potential and increasing the firing frequency. GABA- elicited inhibition through GABA$_A$ receptors is caused by Cl^- moving into the cell causing the membrane potential to become hyperpolarized. Hyperpolarization of the membrane potential increases the likelihood of the cell to be silent or at least reduce the firing frequency. The activation of these receptors will affect the firing activity of neurons by directly altering the membrane potential.

Long-term potentiation (LTP) Long-term Depression (LTD) are the major mechanisms of changing the synaptic strength in the CNS. Most often these mechanisms are associated with excitatory synapses but have been found at inhibitory synapses as well (Arendt et al. 2013; Cohen et al. 1999; Nugent and Kauer 2008). Pre- and postsynaptic mechanisms have been described. In brief, the presynaptic mechanisms involve the increase of neurotransmitter release in LTP and a decrease in
LTD. Postsynaptically, the ligand-gated receptors move into the synapse during LTP and are removed during LTD. Many methods have been used to stimulate LTP and LTD, whether its high/low frequency stimulation of the presynaptic neuron (Martin et al. 2013; Mizuno et al. 2001) or coincidental firing of an action potential between the pre and postsynaptic neurons (Banerjee et al. 2014; Kodangattil et al. 2013). LTP and LTD are important for normal cognitive function the brain and disruption of these mechanisms because of disease leads to improper communication between neurons (Han et al. 2014; Liu et al. 2008; Mori et al. 2014). This suggests people with diseases that have altered signaling processes in neurons have impaired learning and memory.

2.2.4 Intrinsic membrane ionic currents affect neuronal activity

Besides synaptic transmission, the intrinsic membrane properties of neurons governs their firing properties. These intrinsic membrane properties have been extensively studied and can be generally attributed to specific ionic membrane currents. Here, we will introduce specific firing properties in the neurons studied and how these properties affect signaling and function.

The relationship between the injected current and the voltage response of the neuron is very important for understanding the input resistance of the neuron. The input resistance is a good measure of the number of channels that are either open or closed in the membrane of the neuron (John and Manchanda 2011). More specifically, it is a valuable tool in determining how a drug may affect the membrane ion channels thus altering the activity of the neuron (Podda et al. 2010). Consequently, the opening and closing of ion channels alters the excitability of neurons. According to Ohm's law, the input resistance has a large effect on membrane potential. If the input resistance is
large, a current injection is going to change the membrane potential more than if the input resistance is small. Therefore, membrane ion channels alter the response of the postsynaptic neuron to presynaptic currents by changing the input resistance of the neuron.

The delayed excitation found in many neurons affects the interspike interval. The time it takes from the end of one action potential to the start of the next is regulated by subthreshold currents. A major contributor to the interspike interval is the fast-transient K^+ current (I_A) (McDermott and Schrader 2011). This current is mediated by $Kv(4.1-4.3)$ channels in mammals and is inactivated during an action potential. $Kv4$ channels become deinactivated at subthreshold potentials and activate during the interspike interval allowing K^+ to flow out of the cell. The movement of K^+ out of the cell causes the depolarization of the cell toward threshold to take longer than it would if I_A was not present. Therefore, this particular K^+ current regulates the interspike interval and allows cells to spontaneously fire action potentials at low frequencies.

The post-inhibitory rebound (PIR) is very important to how neurons respond to the release from inhibition. The phenomenon is very important in half-center oscillators found in central pattern generators and in reciprocal inhibition found in locomotion. In both cases, the firing of one neuron causes a second neuron to be inhibited from firing (Harris-Warrick et al. 1995). When the first neuron stops firing action potentials, the second neuron rebounds from silence and fires action potentials. Without the PIR, the neuron would just return to its resting membrane potential without firing an action potential. Therefore, the PIR depolarizes the neuron past its resting membrane potential to threshold.
The underlying mechanism for the PIR has been attributed to the hyperpolarization-activated current (I\(_H\)) (Ascoli et al. 2010). I\(_H\) is a nonspecific cation current that depolarizes the cell after it has been inhibited. The removal of the inhibition happens much faster than the deactivation of the HCN channels. This allows cations to keep moving into the cell driving the voltage past the resting membrane potential to threshold (Dean et al. 1989).

The spike frequency adaptation (SFA) is a phenomenon that describes how neurons respond to a sustained depolarizing pulse. When a neuron is subjected to a depolarizing pulse, a train of action potentials will be elicited. If the SFA is present, then the frequency of action potentials will decrease during the time of depolarizing pulse (Chen et al. 2014). This is found in both sensory and motor neurons and has been related to different mechanisms. The most prominent is the action potential-dependent SFA. In this case, Ca\(^{2+}\) is brought into the cell during the action potential and Ca\(^{2+}\)-dependent K\(^+\) currents (I\(_{KCa}\)) are activated. The activation of these currents increases the afterhyperpolarization (AHP). The larger AHP slows the depolarization of the membrane potential. With each successive action potential, the net concentration of Ca\(^{2+}\) in the cell grows, thus activating more and more K\(_{Ca}\) channels (Vandael et al. 2012). Therefore, the interspike interval becomes longer during the depolarizing pulse. This is how the neuron is able to accommodate to the depolarization and slow the action potential frequency.

2.2.5 Overview of K\(^+\) currents role in neuronal activity

Two of the most important functions performed by K\(^+\) currents in neurons is the setting of the resting membrane potential, the repolarization of the action potential and
the interspike interval. The resting membrane potential is mainly set by K\(^+\) leak currents mediated by TWIK-related acid sensitive K\(^+\) (TASK) and Kir channels (Butt and Kalsi 2006). These channels are not voltage or ligand-gated. The conductance of K\(^+\) obeys Ohm’s law. Consequently, the driving force created by the concentration gradient of K\(^+\) and the membrane potential of the neuron causes K\(^+\) to move out of the neuron. For most cells, the resting membrane potential is very near the equilibrium potential of the K\(^+\) leak current. When the cell is hyperpolarized below the K\(^+\) equilibrium potential the polyamine block is removed and the channels conduct K\(^+\) into the cell. Usually if I\(_{\text{Kir}}\) plays a large role in setting the resting membrane potential, the potential is usually near the K\(^+\) reversal potential.

The delayed rectifier K\(^+\) current (I\(_{\text{K}}\)) repolarizes neurons during the action potential. I\(_{\text{K}}\) activates slowly so that it only influences the membrane potential after the voltage-gated Na\(^+\) current (I\(_{\text{Na}}\)) is inactivated. With no inactivation gate, once the membrane potential becomes hyperpolarized, the driving force for K\(^+\) movement is lost and thus stops conducting K\(^+\). As mentioned before, I\(_{\text{KCa}}\) regulates spike frequency adaptation. This is accomplished by its regulation of the AHP of the action potential.

With the exception of the I\(_{\text{KCa}}\) mediated by SK channels, I\(_{\text{KCa}}\) is voltage-activated and modulated by Ca\(^{2+}\). Just as increasing the voltage increases the K\(^+\) conductance, so does increasing the Ca\(^{2+}\). There are three main channel types, BK, IK and SK that possess different conductance values and Ca\(^{2+}\) dependences (Vergara et al. 1998). Whereas the BK channel has a voltage dependence independent of Ca\(^{2+}\), the IK and SK channels have a relatively low voltage-dependence and rely on Ca\(^{2+}\) to be activated.
Therefore, these channels have a different effect on the afterhyperpolarization and consequently different SFA characteristics.

I_A is a subthreshold K^+ current that opposes the depolarization of the membrane potential thus affecting a neuron’s response to presynaptic signaling. This current is interesting because a hyperpolarized membrane potential deinactivates the channel. Then when the membrane potential is quickly depolarized, the activation gate opens allowing K^+ to flow out of the cell. The current ceases when the inactivation gate closes which happens quickly giving the current its transient characteristic. These channels are located in the somatodendritic compartment of neurons and their intrinsic gating mechanisms make them suitable to regulate signaling between the dendrites and the soma (Johnston et al. 2000). For many cells, I_A acts as a shunting mechanism to limit the propagation of postsynaptic potentials to the soma. Therefore, it regulates how much presynaptic neurons affect the firing of the postsynaptic neuron. Another way that the expression of these channels affects neuronal communication is in coincidence detection. The back-propagation of action potentials in the postsynaptic neuron is necessary for spike timing-dependent LTP. Since I_A acts as a shunt, it can limit the back-propagation of action potentials (Harnett et al. 2013) thus limiting the coincidence detection that occurs to induce LTP (Ramakers and Storm 2002).

In sum, K^+ currents are vital to normal neuronal activity. Not only do they affect the intrinsic membrane properties during and in between action potentials, but also signaling between neurons as well. Therefore, the expression levels of the K^+ channels in neurons has an immense impact on firing activity.
2.2.6 Role of I_H in neuron firing properties

As mentioned before, I_H is responsible for the PIR found in many neurons. I_H is a nonselective cation current that conducts mostly Na$^+$, but also some K$^+$, when it is activated by hyperpolarization. This results in the depolarization of the membrane potential back towards the threshold. Not only is this property of the channel critical in half-center oscillators and locomotion, but also in pacemaking of neuronal activity, setting the resting membrane potential and integration of excitatory postsynaptic currents (Altomare et al. 2003; He et al. 2014).

I_H has been well-studied in heart myocytes and contributes to the pacemaking of the cells (Baruscotti et al. 2005). Just as I_A opposed the depolarization of the membrane potential in between action potentials to make the interspike interval longer, I_H enhances the depolarization of the membrane potential to decrease the interspike interval. I_H plays a large role in setting the interval and it is because of this it is considered a pacemaker current (Deng et al. 2014). When I_A and I_H are both present, both contribute to the interspike interval and can coregulate the interval.

I_H is mediated by hyperpolarization and cyclic nucleotide-activated (HCN) channels. Depending on which HCN channels are expressed, the half-activation may be anywhere from -70mV to -110mV. Therefore, they do contribute to the setting of the resting membrane potential. Further, when I_H is blocked by its specific blocker, ZD7288, the resting membrane potential becomes hyperpolarized.

Similar to I_A, I_H has the ability to affect the propagation of EPSPs from the dendrites to the soma. Since HCN channels are partially activated at the resting membrane potential, they decrease the input resistance of the cell. Therefore, the signal
is much larger in the distal dendrites and much smaller in the proximal dendrites. Depending on how the HCN channels are expressed in the dendrites they affect how postsynaptic potentials propagate to the soma (Rusznak et al. 2013).

2.2.7 Voltage-gated Na$^+$ channels are crucial for action potential generation

The voltage-gated Na$^+$ current (I_{Na}) is required for the fast depolarization phase of the action potential. I_{Na} is a transient current that depolarizes the cell toward the Na$^+$ equilibrium potential. Functional Na$^+$ channels contain one α pore-forming subunit and two β auxiliary subunits. The α subunit consists of SCN(1-9)A and the β consists of SCN(1-4)B gene transcripts (Aman et al. 2009). The threshold of the action potential is, at least partially, regulated by subunits expressed in the neuron. Regulation of the threshold ultimately affects the excitability of the neuron. With a lower threshold, less contribution of depolarizing subthreshold currents is required to fire an action potential.

The Na$^+$ channels that mediate I_{Na} are mainly expressed in the axonal compartment. Therefore, when the action potential is initiated in the axon hillock, the signal can be propagated down the axon to the terminal, thus initiating the release of neurotransmitters. The propagation of the action potential is a series of electrical self-stimulation. The movement of Na$^+$ into the cell depolarizes the local area of the membrane. This depolarization of the membrane causes the Na$^+$ channels to open next to it and the process repeats itself allowing the movement of the signal down the axon to the terminal.
2.2.8 Membrane ionic current regulation of mesencephalic trigeminal V neuron activity

Mesencephalic trigeminal V (Me5) neurons are propriosensory neurons that monitor the stretch and tension of jaw masseter muscles thus sending critical information to the motor neurons needed for coordinated movement. These neurons are the only propriosensory neurons that are located in the CNS. Most propriosensory neurons are located in the dorsal root ganglia. Me5 neurons receive signals from the muscle spindles and relay the information of the limb placement to the motor neurons (Hidaka et al. 1999; Luo et al. 2001). This controls movement of the limb by communicating with the inhibitory neurons innervating the muscles that control the antagonizing muscle.

The membrane currents found in the Me5 neurons are important for their response to stimuli from the jaw and synaptic inputs from cortical areas. The voltage-gated K⁺ currents that are sensitive to tetraethylammonium (TEA) and 4-aminopyridine (4-AP) play a role in how the neuron responds to stimuli. Depending on the resting membrane potential at the time of depolarization, these neurons respond with either single action potentials or multiple action potentials (Del Negro and Chandler 1997). Blocking the current with 4-AP, caused the cells to respond to depolarization with only multiple action potentials. Therefore, the K⁺ currents do play a role in Me5 neuron excitability.

A clear response of the Me5 neurons to a hyperpolarizing current injection is a strong sag and PIR. The sag is a depolarization of the membrane potential despite a sustained hyperpolarizing pulse. As stated before, the major contributor responsible for
the sag is I_H. The deactivation of I_H after the hyperpolarizing current injection is responsible for the PIR. Also, the presence of HCN channels provides a basis for dendritic integration and postsynaptic potential propagation to the soma. Since Me5 neurons receive input from muscle spindle fibers and synaptic inputs, I_H may play a large role with how Me5 neurons respond to stimuli.

There are several types of Na$^+$ currents in the Me5 neurons. Besides I_{Na} that controls the action potential initiation and propagation, there are the persistent Na$^+$ current (I_{NaP}) and the resurgent current (I_{NaR}) (Enomoto et al. 2007). Unlike, I_{Na} that inactivates very quickly, I_{NaP} does not inactivate. I_{NaP} induces bursting in these neurons and regulates resonance properties (Enomoto et al. 2006). I_{NaR} is much less studied than I_{Na} and I_{NaP}. I_{NaR} is a subthreshold current that is activated during repolarization but still is quickly inactivated. Studies indicate that I_{NaR} plays a role in spontaneous firing in neurons and multi-peaked action potentials (Raman and Bean 1997).

2.3 Brainstem circuitry underlying autonomic behaviors

2.3.1 LC-ACh-GABA brainstem circuit

Within the dorsal pons of the brainstem near the lateral edge of the 4th ventricle is the locus coeruleus (LC). These neurons produce about 95% of the entire norepinephrine (NE) in the mammalian brain. NE has been shown to be involved with learning and memory, proper sleep, pain analgesia, breathing and attention (Brightwell and Taylor 2009; Doi and Ramirez 2008; O'Donnell et al. 2012). Therefore, the proper activity of LC neurons is very important to the maintenance of NE in the brain, thus keeping function and behavior normal.
The relationship between LC neurons and ACh neurons in the brainstem is very important for the transitions between rapid eye movement (REM) sleep and non-REM sleep. During REM sleep cholinergic neurons are very active. ACh is able to suppress the firing of LC neurons. Eventually, cholinergic neuron activity is decreased and LC neurons are able to start firing more causing the transition to a non-REM state during sleep.

GABAergic neurons are the main inhibitory neurons in the mammalian CNS. These neurons regulate neuronal excitability through synaptic transmission and through tonic release of GABA. During the transition from non-REM to REM sleep, cholinergic neurons excite GABAergic neurons which in turn silence the LC neurons through GABA$_A$ receptor-mediated synaptic transmission. GABA$_A$ receptors also mediate the tonic inhibition in the LC (Kawahara et al. 1999) which has been shown to be mediated by the Δ (Ye et al. 2013), $\alpha 5$ (Groen et al. 2014) and Θ subunits in other brain regions. Throughout the brain, GABAergic neurons play many roles by regulating neuronal activity. Within the brainstem, there are areas that regulate the neurons that are involved with breathing, pain analgesia, cranial motoneuron activity and heart rate. Besides these behaviors, GABAergic neurons from the forebrain send projections to the LC nucleus. This is important because NE plays a role in all of these behaviors. GABAergic neurons projecting from the central amygdala and the posterior lateral hypothalamic area seem to synapse on LC neurons at the dendrites (i.e., in the peri-LC region) (Dimitrov et al. 2013). Much less enter into the LC proper. Lastly, there is a local group of GABAergic neurons near the LC. These neurons are located in the peri-LC
region with many in the dendritic field (Aston-Jones et al. 2004). These neurons may be important for integrating information from afferents.

2.3.2 Neuronal activity during autonomic behavior

The autonomic system is involved in regulating involuntary behaviors such as breathing, body temperature and heart rate. NE, ACh and GABA have all shown to play a role in breathing. These neurotransmitters modulate the activity of pre-Bötzinger complex (PBC) neurons in the medulla oblongata (Doi and Ramirez 2008). PBC neurons are considered the center for breathing rhythmogenesis because the bursting of these neurons consistently corresponds to extracellular recordings of activity from the phrenic, vagus and hypoglossal nerves. All of which are involved in breathing but not rhythmogenesis.

NE, ACh and GABA affect the activity of PBC neurons. LC neurons fire tonically and the interspike interval seems to be related to the breathing rate (Zhang et al. 2011). Indeed, disruption in LC activity alters breathing. NE alters the activity of PBC neurons through two different mechanisms. First, the activation of α2 noradrenergic receptors is required for cadmium-insensitive bursting PBC neurons (Viemari et al. 2011). Second the activation of β-noradrenergic receptors increases the frequency of sighs during breathing. Further, NE modulation through β-noradrenergic receptors increases the frequency in PBC neurons by modulating I_{NaP} (Viemari et al. 2013). GABAergic neurons play a vital role in breathing as well. Blocking GABA$_A$ receptors increases the frequency and amplitude of the activity recorded from phrenic and hypoglossal nerves (Bongianni et al. 2010; Shao and Feldman 1997). This suggests that there is a baseline inhibitory input to the PBC which can be altered to regulate their firing properties. ACh is another
neurotransmitter that affects PBC activity and breathing. Activation of muscarinic receptors in the PBC leads to an increase in breathing frequency (Muere et al. 2013). It also decreases the normal PBC activity and increases the amount of sigh-causing bursts (Tryba et al. 2008).

It is clear that NE plays a large role in modulating breathing. Since about 95% of NE is produce in LC neurons, the modulation of LC activity by GABA and ACh is important. The majority of the GABA input to the LC is mediated by GABA\(_A\) receptors. Indeed, GABA\(_A\) agonists reduce the firing frequency, decrease input resistance and hyperpolarize the membrane potential in LC neurons (Jin et al. 2013a). Cholinergic modulation of LC activity has been shown to be mediated by nicotinic acetylcholine receptors (nAChR) (Cucchiaro et al. 2006; Ganesh et al. 2008). However, the activation of muscarinic receptors increases LC activity as well (Ennis and Shipley 1992; Yang et al. 2000). Our preliminary experiments showed that most of the cholinergic modulation of the increase in LC firing frequency was mediated by the nAChRs. Therefore, we studied how ACh modulates LC activity both through nAChRs postsynaptically and presynaptically at GABAergic neurons.

2.3.3 Expression of nAChRs in LC neurons

nAChRs are ligand-gated ion channels that are ionotropic receptors. In mammals, the nAChRs are found in the peripheral nervous system as well as the CNS. Each receptor is made up of five subunits with each subunit having four transmembrane domains. In the CNS of mammalian systems, two types of subunits (\(\alpha\) and \(\beta\)) are expressed: \(\alpha2-\alpha7\), \(\alpha9-\alpha10\) and \(\beta2-\beta4\) (Gotti et al. 2005). These eleven subunits can form a functional receptor with many different combinations of subunits. Further, many
subunits come together to form heteromeric receptors with the most prevalent consisting of α4β2 and α6β4 in the mammalian brain or they can be homomeric with most abundant channel being the α7 (Alkondon et al. 1997; Garduno et al. 2012; Yang et al. 2011). However, it is possible for the α9 receptor to form homomeric channels, but much of the time it is expressed with the α10 subunit (Boffi et al. 2013). The nAChR channel opens when two (in heteromers) or five molecules (in homomers) of acetylcholine (ACh) binds to the receptors allowing Na\(^+\) to flow into the cell. In some cases, certain receptors may be more permeable to Ca\(^{2+}\). The major effect of the nAChR activation on the cell is the depolarization of the membrane by the movement of cations into the cell. However, the Ca\(^{2+}\)-permeable receptors such as the α7, may also induce second messenger systems that affect various cellular processes (Gueorguiev et al. 2000; Nordman et al. 2014).

The LC has been shown to have many types of nAChR subunits expressed. Using immunohistochemistry (IHC), the α3, α4, α7 and β3 subunits were found throughout the LC nucleus suggesting these receptors play a strong role in cholinergic modulation of LC activity (Vincler and Eisenach 2003). To a much lesser extent, the α5, β2 and β4 were expressed as well but mostly in the dorsal portion of the LC. Also, it has been shown that the expression of nAChRs in the LC may be based on different cells within the nucleus (Lena et al. 1999). In rats, larger LC cells (capacitance > 65pF) had a larger response to cytisine, a nAChR agonist, than smaller LC cells (capacitance <45pF) suggesting differential expression of nAChRs. Indeed, single cell PCR showed that the larger cells showed a preference for expressing α6 and β3 whereas the smaller cells expressed α3 and β4 (Lena et al. 1999). It should be noted that both cell types
expressed other receptors but without the consistency of the ones mentioned. There is a wide diversity of nAChRs expressed in the LC. Based on IHC and electrophysiological data, LC activity should be significantly modulated by nAChRs.

2.4 Rett Syndrome

2.4.1 History

Rett Syndrome (RTT) was first described by Dr. Andreas Rett in 1966 and later by Dr. Bengt Hagberg (Hagberg et al. 1983). Hagberg was unaware of Rett’s findings because they were published in German. Nonetheless, from the early findings of Rett to the later evidence provided by Hagberg, RTT was recognized as a major neurodevelopmental disorder. Until the 1983 publication by Hagberg, many physicians in the United States were unaware of the disease. As interest grew in determining the underlying causes of the disease, the Baylor Rett Syndrome clinic was established. The Zoghbi lab at Baylor determined that mutations in the MECP2 gene underlies the problems found in RTT (Amir et al. 1999). Since this discovery, mouse models have been developed to study the consequences of the loss of proper MeCP2 function in an attempt to find a cure for the disease.

2.4.2 Progression and symptoms of RTT

RTT is neurodevelopmental disorder meaning it occurs through a progression of stages that can be clearly delineated by physicians during clinical exams. Normal development occurs for the first 6 months of life. In stage I, from 6 months to 1.5 years, the onset begins characterized by a stagnation of development in language and behavior skills. Stage II is usually defined by a regression of development and starts
between 1 and 4 years of age. The loss of communication skills and symptoms of mental retardation are evident as well. Many times during stage III, which can last up to many years, there is a period of the reacquiring of communication skills. By the onset of stage IV, patients lose the ability to walk and usually need wheelchairs for mobility. This last stage can last up to decades. In some of the less severe cases, women can live up to fifty years of age.

2.4.3 Mutations in the MECP2 gene underlies RTT

As mentioned above, mutations in the MECP2 gene underlies RTT. There have been about 600 mutations detected in the MECP2 gene. Most of these result in missense and nonsense mutants. Also, variations in the 5’ UTR and 3’ UTR, intron variations, insertions and deletions have been found. However, most of the mutations are found among exons 3 and 4. Further, most of the well-known mutations found in RTT are found in the methyl-CpG-binding domain and the transcriptional repression domain.

Random X-inactivation is a process that silences one of the 2 chromosomes found in females to avoid having twice the amount of proteins created than are found in males which only have one X chromosome. The designation of which X chromosome will be inactivated is random in mammals resulting in not only being inactive for the entirety of the cell’s life but also to all its descendants as well. The inactivation is accomplished by condensing the X chromosome into heterochromatin that has structure in such a way that it is unable to be transcribed. Since most of the girls with RTT are heterozygous for the mutations in the Mecp2 gene, the random X-inactivation plays a large role in the phenotype of the disease. Therefore, in RTT depending on which X
chromosome is inactivated and in which cell type, the inactivation has a large effect on the severity and variety of symptoms.

2.4.4 NE deficiencies contribute to RTT symptoms

The reduction in NE is a hallmark of RTT. NE metabolites were diminished in cerebrospinal fluid in RTT victims (Zoghbi et al. 1989; Zoghbi et al. 1985). In Mecp2^{+/Y} mouse models, NE reductions were seen at 14 days and 1 month after birth (Ide et al. 2005; Viemari et al. 2005). These reductions have been associated with breathing problems. The use of desipramine, a NE reuptake blocker, has been used to reduce breathing problems in Mecp2^{+/Y} mice (Roux et al. 2007; Zanella et al. 2008; Zhang et al. 2011). These data indicate that NE signaling is important for proper breathing.

The locus coeruleus (LC) provides about 95% of the norepinephrine to the brain. Therefore, disruption in the normal function of neurons from this nucleus can have adverse effects throughout the brain. We have shown in the Jiang lab that LC neurons from Mecp2^{+/Y} mice are hyperexcitable, smaller in size than WT, have a lower action potential threshold and increased input resistance (Zhang et al. 2010a). The norepinephrine synthesizing enzymes tyrosine hydroxylase (TH) and dopamine-β-hydroxylase (DBH) are expressed much less in Mecp2^{+/Y} mice (Zhang et al. 2010b). This indicates that the activity of LC neurons and subsequent release of NE are deficient in Mecp2^{+/Y} mice. LC neurons are chemosensory neurons. This is thought to occur primarily by the sensing of pH by K_{ir} channels. The ability of LC neurons to sense changes in pH is defective in Mecp2^{+/Y} mice. This has been attributed to alterations in the expression of K_{ir} channels (Zhang et al. 2011). Therefore, the chemosensory input
from the LC may be defective and likely due to insufficient NE release in the pre-
Bötzinger complex, neurons thought to initiate breathing.

The GABA system is defective in RTT. Low GABA has been shown in
cerebrospinal fluid of RTT patients (Perry et al. 1988). Also, there is an increase in
GABA receptor expression in the basal ganglia of RTT victims (Blue et al. 1999). In
\textit{Mecp2}^{+/Y} mice, GABA signaling is reduced in these mice and has been attributed to low
 glutamic acid decarboxylase (GAD) expression (Medrihan et al. 2008). The GABA
modulation of LC neurons in \textit{Mecp2}^{+/Y} mice is defective as well. The GABA_{B} receptor-
mediated reduction in the K_{ir} current in \textit{Mecp2}^{+/Y} mice is defective and the mIPSC
frequency and amplitude are reduced (Jin et al. 2013a). These defects seem to account
for the decreased inhibition of LC firing activity in \textit{Mecp2}^{+/Y} mice. Further, the
allopregnanolone modulation of GABA_{A} receptor currents is defective which contribute
to the hyperexcitability of LC neurons in \textit{Mecp2}^{+/Y} mice.

\textbf{2.4.5 Motor system deficiencies underlie RTT symptoms}

The most common feature of RTT investigated has been defects in breathing.
However, the motor problems in RTT have received much less attention. These girls
with RTT develop normally but the earliest symptoms involve the loss of muscle tone.
Eventually, these girls have difficulties with coordinated and purposeful hand
movements including a stereotypical hand-wrining movement or they place their hands
in their mouths. As these girls become older, their posture is compromised and walking
becomes almost impossible. Many times, these women become wheel chair bound.

Coordinated movement is not only controlled by motor neurons. The requirement
for coordinated movement is proper function in the pyramidal, extrapyramidal and
propriosensory neuron systems. The pyramidal neurons control the contraction of muscles. The extrapyramidal system provides information to the motor neurons that help control muscle tone, joint angle and posture. Lastly, the propriosensory neurons provide feedback to the other systems about the place of the limb in space, the muscle force, and joint angles. Whereas motor neurons have been studied in RTT, extrapyramidal and propriosensory neurons have not.

It has been shown that the movement of limbs is deficient in RTT patients. These girls also have problems chewing and swallowing (Motil et al. 2012) and the difficulty in eating causes malnutrition. Therefore, the understanding of the complications caused by MECP2 mutations in the motor system is important to developing therapies to help RTT patients. Propriosensory neurons of the mesencephalic trigeminal V (Me5) neurons are crucial for the coordinated movement required during mastication. Thus, we investigated the dysfunction of these neurons in RTT and provide evidence that Me5 neurons in Mecp2^{-/Y} mice have altered membrane currents which seem to lead to hyperexcitability.

2.5 Mecp2^{-/Y} mice as a model system

In order to study the ramifications of the various mutations in exons 3 and 4, many mouse model systems have been created. Some have been created that have specific mutations. The Mecp2^{tm1Vnar} or Mecp2^{a140v} consists of a missense mutation that results in abnormal cellular morphologies in brain regions but no behavioral phenotypes in males. However, phenotypes in females are arbitrary because of random X-chromosome activation. A nonsense point mutation in Mecp2^{R168X} mice results in a truncated protein that seems to impair function tremendously. These animals present
many of the behavioral phenotypes found in other strains that have been widely used. Also, when exons 3 and 4 were knocked out of GABAergic neurons only in Viat-Mecp2 mice, the behavioral phenotypes found in these mice were similar to other mouse models (Chao et al. 2010). It is worth noting that not only do mice with limited MeCP2 expression, but the overexpression of MeCP2 has proven to be detrimental to animals as well. The overexpression of MeCP2 in mice causes abnormal nervous system phenotypes, cognitive behaviors and seizures (Na et al. 2012; Taylor and Doshi 2012).

The model system chosen for this study is commonly referred to as the “bird model” named after the lab that originally created the strain. The $\text{Mecp2}^{\text{tm1.1Bird}}$ strain created with a deletion of exons 3 and 4 (Guy et al. 2001). The deletion of both exons in this model recapitulates all of the classical symptoms of RTT. The purpose of our studies was to study the general impact of the Mecp2 gene mutations in neurons. Therefore, we used a common mouse model where exons 3 and 4 have been removed from the gene.

2.5.1 Benefits and drawbacks of the system

Every animal used in science as a model system has its positives and negatives. These mice have been created by removing exons 3 and 4. We know from human studies that over 600 known mutations have been discovered in girls suffering from RTT (Weng et al. 2011). Each mutation will have its own, varying effect on the system.

We use male animals to study a disease that affects females primarily. Human males still suffer from the disease, but they usually die at a very young age. That is the reason for us to think of it as a female disease. We study males because the abnormal movement, coordination and poor breathing are most prevalent in these animals. The
decrease in the severity of the female symptoms is presumably due to the random X-inactivation described above. Conducting experiments on female \textit{Mecp2}^{−/−} mice may lead to confounding results. For example, it is very difficult to know if the cell that one is patch clamping expresses the normal Mecp2 gene or the knockout in female mice. Behavioral studies in female mice have seemed to be less conclusive as well. Therefore, male mice may not be a perfect model for the disease, but it is appropriate for studies that are not sex-related.

3 SIGNIFICANCE

RTT is a devastating disease with a high prevalence among females (Kerr et al. 1997). Not only do mutations in the \textit{MECP2} gene cause autism-like features in RTT, it is also the origin of the breathing irregularities and motor dysfunction that underlie long-term disability and sudden death. Therefore, developing strategies to limit the impact of \textit{MECP2} mutations on respiratory and movement centers in the CNS is necessary.

A cure for RTT has not been found. Many of the treatments are symptom-specific. NE and GABA reuptake blockers improve breathing in mouse models (Abdala et al. 2010; Roux et al. 2007; Zanella et al. 2008). Each of these drugs only improves a certain symptom, suggesting that multiple systems are affected. Indeed, recent studies suggest serotonergic agonists seem helpful for breathing in humans with RTT (Andaku et al. 2005; Gokben et al. 2012). Another important neurotransmitter system in the brainstem is the cholinergic system. Increasing cholinergic signaling improves movement problems (Nag and Berger-Sweeney 2007; Schaevitz et al. 2012). The cholinergic system interacts with the NE and GABA systems regulating arousal state
and other autonomic functions that are known to be defective in RTT. Therefore, information on how the cholinergic system is affected by the Mecp2 disruption and how it interacts with NE and GABA systems is highly significant, and should impact the finding of novel therapeutic modalities for RTT.

The involvement of multiple neurotransmitter systems in RTT raises a new question as to how these neurotransmitter systems are regulated so that each is coordinated in the network and functions precisely in neuronal activity. The elaborate control of neurotransmitter release or homeostatic regulation may allow central neurons to respond to the deficiency in neurotransmitters and their receptors by upregulating another neurotransmitter system or other members within the defective neurotransmitter system. Such cell mechanisms are known as compensatory neuroadaptation that is widely seen in experimental gene knockout as well as naturally occurring genetic variations. Therefore, it is possible that the compensatory neuroadaptation takes place in receptors and ion channels caused by Mecp2 disruption. We believe that demonstration of the compensatory neuroadaptation in Mecp2–null mice is significant, as this cellular mechanism may encourage further studies of the endogenously upregulated proteins that can be targeted by therapeutic agents. The information may also motivate people with RTT and their caretakers to actively boost or amplify the existing endogenous mechanisms in the body by changing their lifestyle and using more appropriate medication.

It is likely that the body can adapt to the MECP2 defects to avoid a complete collapse of the system (death). The adaptations are not perfect since these women still struggle with normal tasks. If we can intervene with therapeutics and reinforce what the
body is doing already, it may reduce many of the complications associated with RTT. Therefore, the identification of mechanisms that are in place in neurons to maintain normal activity in Mecp2-null mice appears to be a significant first step towards finding the cure for the disease.

4 METHODS

4.1 Animals

All experimental procedures in the animal were conducted in accordance with the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals and were approved by the Georgia State University Institutional Animal Care and Use Committee. Female heterozygous Mecp2^{tm1.1Bird} mice with the genotype Mecp2^{+/−} were purchased from the Jackson Laboratory (Bar Harbor, ME). Mecp2^{+/−} females were crossed with WT C57BL/6 males to produce the Mecp2^{−/Y} male mice. The Jackson Laboratory PCR protocol was used to confirm the Mecp2^{−/Y} phenotype. The F1-generation of 3 week-old, Mecp2^{−/Y} males were used and their age-matched littermates served as WT controls because overt symptoms do not show until 3 weeks.

4.2 Brain Slice Preparation

Brain slices were prepared as described previously (Cui et al. 2011; Zhang et al. 2010a). In brief, mice were decapitated after deep anesthesia with inhalation of saturated isoflurane. The brain stem was obtained rapidly and placed in an ice-cold, sucrose-rich artificial cerebrospinal fluid (sucrose aCSF) containing (in mM) 200 sucrose, 3 KCl, 2 CaCl2, 2 MgCl2, 26 NaHCO3, 1.25 NaH2PO4 and 10 D-glucose. The solution was bubbled with 95% O2 and 5% CO2 (pH 7.40). Transverse pontine sections (250-300 µM) containing the LC area were obtained using a vibratome.
sectioning system. The slices were transferred to normal aCSF in which the sucrose was substituted with 124 mM NaCl, allowed to recover at 33°C for 1 h, and then kept in room temperature before being used for recording. One of the slices was transferred to a recording chamber that was perfused with oxygenated aCSF at a rate of 2 ml/min and maintained at 34°C.

4.3 Identification of LC neurons

The LC neurons were identified by 1) their location between the pons and midbrain below the lateral end of the 4th ventricle, 2) their morphological characteristics, as seen under the CCD camera, and 3) their electrophysiological properties. Only neurons with stable resting membrane potentials (V_m) more negative than -40 mV and action potentials with amplitudes of >75 mV were used in the studies.

4.4 Identification of Me5 neurons

The Me5 neurons were identified by 1) their location between the pons and midbrain below the lateral end of the 4th ventricle and lateral to the locus coeruleus area 2) their morphological characteristics, as seen under the CCD camera, and 3) their electrophysiological properties. Only neurons with stable resting V_m more negative than -50 mV and action potentials with amplitudes of \geq60 mV were used in the studies.

4.5 Electrophysiology in LC neurons

Whole-cell voltage clamp and current clamp studies were performed on cells visualized using a near-infrared charge-coupled device (CCD) camera. Patch pipettes were pulled with a Sutter pipette puller (Model P-97, Novato, CA) with a resistance of 4–6 MΩ. The internal (pipette) solution for current clamp and whole cell nAChR current
voltage clamp recordings contained (in mM) 130 K gluconate, 10 KCl, 10 HEPES, 2 Mg-ATP, 0.3 Na-GTP and 0.4 EGTA (pH 7.30). The aCSF solution was applied to the bath, containing (in mM) 124 NaCl, 3 KCl, 1.3 NaH2PO4, 2 MgCl2, 10 D-glucose, 26 NaHCO3, 2 CaCl2 (pH 7.40 bubbled with 95% O2 and 5% CO2). The slices were perfused with the external solution continuously with superfusion of 95% O2 and 5% CO2 at 34°C. Whole-cell voltage clamp experiments were performed at a holding potential of −70mV. For whole-cell nAChR current experiments, the synaptic currents were blocked with the N-methyl-D-aspartate (NMDA) receptor antagonist, DL-2-Amino-5-phosphonopentanoic acid (DL-APV, 10µM), the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 5 µM), the glycine receptor antagonist strychnine (1 µM), the GABA receptor antagonist, bicuculline (20µM) and the voltage-gated sodium channel blocker, tetrodotoxin (TTX, 0.5 µM). When acetylcholine (ACh) was applied, the muscarinic receptor antagonist, atropine (10µM) was used. The local perfusion pipette had a resistance of 0.5-1 MΩ and just prior to either 100µM ACh or 100 µM nicotine in 1s and 44nl with the Nanoject II (Drummond Scientific, Broomall, PA), the perfusion pipette was moved to within 20 to 30µm of the cell. Studies were conducted with food coloring to make sure the pipettes did not leak the drug and to make sure the drug diffused quickly in the bath. Immediately after drug application the perfusion pipette was removed from the bath. A minimum of 45 min was allowed between each drug treatment to eliminate any desensitization and no slice was exposed to the drug more than four times. After the current was elicited by the drug, the cell contents were harvested into the patch pipette with negative pressure and dropped into an Eppendorf tube containing 10XRT
buffer, RNase-free water and RNase out (4.5:4.5:1), and then quickly placed in liquid nitrogen until further processing. The cell capacitance was measured at the beginning of the recording and any recordings where the series resistance changed during the course of the experiment were rejected from further analysis. The internal pipette solution for spontaneous GABA_A receptor-mediated inhibitory postsynaptic currents (sIPSCs) recordings contained (in mM): 50KCl, 2 MgCl₂, 85 CsCl, 2 Mg-ATP, 1 Na-GTP, 10 HEPES (pH 7.30). The external solution consisted of (in mM): 130 NaCl, 3.5 KCl, 1.25 NaH₂PO₄, 1.5 MgSO₄, 10 D-glucose, 24 NaHCO₃, 2 CaCl₂ (pH 7.40 with 95% O₂ and 5% CO₂). The sIPSCs were pharmacologically isolated by using 5 µM CNQX, 10 µM DL-APV, and 1µM strychnine. The internal pipette solution for glutamatergic spontaneous excitatory post-synaptic currents (sEPSCs) contained (in mM): 135 Cs-methanesulfonate, 10 KCl, 1 MgCl₂, 10 HEPES, 4 MgATP, 0.3 NaGTP and 0.2 NaEGTA. The sEPSCs were isolated using 20µM bicuculline and 1µM strychnine. Recorded signals were amplified with an Axopatch 200B amplifier (Molecular Devices, Union City, CA), digitized at 10 kHz, filtered at 2 kHz, and collected with the Clampex 9.2 data acquisition software (Molecular Devices).

4.6 Electrophysiology in Me5 neurons

All experiments were performed on brains slices. Cells from at least 3 animals were used for data analysis. Patch pipettes were fabricated from borosilicate glass with a resistance of 4-6MΩ. For current clamp and I_H experiments, pipettes were filled with (in mM): K-gluconate 130, KCl 10, Mg-ATP 2, Na-GTP 0.3, HEPES 10, EGTA 0.4 with pH 7.35, and osmolarity 285 mmol/kg. NaCl (5mM) was included in the pipette solution when recording Na⁺ currents. The bath solution for all recordings was regular aCSF.
The post-inhibitory rebound (PIR) was elicited by giving a series of hyperpolarizing current injections to the neuron. After the termination of the current injection, the cell responded with a rebound that was more depolarizing than the resting membrane potential. With step hyperpolarizations, the rebound became larger and larger until it reached threshold and fired an action potential. The PIR was defined as the difference between the peak depolarization (taken from the trace immediately before the action potential was elicited) and the resting membrane potential. Using the same recording as from the PIR, the sag was defined as the difference between the peak voltage during the current injection and the steady-state voltage. The sag activation time constant was determined using a single exponential Boltzmann equation. The \(I_H \) was elicited by using a step protocol from -140mV to +80mV. The half activation was determined by fitting the data from the tail current to a curve created by using a single exponential Boltzmann equation. The \(I_H \) activation time constant was calculated using a single exponential Boltzmann equation. The 4-Ethylphenylamino-1,2-dimethyl-6-methylaminopyrimidinium chloride (ZD7288, Tocris Bioscience) and cesium chloride (Sigma Aldrich) were used to block \(I_H \). The Na\(^+\) concentration was reduced from 140mM to 56mM when recording the Na\(^+\) currents to reduce space clamp issues. For the Na\(^+\) current experiments, the cell was held at -80mV. The Na\(^+\) currents were elicited using a step protocol from -70mV to 100mV. A second step protocol was performed that had a preceding step to +20mV that lasted for 3.5ms to inactivate some K\(^+\) currents. We digitally subtracted the 2\(^{nd}\) trace from the 1\(^{st}\) trace to minimize the K\(^+\) currents in the analysis. To measure the inactivation of the Na\(^+\) currents we performed a step protocol from -120 to +30mV that at the end had a depolarizing step held at +30mV for +80ms. The inactivation curve was
fit to data from this protocol using a Boltzmann equation. The threshold was determined using the maximum second derivative method (Sekerli et al. 2004). The Axopatch 200B (Molecular Devices) were used for current clamp and voltage-clamp experiments. Data were acquired using pCLAMP 9.0 sampled at 20kHz and filtered at 2kHz. Data were analyzed using Clampfit and AXUM.

4.7 Reverse Transcription

Reverse transcription was performed on tissue obtained from brain slice micropunches from either the LC or the Me5 area. The first strand cDNA synthesis was performed using the high capacity cDNA reverse transcription kit (Life Technologies, Grand Island, NY) per the manufacturer’s instructions. The reverse transcription product was kept at -20°C until either single-cell PCR or qPCR was performed.

4.8 Single-cell PCR

PCR primers for the target genes were designed with the computer software program primer express (Applied Biosystems). PCR product lengths were ~200bp so as to not confuse them with primer dimers. 3µl of reverse transcription product was loaded into an Eppendorf tube with PCR solution containing 10µl of 5X green GoTaq flexi buffer, 2µl MgCl₂, 1µl of 10mM dNTP mix, 1µl of 10mM forward and reverse primers, 0.25µl of GoTaq polymerase and diluted to 50µl with nuclease–free water. The thermal cycling program was set to the initial denaturation for 5min at 95°C for 1 cycle. The denaturation, annealing, extension cycles were done at 95°C for 45s, 58°C for 45s and 72°C for 1min, respectively for 35 cycles. A final extension cycle was done at 72°C for 10min. 3µl of the PCR reaction placed into a 2nd PCR tube with the same solution as before. The same cycling protocol was performed as before. 20µl from the 2nd PCR
reaction was run on a 2% agarose gel containing ethidium bromide. Gels were imaged using Alpha Innotech Imaging System (Alpha Innotech Corp., Santa Clara, CA). Images were taken normally and a second with a high background. Presence of receptor subunits in the LC cell was defined by having a band at the correct size regardless of strength. Cells that had lanes with smearing or possible degradation were eliminated from the experiment. Cells were tested for the glial fibrillary acidic protein (GFAP) transcript for possible glia contamination. Any cells with positive results for GFAP were eliminated from decay time analysis.

4.9 Quantitative PCR

qPCR primers for the target genes were designed with the computer software program primer express (Applied Biosystems). qPCR product lengths were ~200bp so as to not confuse them with primer dimers. For the qPCR, we used the SYBR select master mix (Applied Biosystems). 2µl of reverse transcription product was added to the master mix with 100nM of each primer. The directions for the PCR protocol were followed per the manufacturer’s instructions. The qPCR was performed using the 7500 Real-Time PCR System (Applied Biosystems).

4.10 Data Analysis

The electrophysiological data were analyzed with Clampfit 10.3 software (Molecular Devices) and Mini Analysis Program 6.0.7 software (Synaptosoft Inc. New Jersey, USA). Decay time constants were determined using a single exponential equation in Clampfit. Data are presented as means ± SE. Statistical analysis of other parameters were performed using the ANOVA and/or the two-tailed Student’s t-test. Difference was considered significant when \(P \leq 0.05 \).
5 ALTERATIONS IN THE CHOLINERGIC SYSTEM OF BRAINSTEM NEURONS IN A MOUSE MODEL OF RETT SYNDROME

5.1 Acknowledgements

This work was supported by National Institute of Neurological Disorders and stroke Grant NS-073875 to Chun Jiang. Also, this work was supported by the Brains and Behavior fellowship to Max F. Oginsky.

5.2 Abstract

Rett syndrome (RTT) is an autism-spectrum disorder resulting from mutations to the X-linked gene, methyl-CpG binding protein 2 (MeCP2), which causes abnormalities in many systems. It is possible that the body may develop certain compensatory mechanisms to alleviate the abnormalities. The norepinephrine (NE) system originating mainly in the locus coeruleus (LC) is defective in RTT and Mecp2-null mice. LC neurons are subject to modulation by GABA, glutamate and acetylcholine (ACh), providing an ideal system to test the compensatory hypothesis. Here we show evidence for potential compensatory modulation of LC neurons by post- and presynaptic ACh inputs. We found that the post-synaptic currents of nicotinic acetylcholine receptors (nAChR) were smaller in amplitude and longer in decay time in the Mecp2-null mice than in the WT. Single cell PCR analysis showed a decrease in the expression of α3, α4, α7 and β3 subunits and an increase in the α5 and α6 subunits in the mutant mice. The α5 subunit
was present in many of the LC neurons with slow decay nAChR currents. The nicotinic modulation of spontaneous GABAergic IPSCs in LC neurons was enhanced in Mecp2-null mice. In contrast, the nAChR manipulation of glutamatergic input to LC neurons was unaffected in both groups of mice. Our current clamp studies showed that the modulation of LC neurons by ACh input was reduced moderately in Mecp2-null mice despite the major decrease in nAChR currents suggesting possible compensatory processes may take place, thus reducing the defects to a lesser extent in LC neurons.

5.3 Introduction

Rett syndrome (RTT) is an autism-spectrum disorder caused by mutations to the X-linked gene, methyl-CpG binding protein 2 (MeCP2)(Weng et al. 2011). The MeCP2 protein regulates transcription by binding to methylated DNA(Guy et al. 2011). Knockout of this gene in mouse models leads to neurodevelopmental abnormalities such as improper dendritic formation (Belichenko et al. 2009; Chapleau et al. 2009; Nguyen et al. 2012), impaired synaptic transmission (Belichenko et al. 2009; Chao et al. 2007; Shepherd and Katz 2011) and defective neurotransmitter-synthesizing enzyme expression (Chao et al. 2010; Zhang et al. 2010b), all of which resemble symptoms of RTT and may underlie the dysfunctional signaling between neurons.

People with RTT have defects in autonomic functions and brainstem neuromodulatory systems. Norepinephrine (NE) is a major neuromodulator in the central nervous system (CNS), that acts on breathing(Viemari et al. 2004; Viemari et al. 2011; Viemari and Ramirez 2006), cognition(Arnsten et al. 1988; Franowicz and Arnsten 1999; Murchison et al. 2011; Veyrac et al. 2007), motor movement, pain(Baba et al. 2000a; Baba et al. 2000b; Brightwell and Taylor 2009; Yoshizumi et al. 2012) and
paradoxical sleep (Carter et al. 2010; Dugger et al. 2012; Pal and Mallick 2007; Takahashi et al. 2010). The NE concentration is low in RTT patients and mouse models of RTT (Panayotis et al. 2011; Santos et al. 2010; Zoghbi et al. 1989; Zoghbi et al. 1985). Application of desipramine, a NE-reuptake blocker, ameliorates the breathing problems (Zanella et al. 2008; Zhang et al. 2011), further suggesting that the NE-ergic system plays a role in the MeCP2-null phenotype. NE-synthesizing neurons are found mainly in the locus coeruleus (LC) and project throughout the CNS. The NE deficiency appears to result from inadequate expression of tyrosine hydroxylase (TH) and dopamine-β-hydroxylase (DBH) in LC neurons of MeCP2−/Y mice (Zhang et al. 2010b). Other problems that may contribute to low NE include smaller cell size, defects in intrinsic membrane properties, and a decrease in CO2 chemosensitivity (Taneja et al. 2009; Zhang et al. 2011). Recent studies have shown that defects in presynaptic modulation may affect normal LC neuronal activity as well. The GABA input to the LC is decreased with reduced IPSC frequency and amplitude (Jin et al. 2013a). Also, as opposed to 1-2 week old MeCP2−/Y mice, the allopregnanolone modulation of GABA\textsubscript{A} receptors in 3 week old MeCP2−/Y mice is reduced, which is consistent with the onset time of RTT-like symptoms in these mice (Jin et al. 2013b). Other studies indicate that glutamic acid decarboxylase (GAD), the enzyme responsible for GABA production, is down-regulated leading to less quantal release of GABA (Chao et al. 2010). Also, blocking of the GABA transporter results in higher synaptic GABA levels and RTT breathing symptoms are alleviated (Abdala et al. 2010). Lastly, when the MeCP2 gene is knocked out of the GABA-ergic neurons only, RTT-like symptoms are apparent (Chao et
al. 2010). Therefore, defects in NE-ergic and GABA-ergic signaling systems contribute to the development of RTT symptoms.

A common link between the NE-ergic and GABA-ergic systems is the cholinergic system. Through nicotinic acetylcholine receptors (nAChR), TH and GAD expressions levels are regulated by the cholinergic system. The GAD expression levels are increased by the activation of α4β2 receptors causing phosphorylation of MeCP2 and release from DNA in cortical GABA-ergic neurons (Maloku et al. 2011). Less is known about the mechanism, but the TH expression levels are increased by activation of nAChRs in the LC (Osterhout et al. 2005) and the activation of α7 receptors in heterologous expression systems up-regulates TH and dopamine-β-hydroxylase (DBH) expression (Gueorguiev et al. 2000). The loss of cholinergic neurons (Wenk and Hauss-Wegrzyniak 1999) and a decline in activity of choline acetyltransferase, an enzyme for acetylcholine (ACh) biosynthesis (Wenk and Mobley 1996), impairs cholinergic signaling. The dysregulation of the cholinergic system is believed to underlie the down-regulation of the enzymes for GABA and NE biosynthesis.

These three systems are intimately linked in transitions between sleep states. During rapid eye movement (REM) sleep, cholinergic neuron activity is increased (for a full review (Pal and Mallick 2007)). In brief, acetylcholine silences LC neurons through GABA-ergic input during REM sleep. LC neurons eventually escape this GABA-mediated suppression and in turn cease cholinergic neuron firing during non-REM sleep. Children with RTT have sleep abnormalities (Carotenuto et al. 2013) which have been implicated in affecting cognition and memory (McCoy and Strecker 2011).
Therefore, determining the modulation of LC neurons by ACh and GABA inputs in the Mecp2^{−/Y} mice may provide a basis for treatment in children with RTT.

Previous studies (Lena et al. 1999; Mitchell 1993; Vincler and Eisenach 2003) and our own preliminary experiments indicated that the major cholinergic modulation of presynaptic GABAergic and LC neurons occurs through nAChRs. The nAChRs are pentameric cation-selective ligand-gated channels, which are found throughout the CNS (Hogg et al. 2003; Romanelli et al. 2007). The nAChRs are abundant in LC neurons, and activation of these receptors leads to an increase in neurotransmitter release in several brain regions as well as the spinal cord (Hogg et al. 2003; Lena et al. 1999). The subunit composition of nAChRs in the CNS is highly diversified with major receptors consisting of homomeric α7, heteromeric α4β2, α6β4 and α9α10, although other combinations have the potential to form functional channels.

There is a wealth of information on how the cholinergic, NE-ergic and GABA-ergic systems work to affect various behaviors. However, it is not known how the signaling between these systems is compromised by neurodevelopmental diseases when all three are affected. Lately, disease models have been emphasized for study of RTT in an attempt to find possible pharmacological therapeutic approaches. However, it is unclear how the widespread defects caused by the Mecp2 disruption affect multiple modulatory systems. We hypothesize that the presynaptic and postsynaptic cholinergic modulation of LC activity is compromised. Using patch clamp electrophysiology we studied presynaptic and postsynaptic cholinergic modulation of LC neurons in WT and Mecp2^{−/Y} mice. This and single cell PCR allowed us to determine how changes in nAChR expression altered nicotinic current kinetics in Mecp2^{−/Y} mice. Our results
suggest that the nicotinic receptor expression in LC and GABAergic neurons is altered to maintain the cholinergic modulation of LC neurons in Mecp2−/Y mice.

5.4 Results

5.4.1 The whole-cell nAChR currents were altered in Mecp2−/Y mice

LC neurons were studied in brain slices obtained from WT and Mecp2−/Y mice. We verified that the neuron was from the LC both visually and electrophysiologically as we did previously (Zhang et al. 2010a). nAChR currents were recorded from the LC neurons after the synaptic input was blocked with AP-5 (10μM), DNQX (5μM), bicuculline (20μM), strychnine (1μM), TTX (1μM) and the muscarinic receptor antagonist atropine (10μM). With the membrane potential held at -70mV in the voltage clamp mode, a local application of 100μM acetylcholine (ACh, 44nl, in 1s) to the LC area evoked large inward currents. The currents in the WT animal rose quickly, reached the peak and decayed rapidly (Fig. 5.1A). However, a long lasting current was observed in Mecp2−/Y cells (Fig. 5.1B). In comparison, the current amplitude was much larger in WT neurons than in Mecp2−/Y cells (-109.7 ± 12.2pA, n= 31 and -46.8 ± 12.7 pA, n=11, respectively; P<0.001, Mann-Whitney test; Fig. 5.1C), while the decay time was longer in Mecp2−/Y neurons. The time constant obtained by fitting the decay time of the nAChR currents with a single exponential equation was 2.4 ± 0.0.3 s (n=31) for the WT neurons and 6.1 ± 2.3 s (n=10) for the Mecp2−/Y (P<0.01; Mann-Whitney test; Fig. 1E). The longer decay time in Mecp2−/Y neurons was not due to the cell size, as LC neurons are smaller in Mecp2−/Y mice than in the WT(Zhang et al. 2010a). With the cell size taken into consideration, we compared the current density between the WT and Mecp2−/Y mice, which was -7.2 ± 1.0 pA/pF (n=31) and -4.4 ± 1.4 pA/pF (n=11), respectively
When we measured the area under the curve, we found that there was no difference between the WT and MeCP2\(^{-/}\)Y mice (-202.0 ± 32.4nA•ms WT vs. -170.3 ± 101.8nA•ms; n=31 and n=11, respectively; student’s \(t\)-test; \(P>0.05\); Fig. 5.1F). These results suggest that the MeCP2 knockout leads to nAChR currents that are smaller in amplitude but last longer as shown in the decay time.

Previous studies indicated that atropine, a muscarinic receptor antagonist, may interfere with nAChR activation (Zwart and Vijverberg 1997). Therefore, we verified the ACh results by applying nicotine, a specific nAChR agonist, without any atropine to the LC neuron during patch clamp recordings. A local application of 100μM nicotine (44nl, in 1s) resulted in larger currents in WT than in MeCP2\(^{-/}\)Y mice (-122.7 ± 18.7 pA, n=10 in WT vs. -41.1 ± 3.1 pA, n=12 in MeCP2\(^{-/}\)Y; \(P<0.001\); Mann-Whitney test; Fig. 5.2A-C). Nicotine elicited similar whole cell current characteristics as ACh. The nicotine current density differed significantly between WT and MeCP2\(^{-/}\)Y (-7.7 ± 1.1 pA/pF WT vs. -2.8 ± 0.2 pA/pF MeCP2\(^{-/}\)Y; \(P<0.001\); Mann-Whitney test; Fig. 5.2D), and the decay time constant was longer in MeCP2\(^{-/}\)Y mice than in WT mice (2.7 ± 1.1s, n=10 in WT vs. 8.1 ± 0.7s, n=12 in MeCP2\(^{-/}\)Y; \(P<0.001\); Mann-Whitney test; Fig. 5.2E). The area was not different either (-150.9 ± 34.6nA•ms vs. -107.09 ± 34.7nA•ms; n=10 and n=17, respectively; student’s \(t\)-test; \(P>0.05\); Fig. 5.2F).

5.4.2 The increase in decay time was attributable to alterations in nAChR subunit expression

The changes in the amplitude and kinetics of nAChR currents may be due to the alterations of the receptor species. Therefore, we analyzed the expression of nAChR
subunits (α2-7, α9, α10 and β2-4) in each LC neuron with distinct nAChR currents using the single-cell PCR assay. WT neurons expressed various combinations of α3, α4, α5, α6, α7, α9, β2 and β3 transcripts although they were not expressed in every neuron tested. Figure 3A shows the expression of α3, α4, α6, α7, α9 and β2, β3 in one LC neuron, whereas another cell expressed α3, α7, α9, and β3 (Fig. 5.3B). Of the 19 WT cells tested, the α7 and α9 transcripts were expressed in 14 and 18 cells, respectively (Fig. 5.3D). The α5 and α6 subunits were expressed in 3 and 1 cells, respectively. The α3 transcript was found in 9 cells, and the α4 subunit was found in 6 cells. The β3 subunit was seen in 16 neurons and the β2 subunit was only expressed in 2 cells and the β4 subunit was not expressed in any cell tested (Table 2).

LC neurons from Mecp2−/Y mice expressed only α3, α5, α6, α9 and β3 subunits. The α4 and α7, seen in most WT neurons, were not found in any of the 18 cells tested. Although the β3 subunit was found in Mecp2−/Y neurons (Fig. 5.3C), there was a major reduction in its expression which was seen in 8 of 18 cells in Mecp2−/Y mice instead of 16 of 19 in the WT. The only transcript that did not alter expression (in 17 out of 18 cells) was the α9 subunit. The α5 and α6 subunits were increased in the Mecp2−/Y mice with the α5 subunit expression increased from 3 WT cells to 8 Mecp2−/Y cells and the α6 subunit increased from 1 WT cell to 3 Mecp2−/Y cells.

In order to determine whether the increase in decay time in Mecp2−/Y neurons is attributable to alterations in the composition of nAChRs, we analyzed the decay times and subunit expression. Owing to the sampling sizes, we combined the data with the ACh and nicotine application. The WT decay time was shorter than the Mecp2−/Y mice (3.3 ± 0.7s WT vs. 6.7 ± 1.2s Mecp2−/Y; n=19 WT and n=18 Mecp2−/Y; P<0.05; Mann-
Whitney; Fig. 5.4A). Based on the single-cell PCR data and the fact that others have noticed the interchangeability of these subunits (Dash et al. 2011; Gotti et al. 2005), suggesting they may serve similar functions, the α5 and β3 subunits were likely candidates for the decay time changes. We compared decay times of cells that expressed either the α5 or β3 subunits, but not both. To do this, we omitted 4 cells from the group that contained α9 only and 2 cells that expressed both α5 and β3. When the α5 subunit was expressed, the decay time was 10.7 ± 2.5s (n = 6; Fig. 5.4B). When the β3 subunit was present in WT and Mecp2−/Y mice without α5, the time constants were similar (2.8 ± 0.5s WT vs. 4.23 ± 1.1s Mecp2−/Y; n=14 WT and n=6 Mecp2−/Y; student’s t-test; P>0.3). When all 3 groups were compared to each other using a one-way ANOVA, significant differences were found between the Mecp2−/Y group expressing the α5 subunit and both β3- expressing groups (P<0.01). It is important to note that we also compared the current amplitudes in the Mecp2−/Y mice for when α5 and β3 were present or not, and found that there was no significant difference (data not shown).

The Mecp2−/Y mice had populations of cells that only contained combinations of either α9β3 or α9α5. By removing one cell that expressed the α9, α3 and β3 and another cell that expressed the α5, α6 and α9, we were able to take advantage of the expression patterns in these neurons to determine whether α5 and β3 play a role in decay time kinetics. We compared the decay time constants of these populations and found that the α9β3-expressing neurons had a shorter decay time constant than the α9α5-containing neurons (3.9 ± 1.2s α9β3 vs. 12.2 ± 2.5s α9α5; P<0.05; n=5 and n=5, respectively; Fig. 5.4C).
We also compared the contributions of the other subunits that were
downregulated in the \textit{Mecp2}^{−/−} mice. The α3, α4 and α7 were downregulated in the
\textit{Mecp2} knockout, which may contribute to the decrease in current amplitude and the
increase in the decay time. Since these subunits were largely not present in the
\textit{Mecp2}^{−/−} mice, we compared the current amplitudes and decay times when the subunit
was present or not in WT mice only. The presence of the α3 and α4 subunits did not
have any significant effect on the amplitude or decay time of the current (data not
shown). However, alteration in the nAChR current amplitude was seen depending on
the presence of the α7 subunit (-134.6 ± 19.0pA α7 vs. -67.9 ± 9.9pA no α7; n=14 and
n=5, respectively; student’s \textit{t}-test; \textit{P}<0.01; Fig. 5.5A). The decay was longer when α7
was not present (2.8 ± 0.6s α7 vs. 5.7 ± 1.6s no α7; n=14 and n=5, respectively;
student’s \textit{t}-test; \textit{P}<0.05; Fig. 5.5B). By teasing apart the data to determine the
contribution of the receptor subunits to the current amplitude and decay time, our data
suggest that the lack of α7 contributes mostly to the decrease in the current amplitude in
\textit{Mecp2}^{−/−} mice and has some effect on the longer decay time, while the β3 subunit
contributes to the shorter decay time constant and the α5 confers a longer decay time
constant to the nAChR current. Therefore, the change of the subunit expression in the
\textit{Mecp2}^{−/−} mice appears to cause alterations in the nAChR currents. The increase in the
proportion of cells with the α5 in \textit{Mecp2}^{−/−} mice compared to WT and the decrease in
the β3 subunit proportion allows for the decay time to be increased in the knockout
mice.
5.4.3 **GABA-ergic input but not glutamatergic input was augmented by nicotinic presynaptic modulation in Mecp2−/Y mice**

The nAChRs modulate GABA and glutamate release in several brain areas. We chose to study sPSCs of GABA and glutamate receptors, as they are the prominent synaptic currents in the CNS and are known to be dysregulated in RTT. To understand the presynaptic modulation of LC neurons by acetylcholine in Mecp2−/Y mice, we performed whole-cell patch clamp in the LC neurons and bath-applied the nAChR agonist DMPP (10µM). The GABA sIPSC frequency was augmented by the DMPP application in LC neurons of WT and Mecp2−/Y mice, which was more obvious in the Mecp2−/Y mice by 189.0 ± 10.1% (n=8) than in the WT by 147.1 ± 7.0% (n=8) (P<0.01, Mann-Whitney test; Fig. 5.6A and B). The sIPSC amplitude was augmented in WT and Mecp2−/Y mice, to a lesser degree though (110.5 ± 7.6% WT vs. 105.4 ± 6.7% Mecp2−/Y; Mann-Whitney; P>0.05; n=8 for both; Fig. 5.6A and C). These led to a shift of the inter-event interval cumulative probability to the higher frequency, which was greater in the Mecp2−/Y mice without evident shift in the amplitude cumulative probability (Fig. 5.6E & F). Consistently, the application of the nAChR antagonist mecamylamine (30µM) caused a reduction in GABA–mediated sIPSC frequency in WT mice to 78.2 ± 4.8% (n=11, Fig. 5.7A & C). There was little change in the amplitude (96.4 ± 3.5%; n=11 in WT; Fig. 5.7D). The effect of mecamylamine on nicotinic modulation of GABA-ergic sIPSC frequency was lowered to 62.6 ± 4.5% (n=11) in Mecp2−/Y neurons (Fig. 5.7B & C), and the amplitude was unchanged 102.3 ± 4.0% (n=17; Fig. 5.7D). The shift to the lower frequency of inter-event interval cumulative probability was larger in the Mecp2−/Y mice than in WT (Fig. 5.7E). There was no shift in the amplitude cumulative probability
(Fig. 5.7F). The inhibition of sIPSC frequency by mecamylamine was significantly greater in \textit{Mecp2}^{-/Y} mice than that in the WT (P<0.01; Mann-Whitney), whereas the amplitude difference was not (P>0.05; Mann-Whitney).

A decrease in MeCP2 expression levels dysregulates the excitatory synaptic strength by reducing the number of glutamatergic synapses and by interrupting synaptic scaling mechanisms (Blackman et al. 2012; Lozada et al. 2012a). Also, α7 and β2 subunits are instrumental in synapse and spine formation (Lozada et al. 2012a; b). Because of this we tested whether the glutamatergic input to the LC is altered in \textit{Mecp2}^{-/Y} mice and whether the cholinergic modulation was dysfunctional as well. We recorded sEPSCs while applying DMPP (10μM). The baseline frequency was not different between WT and \textit{Mecp2}^{-/Y} (2.1 ± 0.5 Hz WT vs. 2.2 ± 0.6 Hz \textit{Mecp2}^{-/Y}; n=11 and n=5, respectively). We found that there was an increase in frequency and amplitude after the DMPP application. This increase in frequency was seen in both groups of mice and showed no significant difference, though slightly smaller in the \textit{Mecp2}^{-/Y} mice (159.1 ± 12.8% WT vs. 145.0± 6.9% \textit{Mecp2}^{-/Y}, n= 11 and n=5, respectively; P>0.05).

\textbf{5.4.4 Cholinergic modulation of LC neuronal activity was sustained in \textit{Mecp2}^{-/Y} mice despite a large decrease in nAChR currents}

In order to determine the consequences of the cholinergic modulatory dysfunction on the LC neuron firing activity we performed current clamp in WT and \textit{Mecp2}^{-/Y} mice. Bath-application of DMPP (10μM) increased the activity of LC neurons in WT mice from 4.5 ± 0.4 Hz to 6.7 ± 0.6 Hz (n=11; P<0.001; student’s \textit{t}-test. Fig. 5.8A and C), a 48% increase (Fig. 5.8E). The Input resistance was decreased from 424.8 ± 34.1 MΩ to 336.0 ± 27.5 MΩ (n=11; P<0.001; student’s \textit{t}-test; Fig. 8A), a 20% decrease
(Fig. 5.8F), and the neurons were depolarized from -45.9 ± 1.1 mV to -44.6 ± 1.2 mV (n=11; P>0.05; student’s t-test; Fig. 5.8G). We also performed the same experiment by applying 50μM ACh (data not shown). There was very little difference between the ACh and DMPP treatments (~6%). This suggests very little muscarinic receptor influence on LC neuron postsynaptic properties. The DMPP treatment raised the LC neuronal firing activity in *Mecp2^{−/−}* mice from 3.8 ± 0.5 Hz to 5.2 ± 0.7 Hz (n=11; P<0.001; student’s t-test; 5.8B and D), a 37% increase (Fig. 5.8E), and reduced the input resistance from 547.5 ± 67.7 MΩ to 454.4 ± 54.8 MΩ (n=11; P<0.001; student’s t-test; 5.8B), a 17% decrease (Fig. 5.8F). The neuron was depolarized from -48.5 ± 2.2 mV to -46.3 ± 2.5 mV (n=11; P>0.05; student’s t-test; Fig 5.8G). When the changes in firing frequency, input resistance and membrane potential were compared using the Mann-Whitney test, there were no differences between the WT and *Mecp2^{−/−}* mice (Fig 5.8E-G).

5.5 Discussion

In the present study we found that the postsynaptic nAChR currents in LC neurons of *Mecp2^{−/−}* mice is altered. This alteration in the current amplitude and decay time constant is likely due to changes in expression of specific nAChR subunits, namely the α5, β3 and α7. We also found that the nAChR modulation of GABA input to the LC is enhanced in *Mecp2^{−/−}* mice whereas the cholinergic modulation of glutamatergic input is unchanged.

5.5.1 Changes in nAChR subunit expression may be responsible for altered current

Previous studies have shown that nAChR mediated current characteristics can be attributed to the expression of the subunits by a particular cell. Many have used
pharmacological agents and molecular techniques to block different subunits and thus alter the amplitude and decay time constant of the current (Albuquerque et al. 1997; Alkondon and Albuquerque 1993; Alkondon et al. 1999; Rothlin et al. 2000). This line of research leads one to some generalizations of the subunit contribution to the nAChR current. The α7 subunit is usually associated with a large transient peak whereas the α3 and α4 subunits are associated with smaller amplitude currents with a longer decay time (Flood et al. 1997; Liu and Berg 1999; Zhao et al. 2003). In single channel recordings, the α5 subunit increases the mean open time (Ciuraszkiewicz et al. 2013) and the insertion of β3 can shorten the decay time (Boorman et al. 2003). WT LC neurons display a variety of nAChR subunits that contribute to different kinetics of an elicited current (Lena et al. 1999). Consistent with these findings we found that these current changes are attributable to changes in subunit expression. The loss of α7 expression in the Mecp2−/Y group seems to underlie the decrease in the current amplitude. When we compared the current amplitudes for when α7 was present or not in WT mice, the absence of the α7 subunit caused a reduction in amplitude that was similar to the Mecp2−/Y amplitude. When we compared the decay times to the presence of certain receptor subunits, we found that the α5 and β3 seemed to make a large impact on it. The α5 seemed to confer a long decay time whereas the β3 subunit caused a short decay time. These data seem to suggest that since the α3, α4 and α7 are severely down-regulated in the Mecp2−/Y mice, there may be direct regulation of their expression by MeCP2 as opposed to the other subunits. The β3 is down-regulated by half which implies that it may be indirectly regulated by MeCP2 or not at all. Consequently, it may be altered by the overall changes in other receptors. Since MeCP2 is a transcription
repressor, the loss of function may result in a larger expression of the α5 subunit. However, it is still unclear which upstream proteins affect expression of the β3 or α5 subunits.

5.5.2 Adaptations in LC neurons of Mecp2−/Y mice

Maintaining homeostasis is essential for living and adapting to new environments, stimulations or perturbations. Much work has been done to study homeostatic mechanisms in the nervous systems of normal animals, while much less is known about how the body adapts to disease. The understanding of disease progression requires knowledge of how the system (body) acts to prevent the onset of symptoms or diminish them. However, compensation mechanisms for neuronal dysfunction in disease models have received relatively little attention. It is understandable when functional assay results do not show any difference between WT and the knockout, one would assume there is no change in the system. In the case here, we found that the nAChR whole-cell currents and receptor expression changed in the Mecp2−/Y mice without any cholinergic modulatory deficits to the LC neurons. Our data support the possibility that compensatory mechanisms may be in place to alleviate deficits in neurotransmission found in RTT.

Whether compensatory mechanisms exist in RTT is still elusive. We have found that the Mecp2 knockout leads to a reduction in the nAChR current amplitude while the decay time of the currents is much longer. The decrease in amplitude is likely mediated by deficient expression of α7 subunits. However, it seems that the LC neurons are capable of limiting the effect of the reduction in amplitude by up-regulating α5 in the Mecp2−/Y mice. These changes lead to prolonged nAChR currents that appear to
maintain postsynaptic modulation of LC neurons. Concerning a difference in the cholinergic facilitation, the firing activity of Mecp2\(^{-/Y}\) neurons was only 11% smaller (Fig. 8) than that of the WT in contrast to ~64% deficiency in the postsynaptic nAChR current amplitude (Fig. 2). Thus, these results are consistent with certain endogenous compensatory processes that may exist, allowing LC neurons to significantly diminish the consequences of Mecp2 knockout defects. The question arises, can a current amplitude reduction of ~64% result in more than an 11% decrease in LC activity? We feel that it is highly likely. Based on the literature, nAChR activation has several effects on neurons that are consistent with this line of thought. Activation of nAChRs increases can induce cell firing from silence. When the α7 receptor is blocked, the action potential induction is blocked as well (Ji and Dani 2000). The firing frequency in area prostrema neurons are increased more with 30μM nicotine than with 10μM. nAChR activation also increases the excitability of these neurons thus causing an increased response to a depolarizing current (Funahashi et al. 2004). Further, Neurons can be depolarized and the input resistance decreases in a dose-dependent manner (Zhong et al. 2013). Lastly, we measured the area of the nAChR current by multiplying the current amplitude by the total time. When we compared the WT and Mecp2\(^{-/Y}\) mice areas, they were not different (Fig. 1F & 2F). If the current amplitude was reduced without a change in the decay time constant, then the area would be much smaller. Since the total cation charge crossing the membrane would be much less, the changes in membrane potential, input resistance and firing frequency of LC neurons would be less. Here we do not see that. Therefore, it does seem that the changes in expression of subunits does have some positive effect on the cholinergic modulation of LC neurons. The decrease in α7 and β3
may indirectly contribute to the increase in the decay time as well. When we compared
decay times based on the presence of α7 in WT mice, we found that when no α7 was
present, the decay time was longer. Since no MeCP2^{−/−} mice expressed the α7 subunit,
it is reasonable to assume the loss of α7 had some impact on the decay time constant.
The impact of the loss of β3 may be substantial as well. In the 2 MeCP2^{−/−} cells that
contained both α5 and β3, the cells had a short decay time. With this data and the fact
that most WT cells with short decay times expressed β3, we can assume the β3 plays a
large role in shaping the nAChR current decay. We studied mice at the age where the
neurodevelopmental symptoms of RTT occur. At this age, if the cell is adapting to the
loss of the α7 subunit by reducing β3 expression and increasing α5, then there may be
a larger variability in the subunit expression here than one would see at older ages.
Therefore, other studies should be done to thoroughly examine how the receptor
subunit expression changes in LC neurons at different ages in WT and MeCP2^{−/−} mice.

The nAChR modulation of GABA-ergic inputs to the LC is enhanced in the
MeCP2^{−/−} mice. This enhancement is likely caused by an increased sensitivity of the
nAChR to DMPP. It is not clear if the increased sensitivity is due to an up-regulation of
the same receptor subtype or an alteration in the composition of the nAChR. The α4β2,
α7 and α6-containing nAChRs increase release of GABA through different mechanisms
in different brain regions (Aracri et al. 2010; Nakamura and Jang 2010; Yang et al.
2011; Zappettini et al. 2011). One of these receptor types could mediate the increase in
nAChR modulation of GABA release. Our data suggests that alterations in nAChR
composition seem to occur in GABA-ergic neurons. However, an alternative hypothesis
is that the α4β2 nAChR, a known regulator of GAD expression, is up-regulated to
compensate for the low GAD expression in GABA neurons. In this case, the increase in GABA release may be an unintended consequence to the up-regulation of the α4β2. In this second scenario, the disruption of normal MeCP2 function would have to be occurring through a different mechanism than in the LC or at different ages than we were testing.

The adaptations seen here at the neuronal level help to maintain proper modulation of LC neurons. One may make some predictions if these adaptations did not exist or were not compensatory. Due to the reduction in ACh release and subunit expression in animal models for RTT, if there were no compensatory mechanisms in place, the cholinergic modulation of LC neurons and GABA neurons would be much less. Here, we do not see this. We see that the LC modulation is relatively maintained and cholinergic modulation of GABAergic neurons is enhanced. If the adaptations were independent or linked with no compensatory benefit, then one would predict these values would be similar to a neuron with a nAChR current with a small amplitude and small decay. Thus, the cholinergic modulation of LC neurons would be greatly diminished.

In conclusion, our studies demonstrate several potential endogenous mechanisms underlying the avoidance of a total collapse of the LC system due to the MeCP2 knockout. The up-regulation of the α5 subunit seems to increase the decay time of the whole cell nAChR current in MeCP2^{−/−} mice thereby reducing the impact of the major decrease in current amplitude by the down-regulation of the α7 subunit. This compensation seems to maintain some level of cholinergic modulation to the LC neurons. We have also shown that the nAChR modulation of GABA input to the LC is
enhanced in \textit{Mecp2}−/− mice, which appears to compensate for the defects in GABA-ergic input to LC neurons found previously. We believe that these findings are encouraging, as the information may help the design of a new generation of therapies by targeting possible endogenous compensatory mechanisms.
Figure 5.1 The nAChR currents were altered in LC neurons from MeCP2\(^{-/}\)Y mice.
A: A 100µM ACh pulse (1s, 44nl) elicited a large transient current with a short decay time in LC neurons from WT mice.

B: A 100µM ACh pulse (1s, 44nl) elicited currents with a small amplitude and a long decay time in LC neurons Mecp2−/Y mice.

C: The current amplitude was smaller in Mecp2−/Y mice than WT mice.

D: The current density was smaller in Mecp2−/Y mice than WT mice.

E: The decay time was longer in Mecp2−/Y mice than in WT mice. The decay time was determined using a single exponential equation.

F. The area under the current curve measured by multiplying the amplitude by the time was similar between both groups. Bar graphs are means ± SE; n = 31 WT and n = 11 Mecp2−/Y (Mann-Whitney; P < 0.05 *, P < 0.001 ***)
Figure 5.2 Nicotine elicited a similar current to ACh in WT and Mecp2^{−/Y} mice.
A: 100µM nicotine pulse (1s, 44nl) elicited a large transient current with a short decay time in LC neurons from WT mice. B: A 100µM nicotine pulse (1s, 44nl) elicited a small amplitude current with a long decay time in LC neurons *Mecp2−/Y* mice. C: The current amplitude was smaller in *Mecp2−/Y* mice than WT mice. D: The current density was smaller in *Mecp2−/Y* mice than WT mice. E: The decay time is longer in *Mecp2−/Y* mice than in WT mice. The decay time was determined using a single exponential equation. F. The area under the current curve measured by multiplying the amplitude by the time was not significantly different between both groups. n = 10 WT and n = 12 *Mecp2−/Y*; Mann-Whitney; P < 0.01 **, P < 0.001 ***.
Figure 5.3 Receptor subunit expression in identified LC neurons.

Cytoplasm was extracted from LC neurons after local perfusion with either ACh or nicotine. A: nAChR expression from one WT LC neuron B: A second LC neuron showing a different expression pattern than in (A). C: nAChR expression in LC neuron from Mecp2^{−/−} mice D: Number of cells that contained each nAChR subunit. (n =19 cells WT and n =18 cells Mecp2^{−/−}). Black bar is equal to 200 base-pairs.
Figure 5.4 LC neurons from *Mecp2*−/Y mice expressing the α5 subunit had longer decay times than β3-expressing neurons.
White bars are data from WT mice and black bars are data from Mecp2^{−/Y} mice. A: The nAChR current in LC neurons from Mecp2^{−/Y} mice displayed longer decay times than WT mice; n = 19 and n = 18 (Mann-Whitney). B: α5-expressing LC neurons from Mecp2^{−/Y} mice had a long decay time. β3- expressing LC neurons from WT and Mecp2^{−/Y} mice had short decay times (n = 6 Mecp2^{−/Y} with α5; n = 14 WT with β3, n = 6 Mecp2^{−/Y} with β3 (one-way Anova) C: LC neurons from Mecp2^{−/Y} mice that expressed α9α5 receptors had longer decay times than neurons that expressed α9β3 receptors (n = 5 α9α5 and n = 5 α9β3; Mann-Whitney). Bar graphs are means ± SE; (P < 0.05 *, P < 0.01 **).
Figure 5.6 Cholinergic modulation of GABA-ergic input to LC neurons with nAChR agonist in Mecp2^{−/−} mice is enhanced compared to WT mice.

A: LC neurons of WT mice were patch clamped and GABA-ergic sIPSCs during the 5 min baseline and during a 5min, 10μM DMPP treatment were recorded. B: LC neurons of Mecp2^{−/−} mice were patch clamp and recordings during the 5 min baseline recording of GABA-ergic sIPSCs and during a 5min, 10μM DMPP treatment were taken.
C: The frequency increase seen in the WT mice was enhanced in Mecp2−/Y mice. D: The amplitude did not show a significant difference during DMPP treatment. There was no difference between WT and Mecp2−/Y mice as well. E: Cumulative fraction of Inter-event interval before and during 10μM DMPP treatment. Dashed lines are from baseline and the solid lines are from the 10μM DMPP treatment. Gray lines are from WT LC neurons and black lines are from Mecp2−/Y LC neurons. Shift to the left during DMPP treatment in Mecp2−/Y mice was greater than in WT mice. F: Cumulative fraction of amplitude before and during 10μM DMPP treatment. Dashed lines are from baseline and the solid lines are from the 10μM DMPP treatment. Gray lines are from WT LC neurons and black lines are from Mecp2−/Y LC neurons. Mecp2−/Y mice shifted due to the DMPP treatment. (n = 8 WT and n = 8 Mecp2−/Y; Mann-Whitney; P < 0.01 **)
A: LC neurons of WT mice were patch clamped and GABA-ergic sIPSCs during the 5 min baseline and during a 5min, 30μM mecamylamine treatment were recorded.

B: LC neurons of MeCP2−/Y mice were patch clamp and recordings during the 5 min baseline recording of GABA-ergic sIPSCs and during a 5min exposure to 30μM mecamylamine were taken. C: The frequency decrease seen in the WT mice was enhanced in MeCP2−/Y mice.

D: The amplitude showed no significant difference during DMPP treatment. There was no difference between WT and MeCP2−/Y mice.

E: Cumulative fraction of Inter-event
interval before and during 30μM mecamylamine treatment. Dashed lines are from baseline and the solid lines are from the 30μM mecamylamine treatment. Gray lines are from recordings of WT LC neurons and black lines are from Mecp2−/Y LC neurons. The shift to the right during mecamylamine treatment in Mecp2−/Y mice was greater than in WT mice. F: Cumulative fraction of amplitude before and during 30μM mecamylamine treatment. Dashed lines are from baseline and the solid lines indicate the 30μM mecamylamine treatment. Gray lines are from WT LC neurons and black lines are from Mecp2−/Y LC neurons. There is no shift between the baseline and drug treatment for both groups. Bar graphs are means ± SE; n = 9 WT and n = 17 Mecp2−/Y (Mann-Whitney; P < 0.01 **).
Figure 5.8 There is a small but insignificant difference in nicotinic modulation of LC neurons from WT and Mecp2^{−/−} mice.
A: Patch clamp recordings of LC neuronal firing activity in WT mice before, during and after 10μM DMPP treatment. Each inset is for the hyperpolarizing current indicating the input resistance.

B: Patch clamp recordings of LC neuronal firing activity in *Mecp2−/−* mice before, during and after 10μM DMPP treatment. Each inset is for the hyperpolarizing current indicating the input resistance.

C: Frequency was analyzed from the recording made in (A). This shows that 10μM DMPP increases the frequency in WT mice.

D: Frequency was analyzed from the recording in (B), and 10μM DMPP increased frequency in *Mecp2−/−* mice.

E: There was no significant difference in the increase in firing frequency between WT and *Mecp2−/−* mice.

F: The difference in input resistance modulation by 10μM DMPP between WT and *Mecp2−/−* mice was insignificant.

G: 10μM DMPP depolarized the LC neuron in WT and *Mecp2−/−* mice. There was no significant difference between groups. Bar graphs are means ± SE; n = 11 WT and n = 13 *Mecp2−/−* (Mann-Whitney; ns = Not Significant).
<table>
<thead>
<tr>
<th>Target Gene</th>
<th>Primer Sequence</th>
<th>Accession No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>α2 Fw</td>
<td>CTTTGGAGGCTACAATCGCTG</td>
<td>NM_144803</td>
</tr>
<tr>
<td>α2 Rv</td>
<td>TTCCATTCCTGCTTTAGCCAG</td>
<td></td>
</tr>
<tr>
<td>α3 Fw</td>
<td>GACCTCCCAAACAGCATTGC</td>
<td>NM_145129</td>
</tr>
<tr>
<td>α3 Rv</td>
<td>TCTGACAACCGAGGCACACA</td>
<td></td>
</tr>
<tr>
<td>α4 Fw</td>
<td>ACATGGGAACAGGACCGCTG</td>
<td>NM_015730</td>
</tr>
<tr>
<td>α4 Rv</td>
<td>ACAAAGGCACGCTAGTG</td>
<td></td>
</tr>
<tr>
<td>α5 Fw</td>
<td>GCGCTCGATTGCATTTCG</td>
<td>NM_176844</td>
</tr>
<tr>
<td>α5 Rv</td>
<td>CCCTAGCGTCCCCAATGATTG</td>
<td></td>
</tr>
<tr>
<td>α6 Fw</td>
<td>CCCCTGCCTCTTCATTCCC</td>
<td>NM_021369</td>
</tr>
<tr>
<td>α6 Rv</td>
<td>ACCACAATGGACAGCGTG</td>
<td></td>
</tr>
<tr>
<td>α7 Fw</td>
<td>GCTGCAAAGAGCCATACCC</td>
<td>NM_007390</td>
</tr>
<tr>
<td>α7 Rv</td>
<td>GATCTCAGCCACAAGCGC</td>
<td></td>
</tr>
<tr>
<td>α9 Fw</td>
<td>CCAGCCATCACCACAAAGCTC</td>
<td>NM_001081104</td>
</tr>
<tr>
<td>α9 Rv</td>
<td>ATGCCCTGAACCTCCATTC</td>
<td></td>
</tr>
<tr>
<td>α10 Fw</td>
<td>ACTGGCTCACAAGCTGTTCG</td>
<td>NM_001081424</td>
</tr>
<tr>
<td>α10 Rv</td>
<td>CACCTCCAGGGTCACATTAG</td>
<td></td>
</tr>
<tr>
<td>β2 Fw</td>
<td>CATTGGCGGACCATATGCG</td>
<td>NM_009602</td>
</tr>
<tr>
<td>β2 Rv</td>
<td>TCACGGGATGATGCTGC</td>
<td></td>
</tr>
<tr>
<td>β3 Fw</td>
<td>CCAAGGCCATTGTGAAATCC</td>
<td>NM_009602</td>
</tr>
<tr>
<td>β3 Rv</td>
<td>TCCGCTCAGCTTCTTACCTG</td>
<td></td>
</tr>
<tr>
<td>β4 Fw</td>
<td>TGGCTTGCACGTGACCTC</td>
<td>NM_148944</td>
</tr>
<tr>
<td>β4 Rv</td>
<td>AAATGAAAGAGCCAGG</td>
<td></td>
</tr>
<tr>
<td>GAPDH Fw</td>
<td>CCAGCCTCGTCCTCGTAGA</td>
<td>NM_008084</td>
</tr>
<tr>
<td>GAPDH Rv</td>
<td>TGCCGCTGAGTGAGTCATCTG</td>
<td></td>
</tr>
</tbody>
</table>
6 HOMEOSTATIC REORGANIZATION OF HCN AND VOLTAGE-GATED NA\(^+\) CHANNELS IN MESENCEPHALIC TRIGEMINAL PROPRISENSORY NEURONS OF A RETT SYNDROME MOUSE MODEL AND ITS IMPACT ON MEMBRANE EXCITABILITY

Submitted as Oginsky MF, Cui N, Zhong W, Johnson CM and Jiang C.

Homeostatic reorganization of HCN and voltage-gated Na\(^+\) channels in mesencephalic trigeminal propriosensory neurons of a Rett Syndrome mouse model and its impact on membrane excitability

6.1 Acknowledgements

This work was supported by the National Institute of Health (NS073875) to Chun Jiang. Also, this work was supported by the Brains and Behavior fellowship to Max F. Oginsky.

6.2 Abstract

RTT victims have motor defects seen in Mecp2-null mice as well. Motor neurons have been studied for possible roles in the movement abnormalities. However, propriosensory neurons, whose excitability can affect the feedback to motor neurons necessary for coordinated movement, have not. To address this issue, we studied the mesencephalic trigeminal (Me5) neurons. In whole-cell current clamp, the sag potential and PIR were reduced in Mecp2-null mice by \(\sim 35\%\) and \(\sim 20\%\), respectively, suggesting a reduction in the hyperpolarization-activated current (\(I_H\)), a regulator of membrane excitability. In voltage-clamp, the \(I_H\) density was deficient by \(\sim 33\%\), and the steady-state
half-activation had a depolarizing shift of ~10mV in the Mecp2-null mice. Quantitative PCR analysis indicated that HCN2 was decreased by ~30%, and the HCN1 was upregulated by ~35% with no change in HCN4 in Mecp2−/Y mice compared to WT. Despite the major deficiency in I_H, the Me5 neurons were more excitable in Mecp2-null mice due to a decrease in the firing threshold. Consistently, the steady-state half-activation of voltage-gated Na⁺ currents (I_{Na}) displayed a hyperpolarizing shift in the Mecp2-null mice with no change in the I_{Na} density. This seems to be due to NaV1.1, SCN1B and SCN4B overexpression and NaV1.2 and SCN3B under-expression. These data suggest that instead of disruption, the Mecp2 knockout leads to reorganization of membrane ion channels, thereby reducing the impact of their defects on the membrane excitability of Me5 neurons.

6.3 Introduction

Rett syndrome (RTT) is an autism-spectrum disorder caused by mutations in the Methyl-CpG- binding protein 2 (MECP2) gene. People with RTT have motor defects that are also found in Mecp2−/Y mice. It is known that voluntary motor function relies on the pyramidal, extrapyramidal and propriosensory systems. Although defects in the motor systems have been described in humans (Chahrour and Zoghbi 2007; Hagberg et al. 1983; Rett 1966) and in mice (Blue et al. 1999; Jin et al. 2013c; Kao et al. 2013), there is still a lack of information of the propriosensory system with respect to changes in neuronal intrinsic membrane properties and cellular excitability. The propriosensory neurons act as a part of servo feedback control by providing motor neurons with essential information regarding muscle tension, joint angle, movement speed and spatial position of body parts (Cattaneo and Pavesi 2014; Winter et al. 2005).
Consequently, defects in proprioception play an important role in motor dysfunctions and diseases (Dietz and Duysens 2000; Patel et al. 2014).

The mesencephalic trigeminal nucleus (Me5) contains a group of neurons responsible for the proprioception of jaw and facial muscles (Hidaka et al. 1999; Kolta et al. 1990; Zakir et al. 2010). Defects in chewing and swallowing are seen in people with RTT (Isaacs et al. 2003; Motil et al. 2012) suggesting Me5 neurons may be affected. With clear anatomical location and morphological characteristics, these Me5 neurons are ideal for studying the effects of the MeCP2 knockout on propriosensory neurons. Therefore, we performed these studies while paying special attention to ionic mechanisms underlying membrane excitability because changes in cellular excitability would affect proprioception and, ultimately, motor function.

Neuronal hyperexcitability has deleterious effects on various behaviors including movement (Vucic and Kiernan 2006; Zanette et al. 2002), anxiety (Davis et al. 1994; Zhou et al. 2010) and pain (Ke et al. 2012; Laedermann et al. 2013). Much work has been done on Me5 neurons concerning the ionic currents that underlie their excitability and activity (Del Negro and Chandler 1997; Enomoto et al. 2007; Enomoto et al. 2006; Hsiao et al. 2009; Khakh and Henderson 1998; Tanaka et al. 2003; Wu et al. 2005; Wu et al. 2001). In addition, blocking the various membrane currents in these neurons alters firing activity and neuronal excitability. Therefore, if the MeCP2 disruption affects ion channel expression, it will likely alter the excitability and proprioception function of the Me5 neurons.

In this study, we found that Me5 neurons in the MeCP2^{-/-} mice had major defects in the hyperpolarization-activated currents (I_{H}) and voltage-gated Na+ currents (I_{Na}).
likely to result from abnormalities in the transcript expression levels of the subunits mediating the currents. These defects occur in a way that seems to reduce the impact of their changes on the membrane excitability. The seemingly normal homeostatic response to the defect in one current by changing another seems to prevent a drastic change in neuronal excitability and, presumably, the resultant devastating consequences of motor dysfunction.

6.4 Results

Several intrinsic membrane properties regulate cellular excitability, including the resting membrane potential, post-inhibitory rebound (PIR), firing threshold and repetitive firing, all of which were studied in Me5 neurons from both the WT and *Mecp2^{−/Y}* mice. The average resting membrane potential was -56.3 ± 1.1 mV WT (n=33 neurons) vs. -56.3 ± 0.8 mV *Mecp2^{−/Y}* mice (n=30 neurons), which were not significantly different from each other (p=0.96).

6.4.1 Post-inhibitory rebound and sag in WT mice

With a series of hyperpolarizing currents, WT neurons displayed a large PIR (Fig 1A₁) and sag (Fig. 1A₂). The sag is the difference between the trough and the steady-state potentials (Fig. A₃), whereas the PIR is defined as the peak depolarization above the resting membrane potential immediately before firing (Fig. 1A₄). Measured at the sub-threshold firing level, the PIR and the sag averaged 14.9 ± 0.6 mV (n=33 neurons, mean ± s.e.) and 63.8 ± 3.8 mV (n=33 neurons), respectively (Fig. 1B). We compared the sag to its activation time constant using a Spearman’s rank correlation and found that the larger the sag, the faster the time constant (r=0.66, Fig. 1C). A similar correlation was found between the PIR and sag (r=0.70, Fig. 1D). We calculated the
input resistance by dividing the peak potential by the injected current. We found that the resistance was 154.5 ± 12.4 MΩ (n=33 neurons).

\(I_h \) is known to be the major player in both the sag and PIR. Thus, we blocked the \(I_h \) with ZD7288 (10µM). The ZD7288 treatment caused the sag and PIR to be greatly reduced (Fig. 1E1-E3). Such effects could mostly be washed out. The baseline PIR was reduced from 11.2 ± 0.8 mV to 3.5 ± 0.5 mV (n=6 neurons; P<0.001, Student’s \(t \)-test; Fig. 1F) and the sag was reduced from 50.7 ± 7.8 mV to 21.6 ± 5.0 mV (n=6 neurons; P=0.010, Student’s \(t \)-test; Fig. 1F). The resting membrane potential was hyperpolarized by the ZD7288 treatment from -52.9 ± 1.9 mV to -59.1 ± 1.4 mV (n=6 neurons; P<0.05, Student’s \(t \)-test).

6.4.2 Decreases of PIR and sag in Mecp2\(^{-/Y}\) mice

In comparison to WT Me5 neurons, the sag (immediately before firing) was reduced in the Mecp2\(^{-/Y}\) mice (63.8 ± 3.8 mV WT vs. 42.2 ± 3.3 mV Mecp2\(^{-/Y}\), n=33 and n=30 neurons, respectively; P<0.001, Student’s \(t \)-test; Fig. 2A and C). The PIR (immediately before firing) was reduced as well (14.9 ± 0.6 mV WT vs. 10.8 ± 0.6 mV Mecp2\(^{-/Y}\), n=33 and n=30 neurons, respectively; P<0.001, Student’s \(t \)-test; Fig. 2B and D). In order to determine the relationship between the sag amplitude and PIR amplitude, we compared them in a conventional scatter plot (Fig. 2E). Me5 neurons from Mecp2\(^{-/Y}\) mice and WT mice overlapped to some degree. However, many of the WT Me5 neurons displayed relationships with large PIR and sag amplitudes whereas the Mecp2-null neurons displayed relationships with small PIR and sag amplitudes. These data indicate that the relationship between the sag and PIR indeed holds true in the Mecp2\(^{-/Y}\) mice, just at smaller amplitudes compared to WT. The time constant for the sag was
significantly different between these neurons as well (18.1 ± 2.1ms in WT vs 27.0 ± 3.3ms in Mecp2−/Y, n=33 and n=30 neurons, respectively; P<0.05, Student’s t-test; Fig. 2F). Lastly, we found that the input resistance was increased from 154.5 ± 12.4MΩ WT (n=33 neurons) to 218.2 ± 26.7MΩ Mecp2−/Y (n=30 neurons) which was significantly different (P<0.05, Student’s t-test).

6.4.3 Reduction in I\textsubscript{H} in Mecp2−/Y mice

Based on the current clamp data and the ZD7288 effects, it is likely that I\textsubscript{H} is involved the sag and PIR. Thus, we measured I\textsubscript{H} in voltage clamp before and after ZD7288 treatment (Fig. 3A and 3A\textsubscript{2}). When we took the difference between them, we found that most of the inward currents elicited by our voltage protocol were the I\textsubscript{H} (Fig. 3A\textsubscript{3}). Then, we examined the steady-state activation of the I\textsubscript{H} by measuring the tail currents (Fig. 3A\textsubscript{1}) resulting from the return to -70mV after step command voltages. For the cell in Fig. 3A\textsubscript{1}, the maximum amplitude of I\textsubscript{H} was -743.5pA. The voltage for half-activation (V\textsubscript{1/2}) determined by fitting the data with the Boltzmann equation was -83.0mV with the slope Boltzmann constant, k, 15.0mV (Fig. 3B). In the I/V plot, the neuron in Fig. 3A\textsubscript{3} had a reversal potential ~-30mV (Fig 3C) indicating a combination of Na+ and K+ for the currents, which is a characteristic of I\textsubscript{H}. We were able to confirm that it was I\textsubscript{H} by blocking the currents with 1mM Cs+, a concentration known to block I\textsubscript{H} mostly rather than K+ currents (-1,937 ± 178pA at baseline vs. -568 ± 97pA with Cs+, n=10 neurons, P<0.001; Student’s t-test; Fig. 3D). Consistently, the specific I\textsubscript{H} blocker ZD7288 suppressed the currents (-960 ± 180pA at baseline vs. -221.6 ± 7.7pA with ZD7288, n=8 neurons, P<0.001; Student’s t-test; Fig. 3E).
To analyze the difference of I_H between the WT and $Mecp2^{-/Y}$ mice, we applied the same voltage-clamp protocol to $Mecp2$-null neurons. The I_H from $Mecp2^{-/Y}$ mice was much smaller than that from the WT (Fig. 4A & B). The current density in Me5 neurons from $Mecp2^{-/Y}$ mice was lower as well. When the cell was voltage-clamped at -130 mV, the current density was 16.0 ± 0.8 pA/pF in WT vs. 10.1 ± 1.7 pA/pF in $Mecp2^{-/Y}$ (n=26 WT neurons and n=13 $Mecp2^{-/Y}$ neurons; P<0.001, Student’s t-test; Fig. 4D). When the steady-state activation was compared between WT and $Mecp2^{-/Y}$ mice, we found that the $V_{1/2}$ was shifted toward more depolarizing potentials (-82.6 ± 1.5 mV vs. -72.5 ± 2.7 mV in 10 WT and 9 $Mecp2^{-/Y}$ neurons, respectively; P<0.01; Student’s t-test; Fig. 4E & F). Furthermore, the activation time constant was longer in the $Mecp2^{-/Y}$ mice than in the WT (48.5 \pm 3.2ms vs. 72.4 \pm 8.9ms in 18 WT and in 17 $Mecp2^{-/Y}$ neurons, respectively; P<0.05; Student’s t-test; Fig. 4C and G).

6.4.4 Impact on firing and repetitive firing activity

The reduction in I_H and the PIR should affect firing activity in Me5 neurons of $Mecp2^{-/Y}$ mice. Since these cells did not fire action potentials spontaneously, we studied the firing activity by giving a series of depolarizing currents. We found that in 13 of 18 WT neurons, only single action potentials were elicited (Fig. 5A and C), whereas the other 5 cells fired multiple action potentials during the depolarizing pulses. In contrast, 18 of 23 $Mecp2$-null neurons fired multiple action potentials in response to the same depolarizing current protocol, whereas only 5 cells fired single action potentials (Fig. 5B and C). The difference in their ratios was statistically significant (P<0.001, χ^2 test).

When we compared the frequency of action potentials during the depolarizing current injection between these mice, the overall firing rate was significantly higher in
Mecp2−/Y mice than in the WT (Fig. 5D). For example, when the Me5 neuron was injected with 290pA, the Mecp2−/Y firing frequency was 166.3 ± 30.7Hz (n=10 neurons) whereas the WT was 30.3 ± 14.1Hz (n=10 neurons; P<0.001, Student’s t-test; Fig. 5D). There was little difference in spike frequency adaptation in Me5 neurons from WT and Mecp2−/Y mice (data not shown). These results suggest that the cellular excitability is increased in Mecp2-null neurons.

The increased cellular excitability in Mecp2-null neurons was quite surprising, with the decrease in the I_{H} we expected these neurons to be less excitable. Although reduction in the I_{H} was partially compensated by the shift in the V_{1/2} to more depolarizing potentials, the average PIR remained small in Mecp2-null neurons (as mentioned above). It is likely that mechanisms other than the I_{H} may play a role. Thus, we analyzed the firing threshold using the maximum second derivative method (Sekerli et al. 2004). We found that the threshold was -34.7 ± 1.0mV in WT vs. 41.3± 1.1mV in the Mecp2−/Y (n=26 and n=25 neurons, respectively; P<0.001 Student’s t-test; Fig. 5E and F). The latency to first spike was not significantly different (2.83 ± 0.26ms WT vs. 2.78 ± 0.22ms Mecp2−/Y, n=21 and n=23 neurons, respectively; P>0.05; Student’s t-test; Fig. 5G). These results indicate that despite the decreases in I_{H} and PIR, the firing threshold is reduced in Mecp2-null neurons making the cells more excitable in response to depolarization input.

6.4.5 Alteration of voltage-gated Na⁺ currents in Mecp2−/Y mice

It is possible that the decreased firing threshold is attributable to the voltage-gated Na⁺ currents (I_{Na}). Thus, we analyzed I_{Na} in voltage clamp. To minimize the space-clamp error, we reduced the extracellular Na⁺ to 56mM instead of 145mM in
regular ACSF. The I_{Na} amplitude was about the same between the WT and $Mecp2^{-/Y}$ mice (-6.8 ± 0.7nA WT vs. -6.8 ± 0.6nA $Mecp2^{-/Y}$, n=8 neurons for both; Student’s t-test, P>0.05, Fig. 6A & B). The current density was not significantly different either (-145.5 ± 15.4pA/pF in WT vs. -151.4 ± 15.4pA/pF in $Mecp2^{-/Y}$, n=8 neurons for both; P>0.05, Student’s t-test; Fig. 6C). When the steady-state activation and inactivation of I_{Na} were compared between these neurons, we found that the activation curve was shifted to more hyperpolarizing potentials in $Mecp2^{-/Y}$ mice (Fig. 6D). The $V_{1/2}$ was -19.6 ± 2.6mV (n=8 neurons) for the WT and -25.9 ± 3.1mV (n=8 neurons) for the $Mecp2^{-/Y}$ mice, consistent with the decrease in firing threshold in the $Mecp2$-null neurons. In contrast, the I_{Na} inactivation was not significantly different between WT and $Mecp2^{-/Y}$ mice, which was fit with the same Boltzmann equation (Fig. 6D).

6.4.6 Evidence for altered expression of HCN and Na$^+$ channels in $Mecp2^{-/Y}$ mice

The changes in I_H may be related to alterations in the expression of the major pore-forming subunits that mediate the I_H. Thus, we performed qPCR analysis to determine the hyperpolarization-activated and cyclic nucleotide-gated (HCN) transcript levels in WT and $Mecp2^{-/Y}$ mice. Using the $2^{−ΔΔCT}$ method in comparison to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (Livak and Schmittgen 2001), we found that in micropunches from WT mice the HCN2 transcripts were expressed the most (n=9 experiments) compared to GAPDH, the HCN1 and HCN4 transcripts were next (n=9 and n=8 experiments, respectively; Fig. 7A). The difference in the HCN2 expression was significantly different from HCN1 and HCN4 (one-way ANOVA, Fig. 7A). No significant difference was found between HCN1 and HCN4. When the relative quantity of HCN expression was compared to that of the WT using the $2^{−ΔΔCT}$ method,
we found that HCN2 in the Mecp2\(^{-/Y}\) mice was reduced (P<0.001; Student’s \(t\)-test; n=9 experiments, Fig. 7B). In contrast, the HCN1 transcript expression was increased to (P<0.001; Student’s \(t\)-test; n=9 experiments; Fig. 7B), and the HCN4 expression remained unchanged (P>0.05; Student’s \(t\)-test; n=8 experiments, Fig. 7B).

Since functional Na\(^+\) channels consist of one \(\alpha\) and two auxiliary \(\beta\) subunits which can affect the current kinetics, we performed qPCR on the four CNS-expressing \(\alpha\) subunits (NaV1.1, 1.2, 1.3 and 1.6) and four \(\beta\) subunits (SCN(1-4)B). We compared the expression levels of each subunit to GAPDH using the \(2^{-\Delta\Delta CT}\) method. The NaV1.2 and SCN1B were the most abundant subunits in the WT group (n=9 experiments for both; Fig. 8A), followed by SCN2B (n=8 experiments), NaV1.6 (n=9 experiments), NaV1.1 (n=9 experiments), SCN3B (n=9 experiments) and SCN4B (n=9 experiments). The NaV1.3 was expressed in a very low level (n=9 experiments).

When the relative expression of these Na\(^+\) channel subunits was compared between the WT and Mecp2\(^{-/Y}\) mouse, we found that the most abundant subunit, NaV1.2 was decreased (n=9 experiments; P<0.001, Student’s \(t\)-test; Fig. 8B) and another abundant subunit, SCN1B, was increased (n=9 experiments; P<0.05, Student’s \(t\)-test; Fig. 8B). The lesser expressed subunits, NaV1.1 and SCN4B were increased (n=9 experiments for both; P<0.001\(NaV1.1\) and P<0.001\(SCN4B\), Student’s \(t\)-test; Fig. 8B) and SCN3B was decreased (n=9 experiments; P<0.01, Student’s \(t\)-test; Fig. 8B). NaV1.3, NaV1.6 and SCN2 expression levels were altered very little in the Mecp2\(^{-/Y}\) mice compared to WT (n=6 experiments; n=8 experiments; n=8 experiments, respectively; Fig.8B).
6.5 Discussion

In the present study, we provide first evidence for dysfunction in proprioceptive neurons of MeCP2−/Y mice. We find that the sag potential and the PIR are greatly reduced in Me5 neurons from MeCP2−/Y mice, due to a decrease in Ih. However, the MeCP2-null Me5 neurons do not show a decrease in excitability, but are hyperexcitable instead. Our results suggest that the hyperexcitability of the Me5 neurons results from a reduction in the firing threshold, attributable to a hyperpolarizing shift in the Ih V½ of activation. The molecular basis for the changes in Ih and Ina properties seems to be related to changes in the channel expression levels.

6.5.1 Ih alterations in MeCP2−/Y mice

The Ih is produced by HCN channels and plays a role in many different functions such as PIR, setting of the resting membrane potential, regulation of membrane excitability, pacemaking, integrating synaptic input and bursting of action potentials (Chan et al. 2011; Li et al. 2012; Lupica et al. 2001; Nolan et al. 2007; Ying et al. 2011). All four HCN transcripts have been reported in the rodent brain (Santoro et al. 2000). In Me5 neurons of the MeCP2−/Y mice, the Ih density is decreased by ~30%, consistent with reductions in the sag and PIR. Its V½ of activation displays a depolarizing shift of ~10mV. We find that in WT mice the HCN2 is expressed the most, with HCN1 an order of magnitude less and HCN4 two orders less. The HCN3 transcript is not detected in the Me5 area. In the MeCP2−/Y mice, the HCN2 expression is reduced by ~30% and the HCN1 was increased by ~35% with no change in HCN4. Therefore, the HCN2 deficiency in MeCP2-null neurons appears to underlie the decrease in the Ih density.
The alterations in the HCN transcript expression may explain the changes in the I_H properties as well. Concerning the activation $V_{1/2}$ in WT animals, the $V_{1/2}$ is ~ -70 mV for HCN1, ~ -100 mV for HCN4, and -75 mV to -95 mV for HCN2 and HCN3, respectively (Altomare et al. 2003; Baruscotti et al. 2005; Stieber et al. 2005; Wahl-Schott and Biel 2009). The MeCP2-null Me5 neurons show an increase in HCN1 expression and a decrease in HCN2 expression. The expression level of HCN2 is 10-fold higher than HCN1 in Me5 neurons of WT mice. Thus, a 30% reduction in the HCN2 expression appears to be the main reason for the shift in the activation $V_{1/2}$ of I_H.

A decrease in the I_H density would result in a decrease in membrane excitability (Deng et al. 2014; Funahashi et al. 2003; Kim and Holt 2013). The unexpected increase in the excitability in MeCP2-null neurons, despite the decrease in the I_H density, may be attributed to the depolarizing shift in the $V_{1/2}$ of activation. Although the combination of the reduction in HCN2 and increase in HCN1 may explain the decrease in the I_H current density and the activation $V_{1/2}$ shift to a depolarizing potential, it cannot explain the decrease in firing threshold. Therefore, we studied the voltage-gated Na$^+$ currents.

6.5.2 I_{Na} alterations in MeCP2$^{-/Y}$ mice

Functional Na$^+$ channels consist of one large α subunit (NaV 1.1 to 1.9) and two smaller auxiliary β (β_1-β_4) subunits. The α subunits are responsible for voltage-dependent gating properties, whereas the β subunits modify the gating, Na$^+$ channel expression and cell adhesion (Patino et al. 2011). Our voltage clamp experiments showed a hyperpolarizing shift of the $V_{1/2}$ of activation by ~ 5 mV in the MeCP2$^{-/Y}$ mice. We have found alterations in the expression of NaV1.1, NaV1.2 and SCN1B, SCN3B
and SCN4B indicating a cause for the hyperpolarizing shift in the $V_{1/2}$ of activation and firing threshold.

Previous studies indicate that the level of NaV1.2 is reduced in LC neurons from $\text{Mecp2}^{-/Y}$ mice (Zhang et al. 2010a). We find similar results in Me5 neurons including that the NaV1.2 is the most expressed α subunit in the WT mice. The SCN1B and SCN4B expressions are increased in $\text{Mecp2}^{-/Y}$ mice compared to WT. These two subunits modulate the $V_{1/2}$ of activation in Na$^+$ currents by causing a hyperpolarizing shift (Aman et al. 2009; Barela et al. 2006). Currents involving the NaV1.2 show more positive activation $V_{1/2}$ values than currents composed of the other α subunits (OuYang and Hemmings 2007; Rush et al. 2005; Xu et al. 2007), whereas the NaV1.1 mediated currents tend to have more negative $V_{1/2}$ values than other subunits. Taken together, these data indicate that the hyperpolarizing shift in the $V_{1/2}$ of activation is due to alterations in the transcript expression of the NaV1.1, NaV1.2, SCN1B and SCN4B Na$^+$ channel subunits. Based on other studies (Dai et al. 2002; Power et al. 2012), it is likely that the shift in the $V_{1/2}$ underlies the decreased threshold found in the Me5 neurons.

6.5.3 Homeostatic reorganization of HCN and voltage-gated Na$^+$ channels in $\text{Mecp2}^{-/Y}$ mice

Me5 neurons are propriosensory cells that monitor, and respond to, muscle stretch through muscle spindles and Golgi tendon organs. Neuroanatomical studies indicate that not only do Me5 neurons innervate trigeminal motor neurons, but also premotor interneurons in the supratrigeminal nucleus, spinal trigeminal subnucleus and parvocellular reticular formation (Luo et al. 2001). Many of these interneurons are inhibitory which also play a role in coordinated movements (Turman and Chandler
1994). Through these interneurons, motor neurons for mastication and facial expression are regulated by Me5 neuronal activity, thereby affecting the coordinated and rhythmic mastication as well as meaningful facial expression.

In MeCP2^{-/-}Y mice, the Me5 neurons show defects in both I_H and I_{Na}, likely because of the defective expression of several subunits of these channels. The defects in these ion channels seem to counterbalance each other, as the I_H defects tend to reduce membrane excitability, and the I_{Na} defects tend to increase it, thereby reducing any possible negative consequences. A straightforward explanation for this phenomenon is that there may be a physiological homeostatic compensatory mechanism in these neurons, although which current initiates the homeostatic reorganization of the other is still unclear. Regardless of the cause vs. the compensator, the impact of the homeostatic reorganization is very clear. Without the homeostatic reorganization, the Me5 neurons would either be severely hypoexcitable or extremely hyperexcitable, which would make the voluntary movement of jaw and certain facial muscles very difficult or maybe even impossible. Despite the homeostatic reorganization, the Me5 neurons are somewhat hyperexcitable due to the decrease in firing threshold. However imperfect this may be, it seems to be more beneficial than if the homeostatic reorganization of these ion channels did not occur at all.

6.5.4 Other possible contributors to the intrinsic hyperexcitability

There has been much work that shows neuronal excitability is regulated by K^+ currents (Barros et al. 1994; Gryshchenko et al. 1999; Perez et al. 2006) and the persistent Na^+ currents (I_{NaP}) (Astman et al. 1998; Vervaeke et al. 2006). The inwardly rectifying K^+ currents (I_{Kir}) that are present in Me5 neurons (Del Negro and Chandler...
1997; Tanaka et al. 2003) are altered in LC neurons of $\text{Mecp2}^{-/Y}$ mice (Zhang et al. 2011). Although the I_{Kir} regulates cell excitability, we did not see any difference in Me5 neurons when we blocked I_{Kir} with Ba^{2+} (data not shown). There is an increased I_{NaP} in cardiomyocytes from $\text{Mecp2}^{-/Y}$ mice (McCauley et al. 2011) but no studies have been performed on neurons. I_{NaP} does play a role in regulating the excitability and bursting in Me5 neurons (Enomoto et al. 2006; Wu et al. 2005) and the knockout of NaV1.6 decreases the I_{NaP} and excitability in Me5 neurons (Enomoto et al. 2007). Since we see no change in NaV1.6 expression here, NaV1.6 is unlikely to affect the excitability in Mecp2-null Me5 neurons. It is possible that the increase in the expression of the other voltage-gated Na$^+$ channels increases the I_{NaP} in $\text{Mecp2}^{-/Y}$ mice, but as of now, it remains unclear.

In conclusion, we have found major defects in HCN channels with respect to their electrophysiological properties and subunit expression in Mecp2–null Me5 neurons. The ~30% decrease in I_{H} does not cause a decrease in membrane excitability. Instead, the membrane excitability is slightly increased in the Mecp2–null neurons, likely to result from the hyperpolarizing shift in the $I_{\text{Na}} V_{1/2}$ of activation. This seemingly paradoxical phenomenon can reduce the impact of the defects in these two major groups of ion channels and allows Me5 neurons to maintain decent proprioception in mastication and facial expression in the presence of the Mecp2 disruption. These findings may have an impact on the understanding of propriosensory neurons regarding their function in motor control and the development of motor impairment in people with RTT. Also, these findings may provide insight into ion channel reorganization and its role in alleviating symptoms caused by genetic defects in cellular functions.
Figure 6.1 ZD7288 blocks the strong sag and PIR in Me5 trigeminal neurons.
A: The Me5 neuron responded to the hyperpolarizing current with a strong PIR and sag, A_1 and A_2. The sag was described as the difference between the peak voltage and the steady-state voltage during the current injection, A_3. The PIR was the difference between the baseline voltage and the peak rebound voltage after the termination of the current injection, A_4. B: The PIR and sag in the Me5 neurons from WT mice. C: Correlation between the sag time constant and sag voltage. D: The correlation between the PIR and sag. E: The I_H antagonist ZD7288 blocks the sag and PIR. E_1: The recordings after ZD7288 application to same neuron as in E. E_2: Overlay of the maximum sweep from traces in E and E_1. E_3: Overlay of the maximum sweep from E_2 focusing on the PIR. F: The PIR and sag are less after the ZD7288 treatment. Bar graphs are means ± SE; n=6 neurons (Student’s t-test; $P < 0.01$ **, $P < 0.001$ ***
Figure 6.2. PIR and sag are less in Me5 trigeminal neurons from Mecp2−/Y mice.
A: The sag from a Me5 neuron from WT mouse. A\textsubscript{1}: The PIR from a Me5 neuron from a WT mouse. The sag was defined as the difference between the peak voltage induced by the hyperpolarizing current injection and the steady-state voltage. The PIR was defined as the difference between the resting membrane potential and the peak depolarization. Only recordings without action potentials shown. B: The sag in a Me5 neuron from a Me\textsubscript{cp2-}\textsubscript{\textgamma} mouse. B\textsubscript{1}: The PIR in a Me5 neuron from a Me\textsubscript{cp2-}\textsubscript{\textgamma} mouse. C: The sag is smaller in Me\textsubscript{cp2-}\textsubscript{\textgamma} mice than in WT. D: The PIR is smaller in Me\textsubscript{cp2-}\textsubscript{\textgamma} mice than in WT. E: The WT population of cells (open circles) have larger PIR and sag values than the Me\textsubscript{cp2-}\textsubscript{\textgamma} mice (filled circles). F: The sag time constant is longer in Me\textsubscript{cp2-}\textsubscript{\textgamma} mice than in WT. Bar graphs are means ± SE; \(n = 33 \) WT neurons and \(n = 30 \) Me\textsubscript{cp2-}\textsubscript{\textgamma} neurons (Student’s \(t \)-test; \(P < 0.05 \) *, \(P < 0.001 \) ***)
The hyperpolarization-activated current in Me5 trigeminal propriosensory neurons.

A: The hyperpolarization-activated current in Me5 neurons. The cell was held at -70mV and a voltage step protocol was administered from -140mV to 0mV. A1: The tail current after the cell returned to -70mV. The arrow indicates where the current values used for the steady-state activation curve were taken. A2: ZD7288 blocks the hyperpolarization-activated current in Me5 neurons. A3: The trace from A2 was subtracted from trace in A.
B: The steady-state activation was determined from the tail current in A1. C: Current/voltage plot made from subtracted trace in A3. D: Cesium strongly reduced the hyperpolarization-activated current. E: ZD7288 reduced the hyperpolarization-activated current. Bar graphs are means ± SE; n = 10 Cs⁺ neurons and n=8 ZD7288 neurons (Student’s t-test; p < 0.001 ***)
Figure 6.4 The hyperpolarization-activated current was altered in Me5 trigeminal neurons from *Mecp2*−/Y mice.

A: Me5 neuron voltage-clamp recording from WT mouse. **B:** Me5 neuron voltage-clamp recording from *Mecp2*−/Y mouse. **C:** Comparison between the activation of the current in WT and *Mecp2*−/Y mice. **D:** The steady state activation curves of the hyperpolarization-activated current in *Mecp2*−/Y (closed circle) mice compared to the WT (open circle). **E:** The current density was smaller *Mecp2*−/Y mice than in WT (n = 26 WT and n=10 *Mecp2*−/Y). **F:** The half-activation was depolarized in *Mecp2*−/Y mice compared to WT (n
= 10 WT neurons and n=9 MeCP2−/−Y neurons). G: The activation time constant was longer in MeCP2−/−Y mice than in WT (n = 18 WT neurons and n=17 MeCP2−/−Y neurons).

Bar graphs are means ± SE, (Student’s t-test; p < 0.05 *, p < 0.01 **)
Figure 6.5 Excitability was increased in Me5 neurons of MeCP2^{−/Y} mice.

A: A series of depolarizing currents elicited single action potentials in most WT cells. B: A series of depolarizing currents elicited multiple action potentials in most MeCP2-null neurons. The middle between A and B show typical action potentials during injected currents. C: Pie charts depicting average of neurons that responded with single action potentials or multiple action potentials in WT and MeCP2^{−/Y} mice. D: The spontaneous frequency of action potentials due to depolarizing injected current compared between WT (open circles) and MeCP2^{−/Y} (dark circles) mice; n=10 WT neurons and n=10
Mecp2−/Y neurons. *E:* Action potential threshold comparison between WT and *Mecp2*−/Y mice. The threshold (X) was determined using the maximum second derivative *F:* The threshold was decreased in *Mecp2*−/Y mice compared to WT; n=28 WT neurons and n=26 *Mecp2*−/Y neurons. *G:* The spike latency was unchanged between WT and *Mecp2*−/Y mice; n=28 WT neurons and n=26 *Mecp2*−/Y neurons. Graphs are means ± SE; (Student’s *t*-test; *P* < 0.01 **, *P* < 0.001 ***
Figure 6.6 The steady state half-activation of voltage-gated sodium current was shifted in the hyperpolarized direction in $\text{Mecp2}^{-/Y}$ mice.

A: The voltage-gated sodium current recordings from WT and $\text{Mecp2}^{-/Y}$ mice when the cell was held at -90mV and a step protocol from -80mV to +60mV. B: The voltage-gated sodium current recordings from $\text{Mecp2}^{-/Y}$ mice. Note: only the recordings from steps -50mV to +20mV are shown. C: The current density was similar between WT and $\text{Mecp2}^{-/Y}$ mice. D: The steady-state half-inactivation was different between the WT (open circle) and $\text{Mecp2}^{-/Y}$ mice (closed circle) by ~15mV. The steady state half-activation was shifted in the hyperpolarized direction in $\text{Mecp2}^{-/Y}$ mice compared to WT. Bar graphs are means ± SE; n=8 WT neurons and n=8 $\text{Mecp2}^{-/Y}$ neurons (Student’s t-test, $P > 0.05$)
Figure 6.7 Alterations in HCN subunit expression in Me5 neurons.

A: The relative quantity of the HCN subunits compared to GAPDH. B: The relative quantity of the HCN subunits of MeCP2^{−/−} mice compared to WT. Bar graphs are means
± SE; n=9 experiments HCN1 and HCN2, n=8 experiments HCN4, (one-way ANOVA and Student's t-test; $p < 0.01 \quad **$, $p < 0.001 \quad ***$)
Figure 6.8 Alterations in NaV and SCN subunit expression in Me5 neurons.

A: The relative quantity of the NaV and SCN subunits compared to GAPDH. B: The relative quantity of the NaV and SCN subunits of Mecp2^{−/Y} mice compared to WT. Bar
graphs are means ± SE; n=9 experiments NaV1.1, NaV1.2, NaV1.6, SCN1B, SCN3B, SCN4B, n=8 experiments SCN2B, n=6 experiments NaV1.3 (one-way ANOVA and Student’s t-test; p < 0.01 **, p < 0.001 ***)

<table>
<thead>
<tr>
<th>Target Gene</th>
<th>Primer Sequence</th>
<th>Accession No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAPDH FW</td>
<td>CCAGCCTCGTCCCGTAGA</td>
<td>NM_008084</td>
</tr>
<tr>
<td>GAPDH RW</td>
<td>TGCCGTGAGTGAGTGACT</td>
<td></td>
</tr>
<tr>
<td>Nav1.1 FW</td>
<td>TCATCATCTCTGGTGCTTTTC</td>
<td>NM_018733.2</td>
</tr>
<tr>
<td>Nav1.1 RV</td>
<td>GGTGAGTGAGTGAGGCTTTT</td>
<td></td>
</tr>
<tr>
<td>Nav1.2 FW</td>
<td>GCTAAAGTGGGGTTGATATG</td>
<td>NM_001099298.2</td>
</tr>
<tr>
<td>Nav1.2 RV</td>
<td>CCTCAGTGCTCTTAATGTT</td>
<td></td>
</tr>
<tr>
<td>Nav1.3 FW</td>
<td>CGCTTGACGCTGCTTTCTG</td>
<td>NM_018732.3</td>
</tr>
<tr>
<td>Nav1.3 RV</td>
<td>GACTTCAGTGCTGCTTTT</td>
<td></td>
</tr>
<tr>
<td>Nav1.6 FW</td>
<td>AGTCAGACCCCGAAGCGAG</td>
<td>U26707.1</td>
</tr>
<tr>
<td>Nav1.6 RV</td>
<td>TGTTGACCTGGCGAGGACT</td>
<td></td>
</tr>
<tr>
<td>SCN1B FW</td>
<td>CGAGGCTGTGTATGGGATGAC</td>
<td>NM_011322.2</td>
</tr>
<tr>
<td>SCN1B Rv</td>
<td>CCCTCAAAGCGCTCATTTT</td>
<td></td>
</tr>
<tr>
<td>SCN2B FW</td>
<td>GGTCTGGTGCGGTATTTAAG</td>
<td>NM_001014761.2</td>
</tr>
<tr>
<td>SCN2B Rv</td>
<td>AACGACTCAGGCCCTATCTT</td>
<td></td>
</tr>
<tr>
<td>SCN3B FW</td>
<td>TGTAATGTCAGGGAGTTTTT</td>
<td>NM_001286614.1</td>
</tr>
<tr>
<td>SCN3B Rv</td>
<td>TCGGCGCTTGAAGCCCTTTT</td>
<td></td>
</tr>
<tr>
<td>SCN4B FW</td>
<td>AGCCTCGGTTTGATGGGATGC</td>
<td>NM_001013390.2</td>
</tr>
<tr>
<td>SCN4B Rv</td>
<td>TCCCTCCCTGCTCTTCAATC</td>
<td></td>
</tr>
</tbody>
</table>
7 GENERAL DISCUSSION

7.1 Homeostatic compensation in animal models

Homeostasis occurs in cells, tissues, organs and organisms. For proper neuronal function the balance among various membrane ion channels and synaptic currents must be maintained. Recent studies indicate that membrane conductance varies from neurons to neurons even though the neuronal output is quite robust and stereotypical (Prinz et al. 2004). The stability of neuronal activity seems to be related to the covariation of certain membrane conductance pairs (Zhao and Golowasch 2012). The alteration of one conductance in the pair may not alter the neuronal firing activity. This is because the other membrane conductance is also altered (Khorkova and Golowasch 2007; MacLean et al. 2003). These conductance alterations are related to the ion channel expression level, turnover rate, phosphorylation, membrane trafficking, etc. (Schulz et al. 2006; Tobin et al. 2009), which are consistent with the compensatory neuroadaptation theory. It is likely that similar neuroadaptations that occur in WT animals happen in diseased mouse models of RTT.

7.1.1 Gene knockout mouse models

There are many examples where the knockout of a gene from an organism initiates compensatory mechanisms. Alterations in the gene expression levels in response to the knockout of another gene indicate that cells have the ability to adapt to the genetic variations. For example, when the α1 subunit gene of the GABA_A receptor is knocked out, other genes start acting in the functional deficiency caused by the gene ablation (Ogris et al. 2006). Due to the α1 GABA_A receptor subunit knockout, there is an increase in expression of α6, α3 and α4-containing channels. This is not necessarily
caused by upregulation of the genes. Instead, the gene products are not degraded as much and are incorporated into functional receptors. The global knockout of the β3 GABA receptor gene causes the downregulation of the α2 and α3 subunits (Ramadan et al. 2003). These changes are not limited to the GABA system. When the NE transporter is knocked out, there is an increase in α2 adrenoceptors, dopamine and serotonin transporters (Gilsbach et al. 2006; Solich et al. 2011). Several lines of knockout mice have been used to study the function of nAChRs because of their role in nicotine addiction (Drago et al. 2003). In α7 nAChR knockout mice, the α2, α9, α10, β4, muscarinic 1 and muscarinic 4 receptor subunits were upregulated in retinal neurons (Smith et al. 2014). Further, the α3 and α4 nAChR subunits are upregulated in the cortex and hippocampus of α7 nAChR knockout mice. These results suggest that neurons have the ability to alter the expression of one gene to compensate for a deficiency in the other.

7.1.2 Parkinson’s disease mouse models

The loss of dopamine signaling has been shown to be the major cause of Parkinson’s disease. Specifically, dopaminergic neurons from the substantia nigra pars compacta die due to dysfunction in the L-type Ca(v)1.3 Ca^{2+} channel (Chan et al. 2007). Despite the death of these neurons, the advent of the symptoms do not occur until the level of striatal dopamine is <5% of WT values (Golden et al. 2013). This cannot be explained without consideration of neuroadaptations compensating for the diminishment of dopamine signaling in the striatum. Indeed, neurons of the striatum are able to adapt to the reduction of dopamine. The decrease in cholinergic and GABAergic neurons of the striatum seems to occur to adjust to the decline in dopamine (Lloyd 1977). Further,
when 90% of the substantia pars compacta neurons are destroyed, there is an upregulation in TH expression and release of dopamine from the remaining neurons (Zigmond et al. 1984). The dopamine transporter activity is decreased when substantia nigra pars compacta neurons are lesioned. This seems to help maintain the dopamine levels despite the reduced number of dopaminergic neurons (Sossi et al. 2009). These examples offer reasons why the decrease in dopamine does not immediately result in obvious Parkinson’s disease symptoms.

7.1.3 Rett Syndrome mouse models

There are many mouse models used to study the impact of mutations in the *Mecp2* gene. Depending on the question being asked, one model may be more appropriate than another. For instance, some mutations have more severe symptoms than others. For our purposes, we used the model where exons 3 and 4 were removed, and the model recapitulates all RTT-like symptoms. Using this model we have found evidence where neurons are adapting to changes in synaptic signaling and membrane ionic currents. RTT is characterized by deficits in inhibitory systems. It seems that other systems are able to act on minimizing the Mecp2-null effect. In the mice, GABA synaptic transmission is defective, whereas the NE modulation of glycnergic input to hypoglossal neurons is augmented (Jin et al. 2013c). The upregulation of the inhibitory glycnergic synaptic currents seems to reduce the hyperexcitability of hypoglossal neurons. The ACh modulation of GABA input to LC neurons is increased in *Mecp2^{+/Y}* mice, which seems to increase the GABAergic input to the LC. The alteration of presynaptic neuron signaling is just one neuroadaptation occurring to maintain homeostasis. Other compensatory neuroadaptations occur in postsynaptic neurons as well. The expression
of nAChR receptor subunits in LC neurons is reorganized. The reduction in α3, α4, α7 and β3 seems to be offset by the increase in the α5 subunit. The nAChR current properties are altered due to the changes in the expression of the subunits that mediate it. The ability of the cholinergic neurons to modulate LC activity is maintained. This compensatory neuroadaptation allows the signaling between cholinergic and NEergic neurons to be preserved in spite of the problems caused by the knockout of the *Mecp2* gene.

Not only do ligand-gated ion channels or ionotropic receptors seem to be affected by the MeCP2 dysfunction, voltage-gated ion channels are altered as well. We have shown that the expression of HCN and voltage-gated Na⁺ channels is altered in Me5 propriosensory neurons. These alterations in the channels suggest that the MeCP2 deficiency is affecting the expression of one group of ion channel. The alterations in the one group compensate for the changes in the other. It is difficult to say if HCN or voltage-gated Na⁺ channel expression is affected by the Mecp2-null and which one compensates. It does seem clear that without the compensatory mechanisms, the neuron would be completely unable to function properly. For example, if the Mecp2 knockout decreases I⁺ without any compensation by I⁺, it is likely that the neuron would not be able to fire action potentials as easily. Therefore, the reduction in the threshold becomes necessary for these neurons to communicate with other brain stem neurons as to the state of the muscles in the jaw. If the opposite is true, where the MeCP2 dysfunction affects I⁺ without any compensation from I⁺, these neurons would be extremely hyperexcitable. Even with the compensatory mechanisms described here,
there is still some hyperexcitability. However, if the reduction in I_H did not occur, then the impact of the alterations in I_{Na} would likely be much worse than seen here.

It must be considered whether the compensatory mechanisms described in this thesis may be occurring in other neurons. It is unclear how the mechanisms underlying the neuroadaptations are manifested. However, it seems that the changes in ion channel and receptor expression from $\textit{Mecp2}^{-/-}$ mice depend on the specific function of the neuron. For instance, LC neurons do not display a PIR or I_H but do have a decreased threshold. It is unclear why the altered threshold occurs in LC neurons. It is unlikely to be directly caused by the MeCP2 defect and may be due to some unknown reason. Alterations in ionic currents, other than the ones studied here, may be occurring to maintain the function of neurons depending on a specific need.

7.2 Evolutionary considerations

Evolution seems to have occurred in such a way that a given function may be produced by more than one protein that serves the same or similar purpose. This known evolutionary conservation is interesting because there is strong evidence suggesting that the ionic current density can vary greatly but without changing the neuron activity. For example, in central pattern generators the density of various membrane currents in neurons is not the same from cell to cell (Prinz et al. 2004). However, the rhythmic pattern generated in these neurons is quite consistent. It seems that the density of specific currents may not be kept at a fixed level within a neuron. Rather, there are many combinations of current densities that are available to the neuron to keep it functioning properly. The latter enables dynamic regulation as well as a better tolerance of unexpected variation in ion channel activity. As a result, the firing activity is
maintained, even though the many currents underlying the firing properties such as threshold, resting membrane potential, interspike interval, PIR, etc. may change within the neurons.

7.2.1 Degeneracy of ionic currents

In order for the many currents in a neuron to regulate the same firing property, the underlying channels must have some common features. Evolution has created a couple of different ways for this to be possible. The premise of degeneracy of ionic currents fulfills this role. Degeneracy refers to the fact that multiple currents underlie specific features of neuronal firing properties. One way is to simply have multiple channels from the same family. For instance, I_H is mediated by four different HCN (1-4) channels. As we show here, If HCN2 expression is altered, then HCN1 can be upregulated to replace it. In another way, pairs of currents are correlated with the magnitude of a firing feature. In dopaminergic neurons, I_H and I_A are covaried in such a way as to maintain the PIR (Amendola et al. 2012). The first current in the pair may be altered and homeostatic compensation by the change in the second current maintains proper firing. Homeostatic compensation has been well studied in the invertebrate pyloric network of the stomatogastric ganglion in decapods. The pyloric network features a stereotypical triphasic rhythm that is very robust despite the differences in ionic currents from animal to animal. Similar to the study in dopaminergic neurons, the interburst interval is regulated by I_H and I_A in the pyloric network. When I_A is increased, the expected increase in the interburst interval is not seen. This is because of a compensatory increase in I_H (MacLean et al. 2003). There are other pairs of ionic
currents that underlie other bursting feature in these neurons (Zhao and Golowasch 2012).

7.2.2 Ionic currents change depending on the presence of modulatory input

The presence of neuromodulatory input seems to regulate the magnitude of the ionic currents. When the modulatory input to pyloric neurons is blocked, the current magnitudes change and become deregulated (Khorkova and Golowasch 2007). The removal of the modulatory input causes the pyloric rhythm to be lost. However, the rhythm will return because of the upregulation of specific genes (Thoby-Brisson and Simmers 2000). This type of response indicates that the ionic currents are configured in one way when the modulatory input is present. The ionic currents can be reconfigured when the modulatory input is not present so the network starts bursting again. It is unclear how the ionic currents are reconfigured exactly. It does seem likely that this is able to occur because multiple currents can regulate many of the same firing features. Therefore, these data reinforce the premise that stable neuron activity is made possible by the degeneracy of ionic currents.

7.2.3 Protein expression from cell to cell and animal to animal

The magnitude of membrane currents has been shown to be directly correlated with the mRNA levels in a neuron (Baro et al. 1997; MacLean et al. 2005). Further, the expression of the mRNA from different pairs of ion channels has been correlated with firing features that have been well characterized electrophysiologically (Schulz et al. 2006; Tobin et al. 2009). These studies indicate that the alteration of currents is because there are changes in protein expression levels. We see this in our studies as well. The alteration of the receptors and ion channel expression patterns underlie the
differences in the currents. The whole cell nAChR current in LC neurons from WT has a large peak amplitude and a short decay time whereas the opposite is true in Mecp2^{−/−} mice. In these mice, the peak amplitude is small and the decay time is long. Therefore the modulation of LC neurons is preserved. The alteration in the voltage-gated Na⁺ channels changes the threshold by ~5mV. This seems to be done because the PIR is ~5mV less. Therefore, the changes in mRNA levels in Mecp2^{−/−} mice are done to preserve neuronal firing properties just as it is done in normal animals.

7.2.4 Similarities between WT animals and animal models of disease

To determine if homeostatic compensation is a general mechanism among neurons in Mecp2^{−/−} mice, we examined two different neurons and two different types of ion channels that underlie the breathing abnormalities and movement problems. Dysfunction in LC neurons from Mecp2^{−/−} mice seems to contribute to the breathing problems in RTT. We found that the synaptic modulation through nAChRs is maintained because of the reorganization of the receptor subunits. In the Me5 propriosensory neurons we have found that membrane ionic currents are altered in such a way that preserved normal function to some extent. These changes in the membrane ionic currents can be attributed to the reorganization of the voltage-gated channel subunits. Therefore, it does seem that the homeostatic compensation of ion channels is a general mechanism in place to limit abnormal neuron activity.
7.3 Conclusion

This dissertation attempts to address two specific aims that ask questions regarding how neurons are able to remain viable despite the dysfunction of a crucial protein. To answer these questions, we took advantage of a mouse model where exons 3 and 4 of the *Mecp2* gene were knocked out. In the first specific aim we elucidated the modulation of LC neurons by ACh in *Mecp2*−/−Y mice. We found that the nAChR expression was altered to maintain normal cholinergic modulation of LC activity. Secondly, we found that the cholinergic modulation of GABA input to the LC was enhanced in *Mecp2*−/−Y mice. In our second aim, we found that I_{Na} and I_{H} were changed in *Mecp2*−/−Y mice. The alteration in the expression of the channels that mediate these currents seems to underlie the differences.

The importance of these findings is that compensatory mechanisms are in place in neurons from diseased animals. Specifically, the changes in expression levels of receptors and ion channels can be modified to maintain a functional neuron. In some cases this may be very precise, as seen in cholinergic modulation of LC neurons. In others, the alterations may have deleterious effects such as the hyperexcitability found in Me5 neurons from *Mecp2*−/−Y mice. Furthermore, this dissertation provides a basis for those who may be interested in finding ways to enhance what the body is doing naturally to thwart the problems caused by the MeCP2 deficiency.

REFERENCES

Dash B, Chang Y, and Lukas RJ. Reporter mutation studies show that nicotinic acetylcholine receptor (nAChR) alpha5 Subunits and/or variants modulate function of alpha6*-nAChR. J Biol Chem 286: 37905-37918, 2011.

Flood P, Ramirez-Latorre J, and Role L. Alpha 4 beta 2 neuronal nicotinic acetylcholine receptors in the central nervous system are inhibited by isoflurane and propofol, but alpha 7-type nicotinic acetylcholine receptors are unaffected. Anesthesiology 86: 859-865, 1997.

Motil KJ, Caeg E, Barrish JO, Geerts S, Lane JB, Percy AK, Annese F, McNair L, Skinner SA, Lee HS, Neul JL, and Glaze DG. Gastrointestinal and nutritional problems occur

Muere C, Neumueller S, Miller J, Olesiak S, Hodges MR, Pan L, and Forster HV. Atropine microdialysis within or near the pre-Botzinger Complex increases breathing frequency more during wakefulness than during NREM sleep. *Journal of applied physiology* 114: 694-704, 2013.

Rusznak Z, Pal B, Koszeghy A, Fu Y, Szucs G, and Paxinos G. The hyperpolarization-activated non-specific cation current (Ih) adjusts the membrane properties, excitability, and

Schulz DJ, Goaillard JM, and Marder E. Variable channel expression in identified single and electrically coupled neurons in different animals. *Nat Neurosci* 9: 356-362, 2006.

APPENDIX

Curriculum Vitae

Research Interests
1. Homeostatic mechanisms of the reward system in addiction models
2. Homeostatic mechanisms regulating membrane currents and neuronal activity
3. Neuronal network control of behavior

Methods of Independent Expertise

Rodent brain slice patch clamp electrophysiology of excitatory and inhibitory postsynaptic currents including analysis with pClamp and Mini Analysis, electrophysiology of intrinsic membrane properties of neurons, Optogenetics in brain slice preparations, Brain slice vibratome sectioning, Local drug application to patched neurons, Single cell PCR, Quantitative PCR, Transgenic mouse breeding, Western blotting, Stomatogastric ganglion (STG) dissection and isolation from lobster, Immunohistochemistry of STG whole mount preparation, confocal imaging, Matlab and CONTENT programming to study computational models of mammalian systems

Education

<table>
<thead>
<tr>
<th>Degree</th>
<th>Institution</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctorate of Philosophy: Biology</td>
<td>Georgia State University</td>
<td>2008 - 2014</td>
</tr>
<tr>
<td>Advisor: Chun Jiang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bachelors of Science: Biology</td>
<td>Central Michigan University</td>
<td>1997 - 2001</td>
</tr>
<tr>
<td>Advisor: Daniel Wujek</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primary Publications

Oginsky M.F., Rodgers E.W., Clark M.C., Simmons R., Krenz W.D., Baro D.J. D(2) receptors receive paracrine neurotransmission and are consistently targeted to a subset of synaptic structures in an identified neuron of the crustacean stomatogastric nervous system. *Journal of Comparative Neurology.* 518(3):255-76. (2010)

Jin X., Li S., Bondy B., Zhong W., Oginsky M.F., Wu Y., Jiang C. Optogenetic identification of local GABAergic signaling in the locus coeruleus *(In preparation)*

Zhong W., Jin X., Oginsky M.F., Bondy B., Jiang C. (2014) Upregulation of extrasynaptic GABAA receptors in Mecp2^{−/−} mice. *(In preparation)*

Posters and Presentations

Oginsky M.F., Cymablyuk G.S., (2012) Homeostatic regulation in a single neuron model from the Pre-Bötzinginger Complex. Computational Neuroscience Meeting, Atlanta, GA

Jin X., Cui N., Zhong W., Oginsky M.F., Jiang C., (2012), Modulation of GABA_A-synaptic currents by GABA_B-ergic presynaptic inputs in locus coerules neurons. FASEB Meeting, San Diego, CA

Rodgers E., Oginsky M.F., Krenz W.D., Baro D.J., (2010) Stable dopamine (DA) induced changes in ion current densities are mediated by new protein synthesis. Society for Neuroscience Meeting, San Diego, CA

Invited Addresses

Homeostatic reorganization of HCN and voltage-gated Na⁺ channels in mesencephalic trigeminal propriosensory neurons of a Rett syndrome mouse model and its impact on membrane excitability Undergraduate Biology Seminar Series (2014)

Mecp2⁻/⁻ mice displayed possible endogenous mechanisms in defective neurotransmitter systems Brains and Behavior retreat (2014)

Homeostatic regulation in a single neuron model from the Pre-Bötzinger Complex Neuroscience Institute Breakfast and Lecture Series (2014)

Mecp2⁻/⁻ mice displayed possible endogenous mechanisms in defective neurotransmitter systems Undergraduate Biology Seminar Series (2013)

Awards

Brains and Behavior Fellowship 2009-present
Outstanding TeACHing Assistant 2012 and 2014

TeACHing

Biol 1103: Introductory Biology Lab. Georgia State University. 2008-present