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Abstract 
Angela M. Hardin 
 
The Test for H2S Production: Analysis of Correlation to Fecal Indicators and Risk of Diarrheal Disease 
in Bonao, Dominican Republic. 
 
(Under the direction of Christine Stauber, Faculty Member) 
 
Background: Access to improved water and sanitation are key measures of the World Health 
Organizations. However, while a community can be classified as having access to improved water and 
sanitation, the possibility of microbiological contaminations exists.  Globally, there is a need to assess the 
quality of drinking water to better classify levels of microbiological quality in attempts to reduce diarrheal 
disease burden.  Utilizing the test for hydrogen sulfide (H2S) producing bacteria test is a cost effective and 
easy to use method that may be comparable to the traditional yet more costly method (IDEXX Colilert 
Quantitray). Due to a paucity of data on the test for H2S producing bacteria, this study was performed to 
examine how well the test for hydrogen sulfide (H2S) producing bacteria compared to traditional measure 
of fecal indicator bacteria total coliforms and E. coli in drinking water.  Furthermore, an analysis of the 
ability of the test for H2S producing bacteria to predict diarrheal disease was also examined.  
 
Methods: The following conditions for the H2S were examined in the study: 2 volumes (10mL or 90mL), 
2 incubation times (24 and 48 hours) and the use of a semi-quantitative scoring system that measured the 
intensity of the black precipitate formed (H2S). To examine how well these conditions compared to E. coli 
and total coliform results, the following analyses were performed: 1) analysis of sensitivity and specificity 
to examine presence/absence of bacteria in both samples, 2) linear regression to examine how well a semi-
quantitative H2S scoring system predicted bacterial concentrations and 3) logistic regression to examine 
how well the H2S test predicted risk of diarrheal disease.   
 
Results: Within the dataset, there were 816 observations among the 7 communities involved in the study. 
The H2S test condition that had the highest sensitivity and specificity (94.23% and 36.07% respectively) 
for total coliforms was 90mL volume at 48 hours.  This test condition also produced the highest sensitivity 
and specificity for E. coli (97.82% and 78.67%, respectively). An analysis using linear regression 
demonstrated that a semi-quantitative H2S scoring system was able to predict both total coliform and E. 
coli concentrations in the same samples. In a logistic regression analysis of diarrheal disease, the test of 
H2S producing bacteria suggested an increase in diarrheal disease risk for higher levels of H2S (OR of 
1.18 (p=0.03; 1.02 – 1.35)).   
 
Discussion: The initial results here suggest that the use of the test for H2S producing bacteria has potential 
with high sensitivity (>90%) for E. coli and total coliforms. The application of the semi-quantitative 
scoring system may also have applications in predicting concentration of E. coli and total coliforms and 
well as possibly predicting diarrheal disease. However, more work needs to be completed to standardize 
the semi-quantitative approach to reduce subjectivity of scoring as well as examine the role of the test in 
additional epidemiologic studies. 
 
 
 
INDEX WORDS: waterborne disease, E. coli, Dominican Republic, microbial testing 
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Chapter I. Introduction 

The environment impacts the health of people in many ways through exposures to 

various physical, chemical and biological risk factors. Environmental exposures enumerated 

account for nearly 10% of deaths and disease burden globally and around one quarter of 

morbidity and mortality burden in children under 5 years of age (WHO, 2004).  

Diarrheal disease is the second most widespread cause of death among children under the 

age of 5(need citation). Being one of the most preventable and treatable illnesses, it kills 

approximately 1.5 million children every year as compared to HIV/AIDS, tuberculosis, and 

malaria (Global Health Council, 2000-2011, WHO, 2009). While high rates of morbidity and 

mortality associated with diarrheal disease in developing nations are acknowledged, they are still 

not well documented, nor measured correctly (Black, 1984).  

Almost one tenth of the global disease burden could be prevented by improving water 

supply, sanitation, hygiene and management of water resources (Fewtrell et al., 

2007).  According to WHO (World Health Organization), improved sanitation (e.g. pit latrines, 

septic tanks, and composting toilets) can decrease diarrheal morbidity by 32 percent; improved 

water supply can reduce diarrheal disease as much as  25 percent (e.g. protected dug wells, 

public taps, and tube wells) (UNICEF/WHO, Meeting the MDG Drinking Water and Sanitation 

Target). 

The United Nations Statistics Division reported that 95% of the total population in the 

Dominican Republic is using improved drinking-water sources and 79% have access to improved 

0water sanitation (WHO, 2006). While possessing the ability to access clean water and 

sanitation, there can still be a possibility of water contamination through storage. It is imperative 
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that people have the ability to test their water and ensure safe consumption. The rationale behind 

this study is to determine the efficacy of using hydrogen sulfide (H2S) producing bacteria as an 

indicator of fecal contamination compared to usual means of detecting total coliforms and E. coli 

in drinking water. Also, it important to gather information determining whether there is a 

relationship between the presence of hydrogen sulfide producing bacteria and household self-

reporting diarrheal disease in children under 5. With the limited researching surrounding this 

association, this study will provide more insight into the following questions: 1) How well does 

the test for hydrogen sulfide (H2S) producing bacteria compared to traditional measure of fecal 

indicator bacteria, total coliforms, and E. coli in drinking water? 2)  Will the utilization of the 

H2S test help predict diarrheal disease? 

 

  



3 
 

Chapter II: Review of the Literature 

  

2.1 Overall global burden of disease from lack of access to water, sanitation 
and hygiene  

Global Lack of Access 

  According to the UNICEF and the WHO, 780 million people lack access to improved 

water supplies and 2.4 billion people lack adequate sanitation facilities (2012). Inadequate water, 

sanitation, and hygiene plague the world accounting for 5.7% of the total disease burden (Prüss-

Üstün and Corvalán 2007).  This lack of access has been at the crux of many deaths annually, 

most significantly in children under 5.  Waterborne diseases, most specifically diarrhea, plague 

developed and underdeveloped nations alike.  

Infectious agents tend to account for most of the mortality and morbidity associated with 

waterborne diseases in developing countries. The four main routes by which water-related 

infections are transmitted are water-borne route, water-washed route, water based route and 

insect vector route (Ako, Nkeng, & Takem, 2009). Waterborne infectious diseases are caused by 

consumption of contaminated water containing a pathogen, or causative organism. These 

diseases are initiated by drinking water tainted by human or animal feces which have pathogenic 

microorganisms.  A number of pathogens implicated in this are from human feces, and 

contracted by ingesting fecally contaminated water (fecal-oral diseases). These fecal-oral 

diseases can also be spread through media other than water, such as contaminated food, fingers 

or utensils (UNEP/WHO, 1997).  The prime fecal-oral diseases include cholera, typhoid, 

shigellosis, amoebic dysentery, hepatitis A and various types of diarrhea. Approximately, 1.8 

million people die every year from diarrheal diseases (including cholera); 90% are children 
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under 5, mostly in developing countries. Eighty-eight percent of diarrheal disease is attributed to 

unsafe water supply, inadequate sanitation and hygiene (WHO, 2004).  

 Combating microbial waterborne disease is a daily burden for the developing world. 

Water treatment plants, their facilities, and effective delivery networks are vital in providing safe 

drinking water along with wastewater collection and treatment. In many developing nations’ 

cities where infrastructure exists, watershed protection is not effective, water treatment is 

generally insufficient and water supply is irregular through failing delivery networks. With such 

an inefficient system, it is hard for protective measure to implemented, in turn increasing the 

probability for the burden of diarrheal disease (Choffnes & Mack, 2009).  

Types of Waterborne Exposures 

 Water-related diseases are caused by pathogenic microorganisms and weigh heavily on 

impoverished nations – placing a major burden on developing countries and their healthcare 

systems (WHO, 1999). Diarrheal diseases associated with waterborne exposure consist of 

Giardiasis (Protozoan), Cryptosporidiosis (Bacteria), Campylobacteriosis (Bacteria), and 

Shigellosis (Bacteria). Water washed exposure is an infection that occurs when an individual has 

poor hygiene and inadequate access to clean water; often for domestic use (bathing, washing 

clothes, etc.). Diseases such as trachoma and scabies are associated with this transmission route. 

Water contact and vector-borne diseases require interaction with insects and parasites that are 

found in or reside near contaminated water. Water contact can be linked to diseases such as 

Schistosomiasis and Dracunculiasis (guinea worm disease). Health complications such as 

malaria and dengue are usually correlated with vector-borne exposure (WHO, 2012). While this 

type of exposure is considered a water-related exposure, the dynamic of association is different. 

Vector-borne diseases are not as dependent on access to clean and sanitation, but are more 
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dependent on vector control. With proper access to clean water and improved sanitation 

techniques, there is an increased possibility of reducing the burden of these water-related 

diseases and exposures (WHO, 2012).    

 

Burden of Diarrheal Disease 

There is a wide range of viral, bacterial, and parasitic agents that are most commonly 

associated with diarrheal disease. The usual cause of death is dehydration. Most cases of 

diarrheal illness and death occur in developing countries because of unsafe water, poor 

sanitation, and insufficient hygiene. Other waterborne diseases do not cause diarrhea; instead 

these diseases can cause malnutrition, skin infections, and organ damage (Prüss, Kay, Fewtrell, 

& Bartram, 2002). 

Diarrhea is an infection which varies in duration and is classified as acute or chronic.  

Deciphering whether the episode is considered acute or chronic is determined by the type of 

stool produced, as well as the length of time associated with the occurrence. Acute diarrhea is 

stereotyped as loose stools passed at least three times a day. Chronic diarrhea has a longer 

duration of approximately four weeks or longer and can be associated with a chronic disease.  

More severe cases of diarrhea may be life threatening due to fluid loss, particularly those who 

are immune-compromised, malnourished, or infants and adolescents (Lima et al., 2000).  

The ability to access clean water, efficient sanitation, and proper hygiene is essential to 

everyday wellbeing. While most developed regions have this under control, developing countries 

struggle to tackle this feat. The Environmental Institute approximated that the proportion of the 

global population residing in areas with great water distress will increase from roughly 34% in 

1994 to 63% in 2025, including large areas of Africa, Asia, and Latin America (Mara, 2003). 
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These increases will have a significant impact on the lives and livelihood of many.  

 

As a consequence of inadequate water and sanitation, 780 million people lacked access to 

improved water sources representing 8% of the global population (JMP, 2012).  Without the 

growth of populations receiving clean water, evidence confirms that water, sanitation and 

hygiene-related diseases account for 2,213,000 deaths annually and an annual loss of 82,196,000 

disability adjusted life years (DALYs) (WHO, 2000). Approximately 88% of people in 

developing countries are estimated to have access to a water supply, greater in urban than rural 

areas (JMP, 2012). However, a significantly less amount of individuals have access to improved 

sanitation facilities in urban and rural areas, 79% and 46%, respectively (JMP, 2012). Improved 

drinking-water sources are classified to best piped water to the house or yard, public taps or 

standpipes, boreholes, protected dug wells, protected springs and rainwater collection 

(WHO/UNICEF, 2009).  

 

 

 

 

 

 

 

 

 

 

Figure 1. Classifications on drinking water and sanitation facilities 
(UNICEF, 2006).  
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Representing 63% of the population, 2.6 billion people lack access to improved sanitation 

(UNCIEF, 2006). Improved sanitation facilities include flush or pour-flush toilets connected to a 

piped sewer system, septic tanks or pit latrines, and composting toilets. Of these facilities, they 

are considered improved if there are private and not communal (UNICEF, 2006).  Global 

sanitation coverage increased from 49% in 1990 to 59% in 2004, equating to approximately 1.2 

billion people gaining access to improved sanitation facilities (Mara, 2003). But despite the 

many advances the world is making in achieving the goals set forth by the UN, it is not sufficient 

enough progress to the meet the target. Meeting the target would require the improvement rate to 

increase and double its current progress until 2015 (UNICEF, 2006). With population treads 

growing, it can be estimated that 2.4 billion people, will be without basic sanitation by 2015 

(UNICEF, 2006). 

2.2 Focus on Latin America and Caribbean  

Coverage of improved water supply sources is approximately 90% or more in Latin 

America and the Caribbean (JMP, 2012). In developing regions, improved drinking water 

coverage has increased by 16% since 1990. More specifically, Latin American and Caribbean 

regions have increased by 9% with improved water and sanitation (JMP, 2012). In spite of the 

water crisis globally and difficulty meeting MDG aims, some places are on target. Regions such 

as Latin America and the Caribbean (LAC) are making advances in improving their access to 

water and sanitation facilities. Mortality rates for children under 5 in these countries dropped 

43% from 1990 to 2004 (Mitra & Rodriguez-Fernandez, 2010).     

As with any territory, the delivery of drinking water and sanitation amenities demonstrate 

inequalities of a region with small social economic disparities. Most of these disparities occur in 

the rural areas, still overall drinking-water coverage increased from 83% to 91% between 1999 
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and 2004 (Schneider et al., 2011). Yet, regardless of the plentiful water resources available, there 

are still some regions which are plagued by the water crisis.  

LAC countries as a whole have had the amount people without access to improved 

drinking water sources currently reduced by about a third (UNICEF, 2006). Sanitation coverage 

increased from 68 % to 77 % between 1990 and 2004 and the region has also improved hygiene 

practices (Mitra & Rodriguez-Fernandez, 2010). While urban drinking-water coverage in LAC is 

relatively high (96%), rural coverage lags behind at 73% (UNICEF, 2006).   

While the global targets regarding improved water status in MDG have been met well in 

advance, these achievements are relative, considering the gaps within regions and tools used to 

analyze these goals (JMP, 2012). The MDG compares water safety using two classifications – 

improved versus unimproved; however, these descriptions do not always reflect the need for 

better understanding and management of drinking water safety.  

Onda et al., (2012) took a closer at the implications behind the MDG target 

achievements, suggesting that the current system of analysis needs to take a more granular 

approach to represent the information more accurately (2012). During their analysis, Onda et al. 

noted that some of the assumptions made by the MDG targets skew the representation of the 

water contamination and sanitary risk progress globally (e.g. even distribution across the world) 

[2012].  They found that performing calculations by their models increased the 1990 MDG 

baseline by 15%, ultimately affecting projections for access to safe water sources for 2010 and 

2015 by 10 and 8 percentage points, respectively (Onda et al., 2012). If more concise definitions 

were applied to the MDG’s perception of safe water access and decrease sanitary risk, there is 

potential for even larger discrepancies in estimations.   

 In 2011, a study was performed examining the relationship between the Joint Monitoring 
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Program criterion and their association with the progress of the MDGs for 2015. One major point 

of contention expressed by Bain et al. was the need for water quality data (2012).  They noted 

that without information regarding the quality of water received from these sources, access to 

improved water did not accurately portray a reduction in exposure to contamination (Bain et. al, 

2012). A significant revision would be made to the MDG targets if water quality was taken into 

consideration in comparison to reducing the amount of individuals with safe water access. In 

turn, this would cause the target values that need to be met to increase as well as the baselines 

each target year. While access to safe drinking water is important, other environmental factors 

such as microbial compliance should also be considered when determining improved quality of 

water to truly represent target progress (JMP, 2012). Microbial indicators provide a more 

accurate depiction of water quality and can identify areas that have improved water sources, but 

are maintained poorly (Bain et. al, 2012).   

  

2.3 Microbial indicators and Their Impact on Health 

 Within the scope of public health, microbial indicators can be utilized in many different 

ways. They are vital for various risk assessment frameworks, including potential hazard and 

exposure assessment, identification of contaminants and their source, and assessing efficiency of 

risk and burden reduction (National Academy of Sciences, 2006). Instead of directly measuring 

the pathogen, microbial indicators predict the presence of the pathogen and help identify the 

possibility of human health risks. They have been utilized since to late 1800s to identify fecal 

contamination to prevent waterborne and foodborne illness (Sobsey and Pfaender, 2002). A 

number of the microbial indicators used to detect fecal contamination have both fecal and non-

fecal environmental sources. These enteric organisms have environmental origins besides feces 
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and serve as environmental reservoirs. Some fecal indicator microbe tests also detect similar 

non-fecal microbes. Standard indicators and methods are unable to identify specific fecal sources 

impacting water and other environmental media (WHO, 2003). For those microbes which have 

fecal origins, these tests are not always ideal for detection and can be a major limitation (Sobsey, 

2008). Microbial indicators are vital for overall healthcare, but most importantly, to enhance 

surveillance activities for control of infectious diseases.  They assist in analyzing relationships 

between levels of contamination and the risk of illness (WHO, 2003). 

 

2.4 Bacterial indicators 

Ideal characteristics 

There are many contributing factors that affect decisions about water consumption 

ranging from taste, smell, color, safety, cost, and convenience (Theron & Cloete, 2002). Of these 

contributing factors, safety is at the forefront of the mission on providing safe water to its 

consumers. With that, it is essential to have testing that is accurate to ensure proper water 

quality. Over the years, fecal indicator tests have been developed to do just that. 

 From the start of the 20th century, fecal indicator bacteria have been used to detect levels 

of contamination in drinking water and determine the presence or absence of pathogenic 

microorganisms (WHO, 2002). Waterborne enteric pathogens present in water can pose a 

potentially substantial risk to the health of an individual (Theron & Cloete, 2002). Evidence 

supports that while waterborne outbreaks are rare, they are often associated with these enteric 

pathogens and the occurrence of waterborne microbial disease (Theron & Cloete, 2002).  

Although for most of the population in developed countries minor gastroenteritis may simply 
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mean several hours of discomfort; however, in developing countries, many people die every year 

as a result of the consumption of contaminated water (Theron & Cloete, 2002).  

The WHO classified microbial indicators into three categories to reduce the ambiguity 

associated with the term (Ashbolt, Grabow, & Snozzi, 2001).  

 

 

Group Definition 
Process Indicator A group of organisms that demonstrates the 

efficacy of a process, such as total 
heterotrophic bacteria or total coliforms for 
chlorine disinfection. 

Fecal Indicator A group of organisms that indicates the 
presence of fecal contamination, such as the 
bacterial groups thermotolerant coliforms or E. 
coli. Hence, they only infer that pathogens may 
be present. 

Index and model indicator A group/or species indicative of pathogen 
presence and behavior respectively, such as E. 
coli as an index for Salmonella and F-RNA 
coliphages as models of human enteric viruses. 

Table 1. Definitions for indicator and index micro-organisms of public health concern 
(Ashbolt, Grabow, & Snozzi, 2001) 
 

 

Ideally, both the pathogen and indicator should be absent or present in the sample 

simultaneously. The life span of each indicator should be similar to that of the pathogen of 

concern. Most importantly, the indicator should be present in large numbers, readily detectable 

by simple and cost efficient methods, and should not proliferate in the environment once shed by 

the host. Using an indicator to test a water sample which possesses these characteristics, can 

most accurately infer the presence or absence of pathogenic organisms (Figueras & Borrego, 

2010). However, with the complexities surrounding the use of microbial indicators (cost, time 

necessary to monitor pathogens), simpler, inexpensive techniques are needed to encourage more 
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sample testing. Ascertaining a better overall picture of the water quality of developing areas 

allows for better protection of public health (Ashbolt, Grabow, & Snozzi, 2001). 

 

2.5 Traditional Indicator Methods 

Turbidity 

There have been some associations with turbidity and various health outcomes 

epidemiologically. Water samples, which are unfiltered, have evidence reflecting fecally 

prepared water solely disinfected with chlorine permits GI and outbreaks (Allen, Brecher, Copes, 

Hrudey, & Payment, 2008). Turbidity can provide information regarding what type and amount 

of treatment is needed for the drinking water treatment processes (Ponk, Goldscheider, & Zopfi, 

2007). In water sources subjected to significant levels of fecal pollution, some correlation can be 

expected between turbidity and fecal indicators or pathogens.  Turbidity levels are a simple but 

efficient parameter to assess source water variations as well as filtration efficiency during 

conventional treatment of drinking water (Mann, Tam, Higgins, & Rodrigues, 2007). Turbidity is 

also a useful indicator of groundwater quality; however, does not indicate pathogen presence but 

provides information on general water quality. 

 

Total Coliforms 

Coliform bacteria have the capability to maturate in the presence of bile salts and other 

surface agents. These microorganisms are comprised of a genera of bacteria found in the 

intestinal tract of warm blooded animals. Traditionally, these bacteria were used to test water and 

determine if it was contaminated. Total coliforms are the most basic test for fecal contamination. 
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Using this method indicates presence of pathogens; however, there has been found to be a lack of 

association between the number of coliforms and those of pathogenic microorganisms (Ashbolt, 

Grabow, & Snozzi, 2001).  

Within the genera of total coliforms, fecal and environmental species are included. Since 

these organisms reside and may proliferate in water, they are not a suitable indicator of the 

presence of all fecal pathogens; however, can detect the possibility of biofilms within the water 

source or inadequate disinfection (WHO, 2011). The presence of total coliforms after 

disinfection indicates inadequate treatment. In distribution systems and stored water sources, 

detection of total coliforms within a water source shows the possibility of regrowth and 

development of biofilm contamination through an introduction of unknown materials (WHO, 

2011). 

 

 

 

Once the presence of total coliforms has been detected, there is a possibility of fecal 

contamination and increasing the necessity of testing for fecal coliforms and E. coli.  

 

Figure 2. Bacterial Indicators 
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Fecal Coliforms 

 Fecal coliforms are a subset of total coliforms that exist within in the gut and fecal matter 

of warm-blooded animals (New York State Department of Health, 2011).  These coliforms have 

a more fecal specific origin than those within the total coliform genera; making them a more 

accurate indication of the presence of animal or human waste (New York State Department of 

Health, 2011).  Literature notes fecal coliform presence as most reliable as an indicator of the 

bacterial pathogens, particularly Salmonella sp (Ashbolt, Grabow, & Snozzi, 2001). However, 

concerning the existence within the environment, enumeration of these coliforms should be 

analyzed with apprehension.  

Fecal coliform testing can be considered a good indicator of bacterial pathogen regrowth. 

Other organisms such as viruses and parasites are not able to proliferate with a host that is warm 

blooded. Bacteria are the only group of pathogens that can reproduce in the environment, and in 

turn, makes fecal coliforms a reliable good indicator of pathogenic bacteria. While there are 

potential limitations, fecal coliform analysis is the most practical indicator of the presence and/or 

absence of pathogenic organisms and an effective tool for evaluating potential public health or 

environmental impacts (New Hampshire Department of Environmental Health, 2003). 

 

Escherichia coli  

 Escherichia coli are a subset of the coliform genera. According to the WHO Guidelines 

for Drinking-water Quality, it is the fecal indicator of choice when determining fecal pollution 

(2011). While E. coli can cause disease and illness in humans, the bacteria naturally occurs in the 
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lower section of the gut in warm-blooded animals (Figueras & Borrego, 2010).  

Of the contaminants present in drinking water, those found in human and animal feces 

pose the greatest danger to public health. This supports the necessity to detect fecal 

contamination in drinking water to ensure public safety. It was identified as the only species in 

the coliform group found exclusively in the intestinal tract of humans and other warm-blooded 

animals and subsequently excreted in large numbers in feces (Department of National Health and 

Welfare, 1977). In addition to being fecal specific, E. coli do not usually multiply in the 

environment and have a life span on the same order of magnitude as those of other enteric 

bacterial pathogens, both of which are qualities of an ideal indicator. As mentioned previously, 

they are also excreted in the feces in high numbers, making detection possible even when 

diluted. 

A study conducted in Ontario, analyzing quality of rural well water found that the 

occurrence of E. coli in the well was statistically associated with gastrointestinal illness (GI) in 

an individual (Raina et al., 1999). It is important to note that the no bacteriological analysis can 

replace knowledge of the water source quality, during treatment, and throughout a distribution 

system. Contamination is often intermittent and is not always identified in water samples. 

Bacteriological water analysis is a not always a reliable indication of fecal contamination; 

however, it provides information that will be protect and educate the user.  

 

Hydrogen Sulfide Producing Bacteria 

Some enteric pathogens have origins in the environment other than feces, and can be 

found in reservoirs in the environment. There are microbial indicators which have fecal and non-
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fecal sources within the environment. To mitigate this problem, hydrogen sulfide (H2S) 

producing enteric organisms, such as Salmonella, Citrobacter, and Proteus, have been used to 

identify fecal contamination in water (Pathak & Gopal, 2005).   

In 1982, Manja et al. developed the H2S test under the construct of hydrogen sulfide 

producing bacteria that are usually associated with fecal impurity (Hirulkar & Tambekar, 2006). 

It operates on the basis that enteric bacteria are responsible for  a reduction of  sulfur to hydrogen 

sulfide producing an odor and black precipitate (Gupta et al., 2008).  

There are many advantages using hydrogen sulfide producing bacteria as a determination 

of fecal contamination. As a whole, the H2S testing has broad applicability, suitable sensitivity, 

and measures viability or infectivity (McMahan, 2011). This simple one step presence/absence 

test can recognize heavy to moderate contamination within 24 hours and lower levels of 

impurities in 48 hours of testing. It is suitable for field, has a long shelf-life, and is easily 

transported and operated (Pathak &. Gopal, 2005). Hirulkar & Tambekar performed a study to 

determine the sustainability of H2S testing in detecting fecal contamination in drinking water. 

They found that in a field setting, where laboratory materials were not as readily available, 

hydrogen sulfide producing bacteria was an adequate test of pathogenic organisms in water 

(2006). As with most developing nations, water sources and testing facilities are sparse – 

translating to a need for cost efficient and simple testing methods to measure pollution and to 

identify ways to decrease pollution leading to diarrheal disease. 

In such a scenario, a dependable and simple field test is essential in effective monitoring 

of source and drinking water. Through a concerted effort, Manja et al. developed H2S test 

utilizing those bacteria which produce hydrogen sulfide and are always associated with fecal 

contamination (1982). The simplicity of this test affords the user to minimize cost, have no need 
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for technical knowledge, and have a conventional bacteriological test for detection of fecal 

contaminant in water (Manja et al., 2001). 

Relatively, the H2S test is new; only being developed and utilized for the last 30 years. 

However, with numerous means already established to detect adulteration, this test has not been 

utilized as frequently and needs further scientific examination (Sobsey and Pfaender, 2002).   

Several studies have evaluated the suitability of the H2S test as an indicator of fecal 

contamination. Tambekar et al. performed a study to evaluate hydrogen sulfide producing 

bacteria to detect contamination in several water sources. Their study concluded that the H2S test 

is a simplistic field test that is suitable for detection of fecal contamination in potable water 

quality and routine monitoring of water in both tropical and subtropical potable waters (2007).  

They also indicated that this method was an appropriate alternative to conventional MPN method 

for detection, especially at the village level (Tambekar et al., 2007).   

Ratto et al. (1989) assessed the hydrogen sulfide test compared to total and fecal coliform 

presence/absence test as well as MPN testing. In most instances where the fecal and total 

coliform tests were compared against the H2S test, they yielded the same results. There was no 

instance where the presence/absence test yielded a positive result and the H2S test was negative. 

Therefore, Ratto et al. concluded that the hydrogen sulfide producing bacteria test was just a 

sensitive in detecting contamination as the total and fecal coliform test (1989).  

In a study performed by Nair et al. (2001) which examined that appropriateness of the 

H2S test to analyze adulterants in untreated and treated water.  Using the sensitivity and 

specificity method to determine the efficacy of the test, they found that it was sufficient to detect 

contamination.   Nair et al. (2001) determined that the test would an adequate screening method 
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in other regions and in developing countries, would be a suitable method to detect contamination 

microbiologically (2001). They also highlighted that areas that did not have proper testing 

facilities available would be able to utilize this test to monitor their drinking water (Nair et al., 

2001).  

2.6 Burden of diarrheal disease in Dominican Republic 

Access in the Dominican Republic  

The Dominican Republic is often viewed as a more developed country and yearly, over 

4.2 million people visit the area (ACS, 2007). However, while the tourists contribute greatly to 

its economy, the gross national income per capita of the Dominican Republic is still only $4,550, 

ranking it as an upper middle income society and developing country (World Bank, 2009). Of 

those residing in the Dominican Republic, 70% reside in urban locations and 49% live below the 

national poverty line (World Bank, 2009). According to the WHO, 87% of the urban population 

has access to improved water and 87% to improved sanitation (2010). Within the rural 

population, 84% have access to improved water and 74% to improved sanitation facilities 

(WHO, 2010). While, those living in these populations have the ability to utilize piped water, 

these sources deliver erratic flows and are known to be of poor quality (Stauber et al., 2009).  

The Demographic Health Survey (DHS) determined that 75% of those residing in 

urbanized areas had access to water from a house connection compared to 53% of those living in 

rural areas (WHO/UNICEF, 2010). However, unlike most developing countries, the inhabitants 

of the Dominican Republic chose to use bottled water as their main improved water source; an 

overwhelming 65% of urban dwellers compared to 35% of rural (WHO/UNICEF, 2010).  
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Bottled water, while promoted as pure and natural, is less regulated than communal water 

(WHO, 2010). Similar to tap water, bottled water has been found to have contamination levels in 

excessive to that of quality standards used by the Environmental Protection Agency (EPA) for 

public water systems (Huerta-Saenz, Irigoyen, Benavides, Mendoza, 2012). Also, with bottled 

water being transported from one source to being bottled, there are more instances where 

contamination may occur (Holt, 2009).  

 According to the Joint Monitoring Program for water supply and sanitation (JMP), almost 

20% of the Dominican Republic inhabitants do not have access to improved sanitation, rural and 

urban combined (WHO/UNICEF, 2010). Compared to other regions this statistic is relatively 

low; however, that still does not account for the 9% of people which have no access to facilities 

and use bushes or fields to defecate (WHO/UNICEF, 2010). Overwhelmingly, it is more 

common that urban areas use private toilets compared to those in the rural areas, 74% to 31.4%, 

respectively. However, in the rural areas, improved covered latrines seem to be the more 

prevalent sanitation facility utilized 54% to 18% in urban places (WHO/UNICEF, 2010).  

Latrines are the cheapest, most basic method of improved sanitation and are essential in 

reducing human feces exposure (Golovaty et al., 2009; Fact Sheet 3.4: Simple pit latrines).  

It is estimated that the 64.4% of the total population residing in urban areas will increase 

improvements in basic sanitation and nutrition, and growing access to health services has 

reduced morbidity and mortality from communicable diseases, and reproductive events, while 

increasing prevalence of non-communicable diseases and injuries in the Dominican Republic 

(Rathe & Moliné, 2011). Poverty stricken communities often suffer from pre-transitional 

diseases such as communicable diseases, maternal causes, perinatal conditions, and nutritional 

deficiencies (Rathe & Moliné, 2011). Overall, childhood mortality is decreasing with the 
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exception of LAC and other regions with comparable economic situations. The DHS determined 

that 15% of children under the age of 5 died with at least one diarrheal episode (WHO/UNICEF, 

2010). These numbers are slightly higher in rural areas (16%) and poorer regions (Rathe & 

Moliné, 2011).  

Environmental burdens weigh heavily on developing countries, and while the Dominican 

Republic is a more developed region, there are still environmental and societal factors that cause 

hardship on the area. Estimates were compiled by the Comparative Risk Assessment and the 

WHO determining that 19% of the total burden is contributed to environmental factors (WHO, 

2009). Generally, environmental burdens of disease contribute 40 DALYs per 1,000 capita in the 

Dominican Republic, resulting in 15,000 deaths (WHO, 2009). Issues with water, sanitation, and 

hygiene, more specifically diarrheal disease, account for 1,300 deaths per year and 5 DALYs per 

1,000 capita per year, having the highest impact compared to any other environmental factors in 

the area (WHO, 2009). While these statistics are not the highest globally, there is still a 

significant impact on LAC and undeniably the Dominican Republic.  

 Due to the fact the Dominican Republic is boarded by the Atlantic Ocean and the 

Caribbean Sea, climatologic fluctuations can affect water quality. These meteorological changes 

potentially contribute to increases in waterborne illnesses from their wide-ranging effects. With 

inconsistencies in infrastructure, the impact on unimproved water and sanitation sources and 

effects on health are even more troubling (Fricas & Martz, 2007). These events have potential to 

cause severe public health and financial concerns. Infrastructure that is destroyed or 

overburdened during natural disasters leads to major health consequences whether from drought 

or excessive rainfall. During these times, it is likely that households utilize rainwater as their 

source and chose to store it over a period of time. However, elongated storage time of any water 
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can result in degradation of its microbial quality and ultimately put households as risk for 

waterborne illness (Stauber, Ortiz, Loomis, & Sobsey, 2009). 
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Chapter III: Methodology  

3.1 Data Sources 

All data used in this investigation was supplied by Dr. Christine Stauber. The analysis 

performed was secondary data analysis on data collected between 2005 and 2007 from two larger 

studies performed and described in Stauber et al, 2009 and Aiken et al., 2011. IRB approval (for 

secondary data analysis) was granted through Georgia State University Institutional Review 

Board Protocol H10061. 

3.2 Study Population 

 Briefly, households in six communities in the city of Bonao were recruited to participate 

in the two larger studies described previously. These households resided in the following six 

communities: Jayaco Central, KM 100, Brisas del Yuna, Jayaco Arriba, KM 101, KM 103, 

Majaguay, The main purpose of this study was to compare how well the test for H2S detected 

drinking water contamination as detected by tests for more traditional indicators such as total 

coliforms and E. coli. Various types of water samples were also included.  

The data set (previously collected) consisted of data from a prospective cohort studies 

that focused on examining the relationship between water quality and household diarrheal 

disease (Stauber et al., 2009, Aiken et al., 2011). Participants were interviewed weekly and had 

water samples collected from their storage containers biweekly. At the time of water sample 

collection, data were collected on type of water source, description of their storage container, and 

any drinking water treatment performed at each household per visit.  

 At five different occasions, water samples were collected from each household and 
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analyzed for hydrogen sulfide (H2S) producing bacteria in addition to those tests previously 

mentioned. Water samples were taken with what was available at the time of each visit, 

regardless of what type of water household’s reported drinking (e.g. treated). 

3.3 Study Measures  

The three main water quality measures that were examined in this analysis were the 

detection of total coliforms, E. coli, and H2S-production. Water quality data for E. coli and total 

coliforms were log-transformed to obtain more normal distributions. Data on H2S production 

was collected as both presence/absence in 10mL and 90mL portions at time periods for ambient 

temperature incubation at  24 and 48 hours. In addition, the H2S-producing bacteria test was also 

scored for intensity of black precipitate formation. For the purpose of this study, a scoring 

system was applied to analyze the information gathered. The scoring had designations of zero to 

three and represented values of opaqueness (due to formation of black precipitate); zero 

signifying no or negative cloudiness ranging to three with complete opaqueness (Table 2). While 

this was a subjective scoring system, it best represented and described the levels of 

contamination.  

Score Description 

0 Negative 

1 Any drop of opaqueness 

2 Slightly opaque 

3 Completely opaque 

Table 2. H2S Scoring Designations 
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For the purpose of the analysis, data were analyzed to assess the following: H2S testing 

presence/absence compared to presence/absence of total coliforms and E. coli. These conditions 

were compared using sensitivity, specificity, positive predictive value, negative predictive value 

and accuracy (as described below in Table 3).  Also, the associations of water quality variables 

with diarrheal disease for untreated water sources were analyzed. The health outcome assessed in 

this study was the occurrence of diarrheal disease at the household level for children <5 years of 

age and for adults.  Main exposures assessed for diarrheal disease was the presence of H2S 

production in household drinking water samples (stored but untreated). 

In addition to analysis of diarrheal disease and ability of the test to predict the presence of 

other more well-known bacterial indicators, different types of water treatment was considered. 

Since the original study consisted of households enrolled in a study on household water 

treatment, the water samples underwent various types of reported water treatment. Water 

samples were classified as untreated, treated, Biosand filter treated (BSF), BSF treated and 

stored, and other treated (chlorination, boiling, etc.). Presence/absence variables were created to 

analyze the H2S-producing bacteria data at the various time intervals and measure their 

sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). 

The linear relationship between the H2S testing scores and E. coli concentrations were also 

examined.  
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3.4 Study Analysis 

 

 

  

Table 3. Summary of Study Analysis 
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Chapter IV: Results 

 

4.1 Demographics 

Within the dataset, there were 816 observations from participants among the 6 

communities involved in the study.  Participants residing in Brisas, Brisas del Yuna, Jayaco 

Arriba, KM 100, and KM 101 utilized tap water; however, Majaguay primarily used well water 

(Table 4). There were six main sources of water analyzed in this study. Overall, tap water was 

the source most utilized and river was the least utilized in 384 and 25 observations of biweekly 

houeshold visits, respectively. Only two out of the six communities used river water as a source 

of drinking water.  Well water was the second most common source of drinking water across the 

communities involved in this study, with the exception of KM 103.  In the community of KM 

103, most of the respondents used rain water as their main source of drinking water.  

Community Tap (%) Well (%) Rain (%) Spring (%) Bottled (%) River (%) Total (%) 
Brisas 54 (60.00) 17 (18.89) 2 (2.22) 12 (13.33) 5 (5.56) 0 (0) 90 

(100.00) 
Brisas del 
Yuna 

77 (51.68) 44 (29.53) 0 (0) 19 (12.75) 6 (4.03) 3 (2.01) 149 
(100.00) 

Jayaco Arriba 122 
(73.49) 

24 (14.46) 2 (1.20) 2 (1.20) 16 (9.64) 0 (0) 166 
(100.00) 

KM 100 62 (69.66) 23 (25.84) 0 (0) 0 (0) 4 (4.49) 0 (0) 89 
(100.00) 

KM 101 61 (74.39) 3 (3.66) 0 (0) 0 (0) 18 (21.95) 0 (0) 82 
(100.00) 

KM 103 6 (6.25) 26 (27.08) 32 (33.33) 0 (0) 10 (10.42) 22 (22.92) 96 
(100.00) 

Majaguay 2 (3.85) 49 (94.23) 0 (0) 1 (1.92) 0 (0) 0 (0) 52 
(100.00) 

Total 384 
(53.04) 

 186 
(25.63) 

36  
(4.97) 

34 
 (4.70) 

59  
(8.15) 

25 
 (3.45) 

724 
(100.00) 

 Table 4. Drinking water source stratified by community (N = 816). 
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4.2 Analysis of Sensitivity and Specificity of H2S Test compared to IDEXX Colilert 
Quantitray 

 In order to determine how the H2S test compared to tests for E. coli and total coliforms, 

an analysis of sensitivity and specificity were both measured and analyzed for all of the 

conditions of the H2S Test.  To examine sensitivity and specificity for H2S-producing bacteria, 

the presence/absence of H2S production was compared to the presence/absence for E. coli and 

for total coliforms for the following conditions for two volumes and two time periods: 10 and 

90mL and 24 and 48 hours (for H2S) test at ambient temperatures. These were compared to the 

presence/absence results for total coliforms and E. coli via Colilert IDEXX Quantitray 2000 after 

24 hours incubation. The results were stratified by type of water sample tested: untreated water, 

BSF-treated water, BSF-treated and stored, and other treated and stored.  

Untreated Water: 

Untreated water samples represented the largest number of water samples submitted for 

analysis and available for statistical analysis. The analysis of sensitivity, specificity, et for 

untreated water is presented in Table 5. The sensitivity for total coliforms (under the four 

conditions (temperature/volume combinations)) ranged from 82.4 – 94.3%.  The specificity 

ranged from 16.3-36.1%. The sensitivity for E. coli (under the four conditions) ranged from 

88.7-97.8%.  The specificity for E. coli ranged from 52.5-78.7%. The H2S test condition that had 

the highest sensitivity and specificity (94.23% and 36.07%, respectively) for total coliforms was 

90mL volume incubated at room temperature for  48 hours.  This test condition also produced 

the highest sensitivity and specificity for E. coli (97.82% and 78.67%, respectively). However, 

the test condition that produced the highest positive predictive value and negative predictive 

value for both total coliforms and E. coli was 10mL at 24 hours.  
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 24 hours Incubation 48 hours Incubation 

H2S-producing 
bacteria 
sample volume 

Sensitivity 
(%) 

Specificity 
(%) 

PPV 
(%) 

NPV 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

PPV 
(%) 

NPV 
(%) 

10mL         

E. coli 88.74 52.48 95.48 74.75 92.76 59.81 93.89 64 

Total 
coliforms 

82.44 16.31 100 100 87.52 21.50 99.83 95.83 

         
90mL         

E. coli 93.81 61.46 92.88 57.84 97.82 78.67 91.54 47.06 

Total 
coliforms 

89.36 25 100 100 94.23 36.07 99.69 91.67 

Table 5. Sensitivity and specificity for H2S-producing bacteria compared total coliform and 
E. coli detection for untreated water samples after 24and 48 hours of incubation.* 
conditions that produced the highest results in bold 

 

 BSF treated water samples were analyzed to determine whether the H2S test is a good 

indicator of fecal contamination for BSF-treated water. The sensitivity for total coliforms (under 

the four conditions) ranged from 41.7 – 79.4% and the specificity ranged from 11.1-24.5%. The 

sensitivity for E. coli (under the four conditions) ranged from 49.0-88.4%.  The specificity 

ranged from 37.8-66.04%. The H2S test condition that had the highest sensitivity and specificity 

(79.4% and 24.5%, respectively) for total coliforms was 90mL at 48 hours.  This test condition 

also produced the highest sensitivity and specificity for E. coli (88.4% and 66.0%, respectively). 

However, the test condition that produced the highest positive predictive value and negative 

predictive value for both total coliforms and E. coli was 10mL at 24 hours.  

While the test conditions that produced the best results for the various types of analyses 
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were similar between untreated and BSF-treated water, there was a decrease in all comparison 

values for both total coliforms and E. coli for BSF-treated waters compared to untreated waters.  

 

 24 hours Incubation 48 hours Incubation 
H2S-producing 
bacteria 
sample volume 

Sensitivity 
(%) 

Specificity 
(%) 

PPV 
(%) 

NPV 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

PPV 
(%) 

NPV 
(%) 

10mL         
E. coli 49.03 37.80 92.68 88.89 56.77 40.18 90.72 83.33 
Total 
coliforms 

41.75 11.02 98.78 93.33 48.97 11.61 97.94 86.67 

         
90mL         
E. coli 77.42 53.33 89.55 74.07 88.39 66.04 87.82 64.81 
Total 
coliforms 

68.56 18.67 99.25 93.33 79.38 24.53 98.72 86.67 

Table 6. Sensitivity and specificity for H2S-producing bacteria compared predict 
log10/100mL total coliform and E. coli concentrations in the same sample BSF treated water 
sources after 24and 48 hours of incubation. *conditions that produced the highest results in 
bold 

 

BSF treated and stored water samples were also analyzed to determine whether the H2S 

test is a good indicator of fecal contamination for BSF-treated and stored water. The sensitivity 

for total coliforms (under the four conditions) ranged from 62 – 92% and the specificity ranged 

from 50 – 100%. The sensitivity for E. coli (under the four conditions) ranged from 69.3 – 

96.3%, while specificity ranged from 33.3 – 69.7%. The H2S test condition that had the highest 

sensitivity and specificity (92% and 100%, respectively) for total coliforms was 90mL at 48 

hours.  This test condition also produced the highest sensitivity and specificity for E. coli (96% 

and 61%, respectively) for sample volumes of 90mL at an incubation period of 48hours. 

However, the test condition that produced the highest positive predictive value and negative 
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predictive value for both total coliforms and E. coli was 10mL at 24 hours and 90mL at 48 hours, 

respectively.  

  24 hours Incubation 48 hours Incubation 
H2S-producing 
bacteria 
sample volume 

Sensitivity 
(%) 

Specificity 
(%) 

PPV 
(%) 

NPV 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

PPV 
(%) 

NPV 
(%) 

10mL         
E. coli 69.27 69.70 93.01 28.05 75.52 54.55 90.63 27.70 
Total 
coliforms 

62.71 100 100 2.94 71.75 50 99.23 1.96 

         
90mL         
E. coli 92.71 39.40 89.90 48.15 96.35 33.33 89.37 61.11 
Total 
coliforms 

87.57 100 100 8.33 92.09 100 100 12.50 

Table 7. Sensitivity and specificity for H2S-producing bacteria compared predict 
log10/100mL total coliform and E. coli concentrations in the same sample BSF treated and 
stored water sources after 24and 48 hours of incubation. *conditions that produced the 
highest results in bold  

   

Analysis was performed on other treated water samples (i.e. boiled, chlorinated, filtered, 

etc.) to determine whether fecal contamination could be detected by the H2S test for this type of 

water (n=1708). The sensitivity for total coliforms (under the four conditions) ranged from 53.6 

– 81.2% and the specificity ranged from 13.5 – 28.9%. The sensitivity for E. coli (under the four 

conditions) ranged from 74.2 – 92.6%.  The specificity ranged from 70.2 – 82.7%. The H2S test 

condition that had the highest sensitivity and specificity (81.2% and 28.9%, respectively) for 

total coliforms was 90mL at 48 hours.  This test condition also produced the highest sensitivity 

and specificity for E. coli (92.6 and 82.7%, respectively). The test condition that produced the 

highest positive predictive value and negative predictive value for both total coliforms was 90mL 

at 24 hours; however, the highest test results yielded for E. coli was 10mL at 24 hours.  
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 24 hours Incubation 48 hours Incubation 
H2S-producing 
bacteria 
sample volume 

Sensitivity 
(%) 

Specificity 
(%) 

PPV 
(%) 

NPV 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

PPV 
(%) 

NPV 
(%) 

10mL         
E. coli 74.17 70.19 80.91 77.64 82.50 76.40 79.84 73.12 
Total 
coliforms 

53.61 13.46 97.20 82.35 61.14 15.73 97.52 82.35 

         
90mL         
E. coli 84.30 76.83 76.12 66.32 92.56 82.70 67.89 44.79 
Total 
coliforms 

66.33 19.51 99.24 94.18 81.22 28.85 98.77 88.24 

Table 8. Sensitivity and specificity for H2S-producing bacteria compared predict 
log10/100mL total coliform and E. coli concentrations in the same sample other treated 
water sources after 24and 48 hours of incubation. *conditions that produced the highest 
results in bold 

 

 Results for sensitivity, specificity, positive and negative predictive value varied when 

comparing the H2S test across the different types of water samples and their treatment. Overall, 

the test that produced the highest sensitivity for total coliforms was untreated water (94%) for 

90mL at 48 hours. BSF treated and stored water samples resulted in the highest specificity and 

PPV (100%) with sample volumes of 10mL at 24 hours and 90mL for both 24 and 48 hours of 

incubation for the test. In addition to the BSF treated and stored water, untreated water also 

yielded the same PPV result under a different condition of 90mL at 24 hours. The test condition 

which yielded the highest NPV was found in untreated water after 24 hours of incubation in both 

10 and 90mL sample volumes.  

 In general, the H2S test yielded the highest sensitivity and positive predictive value for E. 

coli concentrations in untreated water (97.82 and 95.48, respectively) for 90mL at 48 hours of 

incubation. While the H2S test produced the highest specificity for other treated water, it was still 
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most specific in predicting E. coli concentrations in sample volumes of 90mL at 48 hours. 

However, the test condition that resulted in the highest negative predictive value was samples 

from BSF treated water for volumes of 10mL at an incubation period of 24 hours.  

 

Comparisons of H2S Scores and Total Coliform and E. coli Concentrations 

 Data from total coliforms and E. coli were log transformed to analyze how these values 

corresponded to the semi-quantitative scoring system for H2S conditions.  Mean concentrations 

for total coliform and E. coli were calculated for each score and for each volume (range of score 

0-3). These were also compared across between 24 and 48 hours incubation times. As shown in 

Table 9, E. coli concentrations increased for each increase in H2S score for both 24 and 48 hours 

and for both volumes. For 10mL volumes held at 24 hours at ambient temperatures, H2S samples 

scored 0 averaged 0.3 log10 E. coli MPN/100mL and H2S samples scored 3 averaged 1.7 log10 E. 

coli MPN/100mL. Similar results were seen at 48 hours and for 90mL.   
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  24 hours Incubation 48 hours Incubation 
H2S-producing 
bacteria sample 
volume in 
untreated 
household 
drinking water 

H2S Score Mean log10 E. 
coli /100mL 

CI (95%) Mean CI (95%) 

10mL  N = 695  N = 697  
 0 0.35 0.24 – 0.45 0.22 0.12 – 0.32 
  1 0.88 0.61 – 1.14 0.63 0.28 – 0.98 
 2 1.55 1.43 – 1.66 1.53 1.41 – 1.65 
 3 1.73 1.61 – 1.83 1.62 1.51 – 1.71 
      
90mL  N = 701  N = 700  
 0 0.2 0.10 – 0.30 0.06 -0.02 – 0.14 
 1 0.55 0.32 – 0.78 0.36 -0.17 – 0.88 
 2 1.31 1.17 – 1.45 1.18 0.99 – 1.37 
 3 1.65 1.57 – 1.74 1.53 1.45 – 1.61 
Table 9. Mean estimations of the log10 E. coli /100mL E. coli concentration over the H2S-
producing bacteria scoring for untreated water samples collected after 24 and 48 hours of 
incubation. 

  

Unlike the E. coli concentrations, the H2S scores were not as predictive of fecal 

contamination compared to the log10 transformation for total coliforms. As shown in Table 10, 

total coliform concentrations increased over the H2S score but the mean concentration of total 

coliforms did not vary as significantly as did E. coli over the range of H2S scores as shown in 

Table 9. For 10mL volumes held at 24 hours at ambient temperatures, H2S samples scored 0 

averaged 2.1 log10 total coliforms MPN/100mL and H2S samples scored 3 averaged 3.3 log10 

total coliforms MPN/100mL. Similar results were seen at 48 hours. For 90mL, the ranged of total 

coliform was slightly larger and varied more between 24 and 48 hours.   
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  24 hour Incubation  48 hours Incubation 
H2S-producing 
bacteria sample 
volume in 
untreated 
household 
drinking water  

H2S Score Mean CI (95%) Mean CI (95%) 

10mL  N = 695  N = 697  
 0 2.07 1.86 – 2.29 1.78 1.52 – 2.02 
 1 2.99 2.77 – 3.20 2.71 2.33 – 3.08 
 2 3.30 3.27 – 3.33 3.28 3.24 – 3.32 
 3 3.28 3.25 – 3.31 3.25 3.22 – 3.29 
      
90mL  N = 701   N = 700  
 0 1.69 1.42 – 1.96 1.34 0.99 – 1.68 
 1 2.84 2.52 – 3.15 1.85 1.03 – 2.66 
 2 3.18 3.11 – 3.25 3.05 2.91 – 3.19 
 3 3.27 3.24 – 3.30 3.22 3.19 – 3.26 
Table 10. Mean estimations of the log10 /100mL total coliform concentration over the H2S-
producing bacteria scoring for untreated water samples collected after 24 and 48 hours of 
incubation. 

 

Linear regression was performed to examine the ability of the H2S scoring system to 

predict E. coli and total coliform concentrations. As shown in Table 11, all linear regression 

models demonstrated that the H2S scoring system was able to predict both total coliform and E. 

coli concentrations. For E. coli, the highest R2 value was found for 24 hours ambient temperature 

incubation and 10mL. This model predicated a 0.48 log10 E. coli increase for each one unit 

increase in the H2S score (10mL). Similar results were found for 48 hours although the R2 value 

is slightly lower (0.22). Additionally, linear regression for the 90mL H2S score suggested a 

similar increase in E. coli concentration per unit change in H2S score but the models had slightly 

lower R2 values (0.25 and 0.18 for 24 and 48 hours, respectively).  
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  24 hours Incubation 48 hours Incubation 
H2S-producing 
bacteria sample 
volume in 
untreated 
household 
drinking water 

Coefficient  P – 
value 

CI (95%) R2 Coefficient  P – 
value  

CI (95%) R 2 

10mL N = 695    N = 697    
 0.46 0.00 0.40 – 0.52 0.27 0.45 0.00 0.38 – 0.51 0.22 
         
90mL N = 701    N = 700    
 0.48 0.00 0.42 – 0.54 0.25 0.48 0.00 0.40 – 0.56 0.18 
Table 11. Comparison of H2S-producing bacteria scores to predict log10/100mL E. coli 
concentrations in the same sample for untreated water after 24and 48 hours of incubation. 
  

Linear regression was also performed for the log-transformed total coliform 

concentrations in the same sample for untreated water for incubations periods of 24 and 48 

hours. The linear regression suggested similar results for H2S score’s ability to predict total 

coliforms (shown in Table 12). The 90mL scoring system for H2S- had the greatest increase for 

log10/100mL total coliform concentration for each one point increase of H2S-producing bacteria 

at 0.59. It also had the highest R2 value (0.41).  
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  24 hours Incubation 48 hours Incubation 
H2S-producing 
bacteria sample 
volume in 
untreated 
household 
drinking water 

Coefficient  P – 
value 

CI (95%) R2 Coefficient  P – 
value  

CI (95%) R2 

10mL N = 695    N = 697    
 0.39 0.00 0.34 – 0.43 0.30 0.46 0.00 0.41 – 0.50 0.35 
         
90mL N = 701    N = 700    
 0.48 0.00 0.43 – 0.52 0.38 0.59 0.00 0.54 – 0.64 0.41 
Table 12. Comparison of H2S-producing bacteria scores to predict log10/100mL total 
coliform concentration in the same sample for untreated water after 24and 48 hours of 
incubation.  

 

Linear regression was also performed for the log-transformed total coliform 

concentrations across the various water types collected for incubations periods of 24 and 48 

hours. As shown in Table 13, the linear regression models revealed that the H2S scoring system 

was able to predict total coliform concentrations in the different water sources. For total 

coliforms, the highest R2 value was found for 48 hours ambient temperature incubation in 

untreated water (0.45). This model predicated a 0.30 log10 total coliform increase for each one 

unit increase in the H2S score (100mL). Although slightly lower, similar results were seen in 

BSF treated and other treated water for 48 hours, with R2 values of 0.37. These models projected 

a 0.29 log10 total coliform increase for each one unit increase in the H2S score (100mL). 

Additionally, linear regression for the untreated water H2S score identified a similar R2 value 

(0.37); however, the model has suggested a smaller increase in total coliform concentration per 

unit change in H2S score (0.24 for 24 hours). While variance was still present among the 

different water types during 48 hours ambient temperatures for each one unit change (0.21 – 

0.30), a greater increase per unit change was seen during the 48 hour incubation period compared 

to the 24 hour period for each water type analyzed (0.17 – 0.28).  
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   24 hours Incubation 48 hours Incubation 
H2S-producing 
bacteria in 
household 
drinking water 

Coefficient  P – 
value 

CI (95%) R2 Coefficient  P – 
value  

CI (95%) R2 

 N = 695    N = 696    
Untreated 0.24 0.00 0.21 – 0.26 0.37 0.30 0.00 0.28 – 0.33 0.45 
         
 N = 209    N = 209    
BSF Treated 0.28 0.00 0.22 – 0.33 0.33 0.29 0.00 0.24 – 0.34 0.37 
         
 N = 225    N =225    
BSF Treated & 
Stored 

0.17 0.00 0.12 – 0.21 0.20 0.21 0.00 0.15 – 0.26 0.22 

         
 N = 213    N = 213    
Other Treated 0.21 0.00 0.16 – 0.27 0.23 0.29 0.00 0.24 – 0.34 0.37 
Table 13. Comparison of H2S-producing bacteria scores to predict log10/100mL total 
coliform concentrations in the same sample for various water sources after 24and 48 hours 
of incubation.  

 

Comparison of H2S-producing bacteria scores to predict log10/100mL E. coli 

concentrations in the same sample for various water sources after 24and 48 hours of incubation 

was performed using linear regression. The linear regression models demonstrated that the H2S 

scoring system was able to predict E. coli concentrations in the different water sources; there 

were larger differences in the R2 values than found in the prediction of total coliform 

concentrations. For E. coli, the highest R2 value was found for 24 hours ambient temperature 

incubation in other treated water (0.29). While this model predicated a 0.22 log10 E. coli increase 

for each one unit increase in the H2S score (100mL), the highest increase per unit change was 

found in untreated water at the same incubation period. The model identified a 0.46 log10 E. coli 

increase for each one unit in the H2S score with a R2 value of 0.27. While BSF treated water (24 

hours) and other treated water (48 hours) shared the same R2 values as untreated water (24 hours) 
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of 0.27, each had a significantly lower increase per unit of E. coli (0.20 and 0.22, respectively).  

  24 hours Incubation 48 hours Incubation 
H2S-producing 
bacteria in 
household 
drinking water 

Coefficient  P – 
value 

CI (95%) R2 Coefficient  P – 
value  

CI (95%) R2 

 N = 695    N = 696    

Untreated 0.46 0.00 0.40 – 0.52 0.27 0.27 0.00 0.24 – 0.31 0.23 
         
 N = 209    N = 209    

BSF Treated 0.20 0.00 0.15 – 0.24 0.27 0.17 0.00 0.12 – 0.22 0.20 

         
 N = 225    N =225    

BSF Treated & 
Stored 

0.16 0.00 0.11 – 0.22 0.13 0.17 0.00 0.11 – 0.24 0.11 

         
 N = 213    N = 213    

Other Treated 0.22 0.00 0.17 – 0.27 0.29 0.22 0.00 0.17 – 0.27 0.27 
Table 14. Comparison of H2S-producing bacteria scores to predict log10/100mL E. coli 
concentrations in the same sample for various water sources after 24and 48 hours of 
incubation.  

 

4.3 Diarrheal Disease Analysis 

As the basis of this study, data collected from households was used to categorize 

households into households that reported diarrheal disease during the week of interview or 

households that did not report diarrheal disease at the week of interview. For the purposes of the 

analysis, diarrheal disease was classified by the WHO standard, which is defined as three or 

more watery or loose stools per day (WHO, 2012). Over the time period of the analysis, a total of 

88 households had at least one member that had diarrheal disease during the week of the visit. 
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This was approximately 10% of all observations used in the analysis. When classified into age 

groups, those households that reported diarrheal disease in children constituted 46 observations 

and those that reported at least one case of diarrheal disease in an adult member of the household 

consisted of 42 observations as shown in Table 15.  

 

Diarrheal Disease Household reported at 
least one participant 

with diarrheal 
disease(%) 

Household did not 
report any participant 
with diarrheal disease 

(%) 

Total Responses 
(%) 

Adult 42 (5.15) 774 (94.85) 816 (100.00) 
Children 46 (5.64) 770 (94.36) 816 (100.00) 
    
Total 88 (10.29) 732 (89.71) 816 (100.00) 
Table 15. Total diarrheal disease in all communities    

 

 In addition, logistic regression was performed to analyze household diarrhea and its 

association with the presence and absence of H2S-producing bacteria in untreated water for 

10mL and 90mL samples. Water samples for BSF treated, BSF treated and stored, and other 

treated were limited in comparison to untreated water samples collected from households. 

During the 24 hour time period, only H2S-producing bacteria found in untreated water was 

significant in indicating diarrheal disease with an OR of 1.18 (p=0.03; 1.02 – 1.35) (Table 16). 

As the bacteria increases by one unit, the odds of occurrence of diarrheal disease increases by a 

factor of 1.18, suggesting a positive association between the two. There was no significant 

association for the other water types: BSF treated, BSF treated and stored, and other treated 

water. 

 For the 48 hour incubation period, both BSF treat and stored water along with untreated 
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water were statistically significant for their association with household diarrheal disease. Those 

who consumed untreated water had a 1.42 increase in occurrence of diarrheal disease (p<0.001; 

1.14 – 1.78) for an increase in one unit of H2S-producing bacteria in the sample (Table 16). 

Participants that use BSF treated and stored water had a 1.60 increased odd of experiencing an 

episode of diarrhea with every one unit change in H2S score (p=0.04; 1.03 – 2.47). H2S-

producing bacteria found in BSF treated and other treated water samples were statistically non-

significant as an indicator for diarrheal disease.  

  24 hours Incubation 48 hours Incubation 
H2S-producing 
bacteria in 
household 
drinking water 

N OR P – value CI (95%) N OR P – value CI (95%) 

Untreated 696 1.18 0.03 1.02 – 1.35 697 1.42 <0.001 1.14 – 1.78 
BSF Treated 209 1.11 0.47 0.83 – 1.49 209 1.04 0.81 0.77 – 1.40 
BSF Treated & 
Stored 

225 1.34 0.08 0.96 – 1.86 225 1.60 0.04 1.03 – 2.47 

Other Treated 214 1.01 0.90 0.84 – 1.22 214 1.18 0.13 0.95 – 1.46 
Table 16. Binary logistic regression of any reported household diarrhea and its association 
with presence/absence of HsS-producing bacteria in household drinking water.  
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Chapter V: Discussion and Conclusion 

 

5.1 Discussion 

 Reducing the burden throughout the world of people without access to safe drinking 

water is one of the key millennium development goals. In addition, these MDG’s also aim to 

enhance sanitation in developing nations. While there has been considerable advancements made 

in the improvement of water access, there are still many improvements necessary to achieve this 

as well as improve sanitation in developing nations (Hunter, Zmirou-Navier, & Hartemann, 

2009). However, with improved methods of intervention and testing method for detection fecal 

contamination, the burden of disease can be reduced (Pruss-Ustun & Corvalan, 2007).   

  

Analysis of Sensitivity and Specificity of H2S Test compared to E. coli 

 Validity of a test is often measured by sensitivity and specificity (Lalkhen & McCluskey, 

2008). Both are independent of the population being measured in the test and are often associated 

with clinical testing for diseases. In this case, sensitivity and specificity were used to identify 

whether or not H2S results predicted the presence of E. coli and total coliforms. Sensitivity 

measured the likelihood of the occurrence of H2S producing bacteria in the presence of E. coli 

and total coliforms; while specificity focused on the absence of H2S when these indicator 

organisms were not present. Ideally, results of this test should have both a high sensitivity and 

specificity. However, in some cases test will have a higher sensitivity, resulting in a lower 

specificity (Lalkhen & McCluskey, 2008).  

 When the H2S test was compared with traditional tests to identify E. coli and total 
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coliforms, the analysis showed that the H2S test was a very good surrogate (>90% sentivitiy and 

specificity)  for the standard test to identify E. coli contamination.(Hirulkar & Tambekar, 2006).  

Analysis showed H2S test had high specificity and sensitivity for E. coli under a wide range of 

conditions. 

Mack and Hewison (1988) suggested for a test to be useful, the sensitivity and specificity 

should be 80% or better. If the water samples were going to be screened for PPV and NPV 

accurately, the results should be 100%. When testing the drinking water samples, they received a 

sensitivity and specificity of 61.5 and 62.9% respectively with the H2S method (Mack and 

Hewison, 1988). In the present study, better results were obtained when analyzing sensitivity 

when detecting E. coli under the four conditions. However, the specificity results of this study 

were not as high under some conditions. Similar results were seen in the comparisons of PPV 

and NPV. In most circumstances, the results reflected a PPV and NPV of 100%; however in 

some situations the results were significantly lower.  

 The incubation period had significant effect on the efficiency of H2S test. As the time 

period of incubation period increased from 24 hours to 48 hours, the efficiency of the test 

increased as well as also shown in Tambekar et al., 2007. However, the predictive nature of the 

test, both positive and negative, decreased over time and volume generally. Previous studies 

agreed that the H2S test was a more sensitive indicator than other fecal coliform tests (Hirulkar & 

Tambekar, 2006). These results suggest that in the presence of hydrogen sulfide producing 

bacteria, this test will likely identify the presence of E. coli or total coliforms. However, the H2S 

testing method is more likely to overestimate the presence of E. coli and fecal coliforms than 

total coliforms. This could be attributed to the greater specificity of the fecal coliform and E. coli 

indicator grouping (Tambekar et al., 2007).  
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This study also revealed that the H2S test was not as predictive for water sources treated 

in the home but is more suitable for examining untreated drinking water. McMahan et al., 2012 

found that overall, the results of their experiments showed that when a water sample tested 

positive for H2S-producing bacteria in a quantitative H2S bacteria culture test for fecal 

contamination, there are detectable fecal bacteria in the water sample. Roser et al., 2005 also 

found the H2S to be effective in distinguishing between water sources with difference levels of 

fecal contamination. However, it is important to note that when the H2S test was negative, very 

few fecal organisms or known pathogens were identified. 

Associations with Diarrheal Disease   

The H2S test was only able to detect risk of diarrheal disease for untreated water sources. 

The increase in both bacteria per unit and the odds ratio suggested that there was a positive 

association between the two. However, there was no significant association for the other water 

types: BSF treated, BSF treated and stored, and other treated water.   This may have been due to 

the limited samples available for analysis from each household. With increased incubation 

periods, significance of H2S test predicting diarrheal disease increased. Only at the increased 

incubation period, was the logistic regression was able to predict odds of diarrheal disease from 

sample of BSF treated and stored water. In most cases, although H2S water tests for water 

samples treated in the home  were not significant predictors of diarrheal disease. Increased 

incubations times however, did increase the significance of the results. 

5.2 Study Limitations 

There were clear limitations to the quality of the data available for analysis in this study. 

Most importantly, even after thorough surveying of households, there was no way to say with 
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certainty which of the water samples collected (untreated, treated, BSF treated, BSF treated and 

stored, and other treated.) was actually being used by the household. Water samples taken from 

the homes depended solely on what was available during the time of the visit. Regardless of what 

type of water the household reported routinely using, interviews may have collected other source 

types from the household. Moreover, there was limited availability of samples for water types 

other than those classified as untreated, creating a smaller sample size to be analyzed. 

In addition, water source may have impacted the test performance. Other H2S producing 

bacteria can be found in the environment and may have been detected resulting in false positive 

results. Although this was truer for our treated samples, this may suggest that if there is an 

association with water source causing a specific effect on test performance, it is a less important 

factor of test performance than E. coli contamination (Gupta et al, 2007). 

The method used within this study may have been considered a limitation. The hydrogen 

sulfide producing bacteria test is not currently standardized leading to subjectivity of H2S scoring 

designations.  Also, this method was likely to overestimate the presence of E. coli and fecal 

coliforms than total coliforms.  This could be attributed to the greater specificity of fecal 

coliform and E. coli indicator organisms (Hirulkar & Tambekar, 2006).  

5.3 Recommendations 

The datasets used in this study need to be further investigated to address any additional 

unanswered questions and further clarify the results of this study. Future studies should focus on 

the standardization of the H2S test and its test protocols. With the refinement of these protocols, 

the test can be more reliable and a more accurate indicator of diarrheal disease (Hirulkar & 

Tambekar, 2006).   
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Further testing also needs to be performed to ensure that the H2S tests meet the 

requirements as a fecal indicator and can be used more universally. The association of the H2S 

test compared to the presence/absence of total coliforms in predicting diarrheal disease need to 

be further explored.  

5.4 Conclusions  

Microbiological testing is often preformed to detect contamination of drinking water and 

their sources. Yet, many nations do not have the infrastructure needed to adequately monitor 

water quality or it is inadequate (Izadi et al. (2010). Most chemical testing is costly and requires 

a high level of maintenance (e.g. refrigeration, various apparatuses, and certain reagents).   There 

are various tests currently available to evaluate indicator and enteric organisms; however, each 

technique has its set of limitations.  Utilizing the H2S test is an alternative, low cost method for 

detection of fecal contamination in household drinking water and other water sources (Stauber et 

al, 2009). Many studies have been performed to evaluate the efficiency and informative nature of 

the test in determining the presence of adulteration within the water. These studies analyzed H2S 

testing and any modifications necessary due to different tropic and temperate regions, as well as 

comparing other traditional bacterial indicator testing methods. The results of their studies 

generally indicated that using the hydrogen sulfide producing bacteria test produced similar 

results when compared to the more traditional fecal contamination indicator bacteria, and in 

some instances were more predictive than traditional testing methods for detection (Izadi et al. 

(2010).  

The initial results here suggest that the use of the test for H2S producing bacteria has 

potential with high sensitivity (>90%) for E. coli and total coliforms. The application of the 
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semi-quantitative scoring system may also have applications in predicting concentration of E. 

coli and total coliforms and well as possibly predicting diarrheal disease. However, more work 

needs to be completed to standardize the semi-quantitative approach to reduce subjectivity of 

scoring as well as examine the role of the test in additional epidemiologic studies. 
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