Date of Award

8-6-2007

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Chemistry

First Advisor

Shahab A. Shamsi - Chair

Second Advisor

Gabor Patonay

Third Advisor

Stuart Allison

Abstract

This research presents advancements in the coupling of capillary electrochromatography (CEC) to mass spectrometry (MS) for the analysis of different chemical classes of surfactants. Chapter 1 provides a brief introduction that summarizes the mechanics and fundamentals of CEC, including instrumentation and applications for CEC-MS. Chapter 2 describes the on-line hyphenation of a packed CEC column with an internally tapered tip coupled to electrospray ionization-mass spectrometry (ESI-MS) and atmospheric pressure chemical ionization-mass spectrometry (APCI-MS) for the analysis of betaine-type amphoteric or zwitterionic surfactants (Zwittergent®). The interesting aspects include CEC-MS column manufacture and charaterization, as well as a comparison between the CEC-ACPI-MS and CEC-ESI-MS ionization pattern of zwittergents. In Chapter 3, the CEC-MS of alkyltrimethyl-ammonium ions (ATMA+) with chain length ranging from C1-C18 is optimized using an internally tapered CEC-MS column packed with mixed mode C6/strong cation exchange stationary phase and coupled to an ESI source. In addition, the optimized CEC-ESI-MS protocol is applied for the challenging analysis of commercial sample Arquad S-50 ATMA+ containing cis-trans unsaturated and saturated soyabean fatty acid derivatives. In Chapter 4, a novel CEC-UV method for separation of the various Triton X-100 oligomers is presented. A systematic mobile phase tuning and comparison of monomeric vs. polymeric stationary phases was conducted. In Chapter 5, we present the first application of CEC coupled to MS for analysis of Triton X (TX-) series surfactants. A characterization from the viewpoint of the ion and adduct formation for TX-series nonionic surfactants with a variable number of ethoxy units (n=1.5-16) in the scan mode are first discussed. Next, utilizing the TX-series as model alkylphenolpolyethoxylates (APEOs), a detailed investigation of the chromatographic separation and MS detection are performed followed by analysis of very long chain TX series with n=30-70. In Chapter 6, CEC-MS utilizing full scan positive ion mode of ESI was employed to study the effect of fragmentor voltage on the in-source collision induced dissociation (IS-CID) of several APEO nonionic surfactants. Finally, in Chapter 7, the preparation and characterization of a novel liquid crystalline stationary phase suitable for separation of neutral and charged compounds in packed column CEC is evaluated.

Included in

Chemistry Commons

Share

COinS