Date of Award

Summer 8-7-2012

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Chemistry

First Advisor

Dr. Dabney Dixon

Abstract

The synthesis of four homologous anthraquinones (AQ I-IV) bearing increasing lengths of polyethylene glycol (PEG) side chains and their binding to AT- and GC-rich DNA hairpins are reported. The molecules were designed such that the cationic charge is at a constant position and the ethylene glycol units chosen to allow significant increases in size with minimal changes in hydrophobicity. The mode and affinity of binding were assessed using circular dichroism (CD), nuclear magnetic resonance (NMR), surface plasmon resonance (SPR), and isothermal titration calorimetry (ITC). The binding affinity decreased as the AQ chain length increased along the series with both AT- and GC-rich DNA. ITC measurements showed that the thermodynamic parameters of AQ I-IV binding to DNA exhibited significant enthalpy-entropy compensation. The enthalpy became more favorable while the entropy became less favorable. The correlation between enthalpy and entropy may involve not only the side chains, but also changes in the binding of water and associated counterions and hydrogen bonding.

The interactions of AQ I-IV with GC-rich DNA have been studied via molecular dynamics (MD) simulations. The geometry, conformation, interactions, and hydration of the complexes were examined. As the side chain lengthened, binding to DNA reduced the conformational space, resulting in an increase in unfavorable entropy. Increased localization of the PEG side chain in the DNA groove, indicating some interaction of the side chain with DNA, also contributed unfavorably to the entropy. The changes in free energy of binding due to entropic considerations (-3.9 to -6.3 kcal/mol) of AQ I-IV were significant.

The kinetics of a homologous series of anthraquinone threading intercalators, AQT I-IV with calf thymus DNA was studied using the stopped-flow. The threading mechanisms of the anthraquinones binding to DNA showed sensitivity to their side chain length. Fitting of the kinetic data led to our proposal of a two step mechanism for binding of AQT I, bearing the shortest side chain, and a three step mechanism for binding of the three longer homologs. Binding involves formation of an externally bound anthraquinone-DNA complex, followed by intercalation of the anthraquinone for AQT I-IV, then isomerization to another complex with similar thermodynamic stability for AQT II-IV.

Share

COinS