Date of Award

8-11-2015

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Computer Science

First Advisor

Yi Pan

Second Advisor

Jing Maria Zhang

Third Advisor

Alexander Zelikovsky

Fourth Advisor

Rajshekhar Sunderraman

Abstract

Taking the advantage of the high-throughput Single Nucleotide Polymorphism (SNP) genotyping technology, Genome-Wide Association Studies (GWASs) are regarded holding promise for unravelling complex relationships between genotype and phenotype. GWASs aim to identify genetic variants associated with disease by assaying and analyzing hundreds of thousands of SNPs. Traditional single-locus-based and two-locus-based methods have been standardized and led to many interesting findings. Recently, a substantial number of GWASs indicate that, for most disorders, joint genetic effects (epistatic interaction) across the whole genome are broadly existing in complex traits. At present, identifying high-order epistatic interactions from GWASs is computationally and methodologically challenging.

My dissertation research focuses on the problem of searching genome-wide association with considering three frequently encountered scenarios, i.e. one case one control, multi-cases multi-controls, and Linkage Disequilibrium (LD) block structure. For the first scenario, we present a simple and fast method, named DCHE, using dynamic clustering. Also, we design two methods, a Bayesian inference based method and a heuristic method, to detect genome-wide multi-locus epistatic interactions on multiple diseases. For the last scenario, we propose a block-based Bayesian approach to model the LD and conditional disease association simultaneously. Experimental results on both synthetic and real GWAS datasets show that the proposed methods improve the detection accuracy of disease-specific associations and lessen the computational cost compared with current popular methods.

Share

COinS