Date of Award

Fall 11-16-2012

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Computer Science

First Advisor

Alexander Zelikovsky

Second Advisor

Yi Pan

Third Advisor

Robert Harrison

Fourth Advisor

Ion Mandoiu

Abstract

Massively parallel whole transcriptome sequencing and its ability to generate full transcriptome data at the single transcript level provides a powerful tool with multiple interrelated applications, including transcriptome reconstruction, gene/isoform expression estimation, also known as transcriptome quantification. As a result, whole transcriptome sequencing has become the technology of choice for performing transcriptome analysis, rapidly replacing array-based technologies. The most commonly used transcriptome sequencing protocol, referred to as RNA-Seq, generates short (single or paired) sequencing tags from the ends of randomly generated cDNA fragments. RNA-Seq protocol reduces the sequencing cost and significantly increases data throughput, but is computationally challenging to reconstruct full-length transcripts and accurately estimate their abundances across all cell types.

We focus on two main problems in transcriptome data analysis, namely, transcriptome reconstruction and quantification. Transcriptome reconstruction, also referred to as novel isoform discovery, is the problem of reconstructing the transcript sequences from the sequencing data. Reconstruction can be done de novo or it can be assisted by existing genome and transcriptome annotations. Transcriptome quantification refers to the problem of estimating the expression level of each transcript. We present a genome-guided and annotation-guided transcriptome reconstruction methods as well as methods for transcript and gene expression level estimation. Empirical results on both synthetic and real RNA-seq datasets show that the proposed methods improve transcriptome quantification and reconstruction accuracy compared to previous methods.

DOI

https://doi.org/10.57709/3489378

Share

COinS