Date of Award

12-6-2006

Degree Type

Thesis

Degree Name

Master of Science (MS)

Department

Computer Science

First Advisor

Alexander Zelikovsky - Chair

Second Advisor

Anu Bourgeois

Third Advisor

Saeid Belkasim

Abstract

The QoS Steiner Tree Problem asks for the most cost efficient way to multicast multimedia to a heterogeneous collection of users with different data consumption rates. We assume that the cost of using a link is not constant but rather depends on the maximum bandwidth routed through the link. Formally, given a graph with costs on the edges, a source node and a set of terminal nodes, each one with a bandwidth requirement, the goal is to find a Steiner tree containing the source, and the cheapest assignment of bandwidth to each of its edges so that each source-to-terminal path in the tree has bandwidth at least as large as the bandwidth required by the terminal. Our main contributions are: (1) New flow-based integer linear program formulation for the problem; (2) First implementation of 4.311 primal-dual constant factor approximation algorithm; (3) an extensive experimental study of the new heuristics and of several previously proposed algorithms.

Share

COinS