Methods: Using emergency department visits data, we illustrated and compared the additive and multiplicative hazards models for analysis of recurrent event durations under (i) a varying baseline with a common coefficient effect and (ii) a varying baseline with an order-specific coefficient effect.

Results: The analysis showed that both additive and multiplicative hazards models, with varying baseline and common coefficient effects, gave similar results with regard to covariates selected to remain in the model of our real dataset. The confidence intervals of the multiplicative hazards model were wider than the additive hazards model for each of the recurrent events. In addition, in both models, the confidence interval gets wider as the revisit order increased because the risk set decreased as the order of visit increased.

Conclusions: Due to the frequency of multiple failure times or recurrent event duration data in clinical and epidemiologic studies, the multiplicative and additive hazards models are widely applicable and present different information. Hence, it seems desirable to use them, not as alternatives to each other, but together as complementary methods, to provide a more comprehensive understanding of data.

]]>Results: In this study, the cumulative incidence curve of the risk of ESRD by the cause-specific hazards model was revealed to be higher than the curves generated by the subdistribution hazards model. However, the cumulative incidence curves of risk of death without ESRD based on those three models were very similar.

Conclusions: In analysis of competing risk data, it is important to present both the results of the event of interest and the results of competing risks. We recommend using either the cause-specific hazards model or the subdistribution hazards model for a dominant risk. However, for a minor risk, we do not recommend the subdistribution hazards model and a cause-specific hazards model is more appropriate. Focusing the interpretation on one or a few causes and ignoring the other causes is always associated with a risk of overlooking important features which may influence our interpretation.

]]>