Date of Award

Fall 11-21-2011

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Neuroscience Institute

First Advisor

Aras Petrulis, Ph.D.

Second Advisor

Anne Murphy, Ph.D.

Third Advisor

Timothy Bartness, Ph.D.

Fourth Advisor

Larry Young, Ph.D.

Abstract

In many species, including Syrian hamsters, male reproductive behavior depends on the perception of odor cues from conspecifics in the environment. Volatile odor cues are processed primarily by the main olfactory system, whereas non-volatile cues are processed primarily by the accessory olfactory system. Together, these two chemosensory systems mediate appetitive reproductive behaviors, such as attraction to female odors, and consummatory reproductive behaviors, such as copulation, in male Syrian hamsters. Main and accessory olfactory information are first integrated in the medial amygdala (MA), a limbic nucleus that is critical for the expression of reproductive behaviors. MA is densely interconnected with other ventral forebrain nuclei that receive chemosensory information and are sensitive to steroid hormones. Specifically, several lines of evidence suggest that MA may generate behavioral responses to socio-sexual odors via functional connections with the posterior bed nucleus of the stria terminalis (BNST) and medial preoptic area (MPOA). It is unknown, however, how these three nuclei act as functional circuit to adaptively regulate appetitive and consummatory reproductive behaviors. Therefore, the overarching goal of this dissertation was to determine how BNST and MPOA function, both uniquely and as a circuit with MA, to generate attraction to female odors and copulatory behaviors in male Syrian hamsters. We found that BNST is required for attraction to female odors, but not for copulation, in sexually-naïve males. In contrast, MPOA is required for both attraction to female odors and for copulation in sexually-naïve males. Surprisingly, prior sexual experience mitigated the requirement of BNST and MPOA for these behaviors. Next, we found that MA preferentially transmits female odor information to BNST and to MPOA, whereas BNST relays female and male odor information equivalently to MPOA. Finally, we found that the functional connections between MA and BNST are required for attraction to female odors but not for copulation, whereas the functional connections between MA and MPOA are required for copulation but not for attraction to female odors. Ultimately, these data may uncover a fundamental mechanism by which this ventral forebrain circuit regulates appetitive and consummatory reproductive behaviors across many species and modalities.

Share

COinS