Date of Award


Degree Type


Degree Name

Doctor of Philosophy (PhD)


Physics and Astronomy

First Advisor

Nikolaus Dietz - Chair

Second Advisor

Brian Thoms

Third Advisor

A. G. Unil Perera

Fourth Advisor

Xiaochun He

Fifth Advisor

Douglas Gies


In this research the growth of InN epilayers by high-pressure chemical vapor deposition (HPCVD) and structural, optical properties of HPCVD grown InN layers has been studied. We demonstrated that the HPCVD approach suppresses the thermal decomposition of InN, and therefore extends the processing parameters towards the higher growth temperatures (up to 1100K for reactor pressures of 15 bar, molar ammonia and TMI ratios around 800, and a carrier gas flow of 12 slm). Structural and surface morphology studies of InN thin layers have been performed by X-ray diffraction, low energy electron diffraction (LEED), auger electron spectroscopy (AES), high-resolution electron energy loss spectroscopy (HREELS) and atomic force microscopy (AFM). Raman spectroscopy, infrared reflection, transmission, photoluminescence spectroscopy studies have been carried out to investigate the structural and optical properties of InN films grown on sapphire and GaN/sapphire templates. InN layers grown on a GaN (0002) epilayer exhibit single-phase InN (0002) X-ray diffraction peaks with a full width at half maximum (FWHM) around 200 arcsec. Auger electron spectroscopy confirmed the cleanliness of the surface, and low energy electron diffraction yielded a 1×1 hexagonal pattern indicating a well-ordered surface. The plasmon excitations are shifted to lower energies in HREEL spectra due to the higher carrier concentration at the surface than in the bulk, suggesting a surface electron accumulation. The surface roughness of samples grown on GaN templates is found to be smoother (roughness of 9 nm) compared to the samples grown on sapphire. We found that the deposition sometimes led to the growth of 3 dimensional hexagonal InN pyramids. Results obtained from Raman and IR reflectance measurements are used to estimate the free carrier concentrations, which were found in the range from mid 10^18 cm-3 to low 10^20 cm-3. The optical absorption edge energy calculated from the transmission spectra is 1.2 eV for samples of lower electron concentration. The Raman analysis revealed a high-quality crystalline layer with a FWHM for the E2(high) peak around 6.9 cm^-1. The results presented in our study suggest that the optimum molar ratio might be below 800, which is due to the efficient cracking of the ammonia precursor at the high reactor pressure and high growth temperature.