Date of Award

4-5-2010

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Biology

First Advisor

Phanc C. Tai - Committee Chair

Second Advisor

Victor Tsang - Committee Co-Chair

Third Advisor

Roberta Attanasio - Committee Member

Abstract

Taenia solium is a cestode that has a two-hosts life cycle. The adult tapeworm causes an asymptomatic disease known as taeniasis whereas the larval stage causes a disease called cysticercosis. In humans, the most common localization for the larvae is the central nervous system where it produces the neurological disorder neurocysticerco-sis. Previous works by several research groups around the world have shown that T. so-lium is a potentially eradicable parasite. Control programs have included treatment of human and pig populations with antihelmintics in conjunction with health education and are now considering vaccination of naïve piglets. The potential of a live vector vaccine system to deliver Taenia solium Tsol18, a proven protective antigen, to prevent transmission of cysticercosis was investigated. An attenuated strain of Salmonella enterica serovar Typhimurium χ9402 was used to develop an oral delivery system. Tsol18 gene was cloned downstream from the β-lactamase signal sequence in a multicopy asd + plasmid vector pYA3620 to yield plasmid pYA3620/Tsol18 and then transformed into the vaccine strain. The recombinant atte-nuated salmonella vaccine construct was stable for 50 generations and expressed rTsol18. Immunization of mice either with one or two doses of 109 CFU of the recombi-nant vaccine strain carrying plasmid pYA3620/Tsol18 elicited specific antibody response to Salmonella self antigens and to rTsol18. Moreover, oral immunization of piglets with 1012 CFU of the vaccine construction significantly reduced the numbers of viable cysts after challenged. The development of a quantitative assay to detect specific antibodies against Tsol18 is also presented here. The Falcon assay screening test –enzyme linked immu-noabsorbant assay (FAST-ELISA) format was used to develop a quantitative antibody detection assay. We have cloned, expressed and purified rTsol18. With purified porcine IgGs we constructed a standard curve that can be used to quantify the immune re-sponse. Our Fast-ELISA was able to follow the kinetics of the immune response in vac-cinated pigs from an experimental trial. The data we present here provides the basis for a safe, affordable and easy vaccine delivery system that can be used as an adjunct in control programs.

DOI

https://doi.org/10.57709/1350774

Included in

Biology Commons

Share

COinS