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ABSTRACT 

Novel emerging zoonotic viruses are of significant public health concern due to a lack of 

treatment options and the required to achieve pharmaceutical development. 

Coronaviruses, a family of positive-sense RNA viruses, have spilled over from their 

animal hosts into the human population. Most notably, is the recent emergence of SARS-CoV-2 

that has caused a multi-year global pandemic, nearing a billion cases worldwide. Coronaviruses 

rely on host membranes for entry, establishment of replication centers, and egress. Compounds 

targeting cellular membrane biology and lipid biosynthetic pathways have previously shown 

promise as antivirals and are actively being pursued as treatments for other conditions. In chapter 

one we show that compounds targeting VPS34 and fatty-acid metabolism exhibit potent 

inhibition of SARS-CoV-2. Mechanistic studies with compounds targeting multiple steps up- and 

down-stream of fatty acid synthase (FASN) identified triacylglycerol production and protein 

palmitoylation as requirements for viral RNA synthesis and infectious virus production. Further, 

FASN knockout results in significantly impaired SARS-CoV-2 replication that can be rescued 

with fatty-acid supplementation. These observations identify fatty-acid metabolism as a 

promising target for novel SARS-CoV-2 therapeutic development. 

Filoviruses are a family of zoonotic negative-sense RNA viruses known to cause severe 

and fatal disease in humans. The growing number of novel filoviruses being discovered have 

caused speculation over whether or not they are capable of causing productive human disease. A 

determining factor of virulence is the ability of viral proteins to antagonize host immune 

defenses to promote infection. Chapter two characterizes the VP35, VP40, and VP24 proteins of 

the newly identified Měnglà virus (MLAV) for their ability to regulate the interferon response in 

human and bat cells, as compared to their Ebola (EBOV) and Marburg (MARV) counterparts. 



MLAV VP35 and VP40 inhibited type I IFN responses, consistent with the activity of their 

homologues. MLAV VP40 inhibited IFN production and signaling by unlinked mechanisms. 

MLAV VP24 did not inhibit IFN gene expression or activate an antioxidant response, functions 

of EBOV and MARV, respectively. These functional observations support placement of MLAV 

in a distinct genus and provide insight into potential novel host-interactions that provide value 

for future filovirus antiviral development.  
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1 INTRODUCTION  

1.1 Coronaviruses 

1.1.1 Coronavirus Taxonomy 

Coronaviruses (CoVs) are positive sense single-stranded RNA viruses from the subfamily 

Orthocoronavirinae in the order Nidovirales. The subfamily is made of the Alphacoronavirus, 

Betacoronavirus, Deltacoronavirus, and Gammacoronavirus genera. Viruses in the Alpha- and 

Betacoronavirus genera all have mammalian hosts, while those of the Delta- and 

Gammacoronavirus genera mainly infect birds. Amongst the mammalian viruses, there are seven 

that cause human disease: Human Coronavirus (HCoV)-229E, HCoV-NL63, HCoV-OC43, and 

HCoV-HKU1, Severe Acute Respiratory Syndrome (SARS)‐CoV, Middle East Respiratory 

Syndrome (MERS)‐CoV, and the newly emerging SARS‐CoV-2 (Arora et al. 2020; Knipe and 

Howley 2013). 

1.1.2 Coronavirus Outbreaks 

The 1960s marked the earliest instance of human coronaviruses with the identification 

and isolation of HCoV-229E and HCoV-OC43 in samples cultured from patients suffering with 

minor respiratory illness (Corman et al. 2018; Hamre and Procknow 1966; Tyrrell and Bynoe 

1965). Shortly after, in the early 2000s, HCoV-NL63 and HCoV-HKU1 were discovered from a 

child with Bronchiolitis and an elderly man with pneumonia, respectively (Corman et al. 2018; 

van der Hoek et al. 2004; Woo et al. 2005). All four of these viruses typically cause mild disease 

in humans worldwide, with studies identifying coronaviruses in up to 26% of common cold cases 

sampled (Annan et al. 2016; Gaunt et al. 2010; Larson, Reed, and Tyrrell 1980; Walsh, Shin, and 

Falsey 2013).  
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In addition to the endemic common cold causing coronaviruses, three additional 

coronaviruses cause severe respiratory syndrome in humans. SARS was first identified in 2002 

in Southern China where it is thought to have spilled over into the human population from an 

animal host. The outbreak spread quickly, affecting 8,098 people in 29 countries and causing 774 

deaths in a span of seven months (Table 1) (Xu et al. 2004; WHO 2003; Gumel et al. 2004; CDC 

2013; Al-Osail and Al-Wazzah 2017). Since the conclusion of the outbreak, there have been no 

identified cases of SARS infection. An absence of SARS, however, does not mean an absence of 

SARS-like disease. In June 2012, a 60-year-old man in Saudi Arabia presented with severe 

pneumonia and died two weeks later. Samples taken from the patient were analyzed for various 

respiratory viruses and confirmed positive for coronaviruses; sequencing later revealed this to be 

a new virus in the betacoronavirus lineage that would become known as MERS (Al-Omari et al. 

2019; Peeri et al. 2020; Zaki et al. 2012). To date, 27 countries have experienced cases, all of 

which can be tracked back to initial exposure in the Middle East, and more specifically Saudi 

Arabia. Of the 2,494 total cases there have been 858 deaths, resulting in a case fatality rate of 

34.4%, four-times higher than that of SARS (Table 1) (Al-Omari et al. 2019; Peeri et al. 2020; 

CDC 2019).  

While SARS and MERS have caused outbreaks of importance, with significant impact on 

the affected communities, they have recently been rivaled by the newest outbreak causing 

member of the coronavirus family: SARS-CoV-2. In December 2019, clusters of a respiratory 

virus of unknown origin started appearing in Wuhan, Hubei Province, China. Using a 

surveillance system developed after the 2003 outbreak to identify pneumonia causing disease of 

unknown origin, the causative agent was determined to be a novel betacoronavirus closely 

related to SARS (Peeri et al. 2020; Wang, Horby, et al. 2020; Wu, Wu, et al. 2020). By the end 
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of January 2020, the World Health Organization had declared the outbreak a public health 

emergency of international concern. In the year and a half since the first identified cases, there 

have been over 181 million cases and almost 4 million deaths worldwide (WHO 2021b; Wu, 

Wu, et al. 2020).  

Table 1. Outbreaks of severe respiratory syndrome causing coronaviruses including date, 
number of countries effected, number of cases, and case fatality rates since the first documented 
occurrence. 

Virus Year Number of 
countries 

Number of 
cases 

Number of 
deaths 

Case fatality 
(%) 

SARS-CoV 2002-2003 29 8,098 774 9.6% 
MERS-CoV 2012-2021 27 2,494 858 34.4% 
SARS-CoV-2 2019 – June 30, 2021 192 181,344,224 3,934,252 2.2% 

*Table is adapted from (CDC 2019; WHO 2003, 2021b) 

 Coronaviruses are considered zoonotic pathogens, originating in an animal host and 

spilling over into the human population (Banerjee et al. 2019; Plowright et al. 2017). During an 

investigation into the emergence of SARS-CoV in 2003, virus and antibodies were isolated from 

bats found in the animal market thought to be involved in the spread of the virus (Cui, Li, and 

Shi 2019; Guan et al. 2003; Song et al. 2005; Tu et al. 2004). In the proceeding years, 

surveillance studies of bats in the same region identified a SARS-like CoV whose sequence 

closely matched that of the human SARS-CoV. The unique bat virus was capable of replicating 

in human cells expressing the host-cell receptor for SARS-CoV, as well as cells derived from 

bats and pigs, further suggesting a spillover transmission event as the origin for SARS (Lau et al. 

2005; Li et al. 2005). While MERS-CoV infection is known to originate from direct transmission 

from camels to humans, there is strong support for bats being one of the original reservoirs for 

MERS (Memish et al. 2013; Anthony et al. 2017; Widagdo et al. 2017). Following this pattern, 

sequencing data suggest a possible bat CoV origin for the newly characterized SARS-CoV-2; 

however, this has not been fully elucidated and remains an topic of controversy in the ongoing 



 4 

outbreak (Li et al. 2020; Dabravolski and Kavalionak 2020; Forster et al. 2020). With the 

evolution of RNA sequencing technology and continued surveillance efforts to stay ahead of 

possible spillover events, over 200 CoV-like viruses have been identified in bats, justifying the 

sustained investigation into the evolution of human CoVs from bats (Banerjee et al. 2019).  

1.1.3 Coronavirus Structure and Proteins 

Coronaviruses are packaged as spherical viral particles containing a non-segmented, 

positive-sense, single stranded RNA genome roughly 30 kilobases long, with 8 – 15 open 

reading frames (ORFs) encoding 22 – 29 viral proteins (Figure 1). The viral particles encompass 

a lipid envelope derived from the host cell membranes containing virally encoded structural 

proteins (Artika, Dewantari, and Wiyatno 2020; Wang, Grunewald, and Perlman 2020). The 

membrane (M) protein plays a critical role in virion structure and promoting membrane 

curvature, as well as binding to the nucleocapsid (N) protein on the encapsidated viral genome 

for packaging (Chen, Liu, and Guo 2020; Kirtipal, Bharadwaj, and Kang 2020). The envelope 

(E) protein contributes to virus assembly and release, as well as viral pathogenesis through the 

formation of a pentameric structure that acts as an ion channel in the viral membrane; deletion of 

E or mutation abolishing ion channel activity results in attenuation of infection or mutagenic 

evolution to regain activity (Chen, Liu, and Guo 2020; DeDiego et al. 2007; Nieto-Torres et al. 

2014). Additionally, the membrane is decorated with Spike (S) protein trimers. Spike recognizes 

and binds to the cellular receptor responsible for virus entry determining host range and tissue 

tropism (Chen, Liu, and Guo 2020; Huang et al. 2020; Kirtipal, Bharadwaj, and Kang 2020; Li 

2016). Upon binding, the S protein mediates viral uptake and membrane fusion, allowing for the 

release of the viral genome and initiation of downstream viral processes (Huang et al. 2020; Li 

2016).  
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Figure 1 Genome organization and morphology of coronaviruses 
Schematic representation of Coronavirus genome organization (A). Schematic representation of a 
Coronavirus virion and structural protein organization (B).  
 

In addition to the main structural proteins, coronaviruses encode 16 non-structural 

proteins (NSPs) that get translated as two large polyproteins: polyprotein 1a (pp1a) containing 

NSP1-NSP11 and polyprotein (pp1ab) containing NSP1-NSP16. The polyproteins are cleaved 

into individual protein products that function together in forming the replication-transcription 

complex (RTC) and producing RNA templates for protein production and additional copies of 

the viral genome. NSP1 and NSP2, are not directly incorporated into the RTC or enzymatically 

involved in replication and transcription, but still play a critical role in progression of these 

processes. NSP1 enhances viral production by promoting host cell mRNA degradation and 

blocking host cell translation and gene expression (Kamitani et al. 2006; Rohaim et al. 2021; 

Schubert et al. 2020). Additionally, NSP1 is thought to be a virulence factor involved in 

pathogenicity of CoV infection by mediating inhibition of IFN-dependent signaling (Wathelet et 

al. 2007; Zust et al. 2007). The role of NSP2 in CoV replication has yet to be identified; the lack 

of impact on replication caused by preventing NSP1-NSP2 cleavage, and therefore production of 
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mature NSP2 proteins, suggests either it can function in its un-cleaved form or has a role that is 

dispensable to the viral life cycle (Denison et al. 2004; Rohaim et al. 2021). NSP3, the papain-

like protease (PLpro) responsible for releasing itself, NSP1 and NSP2 from the polyproteins, is a 

multifunctional protein that functions in polyprotein processing and as a scaffold during the 

formation of the RTC by interacting with both viral and host proteins (Hagemeijer, Rottier, and 

de Haan 2012; Imbert et al. 2008; Rohaim et al. 2021). NSP3 and NSP4, in conjunction with 

NSP6, are necessary for the formation of double membrane replication centers that provide an 

isolated, protected environment in which replication occurs (Angelini et al. 2013; Knoops et al. 

2008; Neuman 2016; Rohaim et al. 2021; Snijder et al. 2006).  

The remaining NSPs, NSP5 and NSP7-16, come together to form complexes directly 

utilized in viral replication and transcription. NSP5 acts as the main protease (Mpro), and as such 

cleaves the polyproteins at 11 sites producing mature NSP4-NSP16 (Anand et al. 2003; Decroly 

et al. 2011; Ziebuhr, Snijder, and Gorbalenya 2000). NSP12 is the RNA-dependent RNA 

polymerase (RdRp) for coronaviruses. It has two main known domains bestowing its RdRp 

activity: the nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain and the 

canonical RdRp domain (Gorbalenya et al. 1989; Lehmann et al. 2015; Rohaim et al. 2021). 

NSP7 and NSP8 together form a complex that aids in the activation and processivity of NSP12 

(Rohaim et al. 2021; Subissi et al. 2014; Zhai et al. 2005). There is evidence to suggest that 

NSP8 may be functionally related to DNA-dependent RNA polymerase primases and make 

short, six nucleotide or less, primers used by NSP12 to initiate RdRp activity (Imbert et al. 2006; 

Rohaim et al. 2021). NSP9 is a single stranded RNA-binding protein whose full functionality is 

still in question (Egloff et al. 2004; Rohaim et al. 2021; Sutton et al. 2004). The importance of 

NSP9 for viral replication, however, is not in question; mutations that disrupt NSP9 homo-
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dimerization lead to severe defects in viral propagation (Chen, Fang, et al. 2009; Miknis et al. 

2009). Another critical factor for replication is NSP10, which is required for activation NSP14 

exoribonuclease activity, NSP16 methyltransferase activity, and NSP5 polyprotein processing 

activity (Bouvet et al. 2012; Bouvet et al. 2014). Mutation of NSP10 to disrupt the interactions 

required for the aforementioned activation results in a loss of negative strand viral RNA 

synthesis (Donaldson et al. 2007; Sawicki et al. 2005). Upon processing of polyprotein 1a, a 

small protein product comprising NSP11 should be made; however, data from infected cells 

suggests this processing may not occur and that an independent NSP11 protein may not be made. 

Instead, the NSP11 sequence is thought to function primarily in directing the translational frame 

shift responsible for dictating production of polyprotein 1a or polyprotein 1ab. As a result, parts 

of the NSP11 sequence get incorporated as a part of the C-terminus of NSP10 and the N-

terminus of NSP12 (Rohaim et al. 2021).  

In addition to the RdRp and the related cofactors, the RTC contains four more key 

enzymatic components. The helicase, NSP13, has multiple activities including hydrolysis of 

NTPs and dNTPs, 5’ to 3’ unwinding of RNA and DNA, and RNA 5′-triphosphatase activity that 

may be involved in the capping of viral RNA (Adedeji and Lazarus 2016; Adedeji et al. 2012; 

Ivanov et al. 2004; Ivanov and Ziebuhr 2004). NSP14 provides both exoribonuclease (ExoN) 

activity and cap N7-Methyltransferase (N7-MTase) activity through two separate domains found 

at the N- and C- termini, respectively (Chen, Cai, et al. 2009; Jin et al. 2013; Ma et al. 2015; 

Minskaia et al. 2006). Mutation of the ExoN domain results in increased mutations within the 

viral genome as well as decreased N7-MTase activity, while mutation of the N7-MTase domain 

affects only capping activity (Chen et al. 2013; Eckerle et al. 2007). NSP16 exhibits 

complementary cap 2’-O-Methyltransferase (2’-O-MTase) activity and requires the pre-existence 
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of N7-methylation of the guanosine cap for binding and methylation (von Grotthuss, Wyrwicz, 

and Rychlewski 2003; Decroly et al. 2008). Viruses lacking 2’-O-MTase activity were shown to 

be attenuated in vitro and in vivo due to recognition as “non-self” RNA by host immune sensors 

involved in type I interferon production and by ISGs that trigger sequestration of proteins to 

inhibit translation (Menachery et al. 2014). Lastly, the NSP15 protein impacts replication by two 

related mechanisms, its main endonuclease (EndoU) activity and the resulting ability to evade 

host-cell dsRNA sensors (Deng et al. 2017; Kindler et al. 2017; Snijder et al. 2003). It is thought 

that the localization and utilization of virally encoded EndoU activity may have evolved as a 

viral-specific RNA decay pathway that degrades dsRNA intermediates to avoid detection by host 

pattern recognition sensors that would activate the host innate immune response. Mutants with 

altered EndoU activity exhibit attenuated replication and early and robust activation of type I 

interferon (Deng et al. 2017; Kindler et al. 2017). 

In addition to the replicase complex and structural proteins, coronavirus encode a series 

of accessory proteins. These proteins display significant divergence between, and within, 

coronavirus lineages, resulting in diverse nomenclature and functions, with the majority of their 

functions remaining unknown (Michel et al. 2020). Many of the characterized proteins function 

in evading and antagonizing the innate immune response and in turn play a key role in viral 

pathogenesis (Narayanan, Huang, and Makino 2008; Yoshimoto 2020; Comar et al. 2019; 

Michel et al. 2020; Lee, Bae, and Myoung 2019). 

1.1.4 Coronavirus Replication and Transcription 

Upon exposure to coronaviruses, the coronavirus lifecycle begins and proceeds as 

depicted in Figure 2. The newly introduced virus attaches to the specific host cell receptor by the 

S protein, which triggers entry via direct fusion of the viral membrane with the plasma 



 9 

membrane or endocytosis followed by fusion with the endocytic membrane (Chen, Liu, and Guo 

2020; V'Kovski et al. 2021; Wang, Grunewald, and Perlman 2020). Fusion allows for the release 

of the viral genome into the cytoplasm which marks the onset of viral replication. The positive-

sense genome acts as the template for primary translation of the replicase genes encoded by 

polyproteins 1a and 1ab. A translational frame shift that occurs between ORF1a and ORF1b is 

responsible for directing whether pp1a or pp1ab is produced, with pp1a being generated about 

twice as often as pp1ab depending on the virus (Chen, Liu, and Guo 2020; Rohaim et al. 2021; 

V'Kovski et al. 2021; Wang, Grunewald, and Perlman 2020; Finkel et al. 2021). The 

polyproteins are processed by the proteolytic domains of NSP3 and NSP5 resulting in the 16 

individual non-structural proteins which come together to antagonize the innate immune 

response, induce membrane rearrangements for replication centers, and form the RTC for viral 

RNA synthesis to occur (Anand et al. 2003; Harcourt et al. 2004; Rohaim et al. 2021; V'Kovski 

et al. 2021; Wang, Grunewald, and Perlman 2020; Hagemeijer, Rottier, and de Haan 2012; 

Neuman 2016; Angelini et al. 2013). The RTC synthesizes negative-sense anti-genomes that act 

as the template for replication of more positive-sense genomes to be made leading to a constant 

cycle of NSP translation and genome production. Additionally, the positive-sense genome 

provides a platform for discontinuous transcription, the process by which the sub-genomic 

mRNAs encoding the structural and accessory proteins are made. Discontinuous transcription 

starts with the RTC being recruited to the 3’ end of the genome and beginning to transcribe a 

negative sense strand until the transcription-regulating sequence (TRS) at the 5’ end of the first 

ORF is reached. This sequence signals the RTC to fall off and jump to the complementary 

sequence at the 5’ most end of the genome and complete the transcription process by adding this 

sequence at the 5’ 3’ end of the newly synthesized negative strand. Each ORF on the 3’ end of 
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the genome contains a TRS at its 5’ end allowing this process to continue with the RTC making 

its way further and further down the genome each time until a series of nested negative-strand 

sub-genomic (sg) RNAs all containing the same anti-leader at their 3’ end have been produced. 

The sg mRNAs will be produced from the negative-strand sgRNA pieces, and the first ORF of 

each mRNA will be translated to produce the individual structural and accessory proteins (Sola 

et al. 2015; V'Kovski et al. 2021; Sawicki and Sawicki 1995; Wang, Grunewald, and Perlman 

2020; Di, McIntyre, and Brinton 2018; Sawicki and Sawicki 1998).  

 

 

Figure 2 Schematic of the coronavirus life cycle 
Schematic representation of the Coronavirus life cycle including entry and attachment, transcription, 
translation, viral genome replication, assembly, and release. Clusters of teal-colored proteins corresponds 
to the viral RTC. 
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As the cycle proceeds and structural and non-structural proteins are produced, virion 

assembly begins to occur. The main structural proteins are embedded in the ER membrane and 

hijack the secretory pathway to make their way to the ER-Golgi intermediate compartment 

(ERGIC) where virion assembly is thought to initiate (Krijnse-Locker et al. 1994; Tooze, Tooze, 

and Warren 1984; Siu et al. 2008; Ye and Hogue 2007; Stertz et al. 2007). An additional 

component of trafficking for the purpose of assembly, is the trafficking of N encapsidated viral 

genomes from sites of replication to join the structural proteins at the ERGIC membranes where 

N interacts with M to anchor the newly synthesized genomes into the newly forming virions (Siu 

et al. 2008; Hurst et al. 2005; de Haan and Rottier 2005). Upon completion of formation and 

assembly, the virions are trafficked in intracellular vesicles to the Golgi and then to the plasma 

membrane to be released by exocytosis (V'Kovski et al. 2021; Wang, Grunewald, and Perlman 

2020; Artika, Dewantari, and Wiyatno 2020; Orenstein, Banach, and Baker 2008). 

 
1.1.5 Coronavirus Induced Membrane Rearrangements  

A common facet of cytoplasmic viral replication is the formation of structures to provide 

a more ideal microenvironment for viral processes. CoVs are known to form a complex network 

of membranous structures through reorganization and recruitment host cell membranes and lipid 

metabolism that concentrate viral components and promote efficient viral replication and virion 

formation (Hagemeijer et al. 2014; Prentice et al. 2004; Reggiori, de Haan, and Molinari 2011; 

Reggiori et al. 2010; Snijder et al. 2020; V'Kovski et al. 2021; Yan et al. 2019; Heaton and 

Randall 2011). These rearrangements lead to formation of double-membrane vesicles (DMVs), 

double-membrane spherules (DMSs), convoluted membranes (CMs), and vesicle packets (VPs) 

(Figure 3) (Knoops et al. 2008; Snijder et al. 2020). In addition to providing a localized 

environment for replication and RNA synthesis to occur, these structures supply a secluded 
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environment for newly synthesized RNAs to hide from host sensors preventing activation of the 

host immune response (Artika, Dewantari, and Wiyatno 2020; Oudshoorn et al. 2016; V'Kovski 

et al. 2021; Snijder et al. 2020).  

 

Figure 3 Schematic of coronavirus induced membrane rearrangements for viral replication 
Schematic of proposed network of coronavirus induced membrane rearrangements for viral replication and 
virion production including the endoplasmic reticulum (ER), convoluted membranes (CM), double 
membrane vesicles (DMV), and vesicle packets (VP). Clusters of teal-colored proteins on the CM and 
DMVs corresponds to the viral RTC. Multicolored particles within the VPs correspond to newly assembled 
virions. 
 

While the importance and basic functionality of these structures is relatively known, the 

overall formation mechanism is still largely unknown. Previous studies have observed DMVs 

colocalizing with LC3, a protein with well-known functions in autophagy (Reggiori, de Haan, 

and Molinari 2011; Reggiori et al. 2010). However, studies on mouse hepatitis virus (MHV), a 

model betacoronavirus, have produced conflicting data on whether or not autophagy is necessary 

for replication (Prentice et al. 2004; Zhao et al. 2007). Alternate models for membrane 

remodeling implicate EDEMosomes, vesicles originating from the ER that associate with non-
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lipidated LC3 (Reggiori, de Haan, and Molinari 2011; Reggiori et al. 2010). Additionally, other 

RNA viruses that induce comparable membrane rearrangements and DMV formation usurp host 

cell lipid droplets, cellular organelles that store neutral lipids, and lipid metabolism as an 

underlying platform and energy source for replication (Cloherty et al. 2020; Heaton and Randall 

2011). The likelihood that any single one of these mechanisms acts as the basis for replication 

center formation is low; it is more likely that a combination of these processes come together to 

form structures with a unique composition ideal for providing the exact microenvironment 

needed for effective progression of the viral life cycle.  

What is known, however, is that onset of CoV induced membrane rearrangement 

coincides with interaction between early viral NSPs, namely NSP3, NSP4, and NSP6, and host 

proteins (Angelini et al. 2013; Hagemeijer et al. 2014; Knoops et al. 2008; Oudshoorn et al. 

2017; Prentice et al. 2004; Reggiori, de Haan, and Molinari 2011; Reggiori et al. 2010; Gosert et 

al. 2002; Sims, Ostermann, and Denison 2000). Ultrastructural analysis and electron microscopy 

tracking of membrane rearrangement progression revealed a reticulovesicular network with 

substantial entanglement between the various membrane structures and the ER providing a likely 

origin and predetermined path for viral RNA synthesis (Knoops et al. 2008; Snijder et al. 2020). 

Within this network there are convoluted membranes (CM) that may act as sites of polyprotein 

processing and allow replicase subunits to make their way from the ER to double membrane 

vesicles (DMVs) (Hagemeijer et al. 2014; Knoops et al. 2008; Oudshoorn et al. 2017; Snijder et 

al. 2020). DMV are spherical structures with a double membrane that are interconnected with the 

CMs that are thought to act as the primary replication centers for coronaviruses. Tracking of 

dsRNA implicates DMVs as the primary site of RNA synthesis with almost all identifiable newly 

synthesized RNA being located withing these structures (Gosert et al. 2002; Hagemeijer et al. 
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2014; Knoops et al. 2008; Snijder et al. 2020). Additionally, there are structures called double 

membrane spherules (DMSs) that seem to be an intermediate structure between CMs and DMVs. 

DMSs appear as uniform spherical structures interconnected with CMs like DMVs, but unlike 

DMVs are not fully formed structures isolated from the external environment and are dsRNA 

negative. While their exact function is unknown, DMSs are hypothesized to be the result of non-

productive replication events, an intermediary structure that eventually matures in to a fully 

functional DMV, or a secondary structure that potentially houses host factors and resources 

necessary for efficient replication (Oudshoorn et al. 2017; Knoops et al. 2008; Snijder et al. 

2020). The last identified component of the membrane network are the vesicle packets (VPs), 

which appear as a large single membrane packet surrounding single membrane vesicles that 

strongly resemble the internal components of DMVs, suggesting a progression in the formation 

of these rearrangements where DMVs come together and merge via their outer membranes 

creating a single larger compartment (Knoops et al. 2008; Goldsmith et al. 2004). VPs have been 

observed to contain both single membrane vesicles and newly forming virions, suggesting that 

these structures may also act as sites for concentrating newly synthesized genomes and structural 

proteins for assembly (Knoops et al. 2008). How this hypothesis ties into the previously 

described models of assembly and ERGIC utilization is still unclear (Krijnse-Locker et al. 1994; 

Snijder et al. 2020; Goldsmith et al. 2004; Stertz et al. 2007; Tooze, Tooze, and Warren 1984; 

Klumperman et al. 1994). 

1.1.6 Coronavirus Utilization of Fatty Acid Metabolism 

Host-cell fatty acid metabolism involves a series of interconnected pathways that take 

glucose and metabolize it into various fatty acid and lipid products (Figure 4). Fatty-acid 

metabolism begins with catalysis of acetyl-CoA carboxylation by acetyl-CoA carboxylase 
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(ACC) to produce malonyl-CoA. Acetyl-CoA and malonyl-CoA are then further metabolized 

into fatty acids, namely palmitic acid, by fatty acid synthase (FASN), which marks the beginning 

of the branching points of the pathway. The resulting fatty acids can be processed by three major 

pathways. First, palmitic acid, the direct product of FASN, can be used for protein palmitoylation 

by palmitoyl acyltransferases (PAT). Additionally, the fatty acids produced by FASN can be 

processed into acyl-CoA by long chain acyl-CoA synthetase (ACS) at which point it can either 

be translocated to the mitochondria by carnitine palmitoyltransferase 1A (CPT1A) for fatty acid 

b-oxidation and energy production, or further processed into the neutral lipid triacylglycerol 

(DAG) by a series of acyltransferase enzymes and trigger lipid droplet formation. 

 

Figure 4 Schematic of host cell fatty acid metabolism 
Simplified schematic of host-cell fatty acid metabolism showing the major steps required to process glucose 
and acetyl-CoA into downstream fatty acid and lipid products.  
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Usurpation of fatty acid metabolism for replication is a common theme amongst viruses. 

The resulting changes in fatty acid and lipid products can be used for production of receptors or 

cofactors at the cell surface, production of signaling molecules, structural and function 

components of virally induced replication centers, protein modification and proper protein 

trafficking, or as an energy source for replication (Chandrasekharan, Marginean, and Sharma-

Walia 2016; Chazal and Gerlier 2003; Heaton and Randall 2011; Hsu et al. 2010; Xu and Nagy 

2015; Yan et al. 2019). Inhibition of upstream metabolism enzymes like ACC or FASN 

decreases replication of several positive sense RNA viruses including Coxsackievirus B, 

Chickungunya virus (CHIKV), and several flaviviruses (Ammer et al. 2015; Gaunt et al. 2013; 

Hitakarun et al. 2020; Merino-Ramos et al. 2016; Tongluan et al. 2017). Fatty acid protein 

palmitoylation is also required for HCV infection, NS4B and the core protein both require 

protein palmitoylation for their function in replication and virus particle formation, respectively 

(Majeau et al. 2009; Yu et al. 2006). Fatty acid b-oxidation in the mitochondria is upregulated by 

Dengue virus (DENV) infection to process fatty acids produced from lipid droplet catabolism 

into energy for replication (Heaton and Randall 2011). Conversely, the production of neutral 

lipids and lipid droplets by enzymes like ACS or diglyceride acyltransferases (DGATs), has been 

shown to be important for rotavirus (RV) and hepatitis C virus (HCV) replication, reflecting a 

dependence of these viruses on lipid droplets for replication center formation (Cheung et al. 

2010; Kim et al. 2012; Liefhebber et al. 2014).  

Coronaviruses are no exception to this pattern of fatty acid utilization. During infection, 

coronaviruses modify host-cell lipid metabolism to upregulate and downregulate specific lipid 

populations based on viral necessity (Yan et al. 2019). Among the upregulated populations were 

fatty acids. While the use of fatty acids by coronavirus during infection is still largely 
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uncharacterized, there is evidence of fatty acid and neutral lipid involvement in proper protein 

function, replication, and pathogenesis. Protein palmitoylation of the spike proteins of MHV and 

SARS-CoV have also been shown to be critical to virion assembly, cell-cell fusion, and 

infectivity (McBride and Machamer 2010; Petit et al. 2007; Thorp et al. 2006). Palmitoylation of 

coronavirus envelope (E) proteins has also been described and thought to be responsible for the 

ability of E to alter the morphology of vesicle membranes for assembly and release (Boscarino et 

al. 2008; Tseng et al. 2014). In addition to protein palmitoylation, neutral lipids and lipid 

droplets have recently been implicated as a critical components for SARS-CoV-2 replication. 

Lipid droplets and neutral lipids were found to closely co-localize with viral particles and newly 

synthesized RNA in infected cells, and inhibition of DGAT1, a terminal enzyme in lipid TAG 

production and lipid droplet formation, resulted in a significant reduction in viral replication, 

suggesting a potential role for lipid droplets in replication and/or replication center formation 

(Dias et al. 2020). 

The extensive involvement of fatty acid metabolism in viral replication, combined with 

the little that is known about the necessity of fatty acids for coronavirus replication, provides a 

rationale for complete investigation into additional enzymes and products of fatty acid 

metabolism pathways and how they contribute to coronavirus replication. Chapter one of this 

dissertation will begin to address this.  

1.1.7 Coronavirus Recruitment of Autophagy Machinery 

VPS34, a class III phosphoinositol-3 kinase (PI3K) that phosphorylates 

phosphatydlinositol-3 (PI3) into phosphatydlinositol-3-phosphate (PI3P), and plays roles in 

autophagy, endosomal trafficking, and other aspects of membrane biology (Figure 5). VPS34 

integrates into two separate complexes, complex I and complex II, that vary by a single protein 
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that determines the localization and activities of VPS34 (Ohashi et al. 2020). When associated 

with complex I, which contains VPS15, Beclin1, and ATG14L, VPS34 functions in cellular 

macroautophagy and the turnover and degradation of cellular components. VPS34 initiates 

autophagy by phosphorylating PI3 at the ER and recruiting additional proteins that work together 

with VPS34 to activate autophagosomal initiation and lipidation of LC3 for the progression of 

cellular autophagy flux and lysosomal degradation of the autophagosome (Jaber and Zong 2013; 

Backer 2016; Ohashi et al. 2020). Separate from autophagy, VPS34 associates with complex II, 

which contains VPS15, Beclin1, and UVRAG, and localizes to endocytic vesicles for vesicular 

trafficking and sorting. VPS34 is recruited to endosomes by VPS15 binding to Rab5 in early 

endosomes and uses its kinase activity to produce PI3P to recruit additional factors, like Rab7, 

involved in maturation to a late endosome. Additional phosphorylation of phosphoinositol-3 

allows for recruitment of the endosomal sorting complex required for transport (ESCRT) 

proteins for the formation of multivesicular bodies or proper functioning of the Retromer 

complex for endosome-to-Golgi transport (Backer 2016; Ohashi et al. 2020). 

Regardless of which complex it is associated with, VPS34 activity has been implicated in 

the coronavirus lifecycle for recruitment of factors for replication or DMV formation (Feng et al. 

2019; Su et al. 2011; Wang et al. 2021). For members of the positive-sense RNA tombusviruses 

(TBSV), VPS34 has been shown to be recruited to replication compartments providing increased 

levels of phosphoinositol-3-phosphate, which allows for the recruitment of Rab5-positive early 

endosomes to provide phosphatidylethanolamine-enriched membranes at sites of viral replication 

and for replication center formation (Feng et al. 2019). Additionally, HCV protein NS4b uses 

VPS34 to induce autophagy, possibly for initiation of DMV formation, but the exact mechanism 

is not yet fully characterized (Su et al. 2011; Romero-Brey et al. 2012).  
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Figure 5 Schematic of VPS34 function 
Simplified schematic of normal VPS34 function including the complex I autophagy pathway and complex 
II endocytic trafficking pathway. 
 

For coronaviruses, multiple studies have observed DMVs colocalizing with LC3, a 

protein implicated in autophagy and autophagosome membranes, but the exact mechanism of 

recruitment has yet to be fully linked to autophagy and could be the result of alternate VPS34 

pathways or alternate mechanisms all together (Reggiori, de Haan, and Molinari 2011; Reggiori 

et al. 2010; de Haan, Molinari, and Reggiori 2010). However, studies on mouse hepatitis virus 

(MHV), a common model betacoronavirus, have found conflicting data on whether or not 

autophagy is necessary for replication depending on the cell line used. Embryonic stem cells 

lacking ATG5, an essential autophagy protein involved in autophagosome precursor formation, 

appeared to lack proper DMV formation; however, in bone marrow derived macrophages and 
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mouse embryonic fibroblasts ATG5 was found to have no effect on replication (Prentice et al. 

2004; Zhao et al. 2007).  

More recent studies suggest that coronaviruses interfere with autophagy, and that 

activation of autophagy can inhibit replication of various coronaviruses (Gassen et al. 2019; Guo 

et al. 2016; Schneider et al. 2021). In transmissible gastroenteritis virus (TGEV) infected cells it 

was found that viral replication induced autophagy flux and increased the levels of lipidated LC3 

and vesicles consistent with autophagy, and compound inhibition of autophagy resulted in an 

enhancement in replication (Guo et al. 2016). Consistent with these data, it was found that 

MERS-CoV reduces Beclin1 levels and in turn blocks autophagosome-lysosome fusion. 

Inhibition of S-phase kinase-associated protein 2 (SKP2), a negative regulator of Beclin1 and 

autophagy, counteracts this process and enhances autophagic flux resulting in reduced replication 

of MERS-CoV (Gassen et al. 2019). Conversely, host protein TMEM41B, which is also 

implicated in autophagy, has been demonstrated to facilitate SARS-CoV-2 growth, suggesting 

that some coronaviruses may also usurp some autophagy functions for pro-viral function 

(Schneider et al. 2021).  

1.1.8 Current strategies in antiviral development  

The current SARS-CoV-2 pandemic has been continuing on for close to two years now 

and is still causing major concern in many areas of the world. The geographic reach and duration 

of this pandemic has made the need for anti-coronavirus antivirals very apparent. When major 

public health events like this occur and new viruses emerge, it is common to implement high 

throughput drug repurposing screens to identify potential FDA approved antivirals that can be 

quickly applied to the ongoing situation (Pizzorno et al. 2019; Garcia-Serradilla, Risco, and 

Pacheco 2019; Lundstrom 2020). To date, this has been the major strategy for coronavirus 
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outbreaks with treatment for SARS, MERS, and SARS-CoV-2 consisting of repurposed broad 

spectrum antiviral treatments including exogenous IFN-a/b, protease inhibitors like Lopinavir 

and Ritonavir, and nucleoside analogs like Remdesivir and Ribavirin (Chong et al. 2015; 

Sheahan et al. 2020; Wu, Wu, and Lai 2020; Pizzorno et al. 2019; Gordon, Tchesnokov, et al. 

2020). The aforementioned treatments have been found to be useful and effective in many cases, 

they are not the only viable option.  

A potential strategy to identify additional drugs for repurposing, or even novel 

therapeutic options, is determining the host proteins and pathways involved in the virus life cycle 

and using small molecule inhibitors against these components to prevent propagation of the 

virus. There have been several screens employing this strategy that have led to proposed 

potential therapeutic options, such as drugs targeting entry by inhibiting angiotensin converting 

enzyme 2 (ACE2), the specific receptor for SARS-CoV-2, disrupting cap dependent translation 

by targeting eukaryotic initiation factor 4a (eIF4a), and sigma nonopioid receptor 1 (SIGMAR1) 

that is thought to act through various mechanisms that have yet to be confirmed (Gordon, Hiatt, 

et al. 2020; Schneider et al. 2021; Gordon, Jang, et al. 2020; Santos et al. 2020). Another screen 

looked at the presentation of COVID-19 in patients and identified overlap between the 

inflammatory response generated by severe virus-induced disease and neoplasia and sought to 

determine whether or not there were cancer treatments targeting chronic inflammation that could 

be used to inhibit replication. Currently there are 14 classes of drugs used in cancer treatment 

that are being tested, or have been tested, in patients with COVID-19 (Saini et al. 2020). There is 

also work being done to determine if lipid metabolism pathways are viable candidates for 

targeting coronavirus infection with an emphasis on disrupting the structural involvement of lipid 
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metabolism for viral entry, assembly, and egress (Dias et al. 2020; Abu-Farha et al. 2020; 

Schneider et al. 2021; Chen et al. 2018).    

While there is a good amount of research being done to work towards new antivirals 

effective against coronaviruses, there are still many possibilities that have yet to be pursued. A 

continued effort to better understand the viral lifecycle and viral usurpation of host-cell 

machinery will help to uncover additional viable targets for treatment. In chapter one of this 

dissertation, we will discuss the involvement of fatty acid metabolism and VPS34 in coronavirus 

replication in the context of SARS-CoV-2 infection, and attempt to pinpoint specific steps of 

these pathways that are critical for virus propagation. The results may suggest host pathways 

with therapeutic potential for SARS-CoV-2 and other coronaviruses.  

1.2 Filoviruses 

1.2.1 Filovirus Taxonomy 

Filoviridae is a family of zoonotic viruses within the order Mononegavirales (Maes et al. 

2019; Kuhn et al. 2019). The family is divided into six different genera based on genome 

sequence similarity (Table 2). The Ebolavirus, Marburgvirus, Cuevavirus, Dianlovirus, 

Striavirus, and Thamnovirus genera differ between 55-58% at the nucleotide level, with species 

divergence within the genera being less than 30% (Bào et al. 2017). The genus most prevalent in 

causing human disease, Ebolavirus, contains six species: Bombali ebolavirus (BOMV), 

Bundibugyo ebolavirus (BDBV), Reston ebolavirus (RESTV), Sudan ebolavirus (SUDV), Tai 

Forest ebolavirus (TAFV), Zaire ebolavirus (EBOV) (Kuhn et al. 2019). Marburgvirus, the 

second genus known to contain human disease-causing viruses, contains one species, Marburg 

marburgvirus, that is divided into two distinct lineages Marburg marburgvirus (MARV) and 

Ravn marburgvirus (RAVV) (Towner et al. 2006; Kuhn et al. 2019; Brauburger, Hume, 
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Mühlberger, et al. 2012). The additional four genera were identified through RNA sequencing of 

samples from bats and fish from which viral RNA, but not infectious virus, was isolated and 

identified (Yang et al. 2019; Shi et al. 2018; Negredo et al. 2011; Kemenesi et al. 2018; Hume 

and Mühlberger 2019). Genus cuevavirus contains a single species, Lloviu cuevavirus (LLOV), 

the RNA of which was isolated from a colony of Schreiber’s bats in Spain that became of 

interest after a large portion of the colony had died (Negredo et al. 2011; Kemenesi et al. 2018). 

Similarly, Měnglà dianlovirus (MLAV), the only species of the genus Dianlovirus, was 

discovered when its RNA was isolated from a single Rousettus bat in China in 2018 (Yang et al. 

2019). The genera striavirus and thamnovirus, containing Xīlăng striavirus (XILV) and 

Huángjiāo thamnovirus (HUJV), respectively, were identified in China after being isolated from 

fish (Shi et al. 2018; Negredo et al. 2011).  

Table 2. Filovirus phylogeny including order, family, genus, and species. 
Order Family Genus Species 

Mononegavirales Filoviridae 

Ebolavirus 

Bombali virus (BOMV) 
Bundibugyo virus (BDBV) 

Reston virus (RESTV) 
Sundan virus (SUDV) 

Tai Forest virus (TAFV) 
Zaire virus (EBOV) 

  

Marburgvirus Marburg virus (MARV) 
Ravn virus (RAVV) 

  

Cuevavirus Lloviu virus (LLOV) 
  

Dianlovirus Měnglà virus (MLAV) 
  

Striavirus Xīlăng virus (XILV) 
  

Thamnovirus Huángjiāo virus (HUJV) 
 
1.2.2 Filovirus Outbreaks 

The first reported filovirus outbreak occurred in 1967 when laboratory workers in 

Germany and Yugoslavia were isolating kidney cells for culturing poliomyelitis vaccine strains 

contracted an unknown infectious agent. The kidney cells were from infected African green 

monkeys imported from Uganda (Smith et al. 1967; Brauburger, Hume, Mühlberger, et al. 2012). 
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The outbreak resulted in a total of 32 cases and seven fatalities (Smith et al. 1967; Brauburger, 

Hume, Mühlberger, et al. 2012). In the months following the outbreak, the virus become the first 

filovirus to be isolated and characterized, and it would subsequently be named Marburg 

marburgvirus after the city in Germany with the highest prevalence of disease. Following the 

initial identification of MARV, several small outbreaks occurred sporadically in Africa, each 

affecting only a small number of people (Table 3). This pattern of small outbreaks was 

interrupted in 1998, and again in 2004, when MARV emerged in the Democratic Republic of 

Congo (DRC) and Angola, respectively. These two outbreaks caused a total of 406 cases with 

respective fatality rates of 83% and 90%, revealing the public health threat of Marburg virus 

(WHO 2018; Languon and Quaye 2019; CDC 2014; Brauburger, Hume, Mühlberger, et al. 

2012). In the last fifteen years there have been a handful of outbreaks, but they have all been 

small and minimally consequential from a global public health perspective (WHO 2018; 

Languon and Quaye 2019; CDC 2014).  

Table 3. Documented Marburgvirus outbreaks since the first occurrence 

Year Lineage Country Number of 
cases 

Number of 
fatalities 

Case fatality 
(%) 

1967 MARV Germany 30 7 23.3% 
  Yugoslavia 2 0 0% 
1975 MARV South Africa 1 3 33% 
1980 MARV Kenya 1 2 50% 
1987 RAVV Kenya 1 1 100% 
1988 MARV Russia 1 1 100% 
1998-2000 MARV/RAVV DRC 154 128 83% 
2004-2005 MARV Angola 252 227 90% 
2007 MARV/RAVV Uganda 4 1 25% 
2008 MARV USA 1 0 0% 
2008 MARV Netherlands 1 1 100% 
2012 MARV Uganda 15 4 27% 
2014 MARV Uganda 1 1 100% 
2017 MARV Uganda 3 3 100% 

Table adapted from (Brauburger, Hume, Muhlberger, et al. 2012; CDC 2014; Languon and Quaye 2019; 
WHO 2018) 
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 In addition to outbreaks caused by members of the Marburgvirus genus, members of the 

Ebolavirus genus have been of great significance with regard to public health. 1976 marked the 

first emergence of both Zaire ebolavirus and Sudan ebolavirus, when simultaneous outbreaks 

occurred in the DRC and Sudan, respectively (Pattyn et al. 1977; Languon and Quaye 2019; 

Bowen et al. 1977). Both outbreaks were suspected to have animal origin, coming from 

bushmeat purchased on an excursion and bats hanging in a cotton factory for EBOV and SUDV, 

respectively (Languon and Quaye 2019). Since the first occurrence of Ebola virus disease 

(EVD), new cases have been identified every year or two, with less than one percent of cases 

occurring outside of African countries (Table 4). Outbreaks resulted in anywhere from a few to a 

few hundred cases with death rates between 30-90% (WHO 2021a; Languon and Quaye 2019; 

CDC 2021b). This pattern continued until 2013 when an outbreak started in Guinea and quickly 

spread to other parts of West Africa and beyond. The epidemic became the largest Ebola 

outbreak in history causing 28,646 confirmed cases and 11,323 deaths with only a fraction of a 

percentage of cases and deaths occurring outside of West Africa (Languon and Quaye 2019; 

Jacob et al. 2020). This outbreak marked a critical turning point in the history of Ebola, not only 

because of the scale of the outbreak, but also because it provided new insights into the ability of 

Ebola to establish latent infection. Since the conclusion of the West Africa outbreak in 2016 

there have been six more outbreaks, with two being of particular importance. First, the tenth 

outbreak in the Democratic Republic of Congo (DRC) which was the largest occurrence in that 

region and the second largest Ebola outbreak overall. It began in August 2018, and despite global 

best efforts to contain the virus lasted until June 2020 resulting in an outbreak affecting 

thousands of people and a case fatality rate of 66% (Languon and Quaye 2019; CDC 2021b).  

Second, the recent outbreaks in DRC and Guinea, which have been identified by sequencing to 
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be tied to the 2013-2016 outbreak and the result of recurrence due to latent infection 

(Kupferschmidt 2021; CDC 2021b, 2021a). 

Table 4. Documented Ebolavirus outbreaks since the first occurrence 

Year Species Country Number of 
cases 

Number of 
fatalities  

Case fatality 
(%) 

1976 SUDV Sudan 284 151 53% 
 EBOV DRC 318 280 88% 
 SUDV England 1 0 0% 
1977 EBOV DRC 1 1 100% 
1979 SUDV Sudan 34 22 65% 
1989-1990 RESTV Philippines/USA 7 0 0% 
1992 RESTV Italy 0 0 0% 
1994 EBOV Gabon 52 31 60% 
 TAFV Côte d Ivoire 1 0 0% 
1995 EBOV DRC 315 254 81% 
1996 EBOV Gabon 31 21 68% 
 EBOV Gabon 60 45 75% 
 EBOV  South Africa 1 1 100% 
 RESTV USA 0 0 0% 
 RESTV Philippines 0 0 0% 
 EBOV Russia 1 1 100% 
2000-2001 SUDV Uganda 425 224 53% 
2001-2002 EBOV Gabon 65 53 82% 
 EBOV Republic of Congo 59 44 75% 
2002-2003 EBOV Republic of Congo 143 128 90% 
2003 EBOV Republic of Congo 35 29 83% 
2004 SUDV Sudan 17 7 41% 
 EBOV Russia 1 1 100% 
2005 EBOV Republic of Congo 12 10 83% 
2007 EBOV DRC 264 187 71% 
2007-2008 BDBV Uganda 131 42 32% 
2008 RESTV Philippines 6 0 0% 
2008-2009 EBOV DRC 32 15 47% 
2011 SUDV Uganda 1 1 100% 
2012 SUDV Uganda 11 4 36% 
 BDBV DRC 38 13 34% 
 SUDV Uganda 6 3 50% 
2013-2016 EBOV Multiple Countries 28,646 11,323 40% 
2014 EBOV DRC 69 49 71% 
2017 EBOV DRC 8 4 50% 
2018 EBOV DRC 54 33 61% 
 EBOV DRC, Uganda 3,470 2,287 66% 
2020 EBOV DRC 130 55 42% 
2021 EBOV DRC 12 6 50% 
2021 EBOV Guinea 23 12 52% 

Table is adapted from (CDC 2021b; Languon and Quaye 2019; WHO 2021a) 
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1.2.3 Filovirus Structure and Proteins 

Filoviruses are enveloped, non-segmented, negative-sense viruses with encapsidated 

genomes around 19 kilobases that get packaged into filamentous virions of pleomorphic nature 

(Beniac et al. 2012; Bharat et al. 2011; Noda et al. 2006; Noda et al. 2010; Sugita et al. 2018; 

Wan et al. 2017; Welsch et al. 2010). The particle envelope is derived from host cell membranes 

and contains the encapsidated genome that is associated with the nucleocapsid complex (NC) 

containing the nucleoprotein (NP) directly coating the ssRNA genome and the four viral proteins 

(VP) required for initiation of the viral lifecycle in newly infected cells: VP24, VP35, VP30, and 

the RdRp large protein (L). The virion membrane itself is decorated with the viral matrix protein 

(VP40) on the inside and the viral glycoprotein (GP) on the surface (Figure 6B) (Becker et al. 

1998; Bharat et al. 2012; Bharat et al. 2011; Booth, Rabb, and Beniac 2013; Noda et al. 2006; 

Hofmann-Winkler, Kaup, and Pohlmann 2012; Kuhn et al. 2006; Manicassamy et al. 2007; 

Olejnik et al. 2011).  

The genome contains seven open reading frames that can produce up to ten proteins 

depending on the virus (Figure 6A) (Elliott, Kiley, and McCormick 1985; Emanuel, Marzi, and 

Feldmann 2018; Feldmann et al. 1992; Hume and Mühlberger 2019; Kirchdoerfer et al. 2017; 

Sanchez et al. 1993; Sanchez et al. 1989). The filovirus proteins are multifunctional and partake 

in interactions between themselves and other viral proteins and host proteins to carry out their 

various functions. 
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Figure 6 Genome organization and morphology of filoviruses 
Schematic representation of Filovirus genome organization (A). Schematic representation of the Filovirus 
virion and structural protein organization (B). 
  

 There are two major complexes formed by viral protein interactions for the purposes of 

replication and assembly. NP, VP35, VP30, and the RdRp L protein make up the replication 

transcription complex (RTC) and directly function in genome replication and transcription of 

mRNAs (Mühlberger et al. 1999; Mühlberger et al. 1998; Enterlein et al. 2006). The 

nucleocapsid complex (NC) contains NP, VP35, VP24, and L with the first three being required 

for virion formation and transport to the plasma membrane for budding (Bharat et al. 2012; 

Bharat et al. 2011; Noda et al. 2010; Takamatsu, Kolesnikova, and Becker 2018; Wan et al. 

2017).  

 In addition to forming complexes for replication and assembly the aforementioned 

proteins have further functions in creating an ideal environment for the progression of infection. 

NP has been shown to be necessary and sufficient for the formation of perinuclearly localized 

punctate structures that act as the sites of viral replication that encompass RTC components, host 

proteins, and newly synthesized RNA (Baskerville et al. 1985; Hoenen et al. 2012; Miyake et al. 
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2020; Nanbo et al. 2013). The VP35 protein is a critical factor in innate immune antagonism and 

engages in a multitude of interactions with host factors to surpass host responses to viral 

infection (Messaoudi, Amarasinghe, and Basler 2015; Olejnik, Hume, Leung, Amarasinghe, 

Basler, and Mühlberger 2017; Basler and Amarasinghe 2009). Complementing its role in the 

RTC, VP30 has been shown to participate in interactions regulating replication and the 

phosphorylation status of VP30 is important to these functions (Batra et al. 2018; Dong et al. 

2020; Nanbo et al. 2013; Xu et al. 2017). VP40 and VP24 function as the two matrix proteins, 

and VP40 itself is the major constituent required for virion formation and budding (Martin et al. 

2016; Kolesnikova et al. 2002; Stahelin 2014; Timmins et al. 2001). In addition to their role as 

matrix proteins, the VP40 and VP24 proteins of various filovirus family members function in 

blocking components of the IFN signaling pathway (Feagins and Basler 2015b; Reid et al. 2006; 

Valmas and Basler 2011b; Messaoudi, Amarasinghe, and Basler 2015; Olejnik, Hume, Leung, 

Amarasinghe, Basler, and Mühlberger 2017). Uniquely, the VP24 of MARV can also activate 

the host cytoprotective antioxidant response as a means of prolonging the lifespan of host-cells 

(Edwards et al. 2014; Page et al. 2014). 

 Lastly, the viral glycoprotein (GP), is a type I transmembrane protein present on the 

surface of viral particles that acts as the major determinant of cell tropism and is the major 

antigenic determinant of the virus (Carette et al. 2011; Chandran et al. 2005; Hofmann-Winkler, 

Kaup, and Pohlmann 2012; Martin et al. 2016; Takada et al. 1997; Wool-Lewis and Bates 1998; 

Becquart et al. 2014; Dahlke et al. 2017). Depending on the species, filoviruses either produce a 

single membrane bound version of GP or utilize editing of the GP open reading frame to produce 

membrane bound GP, as well as soluble GP (sGP), that acts as a decoy substrate for GP specific 
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antibodies, and small soluble GP (ssGP) with unknown function (He, Melnik, et al. 2017; Mohan 

et al. 2012; Sanchez et al. 1996).  

 
1.2.4 Filovirus Replication and Transcription 

The viral life cycle proceeds as depicted in Figure 7. After exposure to virus, membrane 

bound GP on the outside of the virion will contact and bind the host cell receptor triggering entry 

through micropinocytosis and fusion of the viral membrane and host endosomal membrane to 

allow for release of the genome into the cytoplasm (Aleksandrowicz et al. 2011; Carette et al. 

2011; Chandran et al. 2005; Hofmann-Winkler, Kaup, and Pohlmann 2012; Martin, Canard, and 

Decroly 2017; Wool-Lewis and Bates 1998). Upon release, the negative-sense genome acts as 

the template for the accompanying RTC proteins to carry out primary transcription, producing 

capped polyadenylated mRNAs that will be translated into proteins using the host translation 

machinery (Dolnik et al. 2010; Mühlberger 2007; Whelan, Barr, and Wertz 2004). The 

increasing pool of viral proteins within the cell allows production of positive-sense antigenomes 

to be copied into more negative-sense genomes that will be packaged into new virions. The 

mechanism involved in the switch between these two processes is not completely understood but 

is thought to be tightly regulated and dependent on the concentration of NP within the cell 

(Dolnik et al. 2010; Mühlberger 2007; Whelan, Barr, and Wertz 2004). The process of viral 

replication occurs within cytoplasmic inclusion bodies that are postulated to act to concentrate 

replication machinery and sequester it from the external cellular environment (Baskerville et al. 

1985; Hoenen et al. 2012; Miyake et al. 2020; Nanbo et al. 2013). As the cycle continues, 

producing new proteins and genomes, interactions with VP40 will trigger formation of new 

nucleocapsids that will assemble and bud into virions and be released from the host cell 

membrane (Bharat et al. 2012; Dolnik et al. 2010; Harty et al. 2000; Jasenosky et al. 2001a; 
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Kolesnikova et al. 2004; Kolesnikova et al. 2002; Noda et al. 2002; Noda et al. 2007b; Timmins 

et al. 2001; Wu, Jin, et al. 2020; Licata et al. 2003; Yasuda et al. 2003). 

 

Figure 7 Schematic of the filovirus life cycle 
Schematic representation of the Filovirus life cycle including entry and attachment, transcription, 
translation, viral genome replication, assembly, and release.  
 
1.2.5 Disruption of Signaling Pathways to Enhance Filoviral Infection 

1.2.5.1 Type I interferon production and signaling pathway  

Type I interferons like IFN-a and IFN-b are produced as a cellular defense mechanism in 

response to pathogens. The pathway functions as a cycle; the production side of the pathway 

involves pathogen detection and production of IFN, which then stimulates the signaling side of 

the pathway leading to the upregulation if IFN-stimulated genes (ISGs), in turn producing more 

IFNs, and this continues until the threat is neutralized (Figure 8) (Majzoub, Wrensch, and 

Baumert 2019; McNab et al. 2015; Pestka, Krause, and Walter 2004; Secombes and Zou 2017).  
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The production of type I IFNs is triggered by the recognition of pathogens by host-cell 

pattern recognition receptors (PRRs) that include C-type lectin receptors (CLRs), nucleotide-

binding oligomerization domain-like receptors (NLRs), retinoic acid-inducible gene I (RIG-I)-

like receptors (RLRs), toll-like receptors (TLRs), and DNA sensors. Each type of receptor is 

capable of distinguishing between host and non-host material through the recognition of motifs 

commonly associated with non-host invaders called pathogen-associated molecular patterns 

(PAMPs). Pathogen recognition by a PRR leads to complex signaling cascades involving an 

array of signaling proteins and kinases that ultimately result in the translocation of transcription 

factors to the nucleus for the activation of the IFN-a/b promotor (Amarante-Mendes et al. 2018; 

Chow, Gale, and Loo 2018; Honda et al. 2005; Hopfner and Hornung 2020; Kato, Takahasi, and 

Fujita 2011; Okamoto et al. 2017; Panne, Maniatis, and Harrison 2007; Takeuchi and Akira 

2010). 

Activation of the IFNa/b promotor results in production and secretion of IFNa/b that can 

be recognized by the interferon receptor (IFNAR) on the producing cell and surrounding cells to 

initiate IFN signaling and the antimicrobial response to eliminate infection within the producing 

cell and prevent progression of infection in neighboring cells. The IFNAR receptors are coupled 

to two well characterized signaling molecules: janus kinase (Jak1) and tyrosine kinase 2 (Tyk2) 

(Piehler et al. 2012). The binding of type I IFNs to the receptor causes phosphorylation of Jak1 

and Tyk2, initiating a phosphorylation signaling cascade that recruits signal transducer and 

activator of transcription (STAT) proteins. STAT1 and STAT2 are phosphorylated and come 

together with interferon regulatory factor 9 (IRF9) to form the interferon-stimulated gene factor 

3 (ISGF3) complex that is translocated to the nucleus by the karyopherin alpha (KPNA) nuclear 

transport proteins. Once inside the nucleus the complex will bind to the interferon response 
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elements (ISREs) and promote production of large numbers of ISGs that work together to 

combat the initial infection that triggered the IFN response (Au et al. 1995; Darnell, Kerr, and 

Stark 1994; McBride and Reich 2003; Mogensen 2019; Schneider, Chevillotte, and Rice 2014; 

Schoggins 2014; Sekimoto et al. 1997).   

Activation of the IFN response by non-segmented negative-sense RNA (NNS RNA) 

viruses, including filoviruses, is well characterized and involves triggering two main PRRs 

(Chow, Gale, and Loo 2018; Messaoudi, Amarasinghe, and Basler 2015; Okamoto et al. 2017). 

Retinoic-acid inducible gene I (RIG-I) preferentially recognizes 5’-triphosphates (5’ppp) of short 

segments of double and single stranded RNAs and melanoma differentiation association gene 5 

(MDA5) senses longer segments of double stranded RNA. When a cell is infected by a NNS 

RNA virus, RIG-I will recognize the viral PAMP and become activated. Once active, RIG-I 

travels to the mitochondria and interacts with mitochondrial antiviral-signaling protein (MAVS) 

to recruit the additional signaling factors TANK binding kinase 1 (TBK1) and inhibitor of 

nuclear factor kappa-B kinase subunit epsilon (IKKe). The result of these interaction is the 

phosphorylation, dimerization, and nuclear translocation of interferon regulatory factor (IRF)-3 

or IRF-7 to stimulate the IFNa/b promotor (Figure 8) (Chow, Gale, and Loo 2018; Messaoudi, 

Amarasinghe, and Basler 2015; Okamoto et al. 2017; Ren et al. 2020).  

1.2.5.1 Filovirus antagonism of type I interferon 

Filoviruses are known to counteract the host IFN response through unique interactions 

made by VP35, VP40, and VP24 (Basler and Amarasinghe 2009; Basler et al. 2000; Edwards et 

al. 2016b; Olejnik, Hume, Leung, Amarasinghe, Basler, and Muhlberger 2017). VP35 is the 

main multifunction IFN antagonist that takes part in numerous interactions to prevent activation 

of IFN production. First, VP35 acts as a dsRNA binding protein and is thought to sequester viral 
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RNA away from recognition by RIG-I through its dsRNA binding capabilities (Albariño et al. 

2015; Bale et al. 2013b; Bale et al. 2012; Cardenas et al. 2006; Edwards et al. 2016b; Hartman, 

Towner, and Nichol 2004; Leung et al. 2009b; Leung, Prins, et al. 2010; Leung, Shabman, et al. 

2010; Ramanan et al. 2012). Additionally, VP35 interacts with protein activator of interferon 

induced protein (PACT), a dsRNA binding protein that interacts with, and facilitates activation 

of, RIG-I; VP35 prevents RIG-I activation through disruption of this interaction (Cardenas et al. 

2006; Luthra et al. 2013). VP35 also functions as a decoy substrate for IRF3 phosphorylation by 

TBK1 and IKKe (Basler et al. 2003; Prins, Cardenas, and Basler 2009). All of these points of 

inhibition by VP35 result in a loss of IRF3 phosphorylation and nuclear translocation, preventing 

the activation of the IFN promotor.  

 

Figure 8 Schematic of the host-cell IFN signaling pathway in response to viral stimulus 
Schematic representation of the virally induced type I IFN response including both production and 
signaling.   
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 In addition to the direct antagonism of the RIG-I pathway, VP35 has the ability to prevent 

phosphorylation and activation of protein kinase R (PKR) on the signaling side of the pathway; 

however, the exact mechanism of antagonism is not known. There is some speculation that this 

inhibition could be tied to VP35s ability to disrupt stress granule formation and downstream 

translational arrest by preventing the PKR dependent activation of eukaryotic initiation factor 2 

alpha (eIF2a) (Nelson et al. 2016; Le Sage et al. 2017; Feng et al. 2007b; Hume and Muhlberger 

2018; Williams et al. 2020).  

 For MARV and MLAV, the VP40 protein has been found to be a potent inhibitor of 

exogenous IFN and Jak1 overexpression induced STAT1 phosphorylation on the signaling side 

of the IFN pathway. The blocking of phosphorylation prevents formation and nuclear 

translocation of the ISGF3 complex, preventing ISG production. The mechanism by which the 

phosphorylation is blocked has yet to be fully elucidated but is suspected to occur upstream of 

Jak1 phosphorylation (Guito et al. 2017; Valmas and Basler 2011b; Valmas et al. 2010; Williams 

et al. 2020).  

 Lastly, EBOV VP24 has been shown to interact with KPNA1, KPNA5, and KPNA6. The 

nuclear translocation of phosphorylated STAT1 requires interaction with KPNA, and the binding 

of VP24 to KPNA family members disrupts this interaction and prevents translocation. Without 

the translocation of STAT1 to the nucleus, ISG production cannot be activated, and IFN 

signaling cannot occur (Darnell, Kerr, and Stark 1994; Reid et al. 2006; Reid et al. 2007; 

Sekimoto et al. 1997; Xu et al. 2014). LLOV VP24 also inhibits IFN signaling, and while the 

mechanism has not been fully confirmed, it is thought to act in a similar manner (Feagins and 

Basler 2015b).  
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The details of filovirus innate immune antagonism as it applies to the newly identified 

MLAV will be discussed in chapter two. 

1.2.5.2 Nrf2 dependent antioxidant response 

As a means of counteracting oxidative stress, host-cells use a cytoprotective antioxidant 

response that is turned on upon activation of the antioxidant response element (ARE) by the 

transcription factor nuclear factor erythroid-2 related factor 2 (Nrf2). During normal cellular 

homeostasis, Kelch-like ECH-associated protein 1 (Keap1) interacts with and ubiquitinates Nrf2 

to tag it for degradation and prevent it from making its way to the nucleus to activate an ARE 

response. If the cell is exposed to oxidative stress, this interaction is disrupted and Nrf2 

accumulates and moves into the nucleus to activate the ARE and stimulate production of 

antioxidant genes for cellular protection (Figure 9) (Baird and Dinkova-Kostova 2011; Jain, 

Bloom, and Jaiswal 2005; Stenvinkel et al. 2020).  

While MARV VP24 does not have an identified role in IFN antagonism, it has been 

shown to interact with Keap1 through a short sequence specific domain called the K-loop. VP24 

induced disruption of the Keap1-Nrf2 interaction triggers the activation of the cytoprotective 

antioxidant response. This interaction is thought to be a pro-viral function of MARV VP24 to 

increase cell health and during replication (Edwards et al. 2014; Page et al. 2014; Williams et al. 

2020).  

In chapter two we will revisit the VP24-Keap1 interaction in the context on MLAV and 

further confirm the necessity of the K-loop sequence for this pro-viral function. 
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Figure 9 Schematic of the ARE antioxidant response pathway 
Schematic representation of the Nrf2 dependent antioxidant response and its progression from normal 
homeostatic state to its active state. 
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2 INHIBITORS OF VPS34 AND FATTY-ACID METABOLISM SUPPRESS SARS-

COV-2 REPLICATION 

Copyright © 2021, [Cell Reports, DOI: 10.1016/j.celrep.2021.109479] 
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2.2 Abstract 

Coronaviruses rely on host membranes for entry, establishment of replication centers, and 

egress. Compounds targeting cellular membrane biology and lipid biosynthetic pathways have 

previously shown promise as antivirals and are actively being pursued as treatments for other 

conditions. Here, we tested small molecule inhibitors that target the PI3 kinase VPS34 or fatty 

acid metabolism for anti-SARS-CoV-2 activity. Our studies determined compounds targeting 

VPS34 are potent SARS-CoV-2 inhibitors. Mechanistic studies with compounds targeting 

multiple steps up- and downstream of fatty acid synthase (FASN) identified the importance of 

triacylglycerol production and protein palmitoylation as requirements for efficient viral RNA 

synthesis and infectious virus production. Further, FASN knockout results in significantly 

impaired SARS-CoV-2 replication that can be rescued with fatty acid supplementation. 

Together, these studies clarify roles for VPS34 and fatty acid metabolism in SARS-CoV-2 

replication and identify promising avenues for the development of novel countermeasures 

against SARS-CoV-2. 
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2.3 Introduction 

SARS-CoV-2, the causative agent of COVID-19, is an enveloped positive-sense RNA 

virus of the Betacoronavirus genus (Holshue et al. 2020; Lundstrom 2020; Zhu et al. 2020). 

Since its emergence, SARS-CoV-2 is responsible for the most significant pandemic in the last 

century and has resulted in worldwide social and economic disruption. The severity of the 

pandemic has prompted urgent efforts to understand the requirements of the viral life cycle and 

identify potential therapeutic strategies (Bouhaddou et al. 2020; Gordon, Jang, et al. 2020; 

Hoffmann et al. 2020; Wang, Wang, et al. 2020). Repurposing drugs developed for other 

diseases and conditions may provide a shortcut to antiviral development (Garcia-Serradilla, 

Risco, and Pacheco 2019; Li and De Clercq 2020; Pizzorno et al. 2019; Saini et al. 2020). The 

use of compounds known to target specific host factors may also elucidate key pathways and 

processes utilized in SARS-CoV-2 replication. 

Coronaviruses (CoV) interact with host cell membranes and membrane machinery at 

many different stages of their life cycle including entry, genome replication, and virion 

maturation and release (Hagemeijer et al. 2014; Prentice et al. 2004; Reggiori, de Haan, and 

Molinari 2011; Reggiori et al. 2010; Snijder et al. 2020; V'Kovski et al. 2021). One of the most 

striking features of CoV infection is the reorganization and recruitment of host cell membranes 

to form replication organelles. These rearrangements lead to formation of double-membrane 

vesicles (DMVs), double-membrane spherules (DMSs), convoluted membranes (CMs), and 

vesicle packets (VPs) (Knoops et al. 2008; Snijder et al. 2020). While there are several existing 

models that suggest these various membranous structures originate from modified ER 

membranes and that DMVs are the primary sites of replication, the mechanistic basis of their 

formation and CoV utilization remains incompletely understood (Angelini et al. 2013; Knoops et 
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al. 2008; Oudshoorn et al. 2017; Reggiori et al. 2010; Snijder et al. 2020). Previous studies have 

observed DMVs colocalizing with LC3, a protein with well-known functions in autophagy 

(Reggiori, de Haan, and Molinari 2011; Reggiori et al. 2010). However, studies on mouse 

hepatitis virus (MHV), a model betacoronavirus, have found conflicting data on whether or not 

autophagy is necessary for replication (Prentice et al. 2004; Zhao et al. 2007). Alternate models 

for membrane remodeling implicate EDEMosomes, vesicles originating from the ER that 

associate with non-lipidated LC3 (Reggiori, de Haan, and Molinari 2011; Reggiori et al. 2010). 

Additionally, other positive-sense RNA viruses that induce comparable membrane 

rearrangements and DMV formation utilize host cell lipid droplets, cellular organelles that store 

neutral lipids, and lipid metabolism as an underlying platform and energy source for replication 

(Cloherty et al. 2020; Heaton and Randall 2011). 

Inhibitors of metabolic and biosynthesis pathways related to membranes and their 

precursors inhibit the replication of a number of viruses. One example of this is the inhibition of 

VPS34, a class III phosphoinositol-3 kinase (PI3K) that plays roles in autophagy, endosomal 

trafficking, and other aspects of membrane biology, which has been shown to impair hepatitis C 

virus (HCV), tombusvirus (TBSV) and coronavirus infection (Feng et al. 2019; Su et al. 2011; 

Wang et al. 2021). 

 Targeting enzymes involved in late steps of the neutral lipid synthesis pathway, such as 

long chain acyl-CoA synthetase (ACS) or diglyceride acyltransferases (DGATs) has been shown 

to inhibit rotavirus (RV) and HCV, possibly reflecting a dependence of these viruses on lipid 

droplets (Cheung et al. 2010; Kim et al. 2012; Liefhebber et al. 2014). Targeting upstream 

enzymes in fatty acid metabolism such as acetyl-CoA carboxylase (ACC) or fatty acid synthase 

(FASN) also decreases replication of several different viruses including Coxsackievirus B, 
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Chickungunya virus (CHIKV), and several flaviviruses (Ammer et al. 2015; Gaunt et al. 2013; 

Hitakarun et al. 2020; Merino-Ramos et al. 2016; Tongluan et al. 2017).  

In this study, we sought out to determine the susceptibility of SARS-CoV-2 to 

modulators of VPS34, fatty acid and lipid metabolism. Compounds targeting VPS34 strongly 

impaired SARS-CoV-2 replication in vitro. Additionally, Orlistat and Triacsin C, inhibitors of 

FASN and ACS respectively (Carvalho et al. 2008; Igal, Wang, and Coleman 1997; Kridel et al. 

2004), effectively inhibited SARS-CoV-2. Time of addition studies revealed that each of these 

inhibitors exert antiviral effects post-entry, with the VPS34 inhibitors also inhibiting an early 

step in the replication cycle. Experiments using additional inhibitors of enzymes upstream and 

downstream of FASN and ACS point to palmitoylation and neutral lipid production as necessary 

for virus replication. Immunofluorescence studies of compound-treated cells demonstrate 

disruption of dsRNA positive viral replication centers, and the same inhibitors also impact viral 

RNA synthesis. Studies in FASN knock-out Caco2 cells confirmed the critical role of fatty acid 

biosynthesis in SARS-CoV-2 replication. Taken together, the data presented here demonstrate 

that specific fatty acid and lipid metabolism pathways are critical for SARS-CoV-2 replication 

and provide novel mechanistic insights that may serve as a basis for the potential repurposing 

and development of therapeutics targeting these pathways for the treatment of COVID-19. 

2.4 Materials and Methods 

2.4.1 Viruses and cell lines 

Vero E6 (ATCC# CRL-1586), Calu-3 (ATCC# HTB-55), and Caco-2 (ATCC# HTB-37) 

were maintained in DMEM (Corning) supplemented with 10% heat inactivated fetal bovine 

serum (FBS; GIBCO). Cells were kept in a 37°C, 5% CO2 incubator without antibiotics or 

antimycotics. Non-targeting wild type (NT-WT) Caco-2 and FASN KO Caco-2 cells were 
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produced by CRISPR editing (Synthego, Redwood City, CA) and maintained the same as their 

Caco2 parental cell line. SARS-CoV-2, strain USA_WA1/2020, was obtained from the World 

Reference Collection for Emerging Viruses and Arboviruses at the University of Texas Medical 

Branch-Galveston. 

2.4.2 sgRNA selection 

sgRNAs were designed according to Synthego’s multi-guide gene knockout. Briefly, two 

or three sgRNAs are bioinformatically designed to work in a cooperative manner to generate 

small, knockout-causing, fragment deletions in early exons. These fragment deletions are larger 

than standard indels generated from single guides. The genomic repair patterns from a multi-

guide approach are highly predictable based on the guide-spacing and design constraints to limit 

off-targets, resulting in a higher probability protein knockout phenotype. 

2.4.3 sgRNA synthesis 

RNA oligonucleotides were chemically synthesized on the Synthego solid-phase 

synthesis platform, using CPG solid support containing a universal linker. 5-Benzylthio-1H-

tetrazole (BTT, 0.25 M solution in acetonitrile) was used for coupling, (3-((Dimethylamino-

methylidene)amino)-3H-1,2,4-dithiazole-3-thione (DDTT, 0.1 M solution in pyridine) was used 

for thiolation, dichloroacetic acid (DCA, 3% solution in toluene) for used for detritylation. 

Modified sgRNA were chemically synthesized to contain 2’-O-methyl analogs and 3’ 

phosphorothioate nucleotide interlinkages in the terminal three nucleotides at both 5’ and 3’ ends 

of the RNA molecule. After synthesis, oligonucleotides were subject to series of deprotection 

steps, followed by purification by solid phase extraction (SPE). Purified oligonucleotides were 

analyzed by ESI-MS. 
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2.4.4 RNP formation and transfection 

To deliver CRISPR-Cas9 ribonucleoprotein (RNP) complexes, 10 pmol Streptococcus 

pyogenes NLS-Sp.Cas9-NLS (SpCas9) nuclease (Aldevron Cat. #9212) was combined with 30 

pmol total synthetic sgRNA (Synthego,10 pmol each sgRNA) to form RNPs in 20 uL total 

volume with SF Buffer (Lonza Cat #V5SC-2002) and allowed to complex at room temperature 

for 10 minutes. Cells were dissociated into single cells using TrypLE Express (Gibco), as 

described above, resuspended in culture media and then counted. 100,000 cells per nucleofection 

reaction were pelleted by centrifugation at 100 xg for 3 minutes. Following centrifugation, cells 

were resuspended in transfection buffer according and diluted to 2x104 cells/µL. 5 µL of cell 

solution was added to preformed RNP solution and gently mixed. Nucleofections were 

performed on a Lonza 96-well nucleofector shuttle system using program CM-150. Immediately 

following nucleofection each reaction was transferred to a tissue-culture treated 96-well plate 

containing 100µL normal culture media and seeded at a density of 50,000 cells per well. 

Transfected cells were incubated following standard protocols. 

2.4.5 Genomic analysis  

Two days post-nucleofection, DNA was extracted from using DNA QuickExtract 

(Lucigen Cat. #QE09050). Briefly, cells were lysed by removal of the spent media followed by 

addition of 50 µL of QuickExtract solution to each well. Once the QuickExtract DNA Extraction 

Solution was added, the cells were scraped off the plate into the buffer. Following transfer to 

compatible plates, DNA extract was then incubated at 68°C for 15 minutes followed by 95°C for 

10 minutes in a thermocycler before being stored for downstream analysis. 

Amplicons for indel analysis were generated by PCR amplification AmpliTaq Gold 360 

polymerase (Thermo Fisher Scientific Cat. #4398881) according to the manufacturer’s protocol. 
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Primers were designed to create amplicons between 400 – 800 bp, with both primers at least 100 

bp distance from any of the sgRNA target sites. PCR products were cleaned-up and analyzed by 

Sanger sequencing (Genewiz). Sanger data files and sgRNA target sequences were input into 

Inference of CRISPR Edits (ICE) analysis (ice.synthego.com) to determine editing efficiency 

and to quantify generated indels (Hsiau et al. 2019). Percentage of alleles edited is expressed an 

ice-d score. This score is a measure of how discordant the Sanger trace is before versus after the 

edit. It is a simple and robust estimate of editing efficiency in a pool, especially suited to highly 

disruptive editing techniques like multi-guide. 

2.4.6 Compounds 

VPS34 IN-1 (#17392), PIK-III (#17002), Triacsin C (#10007448), Orlistat (#10005426), 

TOFA (#10005263), C75 (#10005270), Etomoxir (#11969), Trimetazidine (#18165), and A-

922500 (#10012708) were purchased from Cayman Chemical (Ann Arbor, Michigan, USA). 

Remdesivir was purchased from Target Molecule Corp. (T7766, Boston, Massachusetts, USA). 2-

bromopalmitate was purchased from Sigma-Aldrich (#21604, St. Louis, MO, USA). All 

compounds were resuspended in dimethylsulfoxide (DMSO).  

2.4.7 Virus propagation and virus tittering 

A lyophilized ampule of SARS-CoV-2 was initially resuspended in DMEM 

supplemented with 2% FBS. Vero E6 cells were inoculated in duplicate with a dilution of 1:100 

with an adsorption period of 1 hour at 37°C and shaking every 15 minutes. Cells were observed 

for cytopathic effect (CPE) every 24 hours. Stock SARS-CoV-2 virus was harvested at 72 hours 

post infection (hpi) and supernatants were collected, clarified, aliquoted, and stored at -80°C. 

Plaque assays were performed as previously described (Jureka, Silvas, and Basler 2020). 

Briefly, Vero E6 cells were seeded onto 24-well plates 24 hours before infection. 100 ul of 
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SARS-CoV-2 serial dilutions were added and adsorbed for 1 hour at 37°C with shaking at 15-

minute intervals. After the absorption period, 1 mL of 0.6% microcrystalline cellulose overlay 

(MCC; Sigma-Aldrich 435244, St. Louis, MO, USA) was added and plates were returned to the 

incubator for the indicated amount of time. To stain plaque assays, MCC was removed by 

aspiration and 10% neutral buffered formalin (NBF) added for one hour at room temperature. 

Formalin was removed and monolayers were washed with water and stained with 0.4% crystal 

violet. Plaques were quantified and recorded as plaque forming units (PFU)/mL.  

Focus forming assays were performed as previously described (Gordon, Hiatt, et al. 

2020; Jureka, Silvas, and Basler 2020). Briefly, Vero E6 cells were pre-seeded in 96-well plates 

and grown to confluency. 50 µL of SARS-CoV-2 serial dilutions were added and adsorbed for 1 

hour at 37°C. Post-adsorption, 50 µL of 2.4% microcrystalline cellulose overlay (MCC; Sigma-

Aldrich 435244, St. Louis, MO, USA) was added and plates were returned to the incubator for 

24 hours. Cell monolayers were inactivated with 10% NBF for one hour at room temperature, 

washed with deionized water and fixed/permeabilized with ice cold methanol containing 0.3% 

hydrogen peroxide for 10 minutes at -20°C followed by 20 minutes at room temperature. Prior to 

primary antibody addition, plates were washed with PBS and blocked for one hour at room 

temperature with 5% milk. Primary antibody detection with SARS N diluted in milk occurred 

overnight at 4°C. The next day, plates were washed with PBS and anti-rabbit-HRP diluted in 

milk was added for 1 hour at room temperature. After final washing, plates were developed using 

TrueBlue HRP substrate (ThermoFisher, Waltham, MA, USA). Focuses were quantified and 

graphed as focus forming units (FFU)/mL. 



 46 

2.4.8 Maestro Z impedance experiments 

Prior to cell plating, CytoView-Z 96-well electrode plates (Axion BioSystems, Atlanta, 

GA, USA) were coated with 5 μg/mL human fibronectin (Corning, Tewksbury, MA, USA) for 1 

hr at 37°C. After coating, fibronectin was removed and 100 μL of DMEM containing 10% FBS 

was added to each well. The plate was then docked into the Maestro Z instrument to measure 

impedance electrode baseline. Vero E6 cells were then plated to confluency (~75,000 cells/well) 

in the coated CytoView-Z plates and left at room temperature for 1 hour to ensure even coverage 

of the well. Plates containing Vero E6 cells were docked into the Maestro Z for 24 hours at 37°C 

with 5% CO2 to allow the cells to attach and the monolayer to stabilize, as measured by 

resistance, a component of impedance. The Maestro Z was used to monitor the resistance of the 

monolayer as it formed, very similar to transepithelial electrical resistance (TEER) (Benson, 

Cramer, and Galla 2013). In this study, resistance was measured at 10 kHz, which reflects both 

cell coverage over the electrode and strength of the barrier formed by the cell monolayer. For 

compound treatments, media was removed from wells of the CytoView-Z plates and 195 μL of 

pre-warmed DMEM containing 2% FBS was added with the indicated concentration of 

compound. Infections with SARS-CoV-2 at an MOI of 0.01 were carried out by directly adding 

5 μL of virus to each well. Plates were then docked within the Maestro Z and resistance 

measurements were continuously recorded for 48-72 hours post infection. All plates contained 

media only, full lysis, uninfected, and SARS-CoV-2 infected controls. For calculation of percent 

inhibition, raw resistance values for each well were normalized to the value at 1 hour post 

infection within the Axis Z software, and percent inhibition was calculated with the following 

formula: Percent Inhibition = 100*(1-(1- average of treated cells)/(1-average of infected 

control)). Median time to death calculations were performed by fitting the Boltzmann sigmoid 
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equation to raw kinetic resistance data in GraphPad Prism. Fifty percent maximum velocity 

(V50) values obtained from the Boltzmann sigmoid fits were used to determine median time to 

death for each MOI. 

2.4.9 Cell viability assay 

Vero E6 or Calu-3 cells were seeded in 96-well black walled microplates and incubated 

overnight. Media was replaced with fresh DMEM containing 2% FBS and CellTox Green Dye 

(Promega, Madison, WI, USA) as described in the manufacturer’s protocol. Cells were then 

treated with compound in parallel with the corresponding experiment and put back in the 

incubator for the indicated duration. Fluorescence (Excitation: 485nm, Emission: 520nm) was 

measured at the designated end point. Percent viability was determined using the minimum 

fluorescence obtained from media only cells and the maximum value obtained by wells lysed 

with the included lysis solution. 

2.4.10 Quantification of vRNA and mRNA 

Calu-3 cells were seeded in 24-well plates and allowed to grow to confluency. Infection 

with SARS-CoV-2 was carried out at an MOI of 0.01 and 1.0. Media containing the indicated 

compound was added 2 hours post infection. Supernatants were collected at 24 hours post 

infection for titering, and RNA was extracted from cell monolayers using TRIzol reagent 

(ThermoFisher). Post extraction, RNA was DNase treated using ezDNase (ThermoFisher, 

Waltham, MA, USA) and subjected to first strand synthesis using SuperScript IV 

(ThermoFisher, Waltham, MA, USA) using the included random hexamer primers. qPCR was 

performed using PerfeCTa CYBR Green FastMix (VWR, Radnor, PA, USA) and primers for 

SARS-CoV-2 N (genomic and subgenomic), SARS-CoV-2 NSP14, and RPS11 as an internal 

control (Schneider et al. 2021). Each assay was performed in triplicate with three technical 
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replicates, and each assay contained no-template controls. Data were analyzed by the DDCt 

method with RPS11 serving as the housekeeping gene and uninfected DMSO treated Calu3 cells 

as a mock control.   

2.4.11 Confocal microscopy 

For confocal microscopy analysis, cells were pre-seeded in 24-well plates on fibronectin 

coated glass coverslips and allowed to grow to confluency. Cells were infected with SARS-CoV-

2 at an MOI of 1 and media containing compound treatments was added 2 hours post infection. 

At 24 hours post infection, the supernatant was removed and samples were fixed with 10% NBF 

for 1 hour at room temperature. Post-fixation, the cells were washed with PBS and permeabilized 

with sterile filtered 0.1% Saponin and 0.15% glycine in PBS. Cells were blocked with 0.1% 

Saponin in 1x Fluorescent Blocker (ThermoFisher, Waltham, MA, USA) for 1 hour at room 

temperature. Primary antibodies were diluted in blocking buffer, added to the wells and 

incubated overnight at 4°C. The following day, coverslips were washed with PBS and incubated 

with secondary antibodies diluted in 0.1% saponin in PBS for 1 hour. AlexaFluor 488 and 647 

conjugated secondary antibodies (ThermoFisher, Waltham, MA, USA) were used. Cover slips 

were mounted using ProLong Glass Antifade mountant with NucBlue stain (ThermoFisher, 

Waltham, MA, USA). Samples were imaged on a Zeiss LSM800 Confocal and images were 

rendered in ZenBlue (Zeiss, White Plains, NY, USA). 

2.4.12 Supplementation 

Supplementation with fatty acids and lipids was achieved by pre-complexing the 

supplements to fatty acid free bovine serum albumin (FAF-BSA). Briefly, FAF-BSA was 

dissolved in tissue culture grade water to achieve a final concentration of 10%. Stock solutions of 

palmitic acid (150 mM in ethanol, Sigma-Aldrich St. Louis, MO, USA) and oleic acid (3 M, 
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Sigma-Aldrich St. Louis, MO, USA) were diluted to 2.5 mM in 10% FAF-BSA and incubated at 

37°C with frequent mixing for 30 minutes. The pre-complexed solutions were then added to 

DMEM at a final concentration of 2% FAF-BSA and 0.25 mM supplement. For the infection, 

NT-WT and FASN KO Caco2 cells were pre-seeded in 96 well plates and allowed to grow to 

confluency. Infection with SARS-CoV-2 was performed at an MOI of 0.01 in the serum-free 

media. One hour post adsorption, virus inoculum was removed and medium containing the 

designated serum/lipid treatment was added. Cells were incubated at 37°C with 5% CO2 until 

the designated end point. Supernatants were collected and quantified by plaque assay. 

2.4.13 GFP-2xFYVE assay 

Huh7 cells were seeded in 96-well black walled plates and transfected with a pEGFP-

2xFYVE plasmid obtained from Addgene (#140047) using Lipofectamine 2000 (Invitrogen St. 

Louis, MO, USA). 24 hours post transfection (hpt) media was removed and replaced with media 

containing either DMSO, VPS34-IN1 (2 µM), PIK-III (5 µM), SAR405 (5 µM), Compound 19 

(5 µM), or Orlistat (200 µM). 24 hours post treatment cells were imaged using a BioTek 

Cytation 5 to determine the localization pattern of eGFP-2xFYVE. 

2.5 Results 

2.5.1 Development of a 96-well format impedance-based assay to measure SARS-CoV-2 

cytopathic affect  

SARS-CoV-2 induces significant cytopathic effects in infected Vero E6 cells. Based on 

this property, we standardized a 96-well format assay that provides continuous real-time, label 

free monitoring of the integrity of cell monolayers as a direct correlation of virus growth and 

infection. This assay was standardized using the Maestro Z platform (Axion BioSystems, 

Atlanta, GA), an instrument that uses plates containing electrodes in each well (CytoView-Z 
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plates) to measure electrical impedance across the cell monolayer every minute throughout the 

course of the experiment. As SARS-CoV-2 induced cytopathic effects damage the cell 

monolayer, impedance measurements decrease over time providing a detailed assessment of 

infection kinetics. To determine the capacity of the system to differentiate levels of virus 

replication, confluent Vero E6 monolayers in CytoView-Z plates were infected with SARS-CoV-

2 at multiple MOIs (0.0001 to 10) and resistance measurements were acquired for 72 hours post 

infection (Figure 10A). The progression of infection at each MOI was clearly distinct. A 

decrease in resistance could be observed as early as 18-20 hours post-infection (hpi) at an MOI 

of 1 and 10, and as late as 56 hpi at an MOI of 0.0001. All sample signals reached their lowest 

point between 32 to 72 hpi in an MOI dependent manner. The raw kinetic data was used to 

determine the median time to cell death for each MOI which shows a direct correlation with a 

decrease in resistance (Figure 10B). MOI of 0.01 was chosen for antiviral assays based on its 

desirable infection kinetics.  

To establish the Maestro Z as a potential instrument for screening of anti-SARS-CoV-2 

therapeutics, we first tested Remdesivir, a well-described inhibitor of SARS-CoV-2 that has been 

granted emergency use authorization (EUA) for the treatment of COVID-19 (Gordon, 

Tchesnokov, et al. 2020; Wu, Wu, and Lai 2020). Vero E6 cells were seeded on a CytoView-Z 

plate, incubated overnight to allow cells to stabilize, pretreated with 6-fold dilutions of 

Remdesivir for 1 hour and infected with SARS-CoV-2. Resistance measurements were recorded 

for 48 hpi (Figure 10C). In agreement with previous studies, we determined a 50% inhibitory 

concentration (IC50) for Remdesivir of 1.54 μM (Figure 10D) (Gordon, Tchesnokov, et al. 

2020). Taken together, these data validate the impedance-based assay described as a tool for 

screening of potential SARS-CoV-2 therapeutics. 
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Figure 10 Standardization of an electrical resistance-based assay as a measure of 
SARS CoV-2 induced CPE and anti-SARS-CoV-2 activity 

Vero E6 cells were seeded into a CytoView-Z 96-well plate and allowed to stabilize overnight, as measured by 
electrical resistance. A) Resistance was measured every minute over the course of 72 hours in wells that were 
mock infected or infected with SARS-CoV-2 in 10-fold dilutions ranging from an MOI of 10-0.0001. Solid lines 
indicate the mean, dotted lines indicate the standard error of three replicates. B) Median time-to-death 
calculations based on raw resistance data for each MOI. C) Remdesivir was titrated in 6-fold dilutions ranging 
from 50-0.006 μM. After infection at an MOI of 0.01, resistance was monitored for 48 hpi and D) percent 
inhibition for Remdesivir based on the data from the 48-hour time point is presented (solid circles). 
 

A. B.

C. D.
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2.5.2 Inhibitors of VPS34 activity impair SARS-CoV-2 growth 

VPS34 is a multifunctional protein involved in autophagy and membrane trafficking 

(Jaber and Zong 2013; Ohashi et al. 2020). On account of the significant role of membrane 

rearrangements in coronavirus replication, we wanted to determine if VPS34 activity was 

essential for SARS-CoV-2 growth. We tested two well characterized VPS34 inhibitors, VPS34-

IN1 and PIK-III (Bago et al. 2014; Dowdle et al. 2014). This was done over a 10-point dose 

response using the resistance assay described above. Briefly, pre-plated Vero E6 cells were 

treated with compound 1 hour prior to infection with SARS-CoV-2. Both VPS34-IN1 and PIK-

III induced rapid cytotoxicity at 50 μM and 16.67 μM as indicated by a rapid decrease in 

resistance measurements between 1 and 20 hpi. (Figure 11A, C). At the remaining 

concentrations, no toxicity was observed. For several concentrations, the integrity of the 

monolayer was preserved relative to the mock-treated infected control indicating an antiviral 

effect of both VPS34-IN1 and PIK-III. Based on normalized resistance measurements at 48 hpi 

for non-toxic doses, we estimated IC50 values of <600 nM for VPS34-IN1 and PIK-III (Figure 

11B, D, respectively). These data suggest that the VPS34 kinase plays a significant role in 

SARS-CoV-2 replication. 

2.5.3 Inhibition of fatty acid metabolism impairs SARS-CoV-2 growth 

Fatty acid metabolism contributes to various host processes including production of lipid-

based molecules such as triglycerides, phospholipids, and cholesterol, as well as protein 

modifications, such as palmitoylation and myristoylation (Baenke et al. 2013; Chen et al. 2018; 

Wakil and Abu-Elheiga 2009). Modulation of fatty acid metabolism has been shown to impact 

replication and virion maturation for numerous flaviviruses,  
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Figure 11 VPS34 inhibitors exhibit anti-SARS-CoV-2 activity 
Vero E6 cells were seeded into a CytoView-Z 96-well plate and allowed to stabilize overnight. Cells were pre-
treated with serial half-log dilutions of VPS34-IN1 (A-B) or PIK-III (C-D) and infected with SARS-CoV-2 at 
an MOI of 0.01. Resistance (A and C) was measured every minute over the course of 48 hours and percent 
inhibition (B and D) was determined at the 48-hour timepoint (solid circles) as compared to the infected DMSO 
treated control (red). Uninfected cells are indicated in blue. 
 

enteroviruses, and alphaviruses (Ammer et al. 2015; Bakhache et al. 2019; Cheung et al. 2010; 

Gaunt et al. 2013; Hitakarun et al. 2020; Liefhebber et al. 2014; Merino-Ramos et al. 2016; 

A. B.

C. D.
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Nasheri et al. 2013; Tongluan et al. 2017). Two well-described compounds that inhibit fatty acid 

metabolism are Orlistat, an FDA-approved drug that inhibits gastric lipases and fatty acid 

synthase (FASN), and Triacsin C, an inhibitor of long chain Acyl-CoA synthetase (ACS), both 

of which have been shown to have antiviral activity (Ammer et al. 2015; Hitakarun et al. 2020; 

Kim et al. 2012; Nasheri et al. 2013).To test the efficacy of these compounds against SARS-

CoV-2 infection, Vero E6 cells were pre-seeded onto a CytoView-Z plate, allowed to stabilize, 

and then pre-treated with Orlistat or Triacsin C for 1 hour prior to infection. Based on the 

toxicity window of 1-20 hours post-treatment (hpt) determined with the VPS34 inhibitors, 

neither Orlistat nor Triacsin C induced early cytotoxic effects, even at the highest concentrations 

of 50 µM and 500 µM, respectively (Figure 12A, C). Both compounds exhibited inhibition of 

viral cytopathic effects at higher concentrations, although complete inhibition was not achieved 

even with 500 μM of Orlistat. Based on normalized resistance measurements at 48 hpi, we 

estimated IC50s of ~500 µM for Orlistat and ~20 µM for Triacsin C (Figure 12B, D).  This data 

suggests that fatty acid metabolism and neutral lipid synthesis likely play an important role in 

SARS-CoV-2 infection. 

2.5.4 VPS34 and fatty acid metabolism inhibitors exhibit activity on post-entry steps of the 

viral life cycle  

Next, we performed time of addition studies with VPS34-IN1, PIK-III, Orlistat, or 

Triacsin C. This allowed us to identify if the anti-viral activity of each compound impacted the 

viral life cycle at steps pre- or post- entry. As indicated in Figure 13A¸ three conditions were 

tested: 1) single treatment 1 hour prior to viral infection, with compound removed prior to 

infection; 2) dosing at 2 hpi; and 3) dosing at 4 hpi. We observed that a single 5 μM treatment of 

VPS34-IN1 or PIK-III prior to infection inhibited SARS-CoV-2 replication, and inhibition could  
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Figure 12 Screening of fatty acid inhibitors for potential anti-SARS-CoV-2 activity 
Vero E6 cells were seeded into a CytoView-Z 96-well plate and allowed to stabilize overnight. Cells were pre-
treated with serial half-log dilutions of Orlistat (A-B) or Triacsin C (C-D) and infected with SARS CoV-2 at an 
MOI of 0.01. Resistance (A and C) was measured every minute over the course of 48 hours and percent inhibition 
(B and D) was determined at the 48-hour timepoint (solid circles) as compared to the infected DMSO treated 
control (red). Uninfected cells are indicated in blue. 
 
 
 

A. B.

C. D.
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be observed even when added up to 4 hpi (Figure 13B). In contrast, Orlistat or Triacsin C 

showed minimal efficacy when removed prior to infection but remained inhibitory when added 

up to 4 hpi. Altogether, these data demonstrate that the VPS34 inhibitors likely act on viral entry 

and at later steps in the replication cycle; and inhibition by Orlistat and Triacsin C occurs post-

entry. 

 

 

Figure 13 Time of addition studies 
VeroE6 cells were seeded into a CytoView-Z 96-well plate and allowed to stabilize overnight. A) Timeline for 
the time-of-addition experiment. B) VeroE6 cells were either pre-treated for one hour with compound removed 
prior to infection (-1) or treated at 2 (+2) or 4 (+4) hours post-infection. All conditions were infected with an 
MOI of 0.01. Resistance was measured every minute over the course of 48 hours and percent inhibition was 
determined at the 48-hour timepoint. Data is representative of the mean and standard error of three replicates. 
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2.5.5 Attenuation of VPS34 kinase activity and fatty acid metabolism inhibit SARS-CoV-2 in 

a human airway epithelial cell line 

To determine whether or not the previously observed inhibition could be maintained in a 

cell line more functionally relevant to human infection by SARS-CoV-2, we directly measured 

the impact of compounds on production of infectious virus and cell viability in Calu-3 cells. 

These cells are derived from human airway epithelium and are highly susceptible to infection, 

establishing them as a standard for infection studies with SARS-CoV-1, MERS-CoV and SARS- 

CoV-2 (Sims et al. 2005; Sims et al. 2008). For these studies, Calu-3 cells were plated onto 96-

well plates and allowed to reach confluency. Cells were either pre-treated 

with a range of concentrations of VPS34-IN1, PIK-III, Triacsin C and Orlistat, DMSO, or mock  

treated with media alone for 1 hour, then infected with SARS-CoV-2 at an MOI of 0.01. 

Supernatants were collected at 48 hpi and viral titer determined by plaque assay. Cytotoxicity of 

the compounds was determined in parallel. Consistent with results from infected Vero E6 cells, 

each of the compounds tested above inhibited production of infectious virus (Figure 14) and 

cytotoxicity was only observed in Calu-3 cells at the highest concentrations of some compounds. 

We observed IC50s of 0.55 μM (VPS34-IN1; A), 0.12 μM (PIK-III; B), 21.25 μM (Orlistat; C), 

and 0.04 μM (Triacsin C; D). Notably, the IC50s measured for VPS34-IN1 and PIK-III by 

plaque assay are in close agreement with estimated IC50s determined in Vero E6 cells using the 

resistance-based assay. The IC50s for Orlistat and Triacsin C were substantially lower than those 

estimated in VeroE6 cells.   

To determine the specificity of inhibition to the class III PI3 kinase VPS34, we extended 

our Calu-3 compound study to include two additional VPS34 inhibitors: SAR405 and compound 

19 (Honda et al. 2016; Pasquier 2015; Ronan et al. 2014). SAR405 and compound 19 each  
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Figure 14 Attenuation of VPS34 kinase activity and fatty acid metabolism inhibit 
SARS-CoV-2 replication in human airway epithelial cell line 

Calu-3 cells were plated onto a 96-well plate and allowed to reach confluency. Cells were then pre-treated with 
a series of 3-fold dilutions of VPS34-IN1 (A), PIK-III (B), Orlistat (C), Triacsin C (D), DMSO, or mock-treated 
with media alone for 1 hour, then infected with SARS-CoV-2 at an MOI of 0.01. Supernatants were collected at 
48 hpi and virus was quantified by plaque assay on VeroE6 cells. The data is reported as plaque forming units 
per milliliter (pfu/ml) (left panels) and percent inhibition (right panels). Cell viability over 48 hours was 
determined in parallel and plotted with the percent inhibition data. IC50 and IC90 were calculated from the 
plaque assay data and are indicated on the curves. For the plaque assay data, the dotted lines labeled DMSO and 
LOD indicate the level of virus growth in the DMSO control and the limit of detection, respectively. 

A.

B.

C.

D.



 59 

inhibited with IC50s of 0.376 µM and 5.843 µM, respectively (Figure 15A-B). This data further 

supports the importance of the class III PI3 kinase during SARS-CoV-2 replication. To confirm 

that the compounds were able to inhibit VPS34 activity, we assessed in Huh7 cells the effect of 

the inhibitors on GFP-2xFYVE localization to endosomes, indicating a loss of phosphoinositol-3 

phosphorylation by VPS34 (Gillooly et al. 2000; Gillooly, Simonsen, and Stenmark 2001; 

Kutateladze 2007; Ronan et al. 2014). Huh7 cells were chosen for their favorable characteristics, 

such as transfectability and large cytoplasm that facilitates imaging. While DMSO or Orlistat did 

not affect GFP-2xFYVE localization, the four VPS34 inhibitors disrupted GFP-2xFYVE puncta, 

consistent with loss of PI-3 phosphorylation (Figure 15C). 

2.5.6 Protein palmitoylation and triacylglycerol production are implicated in SARS-CoV-2 

infection  

Several recent reports have identified that pathways related to lipid metabolism and 

cholesterol homeostasis are required for SARS-CoV-2 replication; however, the precise 

mechanism by which these pathways contribute to the SARS-CoV-2 replication cycle remains 

unclear (Abu-Farha et al. 2020; Daniloski et al. 2021; Schneider et al. 2021; Zang et al. 2020). 

Given that our data suggests a role for fatty acid metabolism, we set out to further clarify the 

enzymatic steps required for SARS-CoV-2 replication.  

To further evaluate the importance of de novo fatty acid synthesis, TOFA, a competitive 

inhibitor of acetyl-CoA carboxylase (ACC), the enzyme directly upstream of FASN, and C75, an 

additional inhibitor of FASN, were used (Halvorson and McCune 1984; Kuhajda et al. 2000). 

Both compounds exhibited activity against SARS-CoV-2 infection with IC50s of 1.339 µM and 

22.81 µM respectively (Figure 16A, B-C).  
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Figure 15 VPS34 inhibitors actively block VPS34 activity 
The inhibitory abilities of two additional compounds against VPS34 was tested. Calu-3 cells were seeded in 96-
well format and grown to confluency. Cells were pre-treated with a series of 3-fold dilutions of the indicated 
compounds or DMSO for 1 hour, then infected with SARS-CoV-2 at an MOI of 0.01. Supernatants were 
collected at 48 hpi and infectious virus was quantified by focus forming assay on VeroE6 cells and presented as 
focus forming units (ffu)/mL. Cytotoxicity assays were performed in parallel and used to calculate percent 
viability as show in red (A). To determine whether VPS34 inhibitors actively block VPS34 kinase activity, Huh7 
cells were seeded in black walled 96-well plates and transfected with a 2X-FYVE-GFP plasmid. 24 hpt cells 
were treated with DMSO, VPS34-IN1 (2 µM), PIK-III (5 µM), SAR405 (5 µM), Compound 19 (5 µM), or 
Orlistat (200 µM). Cells were imaged to determine 2X-FYVE-GFP localization (B) using a BioTek Cytation 5. 
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Inhibition of fatty acid synthesis at early enzymatic steps like FASN can lead to 

dysregulation of three main downstream pathways: fatty acid based protein modification, fatty 

acid b-oxidation in the mitochondria, and neutral lipid synthesis (Baenke et al. 2013). To further 

determine which branches and enzymatic steps of fatty acid metabolism contribute to anti-

SARS-CoV-2 activity, a series of additional compounds were tested for inhibitory activity and 

cytotoxicity (Figure 16). 

To assess the contribution of decreased protein palmitoylation, 2-bromoplamitate, an 

inhibitor of palmitoyl acyltransferases (PAT), was used (Davda et al. 2013). 2-bromopalmitate 

inhibited infectious virus production at concentrations greater than 10 µM with an IC50 of 23.02 

µM (Figure 16A, D). To determine if fatty acid b-oxidation in the mitochondria contributes to 

inhibition of SARS-CoV-2, two compounds were tested: Etomoxir, a compound that targets 

carnitine palmitoyltransferase 1A (CPT1A), blocking translocation of fatty acids into the 

mitochondria, and Trimetazidine, an inhibitor of long-chain 3-ketoacyl-CoA thiolase (Ma et al. 

2020). Neither compound showed any inhibition, indicating that fatty acid b-oxidation is not 

required for SARS-CoV-2 replication (Figure 16A, F-G). Lastly, the importance of the terminal 

steps of the fatty acid metabolism pathways was assessed by inhibiting neutral lipid production 

and lipid droplet formation using A922500, a potent inhibitor of diacylglycerol acyltransferase 1 

(DGAT1) (Zhao et al. 2008). Treatment with A922500 potently inhibited SARS-CoV-2 with an 

IC50 value of 4.017 µM (Figure 16A, E). All together, these data suggest that protein 

palmitoylation and neutral lipid synthesis are needed for efficient SARS-CoV-2 replication. 
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Figure 16 Fatty acid metabolism involvement in SARS-CoV-2 replication 
To determine which steps involved in fatty acid metabolism contribute to the observed anti-SARS-CoV-2 
activity, Calu-3 cells were pre-treated with DMSO or a series of 3-fold dilutions of the indicated compounds, or 
mock-treated with media alone for 1 hour, then infected with SARS-CoV-2 at an MOI of 0.01. Supernatants 
were collected at 48 hpi and infectious virus was quantified by focus forming assay on VeroE6 cells and 
presented as focus forming units ffu/mL (black). Cytotoxicity assays were performed in parallel and used to 
calculate percent viability (red) (B-G). IC50 and CC50 values were calculated for each (A). 



 63 

2.5.7 Inhibition of VPS34 kinase activity and fatty acid metabolism alters SARS-CoV-2 

replication centers 

As time-of-addition studies implicated post-entry steps as targets of the compounds, we sought to 

assess the status of sites of viral RNA synthesis, which can be detected with anti-dsRNA 

antibodies (Knoops et al. 2008; Reggiori et al. 2010; Weber et al. 2006). Foci of dsRNA staining 

in coronavirus infected cells reflect the formation of membrane-associated viral replication 

compartments (Knoops et al. 2008; Oudshoorn et al. 2017; Prentice et al. 2004; Reggiori et al. 

2010). Calu-3 cells were seeded onto fibronectin coated glass cover slips and allowed to reach 

partial confluency. Cells were infected with SARS-CoV-2 at a MOI of 1, treated at 2 hpi with 

concentrations of VPS34-IN1, PIK-III, Orlistat, Triacsin C, TOFA, 2-bromopalmitate, A922500, 

or Remdesivir determined to 

result in significant inhibition without cytoxicity, or with DMSO. At 24 hpi cells were fixed, 

permeabilized, and stained for indirect immunofluorescence using primary antibodies against 

SARS-CoV-2 N and dsRNA.  

DMSO-treated control cells displayed distinct puncta positive for dsRNA consistent with 

CoV replication centers (Knoops et al. 2008; Reggiori et al. 2010). These structures were also 

positive for the SARS-CoV-2 nucleocapsid protein (N). Treatments with VPS34-IN1, Orlistat, 

TOFA, or A922500 resulted in a loss of these distinct puncta and dispersion of dsRNA and 

SARS-CoV-2 N. When treated with Triacsin C and 2-bromopalmitate, cells exhibited fewer but 

larger foci positive for both markers. Treatment with a non-sterilizing concentration of 

Remdesivir (1 µM) served as a control and yielded a distribution of N and dsRNA similar to the 

DMSO control (Figure 17). Taken together, these data suggest inhibition VPS34 activity and 

fatty acid metabolism may affect SARS-CoV-2 replication by affecting viral replication centers. 
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Figure 17 Inhibition of VPS34 kinase activity and fatty acid metabolism affect formation of 
SARS-CoV-2 replication centers 

Calu-3 cells were pre-seeded in 24-well format on fibronectin coated glass coverslips, allowed to grow to partial 
confluency, and infected at an MOI of 1. Inoculum was removed 2 hpi and replaced with media containing 
VPS34-IN1 (5 µM), Orlistat (500 µM), Triacsin C (5 µM), TOFA (50 µM), 2-bromopalmitate (50 µM), A922500 
(30 µM), Remdesivir (1 µM), or DMSO. 24 hours post infection, cells were fixed and indirect 
immunofluorescence was performed using primary antibodies against SARS-CoV-2 N and dsRNA, and 
AlexaFluor488 and AlexaFluor647 conjugated secondaries, respectively. Cover slips were mounted using 
ProLong Glass Antifade mountant with NucBlue stain (ThermoFisher). Samples were imaged on Zeiss LSM800 
Confocal and images were rendered in ZenBlue. Representative images are shown.   
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2.5.8 Inhibition of VPS34 and fatty acid metabolism impacts genomic and subgenomic RNA 

levels 

The effects on dsRNA and N distribution suggested possible effects on viral RNA 

synthesis. To determine if the production of viral RNA was affected, Calu-3 cells were infected 

at an MOI of either 0.01 or 1. Two hours post-infection, cells were treated with DMSO or 

concentrations of each inhibitor determined to result in significant inhibition at an MOI of 0.01 

without toxicity. At 4, 10, and 24 hpi, levels of genomic and subgenomic N and NSP14 RNA 

were quantified by RT-PCR. Supernatants corresponding to 24 hpi were used to quantify viral 

titers to ensure inhibition was achieved. Remdesivir was used as a positive control compound 

that inhibits SARS-CoV-2 RNA synthesis. 

Compound treatments resulted in a 1- to 4-log10 reduction of viral titers at both MOIs at 

24 hpi (Figure 18A, E).  Consistent with the decrease in viral titers, all compounds reduced the 

amounts of genomic RNA at the 24 h time point. Remdesivir inhibited RNA synthesis at earlier 

time points as well. At 4 and 10 hpi at MOI of 1, the inhibition was more apparent with the N 

genomic RNA and NSP14 primers as compared with the N sub-genomic RNA primers. The 

degree of inhibition was magnified at an MOI of 0.01 (Figure 18B-D, F-H). Similarly, treatment 

with VPS34-IN1, Orlistat, Triacsin C, and 2-bromopalmitate reduced RNA levels at both MOI 

0.01 and 1. In general, there were minimal differences in fold-inhibition at 4 versus 10 hpi. 

(Figure 18B-D, F-H). The inhibition of RNA synthesis resulting from treatment with TOFA and 

A922500 followed a similar pattern to the other compounds at each MOI and time point. 

However, the reduction in RNA synthesis at 24 hpi was significantly less substantial than the 

reduction in viral titers. (Figure 18B-D, F-H). This discordance suggests that these compounds 

have additional effects beyond viral RNA synthesis that explain their inhibition of virus growth.   
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Figure 18 Mechanistic characterization of anti-SARS-CoV-2 activity on RNA synthesis 
To discern whether or not genomic and subgenomic RNA levels are affected by compound treatment, Calu-3 
cells were pre-seeded in 24-well format, allowed to grow to confluency, and infected at an MOI of 1 (A-D) or 
0.01 (E-H). 2 hours post-infection cells were treated with VPS34-IN1 (5 µM), Orlistat (500 µM), Triacsin C (5 
µM), TOFA (50 µM), 2-bromopalmitate (50 µM), A922500 (30 µM), Remdesivir (1 µM), or DMSO. At 4, 10, 
and 24 hpi total RNA was extracted from the cell monolayers, and 24 hpi supernatants were harvested for viral 
titers. Virus titers were determined by plaque assay (A, E). Levels of genomic RNA, subgenomic N RNA, and 
NSP14 RNA were quantified via qPCR (see materials and methods). Data are represented as fold change of 
RNA levels in infected compound treated samples versus infected DMSO treated samples (B-D, F-H). The virus 
titer at 24 hpi for compound treated cells (orange bars) are plotted alongside the qPCR data and represented as 
fold-change compared to titers from DMSO treated cells.  
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2.5.9 Genetic knockout confirms a critical role of de novo fatty acid synthesis for SARS-

CoV-2 replication  

As a genetic correlate to the studies described above, we compared the growth of SARS-CoV-2 

in non-targeting control (NT) and FASN knockout Caco2 (FASN KO) cells in the presence of 

2% FBS or 1% fatty acid free (FAF)-BSA. The latter condition addressed the possible 

contribution of exogenous fatty acids supplied by the FBS. Consistent with the previous 

compound data, SARS-CoV-2 replicated to substantially lower titers in the FASN KO cells as 

compared to WT cells when the cells were maintained in medium with 2% fetal bovine serum 

(FBS) (Figure 19A). The inhibition was enhanced when cells were maintained in 1% FAF-BSA 

media, reaching an almost 2-log10 reduction in titer as early as 48 hpi (Figure 19B). For each 

experiment, FASN knockout was confirmed by western blot. In addition, SARS-CoV-2 N 

protein levels were decreased in FASN KO cells as compared to NT cells. At later timepoints, N 

protein levels in FASN KO cells decline consistent with the changes in virus titer. The 

diminished replication and protein production in cells lacking FASN confirms our earlier 

findings and suggests that fatty acid metabolism is necessary for efficient, sustained replication 

during SARS-CoV-2 infection. 

 Based on our observations that the reduction in protein palmitoylation and neutral 

lipid synthesis are likely responsible for the inhibition seen when blocking fatty acid metabolism, 

we asked whether viral replication in FASN knockout cells would be restored by supplementing 

with substrates that feed into these two sub-pathways. Supplementation was achieved by 

infecting FASN KO Caco2 cells in minimal media and adding back media containing 2% FAF-

BSA pre-complexed to a combination of 250 µM palmitic acid and 250 µM oleic acid. Cell 

supernatants were collected at 1, 24, 48, and 72 hpi and viral titers were determined by plaque 
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assay. Consistent with our previous data, growth in FASN KO cells was significantly reduced as 

compared to NT control cells. Supplementation with palmitate and oleic acid partially rescued 

virus growth further confirming the importance of fatty acid metabolism in SARS-CoV-2 

replication (Figure 19C). 

 

 

Figure 19 Fatty acid metabolism is essential for efficient SARS-CoV-2 replication 
FASN CRISPR KO Caco2 cells and corresponding NT Caco2 cells were pre-seeded in 96-well plates, grown to 
confluency, and then infected at an MOI 0.01 in minimal media. Post adsorption, cells were maintained in either 
2% FBS DMEM (A) or 1% fatty-acid free (FAF)-BSA DMEM (B). Supernatants were collected at 1, 24, 48, 72, 
and 96 hpi and viral titers were determined by plaque assay. Protein samples were obtained from cell monolayers 
and analyzed by western blot to confirm FASN knockout and look for changes in SARS-CoV-2 N levels. FASN 
KO and WT cells were pre-seeded and infected as previously described. Post adsorption, inoculum was removed 
and replaced with 2% FAF-BSA DMEM or 2% FAF-BSA DMEM containing 250 µM palmitic acid + 250 µM 
oleic acid (C). Supernatants were collected at 1, 24, 48, and 72 hpi and viral titers were determined via plaque 
assay.  

HPI: 1 24 48 72 96 1 24 48 72 96

Caco2 NT Control Caco2 FASN KO

GAPDH

SARS-CoV-2 
N

FASN

DMEM + Fatty-acid free BSA

HPI: 1 24 48 72 96 1 24 48 72 96

Caco2 NT Control Caco2 FASN KO

DMEM + 2% FBSA. B.

55 kDa
250 kDa

35 kDa

55 kDa
250 kDa

35 kDa

C.

***
****

***

****
**** ****



 69 

2.6 Discussion 

Engagement with and usurpation of host membranes is central to coronavirus biology. 

We therefore sought to identify potential host factors and pathways relevant to lipid metabolism 

that are critical for SARS-CoV-2 replication. In addition to providing insights into virus-host 

interactions, such approaches might also suggest new therapeutic strategies. Our results 

demonstrate the importance of both the class III PI3 kinase VPS34, and enzymes involved in 

fatty acid metabolism for SARS-CoV-2 replication. Treatment of infected cells with inhibitors 

against VPS34 and various steps of fatty acid metabolism impairs virus growth, reduces viral 

RNA synthesis, and perturbs the formation of dsRNA positive replication centers. Compounds 

targeting ACC and DGAT1 likely also inhibit additional steps in the virus replication cycle. 

VPS34 is a class III phosphoinositide 3-kinase that plays important roles in autophagy 

and endosomal trafficking, as well as other cellular functions (Backer 2016; Ohashi et al. 2020). 

In our inquiry into host factors relevant for SARS-CoV-2 replication we tested two well 

characterized specific and structurally similar inhibitors of VPS34: VPS34-IN1 and PIK-III 

(Bago et al. 2014; Dowdle et al. 2014). Both inhibitors showed potent inhibition of viral titers at 

sub-micromolar concentrations in both Vero E6 and Calu-3 cells as measured by resistance assay 

and plaque assay, respectively. To further confirm the specificity to VPS34 activity we tested the 

anti-SARS-CoV-2 activity of two additional inhibitors, Compound 19 and SAR405, the latter of 

which is structurally distinct from the others (Honda et al. 2016; Pasquier 2015; Ronan et al. 

2014). Each compound inhibited virus growth, further validating the importance of VPS34 for 

virus replication, consistent with recent reports (Wang et al. 2021; Yuen et al. 2021). 

Mechanistically, our data point to early steps, potentially viral entry, and later steps, including 

viral RNA synthesis as sensitive to VPS34 inhibition.  
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While our inhibitor studies do not differentiate between the various functions of VPS34 

that might be involved in SARS-CoV-2 replication, studies in different cell types suggest 

autophagy is not essential for MHV growth and more recent studies suggest that coronaviruses 

interfere with autophagy, and that activation of autophagy can inhibit replication of SARS-CoV, 

MERS CoV, and SARS-CoV-2 (Gassen et al. 2019; Guo et al. 2016; Prentice et al. 2004; Zhao 

et al. 2007). Given that inhibition of VPS34 results in the inhibition of autophagy, it would be 

expected that inhibition of VPS34 would eliminate these anti-CoV effects of autophagy and 

promote SARS-CoV-2 replication. At the same time, host protein TMEM41B which is also 

implicated in autophagy has been demonstrated to facilitate SARS-CoV-2 growth, suggesting 

that the virus may usurp some autophagy functions (Schneider et al. 2021). It will therefore be of 

interest to determine whether the disruptions in SARS-CoV-2 replication due to VPS34 targeting 

reflect inhibition of autophagy or non-autophagy related functions.  

Separate from autophagy, VPS34 has several other roles, most notably in vesicular 

trafficking and sorting. VPS34 phosphorylation of phosphoinositol-3 allows for recruitment of 

various proteins for endosomal fusion and tethering, recruitment of the endosomal sorting 

complex required for transport (ESCRT) proteins for the formation of multivesicular bodies, and 

proper functioning of the Retromer complex for endosome-to-Golgi transport (Backer 2016; 

Ohashi et al. 2020). For members of the positive-sense RNA tombusviruses, VPS34 has been 

shown to be recruited to replication compartments providing increased levels of phosphoinositol-

3-phosphate, which allows for recruitment of Rab5-positive early endosomes to provide 

phosphatidylethanolamine-enriched membranes for replication centers formation (Feng et al. 

2019). Based on our observation that the VPS34 inhibitor VPS34-IN1 interferes with the 

formation of dsRNA positive SARS-CoV-2 replication centers, it is possible that VPS34 
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functions to facilitate membrane availability for SARS-CoV-2 replication organelle formation. 

Disruption of endocytic trafficking might also explain our observation that pre-treatment 

followed by removal of VPS34 inhibitors alone had significant effects on early phases of SARS-

CoV-2 replication. Alternatively, the significant effects on SARS-CoV-2 replication observed by 

pre-treatment alone could also be due to an extended in vitro half-life of these compounds or 

irreversible binding to VPS34 leading to inhibition of later steps in the virus lifecycle without 

continuous treatment. Further studies will be required to fully deconvolute these possibilities.  

Fatty acid metabolism is co-opted by viruses for a variety of purposes including as a 

means to provide energy for replication, the establishment of membrane-associated replication 

centers and the proper assembly and budding of newly synthesized viral particles (Heaton and 

Randall, 2011). Orlistat, an FDA approved inhibitor of fatty acid synthase (FASN), and Triacsin 

C, an inhibitor of long chain acyl-CoA synthetase (ACS) have previously been examined for 

their antiviral activities against viruses the utilize fatty acids and neutral lipids for replication 

(Ammer et al. 2015; Cheung et al. 2010; Gaunt et al. 2013; Hitakarun et al. 2020; Kim et al. 

2012; Liefhebber et al. 2014; Tongluan et al. 2017; Wakil and Abu-Elheiga 2009). In our study 

on SARS-CoV-2, we found that Orlistat and Triacsin C both exhibited antiviral activity but only 

when maintained throughout infection, consistent with the post-entry inhibition previously 

described for other viruses.  

Inhibition of upstream steps in the metabolic pathway, like FASN and ACS, can lead to 

dysregulation of multiple downstream pathways. In this case, the viral inhibition we observe 

from Orlistat and Triacsin C could be the result of downregulating fatty acid protein 

modification, b-oxidation of fatty acids in the mitochondria, or neutral lipid synthesis and lipid 

droplet formation (Baenke et al. 2013). In HCV infection, NS4B and the core protein both 
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require protein palmitoylation for their function in replication and virus particle formation, 

respectively (Majeau et al. 2009; Yu et al. 2006). Protein palmitoylation of the spike proteins of 

MHV and SARS-CoV have also been shown to be critical to virion assembly, cell-cell fusion, 

and infectivity (McBride and Machamer 2010; Petit et al. 2007; Thorp et al. 2006). 

Palmitoylation of coronavirus envelope proteins has also been described (Boscarino et al. 2008; 

Tseng et al. 2014). DENV activates pathways that trigger breakdown of lipid droplets and neutral 

lipids to redirect fatty acids to the mitochondria for b-oxidation and energy production (Heaton 

and Randall 2011). Conversely to this, rotavirus directly utilizes lipid droplets as a platform for 

replication center formation and a protected environment for virion maturation (Cheung et al. 

2010; Lever and Desselberger 2016). To gain further mechanistic insight into the role of fatty 

acid metabolism in the SARS-CoV-2 lifecycle we tested a series of compounds that targeted 

enzymatic steps involved in each one of the aforementioned pathways downstream of FASN. 

Our results showed that the palmitoyl acetyltransferase (PAT) inhibitor 2-bromopalmitate, which 

should block protein palmitoylation, led to a substantial reduction in SARS-CoV-2 replication. 

This may reflect a requirement for spike modification and/or palmitoylation of envelope and host 

proteins. Additionally, A922500, a specific inhibitor of DGAT1, resulted in significant reduction 

of SARS-CoV-2. This inhibition is indicative of a need for neutral lipid synthesis and suggests a 

role for lipid droplets, which have been implicated in SARS-CoV-2 growth and a role for lipid 

droplets in SARS-CoV-2 assembly (Dias et al. 2020). Our data with A922500 are consistent with 

such a model, given that its effects on production of infectious virus were substantially greater 

than on viral RNA synthesis.  

Previous studies tracking newly synthesized RNA during CoV infection show that RNA 

synthesis occurs at foci referred to as replication centers that correspond to double membrane 
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vesicles produced during coronavirus infection (Snijder et al. 2020).  It was striking that 

treatment of infected cells with VPS34-IN1 and inhibitors of different aspects of fatty acid 

metabolism all resulted in aberrant dsRNA and N localization while treatment with Remdesivir 

did not. The distribution of dsRNA and N varied, depending on the compound used. These data 

suggest VPS34 and various aspects of fatty acid metabolism play a role in proper formation 

SARS-CoV-2 replication centers and possibly in virally induced membrane rearrangements.  

VPS34-IN1, Triacsin C, Orlistat, and 2-bromopalmitate all reduced genomic N and 

NSP14 RNA levels to a degree that roughly correlated with the reduction in viral titer, while 

subgenomic N was only moderately affected in comparison. Determining whether these 

compounds selectively impact viral genome replication versus subgenomic mRNA production 

will be of interest. Treatment with TOFA and A922500 reduced genomic N and NSP14 RNA to 

a substantially lesser degree than the reductions in viral titers. The discrepancy between the 

reduction in RNA synthesis and infectious virus is consistent with models like rotavirus, where 

RNA synthesis and virion formation utilize the production of specialized replication organelles. 

Disruption of these structures moderately reduces RNA synthesis but has a much larger impact 

on virus assembly and release (Cheung et al. 2010; Gaunt et al. 2013; Kim et al. 2012; Lever and 

Desselberger 2016).   

The demonstration that SARS-CoV-2 replication is impaired in FASN KO cells as 

compared to cells that received a non-targeting guide RNA further confirms the requirement for 

fatty acids. In cells lacking FASN there was a significant reduction in viral titers that was 

sustained throughout infection. That this attenuation is due to loss of fatty acid production is 

supported by the increased attenuation when the cells were maintained in the presence of fatty 

acid free medium as compared to medium containing FBS that might provide exogenous fatty 
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acids. To further address this issue, supplementation was performed with two primary substrates 

downstream of FASN, palmitic acid and oleic acid (Ackerman et al. 2018; Alsabeeh et al. 2018; 

Baenke et al. 2013). This resulted in a significant rescue of SARS-CoV-2 replication in FASN 

KO cells when compared to cells without supplementation. The ability to rescue infection using 

fatty acid metabolism products provides a potentially useful approach to further mechanistic 

characterization of fatty acid metabolism is in the SARS-CoV-2 life cycle. 

Cumulatively, these data support lipid metabolism as a potential therapeutic target for 

SARS-CoV-2 infection. The specific mechanisms by which VPS34 promotes SARS-CoV-2 

replication and the precise manner in which the VSP34 inhibitors impair replication warrant 

further investigation. Additionally, the identification of fatty acid metabolism, and more 

specifically protein palmitoylation and lipid droplet production, as key components for 

replication provides important insights into SARS-CoV-2-host interaction. 
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3 IMPACT OF MĚNGLÀ VIRUS PROTEINS ON HUMAN AND BAT INNATE 

IMMUNE PATHWAYS 
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3.2 Abstract 

Měnglà virus (MLAV), identified in Rousettus bats, is a phylogenetically distinct 

member of the family Filoviridae. Because the filoviruses Ebola virus (EBOV) and Marburg 

virus (MARV) modulate host innate immunity, MLAV VP35, VP40 and VP24 proteins were 

compared with their EBOV and MARV homologs for innate immune pathway modulation. In 

human and Rousettus cells, MLAV VP35 behaved like EBOV and MARV VP35s, inhibiting 

virus-induced activation of the interferon (IFN)-β promoter and IRF3 phosphorylation. MLAV 

VP35 also interacted with PACT, a host protein engaged by EBOV VP35 to inhibit RIG-I 

signaling. MLAV VP35 also inhibits PKR activation. MLAV VP40 was demonstrated to inhibit 

type I IFN induced gene expression in human and bat cells. It blocked STAT1 tyrosine 

phosphorylation induced either by type I IFN or over-expressed Jak1, paralleling MARV VP40. 

MLAV VP40 also inhibited virus-induced IFNβ promoter activation, a property shared by 

MARV VP40 and EBOV VP24. A Jak kinase inhibitor did not recapitulate this inhibition in the 
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absence of viral proteins. Therefore, inhibition of Jak-STAT signaling is insufficient to explain 

inhibition of IFNβ promoter activation. MLAV VP24 did not inhibit IFN-induced gene 

expression or bind karyopherin α proteins, properties of EBOV VP24.  MLAV VP24 differed 

from MARV VP24 in that it failed to interact with Keap1 or activate an antioxidant response 

element reporter gene, due to the absence of a Keap1-binding motif. These functional 

observations support a closer relationship of MLAV to MARV than to EBOV but also are 

consistent with MLAV belonging to a distinct genus. 

3.3 Importance  

EBOV and MARV, members of the family Filoviridae, are highly pathogenic zoonotic 

viruses that cause severe disease in humans. Both viruses use several mechanisms to modulate 

the host innate immune response, and these likely contribute to severity of disease. Here, we 

demonstrate that MLAV, a filovirus newly discovered in a bat, suppresses antiviral type I 

interferon responses in both human and bat cells. Inhibitory activities are possessed by MLAV 

VP35 and VP40, which parallels how MARV blocks IFN responses. However, whereas MARV 

activates cellular antioxidant responses through an interaction between its VP24 protein and host 

protein Keap1, MLAV VP24 lacks a Keap1 binding motif and fails to activate this cytoprotective 

response. These data indicate that MLAV possesses immune suppressing functions that could 

facilitate human infection.  They also support the placement of MLAV in a different genus than 

either EBOV or MARV. 

3.4 Introduction 

Měnglà virus (MLAV) was discovered when its genomic RNA was identified in the liver 

of a bat of the Rousettus genus that had been collected in Měnglà County, Yunnan Province, 

China (Yang et al. 2019).  To date, only RNA sequence is available and viable MLAV has not 
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yet been isolated.  MLAV has been proposed to represent a new genus, Dianlovirus, within the 

family Filoviridae. The filovirus family includes three additional genera, Ebolavirus, 

Marburgvirus and Cuevavirus, that contain viral species isolated from or identified in mammals 

(Maes et al. 2019). Placement of MLAV in a distinct genus was based on its comparatively low 

sequence identity to other filoviruses, phylogenetic and pairwise sequence comparison (PASC) 

analyses (Yang et al. 2019). It was also noted to have, compared to other filoviruses, unique gene 

overlaps and a unique transcription start signal (Yang et al. 2019). MLAV displays some features 

more reminiscent of Marburgvirus members than Ebolavirus members. Specifically, MLAV 

RNA was identified in tissue from a Rousettus bat, the same genus of bat which serves as a 

MARV reservoir in Africa (Schuh, Amman, and Towner 2017).  In addition, the MLAV Large 

(L) protein exhibits closer phylogenetic relatedness to Marburgvirus L than to the L of other 

filoviruses, and in contrast to Ebolavirus and Cuevavirus members, MLAV can express its 

glycoprotein (GP) without the need for editing of the GP mRNA (Messaoudi, Amarasinghe, and 

Basler 2015). 

Filoviruses are noteworthy because of their capacity to cause severe human disease 

(Messaoudi, Amarasinghe, and Basler 2015). Some members of the Ebolavirus and 

Marburgvirus genera are zoonotic pathogens that have caused repeated outbreaks with 

substantial lethality in humans (Rougeron et al. 2015). The largest such outbreak on record was 

caused by Zaire ebolavirus (EBOV) and occurred in West Africa between 2013 and 2016. This 

resulted in upwards of 28,000 infections, more than 11,000 deaths, and the export of infected 

cases to the United States and Europe (Team et al. 2016).  EBOV is also the cause of the second 

largest filovirus outbreak, which was first recognized in August 2018 and has continued well into 
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2019 (Organization 2019).The largest outbreak of MARV occurred in Angola between 2004-

2005 and had a reported case fatality rate of 88 percent (Rougeron et al. 2015).  

Likely contributing to the virulence of filoviruses are viral encoded proteins that target 

host cell innate immune signaling pathways (Messaoudi, Amarasinghe, and Basler 2015). 

Filovirus VP35 proteins suppress interferon (IFN)-α/β responses that play critical roles in innate 

antiviral immunity (Basler et al. 2000). VP35 impairment of IFN-α/β production occurs by 

inhibition of RIG-I-like receptor (RLR) signaling through several mechanisms, including VP35 

binding to RLR activating dsRNAs and the interaction of VP35 with PACT, a host protein that 

facilitates RIG-I activation (Cardenas et al. 2006; Edwards et al. 2016a; Leung et al. 2009a; 

Leung, Prins, et al. 2010; Luthra et al. 2013; Prins et al. 2010; Yen et al. 2014; Hartman, Towner, 

and Nichol 2004; Kimberlin et al. 2010; Bale et al. 2013a; Bale et al. 2012; Dilley et al. 2017). 

VP35s also inhibit the phosphorylation and activation of the IFN-induced kinase PKR (Feng et 

al. 2007a; Schumann, Gantke, and Muhlberger 2009; Hume and Muhlberger 2018; Edwards et 

al. 2018). EBOV VP24, but not MARV VP24, interacts with the NPI-1 subfamily of karyopherin 

alpha (KPNA) (also known as importin alpha) nuclear transport proteins, which includes 

KPNA1, KPNA5 and KPNA6 (Reid et al. 2006; Reid et al. 2007). The NPI-1 subfamily also 

mediates nuclear import of STAT1 following its activation by IFN (McBride et al. 2002; Reid et 

al. 2007; Sekimoto et al. 1997).  The interaction of EBOV VP24 with KPNA competes with 

tyrosine phosphorylated STAT1 (pY-STAT1), blocking pY-STAT1 nuclear import and 

suppressing expression of IFN stimulated genes (ISGs), a response that mediates the antiviral 

effects of IFN (Mateo et al. 2010; Reid et al. 2006; Reid et al. 2007; Xu et al. 2014). MARV 

VP40 protein has been demonstrated to suppress IFN-induced signaling and ISG expression, 

while EBOV VP40 has no known role in IFN antagonism (Valmas et al. 2010).  Activation of 
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the Jak family of kinases associated with IFN receptors is inhibited by MARV VP40, blocking 

phosphorylation and activation of the downstream STAT proteins, including STAT1 (Valmas et 

al. 2010; Valmas and Basler 2011a; Feagins and Basler 2015a). EBOV VP24 and MARV VP40 

have also been described to modestly inhibit IFN-α/β production, although the mechanism(s) are 

not defined (He, Melen, et al. 2017; Guito et al. 2017). While MARV VP24 does not appear to 

block IFN responses, it has been demonstrated to interact with Kelch-like ECH-associated 

protein 1 (Keap1). Under homeostatic conditions, Keap1, a cellular substrate adaptor protein of 

the Cullin3/Rbx1 ubiquitin E3 ligase complex, targets the transcription factor Nuclear factor 

erythroid 2-related factor 2 (Nrf2) for polyubiquitination and proteasomal degradation (Edwards 

et al. 2014; Page et al. 2014; Johnson et al. 2016). MARV VP24 disrupts the Keap1-Nrf2 

interaction, leading to Nrf2-induced expression of genes possessing antioxidant response 

elements (ARE) (Edwards et al. 2014; Page et al. 2014; Johnson et al. 2016). This activity 

induces a cytoprotective state that may prolong the life of MARV infected cells. MARV VP24 

also relieves Keap1 repression of the NF-κB pathway (Edwards and Basler 2015).  

Given the link between EBOV and MARV innate immune suppressors and virulence, and 

the unknown potential of MLAV to cause human disease, this study sought to determine whether 

MLAV possesses effective suppressors of innate immunity. Given the differences in innate 

immune evasion mechanisms between EBOV and MARV, it was also of interest to determine 

whether MLAV innate immune evasion mechanisms more closely resemble EBOV or MARV. 

The data demonstrate that MLAV VP35 functions as an IFN antagonist by mechanisms that 

mirror those of EBOV and MARV VP35. MLAV VP40 is demonstrated to act as a suppressor of 

IFN-induced signaling, whereas MLAV VP24 does not, mirroring the inhibitory functions of 

MARV. Both MLAV VP35 and VP40 effectively suppressed IFN responses in human and 
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Rousettus cells. Interestingly, MLAV VP24 does not detectably interact with Keap1 or activate 

ARE gene expression due to the absence of Keap1-binding sequences found in MARV VP24. 

Cumulatively, the data demonstrate the presence of IFN evasion functions in MLAV that are 

effective in human cells, suggesting the virus may have the capacity to cause human disease. The 

similarities in VP40 immune evasion functions are consistent with a closer genetic relationship 

of MLAV to MARV than EBOV, but the differences in VP24 function are consistent with 

MLAV occupying a distinct genus within the filovirus family. 

3.5 Materials and methods 

3.5.1 Viruses and cell lines 

HEK293T cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM), 

supplemented with 10% fetal bovine serum (FBS) and cultured at 37°C and 5% CO2. RO6E 

cells, immortalized fetal cells from Rousettus aegyptiacus, were obtained from BEI Resources 

and maintained in DMEM F12 and supplemented with 5% FBS. Sendai Virus Cantell (SeV) was 

grown in 10-day-old embryonating chicken eggs for forty-eight hours at 37°C. 

3.5.2 Plasmids 

MLAV NP, VP35, VP40, VP30 and VP24 coding sequences (based on accession number 

KX371887) were synthesized by Genscript. The synthesized open ¬reading frames were cloned 

into a pCAGGS expression vector with a FLAG-tag at the N-terminus of each coding sequence. 

EBOV and MARV viral proteins, GFP-STAT1, HA-Jak1, HA-PACT, HA-KPNA5, HA-Keap1 

and IRF3 expression plasmids were previously described (Cardenas et al., 2006; Edwards et al., 

2014; Luthra et al., 2013; Reid et al., 2006; Valmas & Basler, 2011). VP24 K-loop chimeras 

were made using overlapping PCR. MARV VP24 residues 202-RRIDIEPCCGETVLSESV-219 

were inserted into MLAV VP24 between residues 202 and 219 (MLAV VP24MARV 202-219) 
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and the corresponding MLAV residues 202- RAINASGRENESVVQNPI- 219 were inserted into 

MARV VP24 at the same position (MARV VP24MLAV 202-219). 

3.5.3 Cytokines 

Universal type I IFN (UIFN) (PBL) was used at 1000 U/mL in DMEM supplemented 

with 0.3% FBS for 30 minutes at 37°C, unless otherwise stated. 

3.5.4 Phosphorylation assays 

HEK293T cells (1x106) were transfected using Lipofectamine 2000Ò (Life 

Technologies). The amount of transfected IRF3 was 100 ng per well. Twenty-four hours post 

transfection, cells were mock-treated, UIFN-treated or SeV-infected, depending on the assay. 

Subsequently, cells were lysed in NP40 buffer (50mM Tris-HCl {pH 8.0}, 280mM NaCl, 0.5% 

NP-40) supplemented with cOmplete™ protease inhibitor cocktail (Roche) and PhosSTOP 

(Roche). Lysates were incubated for ten minutes on ice and clarified for ten minutes at 21,100 x 

g at 4°C. Phosphorylation status of the proteins was determined by western blot. 

3.5.5 IFNb- and ISG54-promotor reporter gene assay 

HEK293T cells (5x104) and RO6E cells (2x105) were co-transfected using Lipofectamine 

2000Ò with 25 ng of an IFNb promoter-firefly luciferase reporter plasmid or an interferon 

stimulated gene 54 (ISG54) promoter-firefly luciferase reporter plasmid, 25 ng of a 

constitutively expressing Renilla luciferase plasmid (pRL-TK, Promega) and the indicated viral 

protein expression plasmids – HEK293T cells: 62.5, 6.25, and 0.625 ng for VP35 and VP40 and 

25, 2.5, and 0.25 ng for VP24; RO6E cells: 250, 25, and 2.5 ng for EBOV and MARV proteins 

and 125, 12.5, and 1.25 ng for MLAV proteins. Twenty-four hours post transfection cells were 

mock-treated, SeV-infected (150 hemagglutinin activity units (HAU)) or UIFN-treated (1000 

U/mL). Eighteen hours post-infection or treatment, cells were lysed and analyzed for luciferase 



 82 

activity using a Dual LuciferaseÒ Reporter Assay System (Promega) per the manufacturer’s 

protocol. Firefly luciferase activity was normalized to Renilla luciferase activity. Assays were 

performed in triplicate; error bars indicate the standard error of the mean (SEM) for the triplicate. 

Viral protein expression was confirmed by western blot.  

3.5.6 IFNb promotor reporter gene assay in the presence of Jak1/Jak2 inhibitor 

HEK293T cells (5x104) were co-transfected using Lipofectamine 2000Ò with 25 ng of an 

IFNb promoter firefly luciferase reporter plasmid, 25 ng of pRL-TK Renilla luciferase reporter 

plasmid and 62.5, 6.25, and 0.625 ng of the indicated viral protein expression plasmids. Twenty-

four hours post-transfection, cells were pre-treated for one hour with 5 µM of Ruxolitinib 

(SelleckChem), a Jak1/Jak2 inhibitor, and then mock- or SeV- infected in the presence of the 

inhibitor (Quintas-Cardama et al. 2010). Eighteen hours post-infection or treatment, cells were 

lysed and assayed using a dual luciferase assay and analyzed as above. To verify inhibition of 

Jak1/Jak2 by Ruxolitnib, cells were transfected with 25 ng of an ISG54 promoter-firefly 

luciferase reporter plasmid and 25 ng of pRL-TK reporter plasmid. Twenty-four hours post-

transfection, cells were pre-treated for one hour with 5 µM of Ruxolitinib and then mock- or 

UIFN-treated for eighteen hours in the presence of the inhibitor and assayed for luciferase 

activity as above. 

3.5.7 Measurements of endogenous gene expression 

HEK293T cells (5x104) were transfected with 125 ng of empty vector or viral expression 

plasmids using Lipofectamine 2000Ò. Twenty-four hours post-transfection, cells were either 

mock-treated, SeV-infected, or UIFN treated (1000U/mL). At fourteen-hours post-treatment or 

infection, total cellular RNA was extracted using RNeasyÒ Mini Kit (Qiagen), as per the 

manufacturer’s protocol. SuperScriptÔ IV (Thermo Fisher Scientific) was used to generate oligo 
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dT cDNA which served as the template for quantitative PCR (qPCR). qPCR was performed 

using PerfeCTaÒ SYBR Green FastMixÒ (VWR Scientific) along with gene specific primers 

for human b-actin, IFNb and ISG54.  

3.5.8 ARE reporter assay 

HEK293T cells (5x104) were co-transfected using Lipofectamine 2000Ò with an 

antioxidant response element (ARE) reporter gene, pGL4.37 {luc2P/ARE/Hygro} (Promega) (30 

ng) and a pRL-TK reporter plasmid (25 ng) along with  either empty vector or 62.5, 6.25, and 

0.625 ng of EBOV, MARV, MLAV VP24 or chimeric MARV and MLAV expression plasmids. 

Eighteen hours post-transfection, luciferase activity was assessed and analyzed as above. 

3.5.9 Co-immunoprecipitation assays 

HEK293T cells were co-transfected using Lipofectamine 2000Ò with plasmids for 

FLAG-tagged MLAV proteins, HA-tagged host proteins, and pCAGGS empty vector. Twenty-

four hours post-transfection cells were rinsed with PBS and lysed in NP40 buffer supplemented 

with cOmplete™ protease inhibitor cocktail (Roche). Lysates were clarified by centrifugation 

and incubated with anti-FLAG M2 (Sigma-Aldrich) or anti-HA (Thermo Fisher) magnetic beads 

for two hours at 4°C. Beads were washed five times in NP40 buffer and precipitated proteins 

were eluted by boiling with SDS sample loading buffer or elution with 3X FLAG peptide 

(Sigma-Aldrich). Whole cell lysates and immunoprecipitated samples were analyzed by western 

blot. 

3.5.10 Western blot analysis 

Blots were probed with anti-FLAG (Sigma-Aldrich), anti-β-tubulin (Sigma-Aldrich), 

anti-HA (Sigma-Aldrich), anti-phospho-IRF3 (S396) (Cell Signaling), anti-IRF3 (Santa Cruz), 

anti-phospho-STAT1 (Y701) (BD Transduction Laboratories), anti-STAT1 (BD Transduction 
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Laboratories), anti-phospho-PKR (T446) (Abcam), or anti-PKR (Cell Signaling) antibodies, as 

indicated. Antibodies were diluted in Tris-buffered saline with 0.1% Tween-20 (TBS-T) with 5% 

milk or, when detecting phospho-proteins, 5% bovine serum albumin. 

3.5.11 VP40 budding assays 

10 µg of EBOV, MARV and MLAV VP40 expression plasmids were transfected into 

either HEK293T (3x106) or RO6E (2x106) cells using Lipofectamine 2000Ò (Life Technologies). 

Media was harvested 48 hours post-transfection, briefly clarified by centrifugation, and layered 

over a 20% sucrose cushion in NTE buffer (10 mM NaCl, 10 mM Tris {pH 7.5}, 1 mM EDTA 

{pH 8.0}). The samples were then subjected to ultracentrifugation in a Beckman SW41 rotor at 

222,200 x g for 2 hours at 10°C; media was aspirated after ultracentrifugation and virus-like 

particles (VLPs) were solubilized in NTE buffer at 4°C overnight. Cellular lysates were 

generated by washing transfected cells with PBS and lysing cells in NP40 buffer containing 

cOmplete™ protease inhibitor cocktail (Roche). To detect the presence of VP40, 5% of cell 

lysates and 10% of VLPs were analyzed by western blotting. To confirm that VP40s from 

isolated VLPs had a membrane that can protect internal components from protease digestion, 

10% of VLPs were incubated in NTE buffer with 500 ng/µl of trypsin solution (Corning), either 

in the absence or presence of 0.5% Triton X-100 (Sigma), at 37°C for 1 hour prior to western 

blot analysis. 

3.5.12 Statistics 

Statistical significance was determined by one-way ANOVA followed with Tukey 

multiple comparison as compared to the indicated control; **p < 0.0001, * p < 0.001 (GraphPad 

PRISM8). 
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3.6 Results 

3.6.1 MLAV VP35 blocks virus induced IFNb promotor activation in both human and bat 

cells 

As a measure of the capacity of MLAV VP35, VP40 and VP24 to modulate type I IFN 

production, the human cell line HEK293T or the Rousettus bat cell line RO6E were assessed by 

reporter gene assay for their effect on Sendai virus (SeV) induced IFNβ promoter activation. 

Either empty vector or FLAG-tagged expression plasmids for the VP35, VP40 and VP24 

proteins of EBOV, MARV and MLAV were co-transfected with an IFNβ promoter firefly 

luciferase reporter and a constitutively expressing Renilla luciferase plasmid. Twenty-four hours 

post-transfection, cells were either mock-infected or infected for an additional 18 hours with 

SeV, a potent activator of the IFNβ promoter(Baum, Sachidanandam, and Garcia-Sastre 2010). 

As expected, SeV infection activated the IFNβ promoter in the absence of viral protein 

expression. EBOV and MARV VP35 impaired IFNβ reporter activation in a dose-dependent 

manner in both cell lines, with EBOV exhibiting greater potency as previously shown (Figure 

20A-B) (Edwards et al. 2016a; Dilley et al. 2017). Similarly, MLAV VP35 dramatically 

diminished IFNβ promoter activity in a dose dependent manner (Figure 20A-B). 

Expression of EBOV VP24, Lloviu virus (LLOV) VP24 or MARV VP40 has also been 

reported to impair IFNβ and, in the case of EBOV VP24, IFNλ production (Guito et al. 2017; 

He, Melen, et al. 2017; Feagins and Basler 2015b).  In the present study, in HEK293T cells, 

modest inhibition of IFNβ promoter activation was evident for EBOV VP24, EBOV VP40, and 

MARV VP40. MLAV VP40 exhibited potent dose-dependent inhibition of IFNβ promoter 

activation (Figure 20A).  Weak, but statistically significant inhibition of IFNβ reporter gene 

expression was detected for MARV VP24 and MLAV VP24, however, the biological 
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significance of this minimal inhibition is uncertain. In RO6E cells, MLAV VP40 inhibition of 

IFNβ promoter activation was also detected but only at the highest concentration of transfected 

plasmid (Figure 20B).   

To evaluate whether or not the inhibition of the IFNβ reporter also correlates with 

inhibition of endogenous IFNβ gene expression, qRT-PCR assays were performed. MLAV VP35 

and VP40 showed significant inhibition of IFNβ transcripts consistent with the results of the 

reporter assays. Expression of MLAV VP24 had no effect on IFNβ copy numbers, which may 

suggest that the minor inhibition observed in the luminescence assay is not biologically relevant 

(Figure 20C). 

EBOV and MARV VP35 inhibition of RLR signaling pathways results in inhibition of 

the phosphorylation and activation of transcription factor interferon regulatory factor 3 (IRF3) 

(Cardenas et al. 2006; Hartman et al. 2006; Ramanan et al. 2012). In order to determine whether 

MLAV VP35 can inhibit activation of IRF3, HEK293T cells were co-transfected with either 

empty vector or an IRF3 expression plasmid and plasmids that express FLAG-tagged EBOV, 

MARV, and MLAV VP35 (Figure 20D). Twenty-four hours post-transfection, cells were either 

mock- or SeV-infected to induce IRF3 phosphorylation. Over-expression of IRF3 substantially 

increased detection of the phosphorylated form. As previously reported, EBOV VP35 potently 

inhibited IRF3 phosphorylation. MARV VP35 also inhibited IRF3 phosphorylation, although 

less efficiently, consistent with less robust inhibition of RIG-I signaling as compared to EBOV 

VP35 (Dilley et al. 2017; Edwards et al. 2016a). MLAV VP35 inhibited IRF3 phosphorylation 

comparable to EBOV VP35 (Figure 20D).  
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Figure 20 MLAV VP35 blocks Sendai virus-induced IFNβ promoter activation in both human 
and bat cells 

HEK293T cells were transfected with an IFNβ promoter firefly luciferase reporter plasmid, a constitutively-
expressed Renilla luciferase reporter plasmid and either empty vector (E) or the specified FLAG-tagged viral 
proteins. The amounts of VP35 and VP40 plasmids were 62.5 ng, 6.25 ng and 0.625 ng; the amounts of VP24 
plasmids were 25 ng, 2.5 ng and 0.25 ng. Twenty-four hours post-transfection, cells were either mock or Sendai 
virus (SeV)-infected. Firefly and Renilla luciferase activities were determined eighteen hours post-infection 
using a dual luciferase assay. Fold induction was determined relative to the vector only, mock-infected samples 
(A). RO6E cells were assayed as described above, except the amounts of EBOV and MARV VP35, VP40 and 
VP24 plasmids were 250 ng, 25 ng and 2.5 ng and the amounts of MLAV VP35, VP40 and VP24 plasmids were 
125 ng, 12.5 ng and 1.25 ng (B). HEK293T cells were transfected with 125 ng of empty vector or the indicated 
protein expression plasmids, mock- or SeV-infected for eighteen hours and endogenous human IFNβ mRNA 
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levels were measured and normalized to human β-actin mRNA levels. For all experiments in A-C, cell lysates 
were analyzed by western blot with anti-FLAG and anti-β-tubulin antibodies (insets) (C). Experiments were 
performed in triplicate, error bars represent the SEM for the triplicate, and statistical significance was determined 
by performing a one-way ANOVA followed with Tukey multiple comparison as compared to SeV-infected 
control (white bar); **p < 0.0001, * p < 0.001. VPs – viral proteins. HEK293T cells were transfected with empty 
vector (E) or IRF3 expression plasmid (100 ng), as indicated, and FLAG-tagged EBOV, MARV, MLAV VP35. 
The amounts of VP35 plasmids were 2,000 ng, 400 ng and 80 ng. Cells were mock or SeV-infected for four 
hours. Whole cell lysates were analyzed by western blot with anti-pIRF3 (S396), anti-total IRF3, anti-FLAG 
(VP35), and anti-β-tubulin antibodies (D). HEK293T cells were transfected with empty vector (E), or plasmids 
that express FLAG-tagged EBOV VP35, MARV VP35, MLAV VP35, or dsRNA binding mutant EBOV 
VP35KRA and HA-tagged PACT, as indicated (E). Immunoprecipitations (IP) were performed with anti-FLAG 
antibody. Western blots were performed for detection of VP35 (anti-FLAG antibody), PACT (anti-HA 
antibody), and β-tubulin. WCL, whole cell lysate. *Experiments in A-D performed by Joyce Sweeney 
Gibbons. 

 

EBOV and MARV VP35 interact with host protein PACT, and this interaction 

contributes to VP35 inhibition of RIG-I signaling (Hume and Muhlberger 2018; Luthra et al. 

2013). To determine if MLAV VP35 might suppress IFN production through a similar 

mechanism, the PACT-VP35 interactions were evaluated by co-immunoprecipitation assay 

(Figure 10E). FLAG-tagged EBOV, MARV, and MLAV VP35 or empty vector expression 

plasmids were co-transfected with HA-tagged PACT in HEK293T cells. A VP35 dsRNA 

binding mutant (VP35KRA) that has previously been shown to lack the ability to interact with 

PACT was included as a negative control (Luthra et al. 2013). All three wildtype VP35 proteins 

were demonstrated to interact with PACT, with MLAV VP35 interacting comparably to EBOV 

VP35 (Figure 10E).  Together, these data suggest that MLAV VP35 employs mechanisms 

similar to EBOV and MARV VP35 for inhibition of RIG-I dependent activation of type I IFN 

responses and that the potency of inhibition is similar to EBOV VP35. 

3.6.2 MLAV VP35 protein inhibits phosphorylation of PKR in human cells 

To assess whether MLAV VP35 can inhibit activation of PKR, HEK293T cells were 

transfected with FLAG-tagged EBOV, MARV, and MLAV VP35, or empty vector expression 

plasmids. Consistent with previous literature, EBOV VP35 and MARV VP35 inhibited SeV-
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induced PKR phosphorylation (Figure 21). MLAV VP35 also inhibited activation of PKR in a 

concentration dependent manner (Figure 21). 

 

Figure 21 MLAV VP35 inhibits Sendai virus-induced PKR activation 
HEK293T cells were transfected with empty vector (E) or expression plasmids for FLAG-tagged EBOV, MARV 
and MLAV VP35, as indicated (2000 ng, 400 ng and 80 ng). Twenty-four hours post-transfection, cells were 
mock- or SeV-infected. Eighteen hours post infection, whole cell lysates were assessed by western blot for levels 
of total and phosphorylated PKR using anti-FLAG (VP35), anti-total PKR, anti-phospho-PKR (T446) (pPKR) 
and anti-β-tubulin antibodies. 
 

3.6.3 MLAV VP40 protein responses to type I IFN in both human and bat cells 

To test the effects of MLAV VP35, VP40 and VP24 on the response of cells to 

exogenous type I IFN, empty vector or expression plasmids for FLAG-tagged VP35, VP40 and 

VP24 proteins of EBOV, MARV and MLAV were co-transfected with an IFN-responsive ISG54 

promoter firefly luciferase reporter plasmid and a plasmid that constitutively expresses Renilla 

luciferase. Twenty-four hours post-transfection, cells were either mock- or type I IFN-treated.  

The ISG54 reporter was activated by IFN-treatment in the absence of viral protein expression 

(Figure 22B). As expected, both MARV VP40 and EBOV VP24 strongly inhibited ISG54 

reporter activity in both human and bat cell lines (Figure 22A-B). Similar to MARV VP40, 

MLAV VP40 potently inhibited the ISG54 reporter in both cell types. Each of the VP35s and 

MARV and MLAV VP24 modestly inhibited the ISG54 reporter when higher amounts of 

expression plasmid were tested.  
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To further address this function, endogenous ISG54 transcripts were measured by qRT-

PCR. Inhibition of IFN-induced gene expression was demonstrated for MARV VP40, EBOV 

VP24 and MLAV VP40 (Figure 22C), consistent with the reporter gene results. Notably, no 

inhibition was detected with either MLAV VP35 or MLAV VP24 in this assay.  

 

Figure 22 MLAV VP40 protein inhibits responses to type I IFN in both human and bat cells 
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HEK293T cells were transfected with an ISG54 promoter firefly luciferase reporter plasmid, a constitutively-
expressed Renilla luciferase reporter plasmid and either empty vector (E) or the specified FLAG-tagged viral 
proteins. The amounts of VP35 and VP40 plasmids were 62.5 ng, 6.25 ng and 0.625 ng; the amounts of VP24 
plasmids were 25 ng, 2.5 ng and 0.25 ng. Twenty-four hours post-transfection, cells were either mock- or UIFN-
treated. Eighteen hours post-treatment, firefly and Renilla luciferase activities were determined. Firefly 
luciferase values were normalized to Renilla luciferase values and fold induction was calculated relative to the 
vector only, mock-treated samples (A). RO6E cells were transfected as described above, except the amounts of 
EBOV and MARV VP35, VP40 and VP24 plasmids were 250 ng, 25 ng and 2.5 ng and the amounts of MLAV 
VP35, VP40 and VP24 plasmids were 125 ng, 12.5 ng and 1.25 ng (B). HEK293T cells were assessed for 
endogenous human ISG54 mRNA levels in the presence of empty vector or expression plasmids for the indicated 
viral proteins, 125 ng. Results were normalized to human b-actin mRNA levels. All experiments were performed 
in triplicate, error bars represent the SEM for the triplicate. Whole cell lysates were analyzed by western blot 
with anti-FLAG and anti-β-tubulin antibodies (inset) (C).  Statistical significance was determined by performing 
a one-way ANOVA followed with Tukey’s multiple comparison test as compared to UIFN-treated control (white 
bar); **p < 0.0001, *p < 0.001. *Experiments performed by Joyce Sweeney Gibbons. 

 

MARV VP40 has been shown to be a potent inhibitor of IFN-α/β induced 

phosphorylation of STAT1; whereas EBOV VP24 inhibits this pathway by blocking nuclear 

transport of pY-STAT1(Reid et al. 2006; Reid et al. 2007; Xu et al. 2014). To determine whether 

inhibition of IFN responses is due to inhibition of STAT1 phosphorylation, HEK293T cells were 

co-transfected with empty vector or expression plasmids for FLAG-tagged EBOV, MARV, and 

MLAV VP24 or VP40. GFP-STAT1 was (Figure 23A) or was not (Figure 23B) included in the 

transfection.  Addition of IFN triggered the phosphorylation of GFP-STAT1 and endogenous 

STAT1 in the vector only samples. Among the EBOV and MARV constructs, only MARV VP40 

was inhibitory. MLAV VP40 inhibited STAT1 tyrosine phosphorylation to a similar degree as 

MARV VP40. MLAV VP24 did not detectably affect STAT1 phosphorylation.  

MARV VP40 inhibits STAT1 phosphorylation following over-expression of 

Jak1(Valmas et al. 2010). To determine whether MLAV VP40 can prevent Jak1 induced STAT1 

phosphorylation, HA-tagged Jak1 was co-transfected with empty vector or FLAG-tagged EBOV, 

MARV or MLAV VP40. As expected, expression of exogenous Jak1 induced STAT1 tyrosine 

phosphorylation, and this was suppressed in the presence of MARV VP40 (Figure 23C). 
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Similarly, MLAV VP40 prevented Jak1-dependent STAT1 phosphorylation, suggesting that 

MLAV VP40 inhibits IFN signaling through mechanisms similar to those used by MARV VP40.   

 

Figure 23 MLAV VP40 protein inhibits type I IFN induced gene expression and Jak-STAT 
signaling 

HEK293T cells were transfected with empty vector (E), FLAG-tagged VP24s or VP40s from EBOV, MARV 
and MLAV, as indicated. Twenty-four hours post-transfection, cells were treated with UIFN for 30 minutes 
and the phosphorylation status of exogenous GFP-STAT1 (A) or endogenous STAT1 (B) was assessed by 
western blotting. HEK293T cells were co-transfected with empty vector (E) or FLAG-tagged VP40s from 
EBOV, MARV and MLAV and HA-tagged Jak1 expression plasmids. Twenty-four hours post-transfection 
cells were lysed and the phosphorylation status of endogenous STAT1 was analyzed (C). Western blotting was 
performed with anti-FLAG, anti-STAT1, anti-pSTAT1 (Y701), and anti-β-tubulin antibodies. 
 
 
 

EBOV VP24 interacts with NPI-1 subfamily members of the KPNA nuclear transporters, 

including KPNA5, to block nuclear import of pY-STAT1(Reid et al. 2006; Reid et al. 2007; Xu 
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et al. 2014). To assess whether MLAV VP24 interacts with KPNA5, co-immunoprecipitation 

assays were performed in HEK293T cells (Figure 24A).  KPNA5 did not precipitate in the 

absence of a co-expressed protein. Among FLAG-tagged EBOV, MARV, and MLAV VP24, 

only EBOV VP24 detectably interacted with KPNA5. To determine if MLAV VP24 might 

interact with other KPNA family members, additional co-immunoprecipitation assays were 

performed between MLAV VP24 and KPNA1-6. EBOV VP24 was used in parallel as a control. 

As expected, EBOV VP24 co-precipitated with KPNA1, KPNA5, and KPNA6. MLAV VP24 

failed to detectably co-precipitate with any of the KPNA family members (Figure 24B and 24C). 

The absence of MLAV VP24-KPNA interactions is consistent with the inability of MLAV VP24 

to inhibit IFN-induced gene expression and identifies a functional difference from EBOV VP24. 

 

Figure 24 MLAV VP24 does not interact with KPNAs 
HEK293T cells were co-transfected with FLAG-tagged EBOV, MARV, MLAV VP24, and HA-tagged KPNA5. 
Immunoprecipitation (IP) was performed with anti-FLAG antibody and precipitates and whole cell lysates 
(WCL) were assessed by western blotting with anti-FLAG (VP24), anti-HA (KPNA5) and anti-β-tubulin 
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antibodies (D). HEK293T cells were co-transfected with either FLAG-tagged EBOV or MLAV VP24, and HA-
tagged KPNA1-6 (E-F). Immunoprecipitation (IP) was performed with anti-HA antibody and precipitates and 
whole cell lysates (WCL) were assessed by western blotting with anti-FLAG (VP24), anti-HA (KPNA) and anti-
β-tubulin antibodies. 
 

3.6.4  MLAV and MARV VP40 bud with similar efficiencies from human and bat cells 

Filovirus VP40 proteins play a critical role in budding of new virus particles, and 

expression of VP40 is sufficient for formation and budding of VLPs (Timmins et al. 2001; Harty 

et al. 2000; Jasenosky et al. 2001b; Kolesnikova et al. 2002; Kolesnikova et al. 2004). MLAV 

VP40 displays more potent activity than MARV VP40 in several assays.  To determine whether 

this might reflect altered cellular accumulation due to different levels of budding from cells, the 

capacity of EBOV, MARV and MLAV VP40s to bud as VLPs was assessed. Upon expression in 

human and bat cells, each VP40 budded from both cell types.  Furthermore, significant portions 

of the EBOV, MARV, and MLAV VP40 in cell supernatants were only trypsin-sensitive upon 

addition of Triton X-100 detergent, consistent with the VP40s from both HEK293T and RO6E 

cells being protected by a membrane, as is characteristic of filovirus particles (Figure 25A-B).  

3.6.5 MLAV VP40 and EBOV VP24 inhibition of IFNb promotor activation occurs 

independently of Jak-STAT signaling 

The type I IFN response includes a positive feedback loop whereby secreted IFN 

upregulates pattern recognition receptors, such as RIG-I and transcription factors such as IRF7, 

to amplify the response (Michalska et al. 2018). It was therefore of interest to test the hypothesis 

that MLAV VP40, MARV VP40 and EBOV VP24 inhibit virus-induced induction of the IFN 

response as a result of their inhibition of IFN-induced positive  
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Figure 25 MLAV VP40 is capable of forming virus-like particles from both human and bat 
cells 

To compare the budding of EBOV, MARV, and MLAV VP40 proteins from different cell lines, VLP assays 
were performed in a HEK293T cells (A) and RO6E cells (B). Ten percent of each VLP preparation was subjected 
to treatment with trypsin (Tryp) or trypsin and Triton X-100 (Tryp+Triton) to determine whether VP40 was 
contained within a membrane. The presence of VP40 in non-treated (N.T.) and treated VLPs and whole cell 
lysates (WCL) was assessed by western blot with anti-FLAG antibody. Anti-β-tubulin served as a loading control 
for the WCL. *Experiments in A-D performed by Timothy Keiffer. 

 

feedback loop. Activation of the IFNβ promoter by SeV was therefore assessed by reporter gene 

assay in the absence or presence of the Jak1/Jak2 inhibitor Ruxolitinib. In this experiment, cells 

were transfected with empty vector or FLAG-tagged expression plasmids for the EBOV VP35, 

EBOV, MARV and MLAV VP40 and EBOV VP24, pre-treated with DMSO or Ruxolitinib and 

then mock- or SeV- infected, in the absence or presence of the inhibitor (Figure 26A).  EBOV 

VP35 acted as a potent suppressor of IFNb promoter activation under these conditions. MARV 

VP40, MLAV VP40, and EBOV VP24 all suppressed IFNβ promoter activation to similar 

extents in the absence or presence of the Jak kinase inhibitor. To confirm that inhibition of IFN  
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Figure 26 MLAV VP40 blocks Sendai virus-induced IFNβ promoter activation independently 
of Jak-STAT signaling 
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HEK293T cells were transfected with an IFNβ promoter firefly luciferase reporter plasmid, a constitutively-
expressed Renilla luciferase reporter plasmid and either empty vector (E) or the specified FLAG-tagged viral 
proteins.  The amounts of VP35, VP40, and VP24 plasmids were 62.5 ng, 6.25 ng, and 0.625 ng. Twenty-four 
hours post-transfection, cells were pre-treated with either DMSO or the Jak1/Jak2 inhibitor Ruxolitinib for one 
hour. Post treatment, cells were mock- or SeV-infected in the presence of DMSO or Ruxolitinib. Firefly and 
Renilla luciferase activities were determined eighteen hours later using a dual luciferase assay (Promega). Fold 
induction was determined relative to the DMSO vector only, mock-infected samples. Viral protein expression 
was confirmed by western blotting with anti-FLAG antibody (inset). Anti-β-tubulin served as a loading control 
(A). HEK293T cells were transfected with an ISG54 promotor firefly luciferase reporter plasmid, a 
constitutively-expressing Renilla luciferase reporter plasmid and empty vector. Twenty-four hours post-
transfection, cells were pre-treated with DMSO or Ruxolitinib for one hour. Post-treatment, cells were mock- or 
UIFN-treated in the presence of DMSO or Ruxolitinib. Firefly and Renilla luciferase activities were determined 
eighteen hours later using a dual luciferase assay (Promega). Fold induction was determined relative to the 
DMSO, mock-treated samples (B). HEK293T cells were assessed for endogenous human IFNb and ISG54 
mRNA levels in the presence of viral expression plasmids, 125 ng. Results were normalized to human b-actin 
mRNA levels. Assays were performed in triplicate. Cell lysates were analyzed by western blot with anti-FLAG 
and anti-β-tubulin antibodies (inset) (C). For A and C, error bars represent the SEM for the triplicate. Statistical 
significance was determined by performing a one-way ANOVA followed with Tukey multiple comparison as 
compared to SeV-infected control; **p < 0.0001, * p < 0.001. *Experiments performed by Joyce Sweeney 
Gibbons. 

induced signaling was complete, cells transfected with an ISG54 promoter reporter gene were 

DMSO or Ruxolitinib treated and then mock or IFN-treated. As expected, IFN activated the 

ISG54 promoter in the presence of DMSO but not Ruxolitinib (Figure 26B). To validate the 

inhibitory activities detected in the reporter gene assays, quantitative RT-PCR was performed to 

detect expression of the endogenous IFNβ and ISG54 mRNA. Consistent with the reporter 

assays, IFNβ and ISG54 copy numbers were significantly inhibited in the presence of EBOV 

VP35, EBOV VP24 and both MARV and MLAV VP40 (Figure 26C). It is notable that inhibition 

of SeV-induced IFN responses by EBOV VP35 was more robust than for the other proteins. That 

degrees of inhibition were unaffected by the presence of the Ruxolitinib, these data suggest that 

MARV VP40, MLAV VP40 and EBOV VP24 all utilize mechanisms independent of inhibition 

of STAT1 phosphorylation to impair induction of type I IFN responses. 
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Figure 27 MLAV VP24 does not interact with KEAP1 or activate the ARE response 
HEK293T cells were co-transfected with FLAG-tagged EBOV, MARV, MLAV VP24, as indicated, and HA-
tagged human Keap1 (hKeap1) (A) or HA-tagged bat Keap1 (bKeap1) (B). Co-immunoprecipitation (IP) was 
performed with anti-FLAG antibody and precipitates and whole cell lysates (WCL) were assessed by using anti-
FLAG (VP24), anti-HA (Keap1) and anti-β-tubulin antibodies. HEK293T cells were transfected with a reporter 
plasmid with the firefly luciferase gene under the control of an ARE promoter, a reporter plasmid that 
constitutively expresses Renilla luciferase and either empty vector (E) or the indicated FLAG-VP24 proteins. 
The amounts of VP24 plasmids were 62.5 ng, 6.25 ng and 0.625 ng. Firefly and Renilla luciferase activities were 
determined eighteen hours post-transfection. Firefly luciferase activity was normalized to Renilla luciferase 
activities and fold activity is reported, relative to the empty vector only sample. Protein expression was analyzed 
by western blot using anti-FLAG (VP24) and anti-β-tubulin antibodies (inset) (C). The reporter gene assays were 
performed in triplicate; error bars represent the SEM for the triplicate. Statistical significance was determined 
by performing a one-way ANOVA followed with Tukey multiple comparison as compared to vector only control 
(white bar); **p < 0.0001, * p < 0.001. *Experiments performed by Joyce Sweeney Gibbons. 
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3.6.6 MLAV VP24 fails to interact with Keap1 or activate ARE gene expression due to the 

absence of a Keap1-interacting K-loop 

MARV VP24 interacts with Keap1 to activate ARE promoters (Edwards et al. 2014; Page 

et al. 2014). To determine whether MLAV VP24 possesses similar properties, co-

immunoprecipitation experiments were performed with HA-tagged human Keap1 (hKeap1) or 

HA-tagged Keap1 derived from the bat Myotis lucifugus (bKeap1), which is 96.8% identical, at 

the amino acid level, to the predicted Rousettus aegypticus Keap1 (data not shown). As 

previously described, MARV VP24 interacted with both human and bat Keap1, whereas EBOV 

and MLAV VP24 did not interact (Figure 27A and 27B).  Consistent with these data, when 

tested in an ARE promoter reporter gene assay, MARV VP24 activated the ARE reporter, 

relative to an empty vector control, while neither EBOV nor MLAV VP24 activated the ARE 

response (Figure 27C). 

MARV VP24 interaction with Keap1 occurs via a specific motif, the K-loop, and transfer 

of this sequence to EBOV VP24 confers binding to Keap1 (Edwards et al. 2014).  To determine 

whether this sequence could confer interaction with Keap1 and activation of ARE responses 

upon MLAV VP24, the MARV VP24 K-loop sequence (amino acid residues 202-219) was 

transferred to MLAV VP24, replacing the corresponding amino acid residues (MLAV VP24MARV 

202-219).  The reverse chimera was also generated, with MLAV sequences replacing the K-loop in 

MARV VP24 (MARV VP24MLAV 202-219) (Figure 8A). Transferring the MARV K-loop sequence 

to MLAV VP24 conferred the capacity to activate an ARE response while transfer of the MLAV 

sequence to MARV VP24 abolished the activation (Figure 28B). Interaction with human Keap1 

(Figure 28C) and bat Keap1 (Figure 28D) yielded corresponding data, where interaction was 
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dependent on the MARV VP24 K-loop.  Collectively, these data demonstrate that the lack of 

ARE gene expression by MLAV VP24 is due to the lack of a Keap1 binding motif.  

 

Figure 28 Transfer of the MARV K-Loop sequence confers on MLAV VP24 interaction with 
Keap1 and activation of ARE signaling 
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Sequences for amino acid residues 202-219, which correspond to the MARV VP24 K-loop, for MARV VP24, 
MLAV VP24 and the VP24 chimera constructs MLAV VP24 MARV 202-219 and MARV VP24MLAV 202-219 (A).  
HEK293T cells were transfected with reporter plasmid with the firefly luciferase gene under the control of an 
ARE promoter, a reporter plasmid that constitutively expresses Renilla luciferase and either empty vector (E) or 
the indicated FLAG-VP24 proteins. The amounts of VP24 plasmids were 62.5 ng, 6.25 ng and 0.625 ng. Firefly 
and Renilla luciferase activities were determined eighteen hours post transfection. Firefly luciferase activity was 
normalized to Renilla luciferase activities and fold activity is reported, relative to the empty vector only sample. 
The experiment was performed in triplicate, error bars represent the SEM for the triplicate. Statistical 
significance was determined by performing a one-way ANOVA followed with Tukey multiple comparison as 
compared to vector only control (white bar); **p < 0.0001, * p < 0.001.  Cell lysates were analyzed by western 
blot with anti-FLAG (VP24) and anti-β-tubulin antibodies (Inset) (B). HEK293T cells were transfected with 
FLAG-tagged constructs, as indicated and either (C) HA-tagged human Keap1 (hKeap1) or (D) HA-tagged bat 
Keap1 (bKeap1). Co-immunoprecipitation (IP) was performed with anti-FLAG antibody. IPs were analyzed by 
western blotting with anti-FLAG (VP24), anti-HA (Keap1) and anti-β-tubulin antibodies. WCL, whole cell 
lysate. 

 

3.6.7 MLAV VP35 and VP40 proteins maintain their ability to inhibit the IFN response in 

the presence of other viral proteins  

In addition to inhibiting IFN responses, VP35 and VP40 are known to form complexes 

with other viral proteins at various stages of the viral life cycle (Bharat et al. 2012; Huang et al. 

2002; Noda et al. 2007a; Watanabe, Noda, and Kawaoka 2006). Both VP35 and VP40 are known 

to independently interact with the nucleoprotein (NP) and together with the VP24 protein NP and 

VP35 can form mature nucleocapsids. To determine if the formation of the nucleocapsid complex 

impacted the ability of VP35 to inhibit IFNb production, varying amounts of EBOV and MLAV 

VP35 were transfected in the presence of EBOV or MLAV NP and VP24, respectively. Both 

EBOV and MLAV VP35 were still able to inhibit SeV-induced activation of the IFNb promoter 

in the presence of NP and VP24. (Figure 29A).  Similarly, to assess if NP could interfere with the 

ability of VP40 to inhibit IFN production and signaling we co-transfected varying amounts of 

MARV VP40 or MLAV VP40 in the presence of NP. MLAV VP40 was still a potent repressor of 

both SeV-induced activation of the IFNb promoter and the UIFN-induced activation of the ISG54 

promoter in the presence of NP (Figure 29B-C).   
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Figure 29 MLAV VP35 and VP40 maintain their ability to inhibit the IFN response in the 
presence of other viral proteins (Part I) 

HEK293T cells were transfected with either an IFNb (A-B) or an ISG54 (C) promoter firefly luciferase reporter 
plasmid, a constitutively-expressed Renilla luciferase reporter plasmid and either empty vector (E) or the 
specified FLAG-tagged viral proteins. (A) 62.5 ng, 6.25 ng and 0.625 ng of VP35 plasmid and 6.25 ng of NP 
and VP24 plasmids. (B-C) 62.5 ng, 6.25 ng and 0.625 ng of VP40 plasmid and 6.25 ng of NP plasmid. Twenty-
four hours post-transfection, cells were either mock, SeV-infected (A-B), or UIFN-treated (C). Eighteen hours 
post-treatment, firefly and Renilla luciferase activities were determined. Firefly luciferase values were 
normalized to Renilla luciferase values and fold induction was calculated relative to the vector only, mock-
treated samples Whole cell lysates were analyzed by western blot with anti-FLAG and anti-β-tubulin antibodies 
(insets).  Statistical significance was determined by performing a one-way ANOVA followed with Tukey’s 
multiple comparison test as compared to SeV-infected (A-B) or UIFN-treated (C) control (white bar); **p < 
0.0001, *p < 0.001. *Experiments in A-B performed by Joyce Sweeney Gibbons. 

 

Lastly, we evaluated the effect of co-transfecting multiple viral proteins together on the 

inhibitory capabilities of EBOV, MARV, and MLAV. The respective NP, VP35, VP40, VP30 and 

VP24 plasmids were transfected together in either the IFNb or ISG54 promotor assay. Upon 
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activation with either SeV or UIFN, respectively, it was observed that the combination of proteins 

inhibited the SeV-induced activation of the IFNb promoter and the UIFN-induced activation of 

the ISG54 promoter (Figure 30A-B).  

 

Figure 30 MLAV VP35 and VP40 maintain their ability to inhibit the IFN response in the 
presence of other viral proteins (Part II) 

HEK293T cells were transfected with either an IFNb (D) or an ISG54 (E) promoter firefly luciferase reporter 
plasmid, a constitutively-expressed Renilla luciferase reporter plasmid and either empty vector (E) or the 
specified FLAG-tagged viral proteins. 6.25 ng of NP, VP35, VP40, VP30, and VP24 plasmids. Twenty-four 
hours post-transfection, cells were either mock, SeV-infected (D) or UIFN-treated (E). Eighteen hours post-
treatment, firefly and Renilla luciferase activities were determined. Firefly luciferase values were normalized to 
Renilla luciferase values and fold induction was calculated relative to the vector only, mock-treated samples. 
Whole cell lysates were analyzed by western blot with anti-FLAG and anti-β-tubulin antibodies (insets).  
Statistical significance was determined by performing a one-way ANOVA followed with Tukey’s multiple 
comparison test as compared to SeV-infected (A) or UIFN-treated (B) control (white bar); **p < 0.0001, *p < 
0.001. *Experiments in A performed by Joyce Sweeney Gibbons. 
 

3.7 Discussion 

The data in this study provide functional evidence that MLAV is biologically distinct from 

other filoviruses and support its classification in its own genus. The placement of MLAV in a 

distinct genus was based on its relatively low sequence identity to other filoviruses (Yang et al. 

2019). It was also noted to have, compared to other filoviruses, unique gene overlaps and a unique 



 104 

transcription start signal. Despite these distinctions, MLAV mechanisms of entry and RNA 

synthesis, based on pseudotype and minigenome assays, mirror those of both EBOV and MARV. 

MLAV also possesses some features that suggest a closer genetic relationship to members of the 

Marburgvirus genus as opposed to the Ebolavirus and Cuevavirus genera. This includes 

similarities in Large (L) protein sequence and the absence of RNA editing sites in GP (Yang et al. 

2019). In addition, MLAV was identified in Rousettus bats, and Rousettus bats in Africa serve as 

a reservoir for MARV and RAVV (Schuh, Amman, and Towner 2017). The present study 

demonstrates commonalities and distinctions between MLAV and either EBOV or MARV in 

terms of how viral proteins antagonize the innate immune response in both bat and human cells.  

Inhibition of RIG-I induced IFN responses is thus far a common feature of filoviruses (Olejnik, 

Hume, Leung, Amarasinghe, Basler, and Muhlberger 2017). The suppression of IFN-induced 

signaling and gene expression by VP40, rather than via VP24, parallels MARV and draws a 

functional distinction between MLAV and EBOV. The absence of MLAV VP24 interaction with 

human or bat Keap1, and its lack of ARE transcriptional activation is consistent with MLAV 

having evolved unique virus-host interactions that are distinct from MARV. These findings further 

support placement of MLAV in a distinct genus, but also suggest a closer relationship to MARV 

than EBOV. 

The data also demonstrate that MLAV encodes mechanisms to counteract both type I IFN 

production and cellular responses to exogenous IFN, and that this virus has the potential to 

antagonize these innate antiviral responses in both bat and human cells. MLAV VP35 was 

demonstrated to effectively block activation of the IFNβ promoter in response to SeV infection, a 

known inducer of the RIG-I signaling pathway. In addition, inhibition of SeV-induced 

phosphorylation of IRF3 was demonstrated. Together, these data indicate that MLAV can block 
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RIG-I signaling, consistent with the function of other filovirus VP35s (Rehwinkel et al. 2010; 

Baum, Sachidanandam, and Garcia-Sastre 2010). Mechanistically, inhibition of IFN-α/β 

production by EBOV or MARV VP35 correlates with dsRNA binding activity (Cardenas et al. 

2006; Hartman, Towner, and Nichol 2004; Leung, Prins, et al. 2010; Prins et al. 2010; Bale et al. 

2012; Dilley et al. 2017; Luthra et al. 2013; Ramanan et al. 2012; Edwards et al. 2016a). This may 

reflect binding and sequestration of RIG-I activating dsRNAs (Luthra et al. 2013; Dilley et al. 

2017). The VP35 dsRNA binding domain, also known as the interferon inhibitory domain (IID), 

directly contacts the phosphodiester backbone of dsRNA, via residues that comprise a central basic 

patch, to mediate this interaction (Edwards et al. 2016a; Kimberlin et al. 2010; Leung et al. 2009a; 

Leung, Prins, et al. 2010; Ramanan et al. 2012; Bale et al. 2013a). EBOV VP35 also caps the ends 

of dsRNA in a manner that likely masks 5’-triphosphates, which contribute to recognition of RNAs 

by RIG-I (Kimberlin et al. 2010; Leung, Prins, et al. 2010). VP35 interaction with host protein 

PACT, which interacts with and facilitates activation of RIG-I, also contributes to inhibition 

(Luthra et al. 2013; Kok et al. 2011).  Because the residues that make up the central basic patch 

are conserved between MLAV and other filoviral VP35s, MLAV is likely to bind to dsRNA. Given 

that it also interacts with PACT, its mechanisms of inhibition are likely similar to other filoviral 

VP35s.  

EBOV, MARV and LLOV VP35 have also been demonstrated to inhibit activation of PKR, 

an IFN-induced, dsRNA-activated protein kinase that exerts antiviral effects by suppressing 

translation (Hume and Muhlberger 2018; Edwards et al. 2018; Feagins and Basler 2015b; 

Schumann, Gantke, and Muhlberger 2009; Feng et al. 2007a). The mechanism by which VP35s 

inhibit PKR remains ambiguous, however, mutation of multiple central basic patch residues in 

EBOV or MARV VP35 disrupts the inhibitory activity (Schumann, Gantke, and Muhlberger 2009; 
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Hume and Muhlberger 2018).  In contrast, single point mutations that disrupt EBOV VP35 dsRNA 

binding activity leave PKR inhibition intact, suggesting that inhibition of PKR is not dependent 

upon VP35-dsRNA interaction or sequestration (Feng et al. 2007a; Schumann, Gantke, and 

Muhlberger 2009).  Consistent with PKR inhibition being an important function for filoviruses, 

this activity is conserved in MLAV as well. That the inhibition can occur in human cells further 

supports the likelihood that MLAV could counter human innate antiviral defenses. 

The IFN-inhibitory activities of both EBOV and MARV VP35 have been demonstrated to 

be important for efficient virus replication in IFN-competent systems (Hartman et al. 2006; Prins 

et al. 2010). In addition to blocking the production of antiviral IFNs, VP35 inhibition of RIG-I also 

suppresses maturation of dendritic cells when expressed alone or in the context of EBOV infection 

(Yen and Basler 2016; Yen et al. 2014; Lubaki et al. 2013).  This activity impairs adaptive 

immunity to EBOV (Lubaki et al. 2016; Ilinykh et al. 2015). Therefore, VP35 likely inhibits 

adaptive, as well as innate, antiviral defenses. Disruption of VP35 anti-IFN function in the context 

of recombinant EBOVs has been demonstrated to render the virus avirulent in mice, guinea pigs 

and non-human primates (Hartman et al. 2008; Prins et al. 2010; Woolsey et al. 2019). Based on 

these data, VP35 suppression of RIG-I signaling appears to be critical for virulence. The effective 

function in human cells of MLAV VP35 satisfies one apparent criterion for virulence in humans. 

It should be noted however, that suppression of RIG-I signaling by VP35 is not sufficient on its 

own to confer virulence. Even though MARV VP35 functions in Rousettus cells and likely has 

evolved in this species, MARV does not appear to cause significant disease in these animals 

(Paweska et al. 2012; Jones et al. 2015; Amman et al. 2015). It does seem likely that in the reservoir 

host, VP35 IFN-antagonist function will be important for efficient replication and transmission, 

although this remains to be tested experimentally. 
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For MARV, either infection or VP40 expression alone blocks IFN induced phosphorylation 

of Jak kinases, inhibiting activation and downstream signaling. The absence of these 

phosphorylation events in response to IFN-α/β or IFNγ is consistent with the phenotype of Jak1-

deficient cells, suggesting that Jak1 function may be targeted by MARV VP40, although there is 

no evidence to date of VP40-Jak1 interaction (Valmas et al. 2010).  Consistent with MARV VP40 

impairing Jak1 function, MARV VP40 expression is sufficient to prevent phosphorylation of 

STAT proteins following Jak1 over-expression or treatment by IFN-α/β or IFNγ (type II IFN)  

(Valmas et al. 2010).  MLAV VP40 likewise blocks ISG expression and inhibits STAT1 

phosphorylation following IFN treatment or over-expression of Jak1. Therefore, inhibition of IFN 

signaling by MLAV VP40 seems likely to proceed by a mechanism similar to that employed by 

MARV VP40.   

MARV VP24 binds directly to Keap1, a cellular substrate adaptor protein of the Cullin-

3/Rbx1 E3 ubiquitin ligase complex (Edwards et al. 2014; Johnson et al. 2016; Zhang et al. 2014; 

Page et al. 2014). Keap1 regulates the cellular antioxidant response (Copple 2012). Under 

homeostatic conditions, Keap1 promotes Nrf2 polyubiquitination and degradation. Cell stresses, 

including oxidative stress, disrupt the Keap1-mediated ubiquitination of Nrf2, stabilizing it and 

promoting Nrf2 dependent expression of antioxidant response genes. Biophysical studies 

demonstrated that MARV VP24 interacts with the Keap1 Kelch domain at a site that overlaps the 

region that binds Nrf2 (Johnson et al. 2016).  This interaction disrupts Nrf2-Keap1 interaction and 

activates ARE gene expression (Johnson et al. 2016; Edwards et al. 2014; Page et al. 2014). Keap1 

similarly interacts with host kinase IKKβ to repress NF-ĸB responses and MARV VP24 can also 

disrupt this interaction, thereby relieving Keap1 repression on the NF-ĸB transcriptional response 

(Edwards and Basler 2015). In contrast, EBOV and LLOV VP24 targets KPNA proteins in a 
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manner that prevents pY-STAT1 nuclear transport, inhibiting ISG expression (Mateo et al. 2010; 

Reid et al. 2006; Reid et al. 2007; Xu et al. 2014; Feagins and Basler 2015b).   

Given that MLAV VP40 mirrored MARV VP40 in its inhibition of the IFN response, it 

was of interest to determine whether MLAV VP24 would similarly mimic MARV VP24 in terms 

of interaction with the Keap1-Nrf2 pathway.  However, MLAV VP24 lacks a sequence that 

resembles the MARV VP24 K-loop and, correspondingly, did not interact with human or a bat-

derived Keap1 and did not activate an ARE promoter. Chimeric MARV-MLAV VP24 proteins 

confirmed that the absence of the K-loop sequence can explain the lack of MLAV VP24 effects 

on antioxidant responses. Furthermore, consistent with the absence of MLAV VP24 inhibitory 

activity in IFN-signaling assays, it also fails to interact with KPNA1, 5 and 6, which can mediate 

nuclear import of pY-STAT1. The interface between EBOV VP24 and KPNA covers a large 

surface area and involves multiple points of contact (Xu et al. 2014). This precluded the mapping 

of specific amino acid residues that explain the lack of MLAV VP24-KPNA interactions. 

Nonetheless, these data presented here indicate that MLAV VP24 does not reflect the functions of 

either MARV or EBOV VP24.  It will be of interest to determine whether MLAV VP24 engages 

different host signaling pathway(s). 

The inhibition of IFNβ promoter activity by MLAV VP40 parallels the inhibition by EBOV 

VP24 and MARV VP40, although inhibition by MLAV VP40 appeared to be more potent.  

Interestingly, MLAV VP40 inhibits SeV-induced IFNβ gene expression with an efficiency 

comparable to EBOV VP35, although MLAV VP35 appears to be more potent than MLAV VP40 

in this assay. It will be of interest to determine to what extent VP35 and VP40 contribute to 

suppression of IFN induction in MLAV infected cells. MARV VP40 and EBOV VP24 inhibition 

of IFN-α/β production and, in the case of EBOV VP24, production of IFN-λ as well, have been 
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previously reported (Guito et al. 2017; He, Melen, et al. 2017). However, the mechanism(s) for 

these inhibitory activities are incompletely defined, although EBOV VP24 was implicated as 

having an effect post-IRF3 phosphorylation (He, Melen, et al. 2017). Inhibition of STAT1 

activation and IFN-induced gene expression would be expected to impair the positive feedback 

loop in which IFN-α/β induces expression of IFN stimulated genes, including RIG-I and IRF7, to 

amplify IFN responses (Michalska et al. 2018). This prompted additional experiments to determine 

whether the detected inhibition was a product of blocking a positive feedback loop involving Jak-

STAT signaling. Treatment of empty vector-transfected cells with a Jak1/Jak2 inhibitor did not 

inhibit SeV-induced IFNβ promoter activation, suggesting that in the system used, Jak-STAT 

signaling does not contribute to the IFNβ response. Further, the dose response of EBOV VP24, 

MARV VP40 and MLAV VP40 in the IFNβ promoter assay were unaffected. These data suggest 

MLAV VP40 has an additional mechanism(s) of IFN antagonism that requires further exploration.  

Infectious MLAV is not available to allow us to confirm that suppression of IFN responses 

occurs in infected cells. As an alternative, we asked whether other viral proteins might modulate 

these activities. We co-transfected MLAV VP35 and MLAV VP40 with other viral proteins that, 

based on data from EBOV and MARV, would be expected to form functional complexes. VP35, 

when co-expressed with NP and VP24, forms nucleocapsid structures (Huang et al. 2002; 

Watanabe, Noda, and Kawaoka 2006). Despite this, NP and VP24 co-expression did not prevent 

inhibition of the IFNβ promoter by either EBOV or MLAV. Similarly, VP40 interacts with NP 

(Noda et al. 2007a). However, NP affected neither VP40 suppression of the IFNβ nor the ISG54 

promoter. Additionally, co-expression of the internal viral proteins except the Large (L) protein 

which is expressed at low levels in filovirus-infected cells, also did not prevent suppression of IFN 
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responses. These findings suggest that these innate immune evasion functions will be active during 

MLAV infection. 

Cumulatively, the present study has identified several functions of MLAV proteins that, in 

conjunction with previously published data, indicate a compatibility with infection of humans. 

These include the capacity of MLAV GP to mediate entry into human cells via interaction with 

NPC1 and suppression of IFN responses through several mechanisms (Yang et al. 2019). Notably, 

given that MLAV VP24 does not detectably interact with the KPNAs or Keap1, it is likely that it 

may make unique interactions with host cells. Therefore, the existing data also suggests that the 

outcome of MLAV infection in humans could differ from that of the typical outcome of EBOV or 

MARV infection.  
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4 DISCUSSION AND FUTURE DIRECTIONS 

4.1 Utilization of VPS34 and fatty acid metabolism by coronaviruses 

In late 2019, a novel coronavirus appeared in China and quickly initiated not only the 

largest coronavirus outbreak on record, but also the most significant pandemic in the last century, 

resulting in almost a billion cases and worldwide social and economic disruption. The severity of 

the pandemic prompted urgent efforts to stop the spread and treat those infected, which 

manifested as a concerted effort to utilize existing antivirals and better understand the 

requirements of the viral life cycle (Bouhaddou et al. 2020; Gordon, Jang, et al. 2020; Hoffmann 

et al. 2020; Wang, Wang, et al. 2020). Repurposing of drugs developed for other diseases and 

conditions that target host factors has been a large part of the process to better understand how 

SARS-CoV-2 interacts with host-cells to promote infection, not only because it provides a 

higher-throughput way to identify required enzymes and pathways, but also due to the likelihood 

of it providing a shortcut to antiviral development (Garcia-Serradilla, Risco, and Pacheco 2019; 

Li and De Clercq 2020; Pizzorno et al. 2019; Saini et al. 2020).  

A known facet of CoV infection is the ability of viral proteins to interact with host cell 

membranes and membrane machinery to induce rearrangements that promote effective entry, 

RNA replication, and virion production (Hagemeijer et al. 2014; Prentice et al. 2004; Reggiori, 

de Haan, and Molinari 2011; Reggiori et al. 2010; Snijder et al. 2020; V'Kovski et al. 2021). A 

major result of these rearrangements is the formation of a complex reticulovesicular network of 

interconnected convoluted membranes (CMs), double membrane vesicles (DMVs), and vesicle 

packets (VPs) thought to function in concentrating and protecting viral replication processes 

(Knoops et al. 2008; Snijder et al. 2020). Previous studies have observed DMVs colocalizing 

with LC3, a protein with well-known functions in autophagy; however, studies on mouse 
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hepatitis virus (MHV) disagree on whether or not autophagy itself is necessary for replication 

(Reggiori, de Haan, and Molinari 2011; Reggiori et al. 2010; Prentice et al. 2004; Zhao et al. 

2007). Alternate models for membrane remodeling implicate EDEMosomes, vesicles originating 

from the ER that associate with non-lipidated LC3 (Reggiori, de Haan, and Molinari 2011; 

Reggiori et al. 2010). A common entity in the underlying pathways in these models is VPS34, a 

class III phosphoinositide 3-kinase that plays important roles in autophagy and endosomal 

trafficking, as well as other cellular functions (Backer 2016; Ohashi et al. 2020). Inhibition of 

VPS34 kinase activity has been shown to impair hepatitis C virus (HCV), tombusvirus (TBSV) 

and coronavirus infections (Feng et al. 2019; Su et al. 2011; Wang et al. 2021).  

Additionally, other RNA viruses that induce comparable membrane rearrangements and 

DMV formation usurp host cell fatty acid metabolism and lipid droplets, cellular organelles that 

store neutral lipids, as a scaffold and energy source for replication (Cloherty et al. 2020; Heaton 

and Randall 2011). Pharmacological inhibition of long chain acyl-CoA synthetase (ACS) or 

diglyceride acyltransferases (DGATs), enzymes involved in the neutral lipid synthesis pathway, 

inhibits rotavirus (RV) and HCV, possibly reflecting a dependence of these viruses on lipid 

droplets (Cheung et al. 2010; Kim et al. 2012; Liefhebber et al. 2014). It has also been shown 

that, targeting upstream fatty acid metabolism enzymes, acetyl-CoA carboxylase (ACC) and 

fatty acid synthase (FASN), impairs replication of several different viruses including 

Coxsackievirus B, Chickungunya virus (CHIKV), and several flaviviruses (Ammer et al. 2015; 

Gaunt et al. 2013; Hitakarun et al. 2020; Merino-Ramos et al. 2016; Tongluan et al. 2017).  

Together, this information provided two major pathways for consideration in SARS-

CoV-2 membrane rearrangement formation and replication. Chapter one of this dissertation 
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discusses how VPS34 and fatty acid metabolism are involved in the viral life cycle of SARS-

CoV-2 and their attractiveness for potential therapeutic development.  

In our investigation into the involvement of VPS34, we tested two well characterized 

specific and structurally similar inhibitors of VPS34: VPS34-IN1 and PIK-III (Bago et al. 2014; 

Dowdle et al. 2014). Both inhibitors showed potent inhibition of viral titers at sub-micromolar 

concentrations in both Vero E6 and Calu-3 cells as measured by resistance assay and plaque 

assay, respectively (Figure 11 and Figure 14). To further contribute the observed anti-SARS-

CoV-2 activity to VPS34 activity, the panel of inhibitors was extended to include Compound 19 

and SAR405, the latter of which is structurally distinct from the others (Honda et al. 2016; 

Pasquier 2015; Ronan et al. 2014). The importance of VPS34 for virus replication was validated 

by the inhibition of virus growth, consistent with recent reports (Figure 15) (Wang et al. 2021; 

Yuen et al. 2021). Time of addition studies with VPS34-IN1 and PIK-III suggest inhibition 

occurs at both early steps, potentially at viral entry, and later steps, including viral RNA 

synthesis as being sensitive to VPS34 inhibition (Figure 13).  

While our inhibitor studies implicate VPS34 as a critical host factor for SARS-CoV-2 

replication, they do not differentiate between the various functions of VPS34 that might be 

involved. Studies in different cell types suggest autophagy is not essential for MHV growth and 

more recent studies suggest that coronaviruses interfere with autophagy, and that activation of 

autophagy can inhibit replication of SARS-CoV, MERS CoV, and SARS-CoV-2 (Gassen et al. 

2019; Guo et al. 2016; Prentice et al. 2004; Zhao et al. 2007). Using this logic and the fact that 

inhibitors of VPS34 result in the inhibition of autophagy, it would be expected that inhibition of 

VPS34 would eliminate these anti-CoV effects of autophagy and promote SARS-CoV-2 

replication, contradicting what we are seeing. At the same time, host protein TMEM41B, which 
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is also implicated in autophagy, has been demonstrated to facilitate SARS-CoV-2 growth, 

suggesting that the virus may usurp some autophagy functions (Schneider et al. 2021). Separate 

from autophagy, VPS34 has several other roles, most notably in vesicular trafficking and sorting. 

VPS34 phosphorylation of phosphoinositol-3 allows for recruitment of various proteins for 

endosomal fusion and tethering, recruitment of the endosomal sorting complex required for 

transport (ESCRT) proteins for the formation of multivesicular bodies, and proper functioning of 

the Retromer complex for endosome-to-Golgi transport (Backer 2016; Ohashi et al. 2020). It will 

be of interest to further determine whether the diminished replication of SARS due to targeting 

VPS34 reflects inhibition of autophagy or non-autophagy related functions. VPS34 associates 

with two main complexes: complex I, which functions in autophagy, and complex II, which 

functions in endosomal maturation (Backer 2016; Ohashi et al. 2020). One potential option for 

determining how VPS34 regulates replication, would be to retain VPS34 activity but prevent 

autophagy flux or endosomal maturation by eliminating factors closely tied to VPS34 in each of 

the two major pathways. If we can independently disrupt either pathway and obtain comparable 

inhibition to what we see with VPS34-IN1, we can begin to focus in on one pathway for further 

characterization of the key host factors utilized by SARS-COV-2. 

Interestingly, VPS34 has been shown to be recruited to tombusvirus replication 

compartments providing increased levels of phosphoinositol-3-phosphate, which allows for 

recruitment of Rab5-positive early endosomes to provide phosphatidylethanolamine-enriched 

membranes for replication center formation (Feng et al. 2019). Based on our observation that 

VPS34-IN1 interferes with the formation of dsRNA positive SARS-CoV-2 replication centers 

(Figure 17), it is possible that VPS34 functions to facilitate membrane availability for SARS-

CoV-2 replication organelle formation. Disruption of endocytic trafficking might also explain 
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our observation that pre-treatment followed by removal of VPS34 inhibitors had significant 

effects on early phases of SARS-CoV-2 replication. This provides us with an additional 

ultrastructural characterization dependent pipeline to pursue in determining the mechanism by 

which SARS-CoV-2 utilizes VPS34.  

Orlistat, an FDA approved inhibitor of fatty acid synthase (FASN), and Triacsin C, an 

inhibitor of long chain acyl-CoA synthetase (ACS) have previously been examined for their 

antiviral activities against viruses the utilize fatty acids and neutral lipids for replication (Ammer 

et al. 2015; Cheung et al. 2010; Gaunt et al. 2013; Hitakarun et al. 2020; Kim et al. 2012; 

Liefhebber et al. 2014; Tongluan et al. 2017; Wakil and Abu-Elheiga 2009). To begin our study 

on fatty acid metabolism involvement in SARS-CoV-2 replication, we tested both Orlistat and 

Triacsin C and found that both exhibited antiviral activity in Vero E6 and Calu-3 cells, with 

more than ten times higher inhibition being observed in Calu-3 cells (Figure 12 and Figure 14). 

Inhibition was only observed when treatment was maintained throughout infection, consistent 

with the post-entry inhibition previously described for other viruses (Figure 13).  

Due to the upstream nature of steps in the metabolic pathway inhibited by Orlistat and 

Triacsin C, we are likely dysregulating downstream pathways, such that the inhibition we see 

could be the result of downregulation of fatty acid protein modification, b-oxidation of fatty 

acids in the mitochondria, or neutral lipid synthesis and lipid droplet formation (Baenke et al. 

2013). To further determine the mechanistic role of fatty acid metabolism involvement for 

SARS-CoV-2, we tested a series of compounds that targeted enzymatic steps involved in each 

one of the aforementioned pathways downstream of FASN. Our results showed that the 

palmitoyl acetyltransferase (PAT) inhibitor 2-bromopalmitate, which should block protein 

palmitoylation, led to a substantial reduction in SARS-CoV-2 replication. This may reflect a 
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requirement for spike modification and/or palmitoylation of envelope and host proteins that has 

been previously described for other coronaviruses (Figure 16) (McBride and Machamer 2010; 

Petit et al. 2007; Thorp et al. 2006; Boscarino et al. 2008; Tseng et al. 2014). Additionally, 

treatment with A922500, a specific inhibitor of DGAT1, resulted in significant reduction of 

SARS-CoV-2. This inhibition is indicative of a need for neutral lipid synthesis and suggests a 

critical role for lipid droplets, which have previously been implicated in SARS-CoV-2 

replication and assembly (Figure 16) (Dias et al. 2020). Our data with A922500 are consistent 

with such a model, given that its effects on production of infectious virus were substantially 

greater than on viral RNA synthesis (Figure 17 and Figure 18). Inhibition of multiple steps of 

fatty acid b-oxidation by Etomoxir and Trimetazidine (TMZ) has no effect on SARS-CoV-2 

replication, ruling out a direct role for fatty-acid catabolism in virus replication (Figure 16).  

As previously mentioned, VPS34 and fatty acid metabolism are closely tied to 

membranes and virally induced membrane rearrangements. Studies tracking newly synthesized 

RNA during CoV infection show that RNA synthesis occurs at foci referred to as replication 

centers that correspond to double membrane vesicles produced during coronavirus infection 

(Snijder et al. 2020). We looked at whether SARS-CoV-2 replication centers might be affected 

and found that treatment of infected cells with VPS34-IN1 and the inhibitors of different steps of 

fatty acid metabolism all resulted in aberrant dsRNA and N localization, and the distribution 

varied depending on the compound used. These data suggest VPS34 and various aspects of fatty 

acid metabolism play a critical role in proper formation SARS-CoV-2 replication centers and 

virally induced membrane rearrangements. The conclusion that the observed change in 

localization is specific to the mechanism by which each inhibitor effects SARS-CoV-2 is further 
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supported by the lack of localization disruption in samples treated Remdesivir, a compound that 

specifically inhibits RNA replication (Figure 17). 

When investigating whether the change in localization is coupled to changes in RNA 

synthesis, we found that VPS34-IN1, Triacsin C, Orlistat, and 2-bromopalmitate all reduced 

genomic N and NSP14 RNA levels to a degree that roughly correlated with the reduction in viral 

titer, while subgenomic N was only moderately affected in comparison (Figure 18). Determining 

whether these compounds selectively impact viral genome replication versus subgenomic mRNA 

production is of interest and warrants future studies. Treatment with TOFA and A922500 

reduced genomic N and NSP14 RNA to a substantially lesser degree than the reductions in viral 

titers. The discrepancy between the reduction in RNA synthesis and infectious virus is consistent 

with models like rotavirus, where specialized replication organelles function not only as sites of 

RNA synthesis, but also as sites of virion assembly and maturation. Disruption of these 

structures moderately reduces RNA synthesis but has a much larger impact on virus assembly 

and release (Cheung et al. 2010; Gaunt et al. 2013; Kim et al. 2012; Lever and Desselberger 

2016). It has been speculated that vesicle packets are the result of merging DMVs to provide a 

site to bring together newly synthesized RNA and viral proteins for virion assembly (Knoops et 

al. 2008; Goldsmith et al. 2004). One way we can assess whether this is a contributing factor to 

the discrepancies we see in RNA levels and titer, would be to do ultrastructural analysis to 

determine how treatment alters membrane rearrangements and how that effects the localization 

and quantity of newly forming virions. 

The demonstration that SARS-CoV-2 replication is impaired in CRISPR knockout cells 

lacking FASN expression cells but not in cells that received a non-targeting guide RNA further 

confirms the requirement for fatty acids. In cells lacking FASN there was a significant reduction 
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in viral titers that was sustained throughout infection. Further support that the attenuation of 

replication is due to loss of fatty acid production, is the increased attenuation when the cells were 

maintained in the presence of fatty acid free medium that lacks potential sources of exogenous 

fatty acids like FBS. As a means of trying to rescue the phenotype, supplementation was 

performed with two primary substrates downstream of FASN, palmitic acid and oleic acid 

(Ackerman et al. 2018; Alsabeeh et al. 2018; Baenke et al. 2013). The result was a significant 

increase in SARS-CoV-2 replication in FASN KO cells with supplementation when compared to 

cells without (Figure 19). The ability to rescue infection using fatty acid metabolism products 

provides a potentially useful approach for further mechanistic characterization of fatty acid 

metabolism in the SARS-CoV-2 life cycle. 

The identification of fatty acid metabolism, and more specifically protein palmitoylation 

and lipid droplet production, as key components for replication provides important insights into 

SARS-CoV-2-host interactions. The significant reduction in viral titers observed by inhibiting 

FASN and DGAT1 offers potential targets for therapeutic design and drug repurposing efforts. 

For FASN specifically, there are several classes of molecules that are either currently undergoing 

late phase clinical trials or already FDA approved for various diseases and conditions with 

differing properties and mechanisms of action (Kridel et al. 2004; Lupu and Menendez 2006; 

Syed-Abdul et al. 2020; Zaytseva et al. 2018). Investigation of these compounds, alone or in the 

presence of Remdesivir, could lead to viable treatment options worth further consideration and 

pre-clinical studies.   

4.2 Characterization of filovirus protein immune antagonism  

Filoviruses are highly pathogenic zoonotic pathogens that have case fatality rates ranging 

from 30-90% (Languon and Quaye 2019). As a zoonotic pathogen, filoviruses follow a two-part 
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transmission cycle with an enzootic phase in which the virus transmits among its natural animal 

hosts and an epizootic or epidemic phase in which the virus spills over into the human population 

from its animal host and begins human-to-human transmission (CDC 2016; Plowright et al. 

2017). With the looming possibility of spillover from animals to humans, surveillance and 

sampling of possible host species has been of great importance. Testing of samples isolated from 

various bats found RNA and virus for Marburgviruses and RNA and antibodies for 

Ebolaviruses, making bats the prime suspect for being the natural asymptomatic reservoir for the 

enzootic transmission phase (Towner et al. 2009; He et al. 2013; Olival et al. 2013; Yuan et al. 

2012; Olival and Hayman 2014). As global viral surveillance measures continue, more and more 

novel filoviruses have been identified including LLOV, BOMV, and the most recently 

discovered MLAV (Yang et al. 2019; Towner et al. 2009; Goldstein et al. 2018).  

As a newly discovered virus in a family of zoonotic pathogens, it is necessary to 

determine whether there is a possibility of successful human infection by MLAV. An important 

factor in the pathogenesis of viral infection is the ability of the virus to evade or disrupt the host 

innate immune response (Plowright et al. 2017; Messaoudi, Amarasinghe, and Basler 2015). For 

filoviruses, the importance of viral-host interactions that dysregulate the host immune response is 

well demonstrated (Basler and Amarasinghe 2009; Messaoudi, Amarasinghe, and Basler 2015). 

Disruption of the anti-IFN function of EBOV VP35 by abrogating its ability to bind to dsRNA 

has been shown to render the virus avirulent in mice, guinea pigs and non-human primates 

(Hartman et al. 2008; Prins et al. 2010; Woolsey et al. 2019). While VP35 suppression of RIG-I 

signaling appears to be critical for virulence, the suppression of RIG-I signaling by VP35 is not 

sufficient on its own to confer virulence, as is apparent with MARV in Rousettus cells where 

VP35 is functional, but MARV does not appear to cause significant disease in these animals 
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(Paweska et al. 2012; Jones et al. 2015; Amman et al. 2015). This finding supports the idea that 

productive infection likely requires the antagonistic functions of multiple proteins, including 

VP40 and/or VP24. The importance of these proteins in the pathogenicity of filoviruses in new 

host species was demonstrated during mouse adaption of MARV, EBOV, and RAVV, where 

serial passaging of the viruses in mice caused mutations in VP40 for MARV and RAVV and 

VP24 for EBOV that resulted in successful inhibition of IFN signaling (Feagins and Basler 

2015a; Valmas and Basler 2011a; Lofts et al. 2011; Warfield et al. 2009; Volchkov et al. 2000; 

Lofts et al. 2007; Ebihara et al. 2006). 

Chapter two of this dissertation investigates MLAV as a novel species in a newly 

proposed genus and characterizes the capabilities of VP35, VP40, and VP24 as compared to their 

EBOV and MARV counterparts.  

The residues that make up the central basic patch of other filovirus VP35s are conserved 

in MLAV, suggesting MLAV VP35 is able to bind to dsRNA. Given this information, it was not 

surprising to see that MLAV VP35 was able to potently inhibit SeV-induced IFNb promotor 

activation and phosphorylation of PKR and IRF in a dose dependent manner (Figure 20 and 

Figure 21). Additionally, MLAV VP35 was found to interacts with PACT (Figure 20). These 

data together suggest a mechanism of inhibition similar that to other filoviral VP35s, likely 

blocking RIG-I signaling through shielding dsRNA and acting as a decoy substrate during IRF3 

phosphorylation (Rehwinkel et al. 2010; Baum, Sachidanandam, and Garcia-Sastre 2010; 

Messaoudi, Amarasinghe, and Basler 2015). Determining the RNA binding capabilities of 

MLAV and whether it sequesters dsRNA by binding the backbone or the backbone and the ends 

like MARV and EBOV, respectively, is of interest for better understanding the IFN-antagonism 
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and which of its counterparts it more closely resembles (Bale et al. 2013b; Bale et al. 2012; 

Basler et al. 2000; Edwards et al. 2016b).  

MARV VP40 expression is sufficient to prevent phosphorylation of STAT proteins 

following Jak1 over-expression or treatment with type I IFN, blocking downstream ISG 

production (Valmas et al. 2010). Consistent with this, we observed potent inhibition of UIFN-

induced ISG54 promotor activation by MLAV VP40 (Figure 22) and inhibition of UIFN- and 

Jak1 overexpression-induced STAT1 phosphorylation (Figure 23). Our data suggest disruption 

of IFN signaling by MLAV VP40 seems likely to proceed by a mechanism similar to that 

employed by MARV VP40.  Interestingly, MLAV also showed potent inhibition of SeV-induced 

IFNβ promoter activity comparable to the inhibition seen by EBOV and MARV VP35. This 

finding led us to determine whether the observed inhibition was a possible biproduct of blocking 

a positive feedback loop involving the inhibition Jak-STAT signaling. Treatment with a 

Jak1/Jak2 inhibitor in the absence of VP40 did not inhibit SeV-induced IFNβ promoter 

activation, suggesting that Jak-STAT signaling does not contribute to the IFNβ response (Figure 

26). Similar, albeit less potent, inhibition was observed for MARV VP40, consistent with 

previously reports, however no mechanism has been determined (Guito et al. 2017). A potential 

starting point for future investigation into the mechanism of inhibition is the ability of MARV 

VP40 to localize to the nucleus (Han et al. 2020). If MARV and MLAV can shuttle in and out of 

the nucleus, it will be of interest to identify the means by which this trafficking occurs. Neither 

VP40 contains a classical nuclear localization signal (NLS); however, patches of basic residues, 

like the one found in MARV and MLAV VP40, can be involved in nuclear transport, providing a 

starting point for analyzing sequence specific nuclear localization (Oka and Yoneda 2018). 

Matrix proteins of other NNS RNA viruses are implicated in nuclear mechanisms ranging from 
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regulating cellular transcription, to IFN antagonism, and regulating viral assembly and budding 

(Wang et al. 2010; Ciancanelli and Basler 2006; Ghildyal et al. 2003; von Kobbe et al. 2000; 

Bharaj et al. 2016). The ability to block nuclear localization can help determine the purpose for 

trafficking and help us better understand the inhibition of IFN production. Additionally, this 

inhibition can be assessed independently of the nuclear localization using the samepreviously 

described IFNb promotor assay coupled to stimulation with components of the signaling 

pathway that activate RIG-I signaling downstream of SeV activation.   

EBOV VP24 disrupts IFN signaling though interaction with KPNA family members to 

prevent the localization of phosphorylated STATs to the nucleus while MARV VP24 interacts 

with Keap1 to activate cytoprotective ARE gene expression (Edwards et al. 2014; Johnson et al. 

2016; Zhang et al. 2014; Page et al. 2014; Mateo et al. 2010; Reid et al. 2006; Reid et al. 2007). 

MLAV VP24 appears to lack both of these functions. We observed no significant inhibition of 

either SeV-induced IFNb promotor activity or UIFN-induced ISG54 promotor activity (Figure 

20 and Figure 22). Consistent with the lack of inhibition of IFN signaling, MLAV VP24 failed to 

interact with any of the KPNA family members (Figure 24). Additionally, MLAV VP24 lacks a 

sequence that resembles the MARV VP24 Keap1 binding K-loop and therefore lacked the 

corresponding interaction with Keap1 and the resulting ARE promoter activation (Figure 27). 

Chimeric MARV-MLAV VP24 proteins confirmed the absence of the K-loop sequence as the 

cause for the lack of antioxidant response activation by MLAV VP24 (Figure 28). Since EBOV 

and MARV function by separate mechanisms, it cannot be ruled out that MLAV VP24 utilizes 

its own unique strategy to contribute to pathogenicity and virulence. Protein interactome mass 

spectrometry screens using the EBOV and MARV viral proteins as bait were responsible for 

identifying the host factors involved in the respective VP24 functions (Pichlmair et al. 2012; 
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Garcia-Dorival et al. 2014). As this has been successful previously, it is of interest to repeat a 

similar process for MLAV VP24 to pinpoint any potential novel host interactions and elucidate 

the functionality, if any, of MLAV VP24.  

Lastly, we were interested in seeing whether or not the aforementioned inhibition of host 

defenses was likely to be relevant in the context of virus infection. The inhibitory activities of 

MLAV VP35, VP40, and VP24 were assessed in the presence of the NC or RTC proteins 

depending on the relevant interaction that occurs in a natural infection. The presence of the 

additional viral proteins had no effect on the previously observed inhibition, further supporting 

the potential for these proteins to shut down host immune responses and allow for productive 

human infection (Figure 29 and Figure 30). Unfortunately, the isolated genomic sequence for 

MLAV is lacking the terminal most non-coding regions that are important for making an 

artificial replication system, and no live virus was isolated from the bat (Yang et al. 2019). The 

production of a chimeric minigenome system to study replication and a transcription- and 

replication- competent virus like particle (trVLP) system to study replication, transcription, and 

assembly, would be useful in pursuing further studies into more holistic mechanisms of the viral 

MLAV proteins. If those studies are successful, it would be of interest to try and get an 

additional step closer to true infection studies by creating a chimeric virus through reverse 

genetics by incorporating the terminal ends from another filovirus to compensate for what is 

currently missing from the MLAV sequences.  

4.3 Concluding Remarks  

Cumulatively, this dissertation has provided evidence for VPS34 and fatty acid 

metabolism, and more specifically protein palmitoylation and lipid droplet production, as key 

components for the newly identified SARS-CoV-2 replication. Not only does this provide 
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important insights into novel host interactions of SARS-CoV-2, but also supports the potential 

for lipid metabolism as a viable candidate for therapeutic targeting and development. 

Furthermore, we have characterized the ability of viral proteins from the newest member of the 

filovirus family, MLAV, to interact with, and antagonize, host innate immune responses in 

human and bat cells, as compared to their EBOV and MARV counterparts. The results support 

placement of MLAV in a unique genus, Dianlovirus, exhibiting similarities to both the 

Ebolavirus and Marburgvirus genera, and the potential for MLAV to cause productive human 

disease should a spillover event occur. Insight into the mechanism by which these proteins 

interact with the host should prove valuable in identifying novel pro-viral host factors for the 

development of filovirus specific antivirals. 
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