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     ABSTRACT   
 
 Some pathogenic bacteria derive significant amounts of iron heme from their 

hosts.  In this study we investigated SiaA, a heme binding protein from Streptococcus 

pyogenes.  The wildtype methionine79 putative axial ligand was mutated to alanine.  

SiaA M79A was expressed in E. coli in three production runs, lysed by sonication or 

French press, and purified by fast protein liquid chromatography (FPLC).  Nickel affinity 

FPLC was found to give much purer SiaA when 30 mM imidazole was added to the 

binding buffer.  The protocol using extensive sonication resulted in SiaA weighing 30464 

Da.  The protocol using French press resulted in SiaA weighting 33358 Da.  Despite the 

difference in masses, the two forms of SiaA interacted with heme similarly. 
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Introduction 
Heme is a flat, planar molecule with a single iron atom in the middle.  Heme is a 

common molecule used by proteins to carry out a variety of cellular tasks.  In humans, 
and all mammals, heme is a part of the protein hemoglobin, which is responsible for 
binding oxygen from air in the lungs.  Without iron, mammals would not be able to 
breathe.  Iron is also an important nutrient for pathogenic bacteria; in fact, most 
pathogenic bacteria need iron to survive while in human hosts (Lei et al., 2002; Bates et 
al., 2003; Lei et al., 2003; Liu & Lei, 2005; Nygaard et al., 2006).  Pathogenic bacteria 
are known to use heme binding proteins to acquire heme, and thus iron, in the human host 
(Lei et al., 2002; Bates et al., 2003; Lei et al., 2003; Liu & Lei, 2005; Nygaard et al., 
2006). 

Therefore, iron acquisition proteins of pathogenic microbes are potential targets 
for virulence reducing therapies.  SiaA is a heme binding protein in Streptococcus 
pyogenes and it is part of an ATP binding cassette (ABC) transporter system.  S. 
pyogenes employs an ABC transporter system labeled SiaABC that binds and imports 
heme (Lei et al., 2002; Bates et al., 2003; Lei et al., 2003; Liu & Lei, 2005; Nygaard et 
al., 2006).  The probable axial ligands for SiaA are Met79 and His229.  In this study, 
wildtype (WT) SiaA was mutated by replacing the native residue, Met79, with Ala79 to 
give the M79A SiaA mutant.  M79A SiaA was expressed, purified, and studied.  
 
ABC transporters.  ABC transporters are part of the ABC-ATPase superfamily of 
proteins (Jones & George, 2004).  Members of this superfamily are present in all 
organisms, and also comprise a significant proportion of the proteome.  Genome analysis 
of E. coli showed at least 80 ABC proteins, which corresponds to about 5% of the 
genome. 

ABC transporters occupy the ABC-ATPase superfamily along with non-
transporters (Jones & George, 2004).  Non-transporters are cytosolic and are generally 
used for DNA related functions.  Transporters are mainly used by eukaryotes as exporters 
and prokaryotes typically use them as importers (Locher & Borths, 2004).   

ABC proteins utilize the energy from ATP to perform or contribute to a variety of 
cellular functions including nutrient acquisition, resistance to xenotoxins, cell division, 
and bacterial immunity (Jones & George, 2004).  Specifically, ABC transporters utilize 
the energy of ATP to transport substrates across lipid membranes. 

ABC transporters are distinguished by their characteristic core structure of four 
domains (Jones & George, 2004).  Two of the four domains are alpha-helical 
transmembrane domains (TMDs).  The remaining two domains are cytosolic ABCs, or 
nucleotide-binding domains (NBDs).  The TMDs form the channel through which solutes 
selectively pass.  ABC exporters possess TMDs with a total of 12 α-helices while the 
TMDs of ABC importers vary from 8 to 20 α-helices (Locher, 2004).   

ABC transporters, like all ABC proteins, are identified by two highly conserved 
regions in the NBDs (Jones & George, 2004).  These two regions are called the Walker A 
and B consensus motifs.  The Walker A motif (G-X-X-G-X-G-K-S/T) forms a phosphate 
binding loop, or a P-loop, aided by small glycine residues.  The P-loop binds ATP by 
electrostatic interactions with the negatively charged tri-phosphate region.  The Walker B 
motif (θ-θ-θ-θ-D), where ‘θ’ represents hydrophobic amino acids, forms a buried β-strand 
whose aspartate orients the active site through hydrogen bonds.  Despite the 
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establishment of general structural and mechanistic details from biochemical studies and 
X-ray crystallography of specific ABC transporters, the question of how ATP hydrolysis 
specifically mechanistically transduces solutes across the membrane by ATP transporters 
is one of active investigation (Locher & Borths, 2004). 

Most bacterial ABC importers possess binding proteins which deliver the 
substrate to the TMDs (Locher & Borths, 2004).  Specific ABC transporter systems with 
their cognate binding proteins will be discussed. 
 
The Isd gene cluster: Heme uptake in Staphylococcus aureus.  The gram positive 
pathogen S. aureus is a potentially fatal microbe.  S. aureus causes bacteremia and 
endocarditis (Skaar & Schneewind, 2004) and continues to evolve into virulent and fatal 
drug resistant strains.   

Iron inside the human body is found largely in hemoproteins and iron-sulfur 
proteins (Skaar & Schneewind, 2004).  Hemoproteins are the most abundant source, with 
60-75% of iron located in hemoglobin; myoglobin accounts for an additional 8-10%. 
However, hemoproteins are not the only available source of iron for S. aureus.  The 
plasma protein transferrin can serve as a sole iron source.  Siderophores, low molecular 
weight chelating molecules, are thought to enable S. aureus to bind the iron from 
transferrin.  Multiple siderophores have been documented in S. aureus, though no 
specific protein receptor has been conclusively identified (Skaar & Schneewind, 2004).   

S. aureus, like S. pyogenes, utilizes an extracellular protein assembly to scavenge 
heme from these iron stores.  S. aureus uses the iron-regulated surface determinant (Isd) 
protein assembly.  Because the Isd system scavenges for iron, Isd is only transcribed 
when concentrations of iron are low.  

 Isd is comprised of five transcriptional subunits: isdA, isdB, isdCDEFsrtBisdG, 
isdH, and isdI.  Four of these ten protein products, IsdA, IsdB, IsdC, and IsdH, are cell 
wall anchored.  IsdDEF encodes for a transporter while IsdG and IsdI represent two 
cytosolic proteins.  All nine Isd proteins bind heme.  Finally, sortase B (SrtB) is also 
included in the Isd gene cluster.   

IsdB, a cell wall linked protein, binds hemoglobin.  This putative hemoglobin 
receptor has a intrachromosonal paralog, IsdH, with 85% sequence similarity.  IsdH has 
two regions, D1 and D2, which bind hemoglobin-haptoglobin.   

The individual inactivation of isdA or isdF decreased the amount of radiolabled 
heme-iron that was imported into S. aureus, providing evidence for Isd’s heme 
acquisition role.  However, inactivation of either isdA or isdF did not stop the importation 
of heme-iron, implying additional heme acquisition routes.   

IsdE is related to periplasmic binding and heme binding proteins that donate heme 
to the permease in the ABC transporter.  Recent work has not been able to obtain definite 
spectroscopic evidence for the heme axial ligands in this protein (Mack et al., 2004). 

The Isd system depends upon sortases for protein placement.  Sortases catalyze an 
amide linkage between the C-terminal end of proteins and a crossbridge of 
peptidoglycan.  Of the four cell wall anchored protein products, sortase A links three: 
IsdABH.  Sortase B links only IsdC.  Over twenty proteins in S. aureus are cell wall 
bound by sortase A.  Sortase B is thought to only function on IsdC.   

Inactivation of srtA in mouse infection models markedly reduces the virulence of 
S. aureus, and renders cells incapable of utilizing heme to support bacterial growth 
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(Mazmanian et al., 2001; Jonsson et al., 2003).  However, since sortase A links at least 20 
proteins to the peptidoglycan layer, all of the anti-virulence effect of srtA inactivation 
cannot be attributed to disruption of Isd.  srtB inactivation, leaving IsdC unbound 
extracellularly, reduces virulence marginally in comparison to srtA inactivation.  The 
observation that srtB inactivation reduces virulence leads to the conclusion that reduced 
heme intake reduces the ability of S. aureus to reproduce due to limited iron 
concentrations.  

 
The Btu gene cluster: Cobalamin uptake.  Vitamin B12 is a cofactor used by organisms 
for reactions such as methyl transfers and ribonucleotide reduction (Karpowich et al., 
2003).  While some bacteria biosynthesize B12 using about 30 steps, most bacteria and all 
eukaryotes import B12 through transporters.  

Btu (B twelve uptake) is an E. coli protein assembly that imports vitamin B12 
(Karpowich et al., 2003).  Btu includes the ABC transporter BtuCD, its associative 
periplasmic binding protein (PBP) BtuF, and the outer membrane transporter BtuB.  The 
PBP BtuF binds B12 for delivery to the transmembrane (TM) dimer BtuC2 (Locher, 
2004).  BtuF is thought to use electrostatic interactions between its conserved glutamates 
and the conserved arginines in BtuC for association (Locher & Borths, 2004).  BtuD also 
dimerizes in vivo and each monomer contains a NBD of the ABC transporter.  To 
complete the ABC transporter, BtuD2 and BtuC2 associate yielding the tetramer BtuC2D2.   

The complete dimer of BtuD is needed for hydrolysis of ATP, thus ATPase 
activity is dependent upon dimerization of NBDs.  Following hydrolysis, conformational 
changes are transmitted via various loops in the conserved NBD region to another 
conserved region: the BtuD – BtuC interface.  It is presumed, therefore, that 
conformational changes starting in the NBD region transmit themselves to the TMDs, 
thus clearing the way for the import of the selected solute.  Interestingly, it is thought that 
the ATPase ability of the NBDs is triggered when BtuF delivers vitamin B12 to the BtuC 
transmembrane dimer (Locher & Borths, 2004).  Current research on ABC transporters 
focuses on these and other mechanistic complexities of solute transport. 
 BtuF has two globular domains (I and II) connected via a rigid α-helix, α-6 
(Karpowich et al., 2003).  Each globular domain has a secondary structure that alternates 
between α-helixes and parallel β–sheets.  Domain I, starting at the N-terminus, has an α-
helix, α-5, bordering the rigid interdomain α-6.  This partial helical bundle contacts the 
B12 at its dimethylbenzimidazole (DMB) and propionamide groups. 
 BtuF binds B12 at domain II differently than other proteins with regions 
homologous to domain II.  While domains homologous to domain II in methionine 
synthase (MetE) and methylmalonyl-CoA mutase (MMCM) use a conserved histidine to 
displace the DMB group from binding at the cobalt atom, domain II in BtuF binds on the 
opposite face, leaving the DMB group bound.  
 The B12 binding site of BtuF is acidic while the protein itself is basic.  About 60% 
of the B12 is inside the binding cleft, held in by 11 residues that make direct contacts with 
B12 in both of the crystal structure monomers.  Domain I contacts B12 50 times with six 
residues while domain II uses 5 residues to contact B12 39 times.  BtuF makes fewer 
contacts with B12 than either MetE or MMCM, both of which make over 150 contacts 
compared to 89 for BtuF.  Fewer contacts in BtuF is consistent with its function: BtuF 
delivers B12 to a transporter while MetE and MMCM immobilize B12 for catalytic use. 
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The Sia gene cluster: Heme uptake in Streptococcus pyogenes.  S. pyogenes, also 
known as Group A Streptococcus (GAS), is a Gram positive pathogenic bacterium which 
colonizes the throat and skin (Cunningham, 2000).  S. pyogenes causes pharyngitis, 
streptococcal toxic shock syndrome, impetigo, and scarlet fever; its role in increasing 
host susceptibility to other diseases has been investigated.   

S. pyogenes demonstrates iron-dependent growth (Eichenbaum et al., 1996a), and 
parasitizes animal hosts where most iron is bound in heme and non-heme proteins (Lei et 
al., 2003).  Hemoproteins including hemoglobin, myoglobin, and catalase can serve as 
iron donors for S. pyogenes (Eichenbaum et al., 1996b).  Since iron is a necessary 
element for this pathogen, iron acquisition proteins in S. pyogenes serve as potential 
targets to limit full virulence. 

S. pyogenes acquires heme via an ABC transporter, SiaABC (Bates et al., 2003).  
SiaABC is encoded by three genes (spy1793-spy1795) in an operon that also contains shp 
(spy 1796), shr (spy1798), and five other genes (Bates et al., 2003; Lei et al., 2002; Liu & 
Lei, 2005; Nygaard et al., 2006).  Expression of the sia operon is negatively regulated by 
iron; thus, S. pyogenes produces more iron acquisition proteins when iron concentrations 
are low (Bates et al., 2003).   

SiaA (spy1795) is anchored to the cell membrane with a lipoprotein tail (Bates et 
al., 2003; Lei et al., 2003).  SiaA binds hemoglobin and heme (Bates et al., 2003; Lei et 
al., 2002; Lei et al., 2003).  SiaA can not bind myoglobin (Bates et al., 2003) yet S. 
pyogenes can acquire iron from myoglobin (Eichenbaum et al., 1996b).  These two 
observations give rise to two possibilities: either SiaABC is not the exclusive iron 
acquisition route in S. pyogenes, or additional proteins bind the heme from myoglobin 
and deliver it to SiaA.  Isolation and analysis of the lipoprotein constituents of fifteen 
putative ABC transporters in S. pyogenes suggests SiaABC is the only heme ABC 
transporter in GAS (Lei et al., 2003).  Twelve of the lipoproteins did not show 
chromophores, while the other two showed no homology with iron or heme transporters 
(Lei et al., 2003).  Therefore, it is probable that other proteins bind the heme from 
myoglobin and deliver it to SiaA. 

SiaB (spy 1794) contains the TMDs and consists of extended hydrophobic 
regions.  SiaC is the ATPase and contains the two NBDs.  Each NBD contains the 
Walker A and B consensus motifs, which transform the energy of ATP into 
conformational changes to transport heme (Jones & George, 2004).   

Shp, also found on the sia operon, binds heme and delivers it to SiaA based on the 
observation that holo-Shp transferred heme almost irreversibly to apo-SiaA (Liu & Lei, 
2005).  Shr binds a variety of heme-containing proteins including hemoglobin, 
myoglobin, and hemoglobin-haptoglobin yet its role, if any, with SiaA has not yet been 
determined (Bates et al., 2003).  
 
ShuT: One protein in the heme uptake pathway from Shigella dysenteriae.  ShuT is a 
periplasmic heme binding protein in S. dysenteriae (Eakanunkul et al., 2005).  It likely 
works in concert with ShuU, the presumptive cytoplasmic permease, and ShuV, the 
presumptive ATPase to form an ABC transporter system.  ShuT shares sequence 
homology with BtuF, described above, and FhuD, an iron-hydroxamate PBP.  Most PBPs 
contain two globular domains.  The interface between the two globular domains forms 
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the active site, and the globular domains are connected by a hinge region.  Three groups 
of PBPs have been characterized based upon differences in the hinge region.  Group I has 
three interdomain connections, Group II has two interdomain connections, and Group III 
has one interdomain connection (α-helical).  The proteins BtuF and FhuD are part of 
Group III PBPs and sequence homology suggests that ShuT is also a Group III PBP.  
Specifically, ShuT shares important aromatic residues with BtuF whose function is ligand 
stabilization.     
 
Studies on SiaA.  As outlined above, previous work in the Eichenbaum (Bates et al., 
2003), Musser and Lei (Lei et al., 2002; Lei et al., 2003; Liu & Lei, 2005; Nygaard et al., 
2006), and Dixon laboratories have shown that SiaA is a heme protein, whose probable 
axial ligands are Met79 and His229.  The goal of this study was to isolate the protein in 
which the Met79 ligand had been mutated to Ala.  This work was successful, and we 
report the first isolation and initial characterization of this protein.  We have also 
observed that various techniques to break open the cells give different protein constructs; 
the details of these studies are reported. 
 
 
Experimental 
3D-JIGSAW and RasMol.  The protein sequence of WT SiaA was submitted to the 3D-
JIGSAW website (http://www.bmm.icnet.uk/servers/3djigsaw/) in interactive mode.  A 
return email led the user to multiple homologous structures.  The structure for BtuF 
(IN4D) was selected and the coordinates for BtuF with WT SiaA superimposed were 
emailed in response.  The graphical coordinates in the email (starting with the line 
ATOM 1) were copied and pasted into Microsoft Office Word 2003 and saved as a txt 
file.  The file was renamed as a pdb file and opened with RasMol 2.7.2.2.1 (originally 
developed by Roger Sayle). 
Luria-Bertani (LB) medium preparation.  A batch of LB medium was made from 30 g 
Bacto® Tryptone (Becton Dickinson, Sparks, MD), 30 g NaCl, 15 g Bacto® Yeast 
Extract (Becton Dickinson), and deionized water to make a total of 3 L.  The solution was 
pH adjusted to 7.0 and autoclaved on a liquid cycle for 15 min.  Ampicillin (3 mL of 100 
mg/mL) was added to the 3 L of autoclaved medium. 
Inoculation of LB medium and growth of M79A transfected E. coli.  LB medium (5 
mL) was added to each of six 15 mL falcon tubes.  An M79A mutant was prepared using 
a Stratagene® QuikChange® site-directed mutagenesis kit by following the 
manufacturer’s instructions (Amrita Nargund and Z. Eichenbaum).  The M79A cryovial 
(stored at - 80 °C) was dabbed with the blunt end of an inoculating loop, and swirled into 
a 15 mL falcon tube.  This process was repeated with a different inoculating loop for each 
falcon tube.  The falcon tube lids were secured by tape in a position that allowed aeration 
and were incubated for 16 h at 37°C with shaking to form the aliquots.  The OD660 of the 
aliquots were taken and incubation continued until the OD660 reached about 1.  The 
remaining LB media was divided into six 1 L beakers (500 mL each) and inoculated with 
an aliquot each.  Beakers were incubated at 37°C until OD660 readings reached 0.5.  A 2% 
L-arabinose solution was made by dissolving 2 g L-arabinose (Acros Organics, Morris 
Plains, NJ) into 100 mL of 18 MΩ water delivered from a Barnstead NANOpure 
Diamond® purifier.  The LB medium was induced to 0.02% L-arabinose by adding 5 mL 



6 

of 2% L-arabinose to each beaker.  Beakers were incubated at 37°C for 4 h.  The LB 
medium was centrifuged at 8000 x g and 4°C for 10 min and pellet was divided into ten 2 
mL cryovials for storage at -80°C. 
 The procedure was run again on a 2 L scale. 
Growth with δ-aminolevulinic acid (ALA) and ferrous sulfate.  A stock solution of 
FeSO4 (0.109 M) was prepared by dissolving 0.303 g FeSO4 (Aldrich Chemical 
Company, Milwaukee, WI) in 10.0 mL  nanopure water.  A stock solution (0.100 M) of 
ALA (MP Biomedicals, Inc., Solon, OH) was prepared by dissolving 0.0838 g ALA in 
5.0 mL of nanopure water (Marianna Libkind).  LB medium (20 mL) was inoculated with 
the M79A strain and incubated at 39°C for 17 h in a 50 mL falcon tube.  Erlenmeyer 
flasks, two of 250 mL volume, each containing 100 mL LB medium were each inoculated 
with 9 mL of the 20 mL solution.  The two resultant 109 mL LB solutions were shaken at 
200 rpm for 3 hours at 37°C.  At the three hour mark both solutions were induced to a 
0.02% solution of L-arabinose by adding 1.1 mL of a 2% L-arabinose stock solution 
each.  Additionally at the three hour mark, one of the 109 mL solutions was induced to a 
final concentration of 0.1 μM ALA and 0.1 μM FeSO4 by adding 0.109 mL of the ALA 
stock solution and 0.100 mL of the FeSO4 stock solution.  The solutions were incubated 
for an additional 4 h at 200 rpm and 37°C.  Portions (30 mL) of both the solutions were 
French pressed for two cycles each on a SimAminco French Pressure Cell Press on high 
ratio at a display pressure of 960 and an effective cell pressure of 15,000 psi.  A UV-Vis 
spectrum of both solutions was obtained.  
Fermentation growth (9 L).  Concentrated (10X) LB medium was prepared by 
dissolving 90 g Bacto® Tryptone (Becton Dickinson), 90 g NaCl, 45 g Bacto® Yeast 
Extract (Becton Dickinson), and deionized water to make a total of 900 mL.  The solution 
was pH adjusted to 7.0 and autoclaved on a liquid cycle for 15 min.  Ampicillin (9 mL of 
100 mg/mL) was added to this medium.  Diluted (1X) LB medium (900 mL), prepared 
according to previous LB medium procedures, was inoculated with the M79A strain and 
grown for 14 h with shaking at 37°C and 200 rpm.  The inoculated 1X 900 mL solution 
and the 10X LB medium were provided to Dr. Gene Drago (Biology Department, 
Georgia State University) for a 9 L fermentation run.  A Sartorius C30-2 fermentor 
(Sartorius AG, Goettingen, Germany), with water sterilized in the vessel, was loaded with 
the sterilized 10X solution which was diluted up to approximately 8 L.  The inoculated 
1X 900 mL solution was dabbed with a sterile loop and swabbed on a plate (and 
incubated overnight to verify that only E. coli was in the culture).  The inoculated 1X 900 
mL was delivered to the C30-2 to complete the 9 L.  The C30-2 was set to a dissolved 
oxygen set point of 15% with a temperature of 37°C and a pH set point of 7.0.  The pH 
was stabilized with H2SO4 and NaOH.  The rpm maximum was 200 rpm, and the airflow 
maximum was 3.5 L/min.  The airflow maximum was proportional-integral-derivative 
(PID) controlled.  The 9 L run was incubated for 4 h whereupon the 9 L run was induced 
to a final concentration of 0.02% L-arabinose, 0.1 μM ALA, and 0.1 μM FeSO4 by 
adding 0.151 g ALA (MP Biomedicals), 0.250 g FeSO4 (Aldrich), and 9 mL 2.0% L-
arabinose, and grown for an additional 3 h.  A final volume of about 9.4 L was recovered 
and was centrifuged at 8000 x g and 4°C for 10 min and the pellet (approximately 60 g) 
was collected and frozen in 15 mL Nalgene cryovials at -80°C. 
Sonication and suspension of pellet into buffer from 3 L run.  Extraction buffer was 
made by adding 2.42 g Tris base (Fisher Chemicals, Fair Lawn, NJ), 5.84 g NaCl 
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(Aldrich Chemical Company, Milwaukee, WI), and 1 mL Triton X-100 (Aldrich) with 18 
MΩ water up to 1 L to give a solution of 20mM Tris base, 100 mM NaCl, and 0.1% 
Triton X-100; the extraction buffer was then pH adjusted to 8.  The ten cell pellets were 
combined into a 50 mL solution of extraction buffer with two Complete Mini EDTA-free 
protease inhibitor tablets (Roche Diagnostics, Indianapolis, IN).  The 50 mL solution was 
divided into five 10 mL fractions.  Each 10 mL fraction was sonicated on ice by a 
Branson Sonifier 450 for six 30 s pulsing intervals with a duty cycle of 85% with a 
displayed output of 20 – 25%.  Sonicated samples were centrifuged for 20 min at 17,000 
rpm and 4°C.  The supernatant was decanted and filtered through an Acrodisc® 25 mm 
syringe filter with a 0.45 nm Supor® membrane and part number 4614 (Pall Corporation, 
East Hills, NY).  The pellet was discarded. 
Sonication of the 2 L run.  The cell pellet from the 2 L run was suspended in 30 mL 
extraction buffer with two Complete Mini EDTA-free protease inhibitor tablets (Roche 
Diagnostics).  The 30 mL solution was divided into three 50 mL falcon tubes of 10 mL 
each.  The 10 mL fractions were sonicated on ice with a Branson Sonifier 450.  
Sonication was performed with 5 cycles of 2 minutes each with pulsing intervals (duty 
cycle) with resting periods of 1-2 minutes in between.  A duty cycle of 85% was used 
with a recorded output in between 40 – 60%.  The solution (30 mL) was centrifuged and 
filtered in the same method as the sonication of the 3 L run. 
Lysis by French press of a portion of the 9 L run.  The cell pellet (6 g) from the 9 L 
run was suspended in 60 mL of extraction buffer.  The 60 mL solution was divided into 
two 50 mL falcon tubes to give two 30 mL samples; each 30 mL sample had one 
Complete Mini EDTA-free protease inhibitor tablet (Roche Diagnostics) dissolved in 
solution.  The solutions were put on ice and kept on ice while not being actively French 
pressed.  A large (35 mL maximum volume) Thermo French press cell, kept at 4°C, was 
loaded with each sample (30 mL) individually and each sample was French pressed 
twice.  A SimAminco French pressure cell press was used on high setting and adjusted to 
a display psi of 1280 yielding an effective psi of 20000.  Samples were collected in their 
original falcon tubes kept in a small beaker of ice.  The solution (60 mL) was centrifuged 
and filtered in the same method as the sonication of the 3 L run.  The large Thermo 
French pressed was cleaned with deionized water and ethanol and air dried at room 
temperature before re-refrigeration.   
Nickel affinity fast protein liquid chromatography (FPLC).  Binding buffer (50 mM 
potassium phosphate and 250 mM NaCl at pH 7.4) was made from adding 6.8 g KH2PO4 
(Fisher), 5.5 g K2HPO4 (EM Science, Gibbstown, NJ), 14.61 g NaCl (Aldrich), and 18 
MΩ water up to 1 L and adjusting the pH to 7.4.  Elution buffer was made from binding 
buffer plus 0.5 M imidazole (EMD Chemicals Inc., Gibbstown, NJ).  Charging solution 
(100 mL) was prepared by dissolving 2.37 g NiCl2 (Fischer Scientific, Fair Lawn, NJ) 
into nanopure water and making the solution up to 100 mL.  Stripping buffer was 
prepared by 18.61 g of disodium-EDTA (Fischer) in 1 L of binding buffer to give a 
concentration of 0.05 M EDTA.  Binding buffer, elution buffer, charging solution, and 
stripping buffer were all filtered though 0.45 μL disposable Nalgene filter units with 50 
mm diameter membranes and 45 mm necks.  A HiTrap® Chelating HP (GE Healthcare 
Bio-sciences) column (5 mL) was washed with 5 column volumes (CV) of nanopure 
water, 5 CV of stripping buffer, 5 CV of nanopure water, 4 CV charging solution (0.1 M 
NiCl2), 12 CV nanopure water, 5 CV of elution buffer, and 5 CV of binding buffer to 
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complete the stripping and charging process.  An Amersham Biosciences A920 FPLC 
(GE Healthcare Bio-sciences, Piscataway, NJ) superloop was loaded with the filtered 
supernatant from the sonicated and centrifuged sample from the 3 L run.  Pumps A and B 
were washed with water.  The 5 mL HiTrap® Chelating HP (GE Healthcare Bio-
sciences) column was washed with 5 CV of water.  The column was equilibrated with 5 
CV of binding buffer.  The sample was injected into the column, flushed with 6 CV of 
binding buffer, and eluted with 10 CV of a gradient starting with 100% binding buffer 
and ending with a concentration of 100% elution buffer.  Fractions 1 – 33 were collected. 
 The same process was repeated for the 2 L run except that 30 mM imidazole 
(EMD Chemicals) was added to the binding buffer. 
 The original method with no imidazole in the binding buffer was applied for 6 g 
of cell pellet from the 9 L run that was French pressed. 
SDS-PAGE of nickel affinity FPLC fractions.  Two 0.75 mm gels were prepared by 
adding 15% resolving gel (Sambrook & Russel, 2001) and a thin layer of 2-propanol 
(Fischer) to sit for 30 min.  The 2-propanol was removed carefully with deionized water, 
the gels were dried, and 5% stacking gel (Sambrook & Russel, 2001) was added on top of 
the resolving gels and combs were placed on top of both gels.  After 45 min the combs 
were removed and the gels were loaded into a Mini PROTEAN® 3 Cell (Bio-Rad).  Tris-
glycine-SDS 1X (500 mL) was made by adding 50 mL of Tris-glycine SDS 10X (Fisher) 
with 18 MΩ water up to 1 L.  Tris-glycine-SDS 1X (500 mL) was poured into the Mini 
PROTEAN® 3 Cell.  Mixed Laemmli sample buffer was made by adding 1 part 2-
mercaptoethanol (Bio-Rad) with 19 equivalents of Laemmli sample buffer (Bio-Rad).  
Five μL was taken from each of the affinity FPLC fractions 10-18 and was combined 
with 10 μL of mixed Laemmli sample buffer.  Samples were centrifuged for 15 sec on a 
VWR mini-centrifuge C-1200 and heated for 5 min at 103°C.  Five μL of Precision Plus 
Protein® molecular weight marker standard (Bio-Rad) was added to lane one.  Heated 
samples were loaded into the remaining gel lanes.  The gel was ran for at 60 – 80 V until 
the blue Laemmli sample buffer band was 1 cm below the lanes, at which point the 
voltage was increased to 100 – 120 V until the dye reached the bottom of the gel.  
Destaining solution was made by combing 5 parts methanol (Fischer) to 1 part glacial 
acetic acid (EMD Chemicals, Gibbstown, NJ) and 4 parts nanopure water.  A 
Coomassie® Blue staining solution was prepared by dissolving 0.25 g of Coomassie® 
Brilliant Blue R-250 into 100 mL of destaining solution.  The gels were removed and 
stained in the staining solution for 30 min and destained for 1 h.  The gels were rinsed 
with deionized water and stored in a 20% glycerol (Fischer) solution.     
Combining nickel affinity FPLC fractions and exchanging buffer to remove salt.  A 
solution of 10 mM Tris-HCl pH 8 was prepared by adding 1 part 1.0 M Tris-HCl Buffer 1 
M (Fischer) to 99 parts nanopure water then adjusting the pH to 8.0.  Fractions 16, 17, 18, 
and 19 from Nickel Affinity FPLC were combined and placed into a Amicron® Ultra 15  
5,000 MWCO (Millipore, Billerica, MA) filter tube.  The tube was centrifuged at 6000 
rev/min for 15 min at 4°C.  Approximately 6 mL of 10 mM Tris-HCl was added to the 
remaining protein solution and the tube was centrifuged in the same manner again.  This 
process was repeated once more, and yielded 2 mL of protein suspended in 10 mM Tris-
HCl pH 8.0. 
Lowry assay and enterokinase cleavage.  A Modified Lowry Protein Assay (Pierce, 
Rockford, IL) was used following the manufacturer’s instructions to determine the 
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protein concentration of the 2 mL solution.  The 2 mL solution was treated with an 
EnterokinaseMaxTM (EKMaxTM) digestion (Invitrogen, Carlsbad, CA).  Manufacturer’s 
instructions were followed except that 0.1 μL of EKMaxTM was used per 20 μg of protein 
instead of the recommended range of 1 – 4 μL (B. Sook, personal communication).  The 
2 mL solution was combined with 525 μL 10X EKMaxTM buffer, 17.5 μL of EKMaxTM, 
and nanopure water up to 5.25 mL and stored at 4°C for 16 h. 
Buffer exchange and anion exchange FPLC.  Using the same buffer exchange method 
previously described, the EKMaxTM digestion solution was exchanged into 10 mM Tris-
HCl pH 8.0 resulting in a solution of 5 mL.  The FPLC was fitted with a HiTrapTM Q HP 
(GE Healthcare Bio-sciences) column and washed with water along with pumps A and B.  
The column was washed with five CV of anion exchange start buffer (10 mM Tris-HCl 
pH 8.0), five CV of anion exchange elution buffer (anion exchange start buffer and 1 M 
NaCl), and then equilibrated with seven CV of anion exchange start buffer.  The 5 mL 
protein solution was loaded into the superloop and injected into the column.  Elution of 
the protein was performed by running five CV of anion exchange start buffer through the 
column followed with a 10 CV linear gradient.  The gradient began with 100% anion 
exchange start buffer and ended with 100% anion exchange elution buffer.  Fractions 1 – 
30 were collected. 
 For the 2 L run, the same process was repeated except that a HiTrapTM DEAE FF 
(5 mL) column was used, resulting in weak anion exchange FPLC, and the gradient was 
started at 7% elution buffer.  For the repurification of the 2 L run, the original method 
was applied except that a HiTrapTM DEAE FF (5 mL) column was used and the elution 
buffer was anion exchange start buffer and 0.4 M NaCl. 
 For the 6 g of cell pellet from the 9 L run, the original method was applied except 
that a HiTrapTM DEAE FF (5 mL) column was used to give weak anion exchange FPLC 
and the elution buffer was reduced 0.4 M NaCl and start buffer. 
SDS PAGE of anion exchange FPLC fractions and buffer exchange.  SDS-PAGE was 
performed.  Lane one was filled with standard while lanes 2 – 10 were filled with 
fractions 12 – 18, a control, and fraction 2, respectively.  Fraction 13 was exchanged to a 
10 mM Tris-HCl pH 8 solution. 
 The same buffer exchange process was repeated with fractions 15 – 18 from 
Figure 15 except that the 10 mM Tris-HCl pH 7.5 was used. 
 Fractions 17 – 21 from Figure 20 were transferred into 10 mM Tris-HCl pH 8. 
Mass spectrometry.  Matrix-assisted laser desorption/ionization (MALDI) experiments 
were performed using an ABI Voyager-DE™ Pro Workstation (Applied Biosystems, 
Warrington, UK) MALDI reflectron time-of-flight spectrometer.  The mass range 
scanned was 10000 – 50000 Da in positive mode.  The protein samples (approximately 
20 μL) were transferred into nanopure water and run with sinipinic acid (3,5-dimethoxy-
4-hydroxycinnamic acid) as the matrix.  Sinipinic acid was prepared at 10 mg/mL in 30% 
acetonitrile with 0.1% trifluoroacetic acid.  The sample solution was mixed with the 
matrix solution in and spotted on the MALDI target plate.  Throughout the text, peaks are 
rounded to the nearest unit. 
Western blot.  SDS-PAGE was run in the same manner as described previously, except 
that a 1.0 mm gel was used instead of a 0.75 mm gel.  All protein solutions except the 
MW lanes were combined with two parts mixed Laemmli sample buffer.  Lane 1 (MW) 
was loaded with the Precision Plus Protein® molecular weight marker standard.  Lane 2 
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was loaded with 10 μL of protein from combined fractions 17 – 21 (Figure 20).  The 
protein for lanes 3 and 4 were provided by Brian Sook and contained 10 μL of a dilute 
SiaA WT solution and 0.3 μL of a concentrated SiaA WT solution, respectively.  Lane 5 
was left empty.  Lane 6 (MW) was loaded with the Precision Plus Protein® molecular 
weight marker standard.  Lane 7 was loaded with 1 μL of protein from combined 
fractions 17 – 21 (Figure 20).  Lane 8 was loaded with 5 μL of protein from combined 
fractions 17 – 21 (Figure 20).  Lanes 9 and 10 were loaded identically to lanes 3 and 4, 
respectively.  After electrophoresis, the gel was cut down lane 5; lanes 1 – 4 were stained 
and destained as described previously.  A solution (1 L) of 10X CAPS was made by 
dissolving 22.13 g CAPS (3-cyclohexylamino-1-propane sulfonic acid, Fischer) into 800 
mL nanopure water, adjusting the pH to 11.0 with NaOH, and diluting up to 1 L with 
nanopure water.  A solution of 1X CAPS (2 L) was prepared by combining 200 mL 10X 
CAPS, 200 mL MeOH, and 1.6 L nanopure water.  The portion of the gel containing 
lanes 6 – 10, 1 sheet of Invitrogen nitrocellulose membrane (0.45 μm pore size, LC2001), 
and two pieces blotting paper were soaked in 1X CAPS for 10 min, taking care that the 
gel did not touch the nitrocellulose membrane.  A plastic clamp with two sponges was 
submerged in 1X CAPS and the apparatus was clamped together in the following order: 
sponge, blotting paper, membrane, gel, blotting paper, and sponge.  The apparatus was 
loaded into a transfer chamber filled with 1X CAPS such that the gel was closest to the 
negative electrode and the membrane was closest to the positive electrode.  The transfer 
chamber was kept in a tub of ice inside a 4°C refrigerator during the run of 1 h at 70 V.  
PBS-Tween (3 L) was prepared by combining 24 g NaCl (Fischer), 0.6 g KH2PO4 
(Fischer), 3.45 g Na2HPO4 (Sigma), 0.6 g KCl (Fischer), and 0.6 g sodium azide.  A 
solution (50 mL) of blocking solution, PBS-Tween and 5% skim milk, was prepared by 
dissolving 2.5 g Carnation Instant Nonfat dry milk into 50 mL PBS-Tween.  The primary 
antibody solution was made by diluting 3 μL of the monoclonal IgG antibody Anti 
Xpress N-Term (Invitrogen) into 15 mL of PBS-Tween.  The secondary antibody 
solution was made by diluting 1.5 μL of the secondary antibody (Anti-Mouse IgG, A-
5153 from goat, Sigma) into 15 mL of PBS-Tween.  A BCIP stock solution was prepared 
by dissolving 5 mg of BCIP (5-bromo-4-chloro-3-indolyl phosphate, Sigma) in 1 mL 
dimethyl formamide (Fischer).  A stock solution of NBT (nitro-blue tetrazolium, Sigma, 
1 mg/mL) was prepared by dissolving 5 mg NBT into 5 mL of nanopure water.  The 
alkaline phosphatase (AP) substrate mix (10 mL) was prepared by combining 9.5 mL 50 
mM Tris-HCl pH 7.4, 40 μL of 1 M MgCl2, 0.5 mL of NBT stock, and 0.2 mL of BCIP 
stock.  The membrane was soaked in blocking solution for 1 h, and washed with PBS-
Tween three times.  The membrane was incubated on a rotary shaker with the 
monoclonal IgG primary antibody (Anti Xpress N-Term, Invitrogen) diluted in PBS-
Tween for 1 h.  The primary antibody solution was decanted and the membrane was 
rinsed with nanopure water once and PBS-Tween three times.  The membrane was 
incubated on a rotary shaker with the secondary antibody for 1 h.  The secondary 
antibody solution was decanted and the membrane was rinsed with nanopure water once 
and PBS-Tween three times.  The membrane was washed on a rotary shaker for 1 h in 50 
mM Tris-HCl pH 10.  The Tris-HCl solution was decanted, and the AP substrate mix was 
added and the membrane was allowed to develop for about 1 h.  The membrane was 
flushed with nanopure water to stop development and dried between two pieces of filter 
paper in the dark.   
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Reduction with dithionite.  The spectrum of a solution of EK cleaved M79A SiaA (10 
mM Tris-HCl, pH 8.0, plastic cuvette) was taken on a Cary 50 Bio UV-Visible 
spectrometer.  The solution was gently bubbled with nitrogen via syringe for 
approximately 20 min to remove dissolved oxygen.  The solution (about 1 mL) was 
transferred to a mini Eppendorf tube (1.7 mL) and reduced by adding a few grains of 
sodium dithionite.  The solution was inverted 5 times and the spectrum was taken 
immediately.   
Generation of cleavage possibilities.  The complete construct of WT SiaA and M79A 
SiaA were submitted individually to the ExPASy FindPept tool 
(http://ca.expasy.org/tools/findpept.html).  The sequences were entered along with the 
observed MALDI molecular ion peak for each protein.  The query for M79A SiaA 
cleavage possibilities was executed with the molecular weight of 30464.38 Da (Figure 
16).  The query for WT SiaA cleavage possibilities was executed with the molecular 
weight of 30528.8 Da (Figure 27).  The queries were filtered by choosing monoisotopic 
masses with a positive charge and with a mass tolerance of ± 5 Da from the observed 
weight. 
 
 
Results and Discussion 
Homology modeling.  
 Because the three-dimensional (3D) structure of SiaA is as yet unresolved, 
homology modeling was used to create a model of the protein.  A homology model is the 
superposition of the residues from a protein of unknown 3D structure into the 
dimensional coordinates of a protein with a known 3D structure.  The 3D-JIGSAW 
program was used.  3D-JIGSAW works by taking the input sequence and searching the 
Protein Database (PDB) for homologous proteins.  If the user submits the protein 
sequence in interactive mode, and if multiple homologues are identified, then the user can 
choose from the different homologous structures to visualize the submitted protein 
sequence.  The sequence of WT SiaA gave multiple hits in 3D-JIGSAW.  The protein 
showing the highest homology was the cobalamin binding protein BtuF.  WT SiaA was 
superimposed into the protein structure of BtuF (Borths et al., 2002) in IN4D (ligand 
unbound) structure and visualized with RasMol (Figure 3).  The five residues that are 
possible axial ligands in Figure 3 are one of three amino acids: histidine, tyrosine, or 
methionine. 
Growth and isolation of M79A SiaA. 

Three production runs of E. coli were completed: a 3 L run, a 2 L run, and a 9 L 
fermentation run. In the 9 L run, the plate showed only E. coli growth, and approximately 
9.4 L of growth were recovered from the to give about 60 g of cell pellet after 
centrifugation.   

An SDS-PAGE gel (not shown) on the cell pellet from the 3 L run verified over-
expression of protein.  A nickel affinity FPLC chromatogram was run starting with a 
binding buffer of 50 mM potassium phosphate and 250 mM NaCl at pH 7.4.  The 
majority of unbound protein appeared to be eluted after about 50 mL (10 CV) of binding 
buffer.  Elution buffer (binding buffer plus 0.5 M imidazole) was then added, ramping up 
to 100% elution buffer after another 50 mL.  Figure 4 shows significant protein eluting in 
an unresolved double peak at 117 and 129 min (a buffer range of about 0.05 M – 0.25 M 
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imidazole).  By the time the eluent had reached a concentration of 0.25 M imidazole, 
nearly all proteins had eluted.   

SDS-PAGE of the fractions 10 – 18, Figure 5, indicated that only three fractions 
(16, 17, and 18) contained significant amounts of SiaA.  Fraction 15 was the first fraction 
that gave a SiaA band, while the earlier fractions (10 – 14) were primarily contaminant 
proteins.  By fraction 16, only four light contaminant protein bands were observed.  One 
contaminant was heavier than SiaA (33 kD) while three were lighter.  Lanes 17 and 18 
appeared identical to lane 16 qualitatively on SDS-PAGE, while the quantity of protein 
was decreasing with 16 > 17 > 18.  By lane 18, only the SiaA band was visible.   

For the 3 L run, SiaA from 1.5 L was purified through the nickel affinity column 
step.  A Lowry assay, with the standard curve shown in Figure 6, was performed on a 
portion of the Ni affinity fractions that had been combined and exchanged into 10 mM 
Tris-HCl buffer (2.0 mL total volume).  A protein concentration of 1.75 mg/mL was 
calculated.  Thus, the total mass of the M79A SiaA that was isolated was 3.5 mg.  Given 
a total growth culture 1.5 L and a yield of 3.5 mg, M79A was produced at approximately 
2.3 mg/L of growth culture.   

After EKMaxTM digestion, strong anion exchange FPLC (Figure 7) with a 
gradient of NaCl in the buffer was used to purify the protein.  The SiaA eluted at 
approximately 97 min, at an NaCl concentration of approximately 0.4 M NaCl.  A post 
anion exchange SDS-PAGE (Figure 8) showed strong anion exchange FPLC was 
successful in removing the contaminant proteins found in solution after nickel affinity 
FPLC.  The post-anion exchange SDS-PAGE gel also indicated that the EKMaxTM 
digestion was successful.  Lane EK shows a sample that was taken from EKMaxTM 
digestion immediately after the addition of enterokinase and frozen; bands representing 
both cleaved (33 kD) and uncleaved (35 kD) SiaA are visible.   

Figure 9 shows the UV-Vis spectrum of the oxidized EK cleaved M79A SiaA.  
The UV-Vis spectrum shows a much smaller Soret/280 ratio than the spectrum of the 
SiaA forms without EK cleavage (Figure 24).  This is consistent with loss of heme during 
the EK cleavage and subsequent purification steps.  In general, it seemed that heme was 
lost during manipulation and purification of M79A SiaA.  Figure 9 also shows the protein 
after treatment with dithionite.  The Soret is red-shifted and the α and β bands are evident 
at 552 nm and 529 nm, respectively.   

The nickel affinity chromatogram from the 2 L run of SiaA (Figure 10) shows a 
much smaller total elution peak area for M79A SiaA than is seen in the 3 L run (Figure 
4).  Besides the volume, the only difference between the runs is that the 2 L run of SiaA 
had 30 mM imidazole in the binding buffer.  SiaA is the main peak in Figure 10 (900 
mAU) in the 2 L run of SiaA and contaminants represent the shoulder (350 mAU).  The 
contaminants are the main peak in Figure 4 (3500 mAU) in the 3 L run and SiaA 
represents the shoulder (1200 mAU).  The SDS-PAGE separation of the contaminant 
proteins are seen in Figure 11 (lanes 12 – 14) for the 2 L run of SiaA and Figure 5 (lanes 
12 – 14) for the 3 L run of SiaA.  In both cases SiaA elutes at a higher imidazole 
concentration that the contaminant proteins, but the amount of contaminant proteins is 
decreased dramatically upon the addition of 30 mM imidazole in the binding buffer (2 L 
run). 

At the end of the purification for the 2 L run, the M79A protein appeared pure.  
Only one band was observable in SDS-PAGE (Figure 15).  M79A was probably isolated 
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most effectively due to combination of a Ni affinity binding buffer with 30 mM 
imidazole, and two cycles of weak anion exchange FPLC (Figures 12 and 14).   

The final solution of M79A SiaA from the 9 L run was analyzed to predict the 
amount of holoprotein purified.  Assuming an extinction coefficient of 1.0 x 105 mol-1cm-

1 at 400 nm, the final protein solution of the 9 L run yielded 0.61 mg/L of holo-M79A 
SiaA.  This calculation is gives only the amount of holoprotein because apoprotein does 
not absorb at 400 nm.  The final M79A solution from the 9 L run was also found to 
contain a protein weighing 25 kD (Figures 21 and 23).  However, because the 25 kD 
protein band did not develop on a Western blot (Figure 22) using the Invitrogen antibody 
to the N-terminal portion of the construct, the 25 kD fragment is not likely to be a portion 
of SiaA.   

ALA was added to the medium of a 100 mL run of M79A SiaA with the 
expectation that it would increase the production of heme, and therefore perhaps result in 
more holoprotein, as has been observed for other heme proteins.  However, in this run, 
ALA did not stimulate the production of heme (Figure 25). 
Forms of SiaA. 

Three procedures were used to break open the cells.  Procedure A involved 6 
cycles of 30 sec each with the protein kept on ice.  Procedure B involved 5 cycles of 2 
min each with the protein kept on ice.  Procedure C involved French pressure lysis of the 
cells.  MALDI mass spectrometry of the protein from Procedure B showed a protein of 
30464 Da (Figure 16).  This was approximately 5094 Da lighter than the weight expected 
from the sequence.  Possible cleavage points in the sequence that would result in a mass 
of 30464 Da are shown in Figure 28.  Procedure C gave a protein of 33358 Da, 2000 Da 
lighter than the expected mass of 35558 Da.   

Cleavage could have been induced in Procedure B either by the vigorous 
sonication itself, by proteases which were released by the sonication, or by increased 
activity of the proteases at the higher temperatures that resulted from the more extensive 
sonication.  It is likely that sonication itself did not cause the cleavage of the protein 
down to 30464 Da because the shorter form of the protein (30471 Da) was also observed 
as a minor product in the solution in which a French press was used to break open the 
cells.  

Cleavage might be a process that is a function of storage time.  If the protein is 
stored at 4°C for an extended period of time, cleavage might occur either from proteases 
in solution or via auto-cleavage.  The effect of cleavage due to storage may explain the 
differences between Figure 13 and Figure 15.  In Figure 13, after weak anion exchange 
FPLC, three proteins are present, one each at approximately 35 kD, 33 kD, and 30 kD.  
However, after a repurification with another weak anion exchange FPLC, only one 
protein is present in Figure 15; it is at approximately 30 kD.  Although Procedure B 
resulted in a shorter form of the protein than Procedure C by 2894 Da (30464 Da vs. 
33358 Da), the UV-Vis spectra of these two forms of the protein are almost identical in 
the 350 – 700 nm region (Figure 24).   
 Shorter forms of the protein (30529 Da) were also observed when the WT SiaA 
was isolated with vigorous sonication (Figure 27).  Possible cleavage points are shown in 
Figure 29.  Possible cleavage points for the M79A SiaA solution from Procedure B are 
shown in Figure 28. Comparing Figure 28 with Figure 29 indicates that three cleavage 
possibilities are shared, resulting in three likely candidates for the isolated protein: 
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residues 16 to 282, 30 to 296, and 45 to 312.  Of these, the third (45 to 312) seems 
unlikely because homology modeling (Figure 26) shows that the N-terminal cleaved 
portion would be deep inside the protein.  Were this tightly packed portion of the protein 
to be removed it is unlikely that the protein would remain folded.  The similarity of the 
short and long forms of the M79A protein in the UV-Vis spectra (Figure 24) indicate that 
the short form is very similar to the long form near the heme, thus ruling out significant 
changes to the globular domains that support the heme pocket.  The cleavage points of 
sequences 16 to 282 and 30 to 296 are outside the area of homology modeling, and thus 
no choice can be made between them at this point. 
  
  
Conclusions 

M79A SiaA was successfully produced and purified to homogeneity.  
Encouragingly, it retains enough heme for spectroscopic and denaturation studies.  
However, it does appear to lose heme during purification. 

Unexpectedly, initial nickel affinity FPLC resulted in the elution of a high 
concentration of proteins close to His-tagged SiaA.  The addition of 30 mM imidazole in 
the binding buffer (2 L run) resulted in many fewer contaminant proteins eluting close to 
SiaA.  The 2 L run also underwent two cycles of weak anion exchange FPLC; the first 
was done with an elution buffer with 1.0 M NaCl eluent and the second was performed 
with an elution buffer of 0.4 M NaCl eluent.  This gave the purest form of SiaA. 

For the 3 L run, EKMaxTM digestion and anion exchange FPLC resulted in 
cleaved and purified fractions of SiaA.  The EK cleaved SiaA was successfully reduced, 
with α and β bands evident in the UV spectrum. 

Different purification protocols resulted in SiaA proteins that differed in 
molecular mass by a few thousand Daltons.  Multiple variables could influence cleavage 
of SiaA: rigorous sonication, temperature, proteases, and storage time.  The observation 
of shorter versions of SiaA in both the rigorous sonication and French press protocols 
leads us to conclude that sonication per se does not cleave the protein.  Despite a range in 
sizes of purified SiaA, the UV spectra of the different forms are similar, suggesting that 
cleavage does not alter the heme binding pocket.  The spectral observations, as well as 
comparison of the cleavage forms of M79A with WT SiaA, and homology modeling, 
indicate that the cleavage sites are outside of the well-folded core of the protein. 
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Figure 1: Representative diagram showing the heme protein hemoglobin (Hb), SiaA, 
SiaB, and SiaC.  Heme binds SiaA, which is bound to the plasma membrane, and heme is 
transported through the ABC transporter system of SiaB and SiaC across the plasma 
membrane. 
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Figure 2: SiaA gene cluster.   
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Figure 3: SiaA WT threaded into 1N4D (BtuF ligand unbound) (Borths et al., 2002).  
Histidine, methionine, and tyrosine residues colored blue, yellow, and red, respectively.  
The histidine, methionine, and tyrosine residues in the pocket are displayed using space 
filling models.  Visualized with RasMol 2.7.2.2.1. 
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Figure 4: Nickel affinity FPLC chromatogram performed on sonicated, centrifuged, and 
filtered supernatant from 1.5 L of run 1 (3 L).  Dotted line starting at fraction 7 indicates 
a linearly increasing concentration of elution buffer (binding buffer with 0.5 M 
imidazole).  SiaA elutes at 129 min, at approximately 0.15 M imidazole.  Fractions 10 – 
19 were collected and purified further.   
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Fractions 
                MW     10        11      12       13        14       15        16        17        18 

 
 
 
Figure 5: SDS-PAGE of nickel affinity FPLC fractions 10 – 18 from 3 L run (Figure 4).  
The MW lane contains the Precision Plus Protein® molecular weight marker standard.  
Fractions 11 – 15 contain contaminant proteins while lanes 16 – 18 contain mostly SiaA.     
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Lowry Assay Standard Curve
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Figure 6: Lowry Assay standard curve of the absorbance at 750 nm vs. the 
concentrations of bovine serum albumin.  The absorbance from a Lowry assay performed 
on combined fractions 16 – 19 from Figure 5 gave a protein concentration for SiaA of 
1.75 mg/mL. 
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Figure 7: Strong anion exchange FPLC of EKMaxTM digestion and buffer exchange 
solution using HiTrap Q HP (5 mL) column.  Dotted line starting at fraction 5 indicates a 
linearly increasing concentration of NaCl in the elution buffer, ending with 1.0 M NaCl at 
fraction 29. SiaA starts eluting at approximately 0.32 M NaCl (97 min). 
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Fractions 
                 MW    12       13         14         15       16        17       18     (EK) 

 
 
 
Figure 8: SDS-PAGE of strong anion exchange FPLC fractions (Figure 7).  The first 
lane (MW) contains the Precision Plus Protein® molecular weight marker standard.  
Subsequent lanes contain anion exchange FPLC fractions 12 – 18.  The final lane (EK) 
shows a sample that was taken from EKMaxTM digestion immediately after the addition 
of enterokinase and frozen; it shows partial cleavage (the full length protein has a 
molecular weight of 35 kD). 
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Figure 9: UV-Vis spectral overlay of reduced and oxidized SiaA (EK cleaved).  Upon 
reduction with dithionite, the Soret is red-shifted and the α and β bands are evident at 552 
nm and 529 nm, respectively.  
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Figure 10: Ni affinity FPLC chromatogram with 30 mM imidazole in starting buffer (2 L 
run).  Dotted line starting at fraction 8 indicates a linearly increasing concentration of 
elution buffer (binding buffer with 0.5 M imidazole).  SiaA elutes at 332 min, at 
approximately 0.15 M imidazole.  Fractions 12 – 17 were collected. 
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Fractions 
         MW       12          13         14         15         16          17                    

 
 
 
Figure 11: SDS-PAGE of fractions from Ni affinity column with 30 mM imidazole in 
starting buffer (Figure 10).  The first lane (MW) contains the Precision Plus Protein® 
molecular weight marker standard.  Fractions 12 – 14 show contaminant proteins while 
fractions 15 – 17 show SiaA.  Fraction 16 shows the clearest and most concentrated SiaA 
band.   
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Figure 12: Weak anion exchange chromatography of fractions 14 – 17 from Figure 11.  
A DEAE FF column was used with 10 mM Tris-HCl pH 8.0 buffer.  The linear gradient 
(indicated by the dashed line) started at 7% and ended at 100% 1 M NaCl in the same 
buffer.  SiaA eluted at 9 min.  The tube that was supposed to contain fraction 5 was 
empty.  Fractions 2, 3, 4, 6, and 7 were collected.  
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Fractions 
       MW         2           3          4            6           7           

 
 
 
Figure 13: SDS-PAGE of fractions 2, 3, 4, 6, and 7 from Figure 12.  The first lane (MW) 
contains the Precision Plus Protein® molecular weight marker standard.  Fraction 4 
shows three protein bands, one at approximately 35 kD, another at 33 kD and one at 30 
kD.  The other lanes contain no visible protein.   
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Figure 14: Repurification of fraction 4 in Figure 13 with weak anion exchange FPLC 
using 10 mM Tris-HCl pH 8.0 buffer as starting buffer and 0.4 M NaCl as eluting buffer 
with a DEAE FF column (5 mL).  The gradient of eluting buffer started at fraction 5 and 
continued until fraction 30.  The main peak eluted at 136 min and approximately 0.18 M 
NaCl (fractions 15 – 17).  Fractions corresponding to the main peak and minor peak at 
198 min (fractions 28 – 30) were collected for SDS-PAGE. 
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Fractions 

       MW       15          17          18          19         20         21         22          28           29                    

 
 
 
Figure 15: SDS-PAGE of fractions 15, 17 – 22, 28, and 29 from Figure 14.  The first 
lane (MW) contains the Precision Plus Protein® molecular weight marker standard.  
Fractions 15, 17, and 18 display bands at approximately 30 kD.  No other bands are 
visible.   
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Figure 16: MALDI mass spectrometry of combined fractions 15, 16, 17, and 18 from 
Figure 15.  The main molecular ion peak is at 30464 Da. 
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Figure 17: Ni Affinity FPLC run with no imidazole in starting buffer (6 g of cell pellet 
from 9 L run).  Dotted line starting at fraction 10 indicates a linearly increasing 
concentration of elution buffer (binding buffer with 0.5 M imidazole).  The peak at 429 
min is not SiaA as shown by SDS PAGE (Figure 18).  SiaA elutes at 451 min, at 
approximately 0.23 M imidazole (fractions 17 – 20).   
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Fractions 
     MW           8          14             15          16           17          18           19           20 

 
 
 
Figure 18: SDS-PAGE of Ni affinity FPLC run with no imidazole in starting buffer.  The 
first lane (MW) contains the Precision Plus Protein® molecular weight marker standard.  
Lanes 15 – 17 are mostly contaminant proteins.  Significant amounts of SiaA, along with 
contaminant proteins, are seen in fractions 18 and 19.   
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Figure 19: Weak anion exchange of fractions 18 – 20 in Figure 18 using 10 mM Tris-
HCl pH 8.0 buffer as starting buffer and 0.4 M NaCl as eluting buffer with a DEAE FF 
column (5 mL).  The gradient of eluting buffer started at fraction 5 and continued until 
fraction 30.  The main peak eluted at approximately 0.18 M NaCl (fractions 15 – 17).  
Fractions corresponding to the main peak and minor peak (fractions 28 – 30) were 
collected for SDS-PAGE. 
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Fractions 
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Figure 20: SDS-PAGE of weak anion exchange FPLC fractions (Figure 19).  The first 
lane (MW) contains the Precision Plus Protein® molecular weight marker standard.  
Fractions 15 – 23 come from Figure 19.  SDS-PAGE reveals a protein band around the 
weight of 35 kD in each of the fractions 17 – 21.  Fractions 20 and 21 also contain a faint 
contaminant band at about 25 kD. 
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Fractions 

                                            MW          2              3             4 

 
 
 
Figure 21: SDS-PAGE portion of a Western Blot of SiaA M79A and SiaA WT solutions.  
The M79A solution consisted of fractions 17 – 21 from Figure 20.  The SiaA WT 
solutions were provided by Brian Sook.  The first lane (MW) contains the Precision Plus 
Protein® molecular weight marker standard.  Lane 2 contained 10 µL of the SiaA M79A 
solution.  Lanes 3 and 4 originally contained 10 µL of a dilute SiaA WT solution and 0.3 
µL of a concentrated SiaA WT solution, respectively.  SiaA is visible in lane 2 as a 
dominant band around 35 kD, and a faint contaminant band is observable in lane two at 
25 kD.  
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Figure 22: Western blot of SiaA M79A and SiaA WT solutions.  The M79A solution 
consisted of fractions 17 – 21 from Figure 20.  The SiaA WT solutions were provided by 
Brian Sook.  Lanes 7 and 8 originally contained 1 µL and 5 µL of the SiaA M79A 
solution, respectively.  Lanes 9 and 10 originally contained 10 µL of a dilute SiaA WT 
solution and 0.3 µL of a concentrated SiaA WT solution, respectively.  No trace of the 25 
kD contaminant from lane 2 of Figure 21 is observed in lane 7 or 8.  Therefore, the 
contaminant is not likely a fragment of SiaA. 
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Figure 23: Fractions 17 – 21 were combined from Figure 20.  MALDI mass 
spectrometry (sinipinic acid) reveals a protein solution with two dominant molecular ion 
peaks: 25098 and 33358 Da, consistent with the SDS-PAGE of Figure 21. 
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Figure 24: UV-Vis spectral overlay of the SiaA M79A isolated via French press (9 L 
run) and using rigorous sonication (2 L run).  The two spectra are normalized at the Soret. 
Although the protein from the 9 L run SiaA is larger by about 3000 Da, the spectra 
appear the same.    
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Figure 25: UV spectral overlay of solutions of growth with (pink) and without (purple) 
ALA.  The slight heme peak at approximately 410 nm does not increase when ALA is 
used in growth conditions. 
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Figure 26: A 3D-JIGSAW homology model of SiaA with BtuF (1N4D), highlighting 
residues 32 – 44 in red.   
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Figure 27: MALDI mass spectrometry (sinipinic acid) of WT SiaA protein solution 
(Brian Sook) that was sonicated with the rigorous 5 cycles of 2 min each method.  The 
main molecular ion peak is at 30529 Da. 
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SiaA M79A Cleavage Possibilities
Sequence 
#Theoretical Cleaved SequenceDevPredictedObserved

45-312

(P)KTAKETEQQRIVATSVAVVD ICDRLNLDLVGVCDSKLYTL PKRYDAVKRVGLPANPDIEL 
IASLKPTWILSPNSLQEDLE PKYQKLDTEYGFLNLRSVEG MYQSIDDLGNLFQRQQEAKE 
LRQQYQDYYRAFQAKRKGKK KPKVLILMGLPGSYLVATNQ SYVGNLLDLAGGENVYQSDE 
KEFLSANPEDMLAKEPDLIL RTAHAIPDKVKVMFDKEFAE NDIWKHFTAVKEGKVYDLDN 
TLFGMSAKLNYPEALDTLTQ LFDHVGDH(P)

1.28730465.66730464.380

30-296

(D)DKDRWGSELEVNQHPKTAKE TEQQRIVATSVAVVDICDRL NLDLVGVCDSKLYTLPKRYD 
AVKRVGLPANPDIELIASLK PTWILSPNSLQEDLEPKYQK LDTEYGFLNLRSVEGMYQSI 
DDLGNLFQRQQEAKELRQQY QDYYRAFQAKRKGKKKPKVL ILMGLPGSYLVATNQSYVGN 
LLDLAGGENVYQSDEKEFLS ANPEDMLAKEPDLILRTAHA IPDKVKVMFDKEFAENDIWK 
HFTAVKEGKVYDLDNTLFGM SAKLNYP(E)

0.27830464.65830464.380

16-282

(M)TGGQQMGRDLYDDDDKDRWG SELEVNQHPKTAKETEQQRI VATSVAVVDICDRLNLDLVG 
VCDSKLYTLPKRYDAVKRVG LPANPDIELIASLKPTWILS PNSLQEDLEPKYQKLDTEYG 
FLNLRSVEGMYQSIDDLGNL FQRQQEAKELRQQYQDYYRA FQAKRKGKKKPKVLILMGLP 
GSYLVATNQSYVGNLLDLAG GENVYQSDEKEFLSANPEDM LAKEPDLILRTAHAIPDKVK 
VMFDKEFAENDIWKHFTAVK EGKVYDL(D)

0.16430464.54530464.380

10-277

(H)HGMASMTGGQQMGRDLYDDD DKDRWGSELEVNQHPKTAKE 
TEQQRIVATSVAVVDICDRL NLDLVGVCDSKLYTLPKRYD AVKRVGLPANPDIELIASLK 
PTWILSPNSLQEDLEPKYQK LDTEYGFLNLRSVEGMYQSI DDLGNLFQRQQEAKELRQQY 
QDYYRAFQAKRKGKKKPKVL ILMGLPGSYLVATNQSYVGN LLDLAGGENVYQSDEKEFLS 
ANPEDMLAKEPDLILRTAHA IPDKVKVMFDKEFAENDIWK HFTAVKEG(K)

-3.94230460.43830464.380

 
Figure 28: Monoisotopic cleavage possibilities of SiaA M79A with His tag construct (2 
L run) for a total of 313 residues.  Possibilities generated from the ExPASy proteomic 
tool FindPept using observed weight from Figure 16. 
 
 
 
 
 
 
 
 
 
 
 
 



45 

SiaA WT Cleavage Possibilities
Sequence 
#Theoretical Cleaved SequenceDevPredictedObserved

25-291

(D)LYDDDDKDRWGSELEVNQHP KTAKETEQQRIVATSVAVVD ICDRLNLDLVGVCDSKLYTL 
PKRYDAVKRVGLPMNPDIEL IASLKPTWILSPNSLQEDLE PKYQKLDTEYGFLNLRSVEG 
MYQSIDDLGNLFQRQQEAKE LRQQYQDYYRAFQAKRKGKK KPKVLILMGLPGSYLVATNQ 
SYVGNLLDLAGGENVYQSDE KEFLSANPEDMLAKEPDLIL RTAHAIPDKVKVMFDKEFAE 
NDIWKHFTAVKEGKVYDLDN TLFGMSA(K)

1.75130530.55230528.800

45-312

(P)KTAKETEQQRIVATSVAVVD ICDRLNLDLVGVCDSKLYTL PKRYDAVKRVGLPMNPDIEL 
IASLKPTWILSPNSLQEDLE PKYQKLDTEYGFLNLRSVEG MYQSIDDLGNLFQRQQEAKE 
LRQQYQDYYRAFQAKRKGKK KPKVLILMGLPGSYLVATNQ SYVGNLLDLAGGENVYQSDE 
KEFLSANPEDMLAKEPDLIL RTAHAIPDKVKVMFDKEFAE NDIWKHFTAVKEGKVYDLDN 
TLFGMSAKLNYPEALDTLTQ LFDHVGDH(P)

-3.12930525.67130528.800

30-296

(D)DKDRWGSELEVNQHPKTAKE TEQQRIVATSVAVVDICDRL NLDLVGVCDSKLYTLPKRYD 
AVKRVGLPMNPDIELIASLK PTWILSPNSLQEDLEPKYQK LDTEYGFLNLRSVEGMYQSI 
DDLGNLFQRQQEAKELRQQY QDYYRAFQAKRKGKKKPKVL ILMGLPGSYLVATNQSYVGN 
LLDLAGGENVYQSDEKEFLS ANPEDMLAKEPDLILRTAHA IPDKVKVMFDKEFAENDIWK 
HFTAVKEGKVYDLDNTLFGM SAKLNYP(E)

-4.13830524.66230528.800

16-282

(M)TGGQQMGRDLYDDDDKDRWG SELEVNQHPKTAKETEQQRI VATSVAVVDICDRLNLDLVG 
VCDSKLYTLPKRYDAVKRVG LPMNPDIELIASLKPTWILS PNSLQEDLEPKYQKLDTEYG 
FLNLRSVEGMYQSIDDLGNL FQRQQEAKELRQQYQDYYRA FQAKRKGKKKPKVLILMGLP 
GSYLVATNQSYVGNLLDLAG GENVYQSDEKEFLSANPEDM LAKEPDLILRTAHAIPDKVK 
VMFDKEFAENDIWKHFTAVK EGKVYDL(D)

-4.25130524.54830528.800

 
Figure 29: Monoisotopic cleavage possibilities of SiaA WT with His tag construct for a 
total of 313 residues.  Possibilities generated from the ExPASy proteomic tool FindPept 
using observed weight from Figure 27. 
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