Finding Connected-Dense-Connected Subgraphs and variants is NP-Hard

Dhara Shah
dshah8@student.gsu.edu

Sushil Prasad
sprasad@gsu.edu

Yubao Wu
ywu28@gsu.edu

Follow this and additional works at: https://scholarworks.gsu.edu/computer_science_technicalreports

Part of the Theory and Algorithms Commons

Recommended Citation
Shah, Dhara; Prasad, Sushil; and Wu, Yubao, "Finding Connected-Dense-Connected Subgraphs and variants is NP-Hard" (2019). Computer Science Technical Reports. 2.
https://scholarworks.gsu.edu/computer_science_technicalreports/2

This Working Paper is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Computer Science Technical Reports by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact scholarworks@gsu.edu.
finding Connected-Dense-Connected Subgraphs and variants is NP-Hard

Dhara Shah1, Yubao Wu1, and Sushil Prasad1

Department of Computer Science, Georgia State University, Atlanta 30303, USA
@dshah8, ywu28, sprasad}@gsu.edu

Abstract. Finding Connected-Dense-Connected (CDC) subgraphs from Triple Networks is NP-Hard. Finding One-Connected-Dense (OCD) subgraphs from Triple Networks is also NP-Hard. We present formal proofs of these theorems hereby.

Keywords: Triple Networks · Connected-Dense-Connected subgraphs · One-Connected-Dense subgraphs · NP-Hard

Theorem 1. Finding a CDC subgraph in a Triple Network is NP Hard.

Proof. We prove that finding a CDC subgraph is a reduction of set-cover problem. Let \(R = \{r_1, \ldots, r_p\} \) be a set and and \(C = \{C_1, \ldots, C_q\} \) be its cover with \(R = \bigcup^q_{i=1} C_i \). The aim of this set cover problem is to find minimum subset \(C_{opt} \subset C \), known as optimal set-cover, such that each \(r_j \in R \) belongs to at least one set of \(C_{opt} \). This problem is proved to be NP complete.

Let \(T = \{t_1, \ldots, t_p\} \) be a set of points, having the same cardinality as \(R \). Let \(D = \{D_1, \ldots, D_q\} \) be a set-cover of \(T \), analogous to \(C \), such that if \(r_i \in C_j \), then \(t_i \in D_j \). Hence, \(T, D \) can be considered as a copy of \(R, C \).

We construct the Triple Network as follows. Let \(V_a = \{h, r_1, \ldots, r_p, C_1, \ldots, C_q\} \), where node \(h \) is connected to every \(C_i \in C \) and node \(r_1 \) is connected to node \(C_j \) if \(r_i \in C_j \) in the set-cover problem. Similarly, let \(V_b = \{k, t_1, \ldots, t_p, D_1, \ldots, D_q\} \) be the analogous set to \(V_a \). We connect \(V_a \) and \(V_b \) by connecting all nodes \(\{r_1, \ldots, r_p, h\} \) to all nodes \(\{t_1, \ldots, t_p, k\} \).

Construction of this Triple Network is illustrated in figure 1 from an instance of set-cover problem \(C_1 = \{r_1, r_2\}, C_2 = \{r_1\}, C_3 = \{r_2, r_4\}, C_4 = \{r_2, r_3\}, C_5 = \{r_4\} \).

Let \(C_{opt} \subset C \) be an optimal solution to the set-cover problem of \(C \) and \(|C_{opt}| = q^* \leq q \). Similarly, let \(D_{opt} \) be the analogous optimal solution to \(D \) and \(|D_{opt}| = q^* \leq q \). Let \(H = \{h, r_1, \ldots, r_p\} \) and \(J = \{k, t_1, \ldots, t_p\} \). The subgraph induced by \(S_a = H \cup C_{opt} \) is connected in \(V_a \), and similarly, the subgraph induced by \(S_b = J \cup D_{opt} \) is connected in \(V_b \). Hence, the sub Triple Network \(G[S_a, S_b] \) has density \(\rho(S_a, S_b) = \frac{(p+1)^2}{(p+q^*+1)} \).

Let \(S_1 \) and \(S_2 \) be any nonempty node sets where \(G_a[S_1] \) and \(G_b[S_2] \) are connected. In general, \(S_1 = H' \cup C' \) where \(H' \subset H \) and \(C' \subset C \). Similarly, \(S_2 = J' \cup D' \) where \(J' \subset J \) and \(D' \subset D \). We show that \(\rho(S_1, S_2) \leq \rho(S_a, S_b) \),
making $G[S_a, S_b]$ a CDC subgraph. Let $|H'| = p_1$, $|C'| = q_1$, $|J'| = p_2$ and $|D'| = q_2$. Hence, $\rho(S_1, S_2) = \frac{(p_1+1)^2(p_2+q_2)}{(p_1+q_1)(p_2+q_2)}$.

First, we consider the case when S_1 contains all the nodes of H and S_2 contains all the nodes of J. In this case, $p_1 = p_2 = p + 1$. Also, by definition of optimal set-cover, $q' \leq q_1$ and $q' \leq q_2$. Hence, $\rho(S_1, S_2) = \frac{(p+1)^2}{(p+q_1+1)(p+q_2+1)} \leq \frac{3}{2 \rho(S_a, S_b)}$.

Second, we consider the case when S_1 contains a subset of nodes $H' \subset H$. In this case, we first show that adding elements from $H \setminus H'$ to S_1 will only increase its density.

If $h \notin S_1$, then after adding h to S_1, the resulting subgraph has density $\frac{(p_1+1)p_2}{(p_1+q_1)(p_2+q_2)} > \frac{p_1p_2}{(p_1+q_1)(p_2+q_2)} = \rho(S_1, S_2)$. This subgraph is also connected in G_a, since h is connected to every $C_i \in C$. To add a node $r_j \in H \setminus H'$ and making it still connected, we need to add at most one node C_i to C' with $r_j \in C_i$. Hence, the density of this resulting subgraph is $\frac{(p_1+1)p_2}{(p_1+q_1+2)(p_2+q_2)} = \rho(S_1, S_2)$. We can repeat this process by adding remaining nodes of $H \setminus H'$ to S_1, while density of the resulting subgraphs keeps increasing.

Similarly, adding elements from $J \setminus J'$ to S_2 increases density of the resulting subgraphs. Since we proved in the first case that the density $\rho(S_1, S_2)$ when $H \subset S_1$ and $J \subset S_2$, we have hence completed the proof of the second case.

In summary, we proved that for any nonempty sets $S_1 \subset V_a$ and $S_2 \subset V_b$, $\rho(S_1, S_2) \leq \rho(S_a, S_b)$, making $G[S_a, S_b]$ a CDC subgraph. Also, $G[S_a, S_b]$ is the solution inducted by optimal set covers, an instance being $S_a = \{r_1, r_2, r_3, r_4, h, C_1, C_3, C_4\}$ and $S_b = \{s_1, s_2, s_3, s_4, k, D_1, D_3, D_4\}$ hence proving that finding a CDC subgraph is NP hard.

Lemma 1. Finding OCD subgraph in triple network is NP hard

Proof. We prove that finding OCD subgraph is also reduction of the set cover problem. We first construct the triple network same as in theorem 1. Let $S_a = H$ and $S_b = J \cup D_{opt}$. The subgraph $G[s_a, S_b]$ hence has density $\rho(S_a, S_b) = \sqrt{|D_{opt}|}$. This subgraph is also connected in G_a, since h is connected to every $C_i \in C$. To add a node $r_j \in H \setminus H'$ and making it still connected, we need to add at most one node C_i to C' with $r_j \in C_i$. Hence, the density of this resulting subgraph is $\frac{(p_1+1)p_2}{(p_1+q_1+2)(p_2+q_2)} = \rho(S_1, S_2)$. We can repeat this process by adding remaining nodes of $H \setminus H'$ to S_1, while density of the resulting subgraphs keeps increasing.

Similarly, adding elements from $J \setminus J'$ to S_2 increases density of the resulting subgraphs. Since we proved in the first case that the density $\rho(S_1, S_2)$ when $H \subset S_1$ and $J \subset S_2$, we have hence completed the proof of the second case.
We claim that $G[S_a, S_b]$ is an OCD subgraph. We observe that $G[S_b]$ is connected.

Let S_1 and S_2 be any nonempty node sets where either $G[S_1]$ or $G[S_2]$ is connected. In general, $S_1 = H' \cup C'$ where $H' \subset H$. Similarly, $S_2 = J' \cup D'$ where $J' \cup J$. We show that $\rho(S_1, S_2) \leq \rho(S_a, S_b)$.

First, we consider the case when S_1 contains all the nodes of H and S_2 contains all the nodes of J. In this case, $p_1 = p_2 = p + 1$. Also, by definition of optimal set-cover, $q^* \leq q_1$ and $q^* \leq q_2$. Hence, $\rho(S_1, S_2) = \frac{(p+1)^2}{\sqrt{(p+1)(p+q^*-1)(p+q^*+1)}} \leq \frac{(p+1)^2}{\sqrt{(p+q^*-1)(p+q^*+1)(p+q^*+1)}} = \rho(S_a, S_b)$.

Second, we consider the case when S_1 contains a subset of nodes $H' \subset H$. In this case, we first show that adding elements from $H \setminus H'$ to S_1 will only increase its density. Suppose, $G_a[S_1]$ is not connected and $G_b[S_2]$ is connected. Then, after adding element from $H \setminus H'$, the resulting subgraph has density $\rho(S_1, S_2) = \frac{p_1 p_2}{(p_1 + q_1)(p_2 + q_2)} = \rho(S_a, S_b)$. This includes adding h to S_1 if $h \notin H'$, making resultant subgraph connected in V_a. Now suppose $G_a[S_1]$ is connected. Then, following the same case of theorem 1, we first add h if it is not in H' and then add element from $H \setminus H'$ and still show that the resultant subgraph is connected in V_a and its density increases. Similarly, we conclude that when S_2 contains a subset of nodes in $J' \subset J$, adding elements from $J' \setminus J$ also increases the density of the resultant subgraph.

At last, we observe that if $G_a[S_2]$ is connected, then the resultant subgraph obtained by removing elements from C' has density $\rho(S_1, S_2) > \frac{p_1 p_2}{\sqrt{(p_1 + q_1 - 1)(p_2 + q_2)}}$.

In summary, we have proved that for any nonempty sets $S_1 \subset V_a$ and $S_2 \subset V_b$ with either $G_a[S_1]$ or $G_b[S_2]$ connected has density $\rho(S_1, S_2) \leq \rho(S_a, S_b)$, making $G[S_a, S_b]$ an OCD subgraph. Also, $G[S_a, S_b]$ is the solution induced by optimal set-cover, an instance being $S_a = \{r_1, r_2, r_3, r_4, h\}$, $S_b = \{s_1, s_2, s_3, s_4, k, D_1, D_2, D_4\}$ hence proving that finding OCD subgraphs is NP hard.