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Abstract 

Composite-based methods like partial least squares (PLS) path modeling have an 
advantage over factor-based methods (like CB-SEM) because they yield determinate 
predictions, while factor-based methods’ prediction is constrained in this regard by 
factor indeterminacy. To maximize practical relevance, research findings should extend 
beyond the study’s own data. We explain how PLS practices, deriving, at least in part, 
from attempts to mimic factor-based methods, have hamstrung the potential of PLS. In 
particular, PLS research has focused on parameter recovery and overlooked predictive 
validity. We demonstrate some implications of considering predictive abilities as a 
complement to parameter recovery of PLS by reconsidering the institutionalized 
practice of mapping formative measurement to Mode B estimation of outer relations. 
Extensive simulations confirm that Mode A estimation performs better when sample 
size is moderate and indicators are collinear while Mode B estimation performs better 
when sample size is very large or true predictability (R²) is high.  

 
Keywords:  Predictive Validity, Formative Measurement, Structural Equation Modeling,  
PLS path modeling, Factor Indeterminacy  
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Introduction 

Partial least squares path modeling (PLS path modeling; Wold 1982; Lohmöller 1989) and covariance-
based structural equation modeling (CB-SEM; Jöreskog 1978, 1982) stand as exemplars of two families of 
statistical methods—one composite-based and one factor-based—for studying relationships among 
conceptual variables that are not directly observable (hereafter, conceptual variables). While both 
approaches have been applied by IS scholars, the greater proportion of articles in the leading IS journals 
has used PLS path modeling than CB-SEM (Ringle et al. 2012). 

At one level, “everyone knows” that composite-based PLS path modeling and factor-based CB-SEM are 
fundamentally different. It is all there in print, from the earliest discussions of PLS path modeling to 
recent reminders in the form of prescriptive guidelines on when PLS path modeling or CB-SEM should be 
applied (e.g., Gefen et al. 2011). And yet, IS researchers (and those in other disciplines) can easily be—and 
have been—drawn into thinking that the two methods do precisely the same thing, though in different 
ways: For instance, a researcher may use CB-SEM or PLS path modeling to evaluate models and 
hypotheses involving conceptual variables which are abstract and directly unobservable. Indeed, a quick 
look at the IS literature reveals that notwithstanding the guidance on when to apply PLS path modeling 
and CB-SEM, IS researchers have used—and continue to use—these two techniques in very similar 
manners to evaluate the quality of measurement models and test hypothesized structural effects. This 
problematic institutionalized practice in the IS discipline has turned the debate about the comparative 
advantages between PLS path modeling and CB-SEM to a horse race. The focus of this work has been to 
determine the “winning technique” based on bias in parameter recovery in factor models (e.g., Goodhue et 
al. 2007, 2012; Reinartz et al. 2009). Given this evaluation criterion to compare the techniques, a recent 
article has even suggested that PLS path modeling’s use should cease (Rönkkö and Evermann 2013). Our 
contention is that this state of affairs of PLS path modeling vs. CB-SEM has emerged due to an 
unfortunate blurring of the fundamental distinctions between factor-based and composite-based 
approaches, which has hamstrung the distinctive potential of each of these techniques in furthering IS 
scholarship and more broadly research in the behavioral sciences. Specifically, while the IS field has 
herded towards comparing CB-SEM and PLS path modeling based on a singular focus on parameter 
recovery, it has overlooked another key criterion—predictive validity (Shmueli and Koppius 2011).  

We recommend reframing the methodological discourse on the comparative advantages of PLS path 
modeling and CB-SEM from benchmarking the two techniques on one criterion (i.e., parameter recovery) 
to evaluating how a given technique is used effectively given its objectives and a suitable set of 
corresponding evaluation criteria (e.g., when prediction can be included as a criterion).  

As a factor-based method, CB-SEM defines common factors to represent conceptual variables, while PLS 
path modeling defines weighted composites for that purpose. Parameter estimates in factor models are 
chosen to minimize overall discrepancy between empirical and model-implied moments subject to model 
constraints, while weights in PLS path modeling are chosen to minimize squared error in specific 
predictive relationships. The use of factors to empirically represent conceptual variables means that the 
researcher has the opportunity to evaluate the results against a fully specified and highly constrained ideal 
case, which enables a statistical test of fit. Conforming strictly to this ideal yields advantages in factor 
model parameter estimation: factor-based approaches can be expected to outperform composite methods 
in accurately estimating the parameters of correctly specified factor model (Goodhue et al. 2012).  

Within the factor model, the representation of a conceptual variable as a common factor is sufficient and 
even has advantages, but for other purposes such as prediction the common factor representation creates 
problems. On the PLS path modeling side, conceptual variables are represented by weighted sums of 
observed variables, using only those observed variables that are specifically associated with each 
conceptual variable. PLS path modeling yields a vector of weights which, multiplied by the values of the 
observed variables, produces a specific determinate score for each case in the sample. These scores will 
have relationships with other variables, within or outside a given model, which are predictable given 
knowledge of the pattern of covariances of the original observed variables with those other variables. 
These obvious-seeming results do not apply to factor representations of conceptual variables, due to the 
often poorly understood phenomenon of factor indeterminacy (Guttman 1955; Maraun 1996; Steiger 
1979a). Our first objective is to elaborate the differences between composite-based methods and factor-
based methods and the implications of those differences for the overlooked evaluation criterion of 
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prediction. 

Following a discussion of the advantages of PLS over CB-SEM for prediction and CB-SEM over PLS for 
parameter recovery, we will focus on formative measurement in PLS as formative measures are especially 
suitable for composite-based modeling (Bagozzi 2011) and thus for prediction. At the onset it is clear that 
the composite-based approach in PLS path modeling has the advantage of easily and intuitively handling 
formative measures, because composites are weighted linear combinations of the observed variables. 
Building such a weighted composite of the observed variables naturally fits the formative logic of 
measurement (e.g., Diamantopoulos and Winklhofer 2001; Jarvis et al. 2003). However, composites are a 
special case of a formative measurement model with the assumption that the composite is completely 
represented by the observed (formative) indicators and thus does not incorporate a “construct error term”. 
While some people might view such a composite as a restriction, it provides greater flexibility when 
formative measures are involved in a model because it does not impose strong constrains for identification 
(i.e., a composite in PLS path modeling only needs one adjacent composite, either exogenous or 
endogenous, for identification). Compared to factor-based SEM this composite formation in PLS path 
modeling has the advantage that it facilitates the use of formative measures without needing the ‘two or 
more dependents’ identification rule1 (Bollen and Davies 2009; Diamantopoulos 2011). Moreover, because 
of the explicit calculation of composite scores and the sequential (rather than simultaneous) estimation of 
inner weights (linking different composites) and outer weights (linking each composite to its associated 
observed variables), PLS path modeling allows for the incorporation of formative composites in 
endogenous positions to other constructs which can be problematic in factor-based SEM (Cadogan and 
Lee 2013; Rigdon 2012b). In factor-based SEM, a factor is defined not by the variables that predict it, but 
by the shared variance of the variables that are dependent upon it (Lee et al. 2013; Rigdon 2013a) and all 
predictors of a factor are collected into a single equation. If the factor is measured formatively, so that it is 
dependent on observed variables and the factor is endogenous, so that it is also dependent on other factors, 
both sets of predictors (observed variables and factors) appear in the same equation. Thus, they “compete” 
in explaining the shared variance of the variables that depend on the factor. However, this is generally not 
what the modeler had in mind when specifying the model with a formatively measured construct. In 
contrast, in composite-based PLS path modeling, the structural predictors and the observed variable 
predictors appear in two separate equations, each of which has a specification that is consistent with the 
modeler’s intent of specifying a formatively measured construct in a position where it is dependent on 
other constructs and formed by the observed variables.  

The PLS literature offers two main modes for estimating composite scores, which have long been known as 
Mode A and Mode B. The PLS literature has long suggested that the weights of composites for reflective 
measures are to be estimated using Mode A while the weights of composites for formative measures are to 
be estimated using Mode B. This mapping of type of measure (i.e., reflective/formative) to mode of 
estimation (i.e., Mode A/Mode B) dates back to Fornell and Bookstein (1982) and is repeated in many 
tutorial articles about PLS (e.g., Chin 1998, Henseler et al. 2009, Hair et al. 2011). This proposed mapping 
has not received much scrutiny, and it has led researchers using PLS path modeling to mechanically 
equate formative measurement with Mode B estimation and reflective measurement with Mode A 
estimation. We challenge this core assumption-in-practice. In reality, of course, PLS path modeling 
remains a composite-based method, and both Mode A and Mode B estimation create composites of 
observed variables and therefore are arguably possible choices in how formative measures are specified 
and composites are computed in a given model. Our second objective is to untether the use of formative 
measurement and the estimation of the composite weights in Mode B. We will show that formative 
measurement in PLS path modeling does not necessarily need to be based on Mode B estimation and, to 
the contrary, there are advantages in using Mode A estimation for formative measurement in certain 
commonly occurring conditions.  

Following Dijkstra (2010) and Rigdon (2013b), it is more natural to link Mode B to what are known as 
regression weights and to link Mode A to what are known as correlation weights. Regression weights, the 
standard in ordinary least squares regression analysis, take account of both (a) the correlation between 
each predictor and the dependent variable and (b) the intercorrelations among the predictors. Correlation 
weights, by contrast, ignore correlations among the predictors. The distinction between correlation 

                                                             
1 If the formatively measured construct is specified without an error term in factor-based SEM, the model needs only 

one endogenous latent variable to be identified (Diamantopoulos 2011). 
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weights and regression weights is a standard topic in the forecasting literature (e.g., Dana and Dawes 2004, 
Waller 2008, Waller and Jones 2010). Building on this literature, our third objective is to investigate 
when correlation weights or regression weights (Mode A or Mode B) should be used to estimate the 
weights of a formative composite under given conditions. For this purpose we will use a simulation model 
to assess the properties of both modes under a broad range of conditions.  

Simulation studies on PLS path modeling (including simulations in IS) have predominantly focused on 
parameter recovery and Type I/Type II errors. Moreover, they have focused on factor models and 
comparison to factor-based methods (e.g., CB-SEM). Consistent with the first and second research 
objectives, our simulations will move beyond factor models and utilize a completely formative composite 
population model. In addition, the evaluation criteria for this study will include not only parameter 
recovery but also predictive ability. This will demonstrate how investigating the predictive abilities of PLS 
path modeling can yield additional insights in the evaluation of a model of unobserved conceptual 
variables.  

Our results will help IS and other social science researchers to better understand the differences between 
factor-based and composite-based approaches and the usefulness of the latter to facilitate prediction. 
Moreover, the results of the simulation study will offer guidelines to researchers using PLS path models 
with formative composites in their choice of the best approach to estimate the weights of the composites 
and thus derive more reliable conclusions.  

Untethering PLS from Factor-based Methods 

From its origin, PLS path modeling has been tied closely to factor-based CB-SEM. Herman Wold created 
PLS path modeling under the inspiration of the advances made by his student, Karl Jöreskog, in factor-
based CB-SEM (Wold 1988). While Wold originally presented his “basic design” in terms of a “second 
order factor model with single indicators” (Dijkstra 2010, p. 24), using factor model language to describe 
his new approach, Wold also emphasized the distinctions between the methods, seeing in those 
distinctions the real merit of PLS path modeling, not as a competitor to factor-based SEM but rather as a 
complement (Wold 1982). Today, most sources make the distinction clear, identifying PLS path modeling 
as a multiple indicator modeling technique based on composites (Esposito Vinzi et al. 2010, Rigdon 
2013b). 

Moreover, the close connection between psychological measurement and factor analysis might lead a 
researcher to mistake PLS path modeling for a factor-based method. Both common factor analysis and the 
“classical” true score theory of measurement were introduced to the academic literature by Charles 
Spearman, in separate papers both published in 1904 (McDonald 1999). Indeed, true score theory is 
merely a special case of the common factor model (Steiger and Schönemann 1978). Highly influential 
treatments of scale development by Churchill (1979) and Gerbing and Anderson (1988) point to factor 
analysis and no other technique as the path to developing sound measures. Scholars could be forgiven for 
believing that “measurement” and “factor analysis” are synonymous, or that any non-factor-based method 
must have an inherent and substantial weakness when it comes to measurement.  

Yet, factor-based methods also have profound weaknesses. Among those, factor models are plagued by 
factor indeterminacy (Guttman 1955, Maraun 1996, Steiger 1979a). A covariance matrix of p observed 
variables has a rank of at most p, meaning that there are at most p dimensions of information contained 
within the data (Mulaik 2010). A factor model for a set of p observed variables, all congeneric indicators of 
one common factor, typically involves p unobservable error terms—one for each observed variable—plus 
the common factor. Basic assumptions specify that the error terms are all distinct, and often mutually 
orthogonal, and that the common factor is orthogonal to all p error terms. Thus, the joint covariance 
matrix of the error terms and the common factor must have rank p + 1, higher than the rank of the data 
from which the model is estimated (Steiger 1979b). This statistical trick is achieved by making the error 
terms and common factor indeterminate. This means that one cannot assign one best value to the 
common factor and the error terms for each case or observation in the dataset. In factor analysis there are 
an infinite number of different sets of “factor scores” that may be assigned to the cases in a dataset. Each 
of these sets of scores is perfectly consistent with the specified factor model and adheres to all constraints 
in the model, yet the various sets need not be very highly correlated with each other. For a given factor 
model—even if all assumptions hold—a given case within the data set might be assigned any of a range of 
scores to represent the common factor in the model. 
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One crucial consequence of this indeterminacy is that the correlation between a factor and any variable 
outside the factor model is itself indeterminate (Schönemann and Steiger 1978)—it may be high or low, 
depending on which set of factor scores one chooses. The range of this correlation is a function of both the 
correlation between the factor model’s observed variable indicators with the external variable and the 
indeterminacy of the factor (Steiger 1979b). The correlation between factor and outside criterion may be 
high even if the observed variables loading on the factor are orthogonal to the outside criterion (Steiger 
1979b). In fact, for any factor model and any outside criterion variable, there is some set of scores for the 
common factor and the specific factors / error terms that together will predict the criterion perfectly 
(Schönemann and Steiger 1978), even if the criterion is pure white noise (Schönemann and Haagen 1987). 
Hence, factor models are grossly unsuitable for prediction. 

Most factor modeling software will generate what are called “estimated factor scores” or “latent variable 
scores,” but these are not true factor scores at all, but rather geometric averages across the ranges of 
possible factor scores (Mulaik 2010). These ersatz scores will, indeed, reproduce the parameters of the 
factor model from which they are drawn, but they will not conform to all of the constraints which are part 
of the factor model (Steiger 1979b). This should be enough to make the use of such scores in research at 
least suspect. 

In contrast, methods of weighted composites, including PLS path modeling, have their advantages as they 
immediately produce a single specific value for each composite for each case, once the weights are 
established. Outside of artificial situations where factor model assumptions hold perfectly and true 
parameter values are known, composite methods may yield parameter estimates that are substantively 
indistinguishable from the estimates of factor models for the same data (Velicer and Jackson 1990). And 
composite methods have the advantage of yielding determinate scores for each composite for each case or 
respondent, which can be used beyond the specific model in which the scores were created. These 
determinate scores are not factor scores and certainly not the indeterminate factor but rather proxies of 
the concepts under investigation in PLS path modeling, just as factors are proxies for the conceptual 
variables in factor-based SEM. 

PLS Evaluation Criteria Must Include Predictive Validity 

In order for scientific research to have value, its findings must be validated—demonstrated to be sound, 
within the limits of our ability to do so. Classical treatments of validation methods, such as Messick’s 
(1989) seminal chapter or Shadish, Cook and Campbell’s (2002) authoritative volume on experiment 
design, describe many types of evidence that can be marshaled, under headings including “content 
validity,” “construct validity,” and “predictive validity.” Yet, somehow the structural equation modeling 
literature seems to have fixated entirely on “construct validity,” particular to the exclusion of predictive 
validity. Perhaps this neglect of predictive validity is a consequence of the weakness of indeterminate 
factor models in predictive applications. Regardless, researchers cannot afford to ignore predictive validity. 
Nobel laureate in economics Milton Friedman (1953, pp. 8-9) declared, “... the only relevant test of the 
validity of a hypothesis is comparison of its predictions with experience.” 

In most any study, the larger part of cases of interest lie outside the sample of data used to estimate a 
given model. To expand knowledge, researchers look beyond any given set of phenomena for additional 
connections and for new opportunities to challenge their understanding. Using data and phenomena that 
lie outside a given model, predictive validity provides a truly objective standard for evaluating success. 
Predictive validity also provides a criterion which practitioner audiences immediately grasp. An emphasis 
on predictive validity might help to combat the common problem of unreplicable findings in the social 
sciences (Yong 2012). When all criteria for evaluating results lie within the model or study itself, the 
potential for researchers to influence those criteria is large. Emphasizing predictive validity will mean that 
at least some of these criteria are beyond researchers’ reach. Researchers who ignore predictive validity 
are not applying the most rigorous methods to evaluate their models and theories. 

In general, multiple indicator approaches should have an advantage in prediction over single indicator 
methods. Within the literature on forecasting, it is well established that combinations of forecasts 
outperform single forecasts (Makridakis and Hibon 2000; Makridakis and Winkler 1983). A combination 
of forecasts can be more accurate than the most accurate single forecast in the combination (Armstrong 
2001a; see also Diamantopoulos et al. 2012). Employing multiple indicators for conceptual variables 
should similarly improve prediction. Better forecasting results also follow from reducing a criterion to be 
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forecast to its components and then forecasting each component individually, rather than making a single 
forecast for the variable overall (Armstrong 2001b). Formative measurement of proxies for the conceptual 
variables in a PLS path model is certainly consistent with this “best practice” from the forecasting 
literature. 

Formative Measurement in PLS Need Not be Limited to Mode B 

By “formative measurement,” researchers typically mean representing some conceptual variable by 
forming a weighted composite of observed variables thought to be associated with that conceptual variable. 
PLS path modeling users readily agree that PLS Mode B estimation equates to formative measurement, 
because, for each conceptual variable, the method regresses a composite on a set of observed variable 
predictors. PLS Mode A estimation does precisely the same thing, though somewhat differently. In 
consequence, there is no reason to limit estimation of “formative measurement models” to Mode B, and 
there is good reason to consider estimating such models using Mode A. 

Since PLS path modeling is a composite-based method, it should follow that even when Mode A is used, 
the estimation still involves a composite and a set of observed variables. The difference is that, while Mode 
B does this regression using all observed variable predictors as a set, thus taking account of collinearity 
among the predictors, Mode A performs this regression one predictor at a time, thus ignoring collinearity 
among the predictors (Dijkstra 2010, Rigdon 2012b). Using formulas derived by Dijkstra (2010, pp. 32-33), 
Rigdon (2012b) argued that the distinction between Mode B and Mode A paralleled the distinction 
between “regression weights,” which take account of predictor collinearity, and “correlation weights,” 
which ignore collinearity (Waller and Jones 2010). 

Regression weights adjust for collinearity so as to give less weight to more redundant predictors. This 
enables the optimal properties of OLS regression weights when assumptions hold. In particular, regression 
weights optimize R² for the data which are used to estimate the weights (in-sample prediction). The 
performance advantages of “optimal” regression weights are not necessarily overwhelming or universal. In 
many cases, substantially different weights may perform almost as well as “optimal” regression weights 
(Waller 2008). There are also a range of situations where other types of weights, including correlation 
weights (Dana and Dawes 2004), simple unit or equal weights (Einhorn and Hogarth 1975), or even totally 
random weights (Wainer 1976) perform predictably better than “optimal” regression weights. Dana and 
Dawes (2004) demonstrated, in the context of conventional regression, that correlation weights 
outperform regression weights particularly when it comes to out-of-sample prediction, where weights are 
first estimated in one dataset and then used to predict a criterion from a different dataset. 

When researchers assess predictive validity, they are evaluating out-of-sample predictive ability. Dana and 
Dawes (2004) found that regression weights were only superior under very specific conditions. They urged 
researchers to avoid using regression weights for out-of-sample prediction. It is plausible that PLS path 
modeling under different modes will support similar conclusions, giving the predictive validity edge to 
Mode A under a broad range of conditions. However, no study has ever examined this question empirically. 

Overview of PLS Simulation Studies Guiding IS Research 

Many simulation studies in the IS literature and other fields have guided the use of PLS path modeling and 
CB-SEM in IS research. We reviewed simulation studies that investigate PLS’ behavior under various 
model constellations. We include in our review the information systems literature, in particular the field’s 
two widely recognized premier journals (MIS Quarterly and Information Systems Research), recent (2012) 
papers from the International Conference on Information Systems as well as recent special issues on PLS 
path modeling (Long Range Planning and European Journal of Information Systems) and marketing. 
Based on our review, we identified 14 simulation studies that reported results about the behavior of PLS in 
simulation studies (Table 1), and make three observations: 

1. Almost all these studies use a factor-based population model (i.e., reflective measures). Only some very 
recent exceptions (e.g., Aguirre-Urreta and Marakas (2012); Becker et al. (2013); Henseler et al. (2012)) 
use formative measures in exogenous positions in a PLS path model. We did not identify any simulation 
study that involves a path model with formative measures in an endogenous position. This is surprising as 
one of the major advantages of the composite-based PLS method is its flexibility in the use of formative 
composites compared to CB-SEM which imposes several constrains regarding the use of formative 
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measures. 

2. All the simulation studies focus on parameter recovery and statistical power, with the assessment of 
predictive validity rarely considered. Only one recent study (i.e., Evermann and Tate 2012) investigates 
predictive abilities of PLS path modeling in terms of the blindfolded cross-validation Q² and in-sample R². 
However, the assessment of the Q² is only applicable to reflective measures (factor models) as it predicts 
missing values in observed data and is therefore not suitable for formative composites. Moreover, 
Evermann and Tate (2012) used a model which exhibited high predictive performance (i.e., population R² 
of 0.9). This limited consideration of predictive validity in evaluating PLS path modeling is surprising as a 
noted key advantage of PLS path modeling is its predictive ability.  

3. Given the focus on parameter recovery and statistical power, most simulation studies do not investigate 
the in-sample as well as out-of-sample predictive abilities (e.g., the R² value). In fact, only four studies 
investigate the squared correlation between true and estimated composite scores. While two of them refer 
to it as prediction accuracy (Henseler and Chin 2010; Henseler et al. 2012), the other two refer to it as 

composite reliability (Becker et al. 2012; Rönkkö and Evermann 2013)2. Nevertheless, it assesses only in-
sample properties and does not investigate prediction beyond the sample characteristics. We are not aware 
of any study that investigates out-of-sample prediction in PLS simulation studies.  

In contrast, our simulation setup will evaluate the performance of the two alternative modes of computing 
composites in PLS path models (i.e., Mode A or Mode B) by (1) using a model that includes formative 
composites not only in exogenous but also in endogenous position, (2) focusing on parameter recovery 
and prediction, (3) investigating the in-sample as well as out-of-sample predictive abilities, and (4) using a 
true composite-based population model. 

Table 1. Summary of Key PLS Simulation Studies  

Authors 
Year 

Journal 

Objective of Simulation 
Study 

Model  Evaluation Criteria 

Chin et al. 
2003 

Information Systems 
Research 

Investigate interaction-effects in 
models with measurement error; 
compare PLS to single-indicator 

regression and summated 
regression 

reflective /  
factor-model 

parameter recovery (mean 
estimates; mean relative bias) and 

statistical power (type II errors) 

Goodhue et al. 
2007 

Information Systems 
Research 

Comparing PLS and Regression 
in detecting interaction effects 

reflective / 
factor-model 

parameter recovery (mean 
estimates; mean relative bias) and 
statistical significance and power 

(type I and II errors) 

Qureshi and Compeau  
2009 

MIS Quarterly 

Compare PLS and CB-SEM 
multi-group methods 

reflective / 
factor-model 

statistical power (type II errors) to 
detect between group differences 

Reinartz et al. 
2009 

International Journal 
of Research in 

Marketing 

Compare PLS and  
CB-SEM 

reflective / 
factor-model 

parameter recovery (relative bias, 
mean absolute relative bias) and 
statistical power (type II errors) 

Henseler and Chin 
2010 

SEM Journal 

Investigate different methods to 
model interaction effects in PLS  

reflective / 
factor-model 

parameter recovery (mean relative 
bias), statistical power (type II 
errors) and prediction accuracy 
(squared correlation between 
estimated and true composite 

scores) 

                                                             
2 The term composite reliability for the squared correlation between true and estimated composite score is also used 
by other authors outside of the PLS context, e.g., Bollen and Lenox (1991). 
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Hwang et al. 
2010 

Journal of Marketing 
Research 

Comparing GSCA, CB-SEM and 
PLS 

reflective / 
factor-model 

parameter recovery  
(mean absolute bias) 

Lu et al. 
2011 

International Journal 
of Research in 

Marketing 

Comparing two “new” CB-SEM 
estimators to ML CB-SEM and 

PLS 

reflective / 
factor-model 

parameter recovery (relative bias; 
mean absolute bias), coverage 

(confidence intervals) and statistical 
power (type II errors) 

Becker et al. 
2012 

Long Range Planning 

Comparing different methods to 
model formative hierarchical 

components in PLS 

formative 
hierarchical 
component / 
reflective (all 

others) 

parameter recovery (root mean 
squared error) and composite score 

reliability (squared correlation 
between estimated and true 

composite scores) 

Chin et al. 
2012 

MIS Quarterly 

Investigate PLS methods to 
address common method bias 

reflective /  
factor-model 

parameter recovery (mean estimates 
(&standard deviation of estimates)) 

Goodhue et al. 
2012 

MIS Quarterly 

Compare PLS, CB-SEM and 
Regression  

reflective / 
factor-model 

parameter recovery (mean estimates 
(&standard deviation of estimates); 
mean relative bias) and statistical 
significance and power (type I and 

II errors) 

Henseler et al. 
2012 

European Journal of 
Information Systems 

Investigate different methods to 
model quadratic-effects in PLS 

formative 
(exogenous) –

reflective 
(endogenous) 

parameter recovery (mean relative 
bias), statistical significance and 
power (type I and II errors) and 

prediction accuracy (squared 
correlation between estimated and 

true composite scores) 

Becker et al. 
2013 

MIS Quarterly 

Comparing different 
segmentation methods in PLS 

formative 
(exogenous) –

reflective 
(endogenous) 

parameter recovery (mean absolute 
bias) of group estimates 

Rönkkö and Evermann 
2013 

Organizational 
Research Methods 

Examination of common beliefs 
about PLS path modeling 

reflective / 
factor-model 

parameter recovery (bias), 
significance and power (type I and 

II errors) and composite score 
reliability (squared correlation 

between estimated and true 
composite scores) 

Aguirre-Urreta and 
Marakas 

2012 
ICIS 

Comparing PLS and CB-SEM 
when omitting formative 

indicators 

formative 
(exogenous) –

reflective 
(endogenous) 

parameter recovery (mean 
estimates; mean percentage bias) 

Evermann and Tate 
2012 
ICIS 

Comparing the predictive 
abilities of PLS and CB-SEM 

reflective / 
factor-model 

predictive abilities (mean 
communality-based and 

redundancy-based Q²; mean R²)  

Sharma and Kim 
2012 
ICIS 

Model Selection in PLS 
reflective / 

factor-model 
model selection criteria 

 

Simulations 

We conducted extensive simulations to evaluate the use of Mode A (correlation weights) and Mode B 
(regression weights) for formative measures in PLS path models, with the aim of evaluating the predictive 
abilities of the modes. Based on this objective, we employed a simulation design similar to that of Dana 
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and Dawes (2004).  

Simulation Design 

 

Figure 1. Population Path Model 

 

Figure 1 depicts our population path model. Our simulation study was based on a population composite 
model (not a factor-model) containing two exogenous composites, CX1 and CX2, and one endogenous 
composite, CY, via the single structural equation: 

CY=p
1
*CX1+p

2
*CX2+e 

In this simulation, each composite has four observed variable components so that each composite is 
formed as:  

CX1=w11x1+w12x2+w13x3+w14x4= � w1ixi

4

i=1

 

CX2=w21x5+w22x6+w23x7+w24x8= � w2ixi

8

i=5

 

CY=v1y
1
+v2y

2
+v3y

3
+v4y

4
= � viyi

4

i=1

 

It will be convenient to restate these relations in matrix terms. Let CX (2x1) be a column vector of the two 
exogenous composites, let X(8x1) be a column vector of the observed variable components of the CX, and let 
Y(4x1) be a column vector of the components of Y. Define two component weight matrices W(2x8) and V(1x4). 
Then we can concisely restate relations between composites and components as: 

CX = WX 

CY = VY 

In the population, these equalities hold exactly, without an error term. To define the population, we 

specified a population correlation matrix, Σ(12x12), which can be represented as a partitioned matrix: 

Σ = 
Σxx Σxy

T

Σxy Σyy

 

where Σxx(8x8) contains the population correlations among the components of the two exogenous 

composites, Σyy(4x4) similarly for the endogenous composite, and Σxy(8x4) contains the cross-correlations for 
the components of the exogenous and endogenous composites. 

CX2

x21

x22

x23

x24

CX1

x11

x12

x13

x14

w11

w12

w13

w14

w21

w22

w23

w24

p1

p2

CY

y1

y2

y3

y4

v1

v2

v3

v4
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If this were a factor model, then correlations among the indicators of a given factor would be determined 
by factor loadings. Here we are working with composites, so we must specify the pattern of correlations 
among the components of the exogenous indicators and among the components of the endogenous 
composite. In practice, different components of a given composite may be correlated or uncorrelated, so 
this simulation used a pattern of population correlations that covers a range of possibilities. We defined 
the correlation matrix of the components of the endogenous composite as: 

Σyy=Ry   Ry= 

1 k
k 1

0 0
0 0

0 0
0 0

1 k
k 1

 

Thus, in the set of four components, we have two pairs where the members of each pair are correlated 
among themselves but are uncorrelated with the members of the other pair. We imposed the same pattern 
upon the correlations of the components of the exogenous composites: 

Σxx=
Rx 0

0 Rx
  Rx= 

1 k
k 1

0 0
0 0

0 0
0 0

1 k
k 1

 

The last remaining task is to calculate Σxy. In calculating the cross-correlations we have to account for PLS 
path modeling’s routine standardization of composites. It is well known that the variance of a weighted 
composite σ² is equal to a weighted sum of the component variances and two times a weighted sum of the 
component covariances. Even if the observed variable components are themselves standardized, it is 
unlikely that the resulting composite will have unit variance. Therefore, we standardize the weights of the 
composites with the standard deviations σCX and σCY so that the resulting composite has unit variance. In 
addition, this makes the weights comparable to the estimated weights in PLS path modeling: 

W* = W / �CX  V* = V / σCY 

Recall that the structural model included two slope coefficients p1 and p2, which can be collected in a row 
vector P. In designing the simulation, we set standardized parameter values p1 and p2, so that we can 
control the population R² value for the dependent composite. 

Finally, we can calculate the cross-correlations between the components of the composites Σxy:
3 

Σxy=ΣyyV*TPW*Σxx 

To verify that this population correlation matrix complies with the intended properties, one can use the 
true standardized weights W* and V* and calculate the composites CX and CY on population data which 
will exhibit the pre-specified correlations between the composites. Alternatively, one can use standard 
formulas to calculate the correlations between composites of components and get the same result:  

ZTΣZ = 
1 0 p

1

0 1 p
2

p
1

p
2

1
 with  Z=

W 0
0 V

 

As population values, we used the same set of four unstandardized component weights for all three 
composites: wj1 = 0.7, wj2 = 0.6, wj3 = 0.3, and wj4 = 0.25. The path coefficient between CX1 and CY, p1, is 
always 0.3 and the path coefficients between CX2 and CY is defined to be p2 = sqrt(R² – p1²)), with R² being 
one of our varying simulation design parameters. 

We vary three design-factors in our simulation study: 

i. The R² (the true predictability) of the endogenous composite by the two exogenous 

composites: 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 (thus covering a broad range). 

                                                             
3 Note: These cross-correlations are different from a factor-model which would be calculated as Σxy=Ly

TPLx with L 

being a loadings vector. 
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ii. The correlation k between pairs of components for each composite. We increase the 

correlation k of each pair of components from 0 to .95 in steps of .05 (again covering a broad 

range). 

iii. The Sample Size: 40, 100, and 500 (reflecting levels encountered in IS applications). 

After defining the population model covariance matrix for each simulation condition, we generated a 
population dataset from the population model with a very large sample size (10,000 observations) with 
random variables from the multivariate normal distribution. Each of these populations was used only once. 
We then draw 40, 100 or 500 observations from the population dataset as the estimation sample.4 Next, 
we estimate a PLS path model on the estimation sample specified with all composites in Mode A and again 
with all composites in Mode B. As a result, we derive the sample estimates for the weights (ws11 to ws24 and 
vs1 to vs4) and the path coefficients (ps1 and ps2) as well as the in-sample R² value. Next, we calculate the 
out-of-sample R² by 1) calculating new exogenous composites CXS1 and CXS2 based on the estimated sample 
weights (ws11 to ws24) for both modes and the overall population dataset, 2) calculating an endogenous 
composite CYS based on the estimated sample path coefficients and the CXS1 and CXS2, calculated in the 
prior step, and 3) calculating residuals E from the difference between this new composite CYS and the true 
composite CY (i.e., a linear combination of the indicators y1 to y4 and the true population weights v1 to v4). 
The out-of-sample R² is then: 1–(ETE)/(CY

TCY). Moreover, we calculate the estimation error of the weights 
and path coefficients (root mean squared error (RMSE)) based on the differences between the sample 
estimates and the true population values.  

Simulation Results 

We have simulated 1,000 datasets per design-factor combination resulting in 7*20*3*1,000 = 420,000 
estimations of Mode A and Mode B results. In addition, we also obtained results for a model where the 
unstandardized weights (W or V) for each composite were fixed at 1—i.e., unit weights. This was meant to 
provide a useful standard for comparison. 

We will discuss the results of the simulation based on the following three criteria: 1) the squared 
estimation error (RMSE 5 ) of the parameters (i.e., weights and path coefficients), 2) the in-sample 
prediction (R²), and 3) the out-of-sample prediction (R²). Finally, we will draw conclusions based on the 
evaluation of these three different criteria. 

Figure 2 shows the path coefficients’ RMSE aggregated over all different R² levels in the simulation. We 
find that the path coefficients’ RMSE in very low sample sizes (40 observations) is very similar across the 
three approaches to form a composite (Figure 2). All three approaches yield rather high RMSE for the two 
path coefficients. The RMSE decreases when sample size increases, i.e., the parameter recovery gets better. 
However, the RMSE for unit weights decreases much less than the RMSE for Mode A and Mode B. With 
larger sample sizes (100 or 500 observations) both Mode A and Mode B do not show a significant 
difference in the RMSE for the path coefficients. Moreover, analyzing the RMSE for different R² levels 
(Table A.1 in Appendix A), we find that unit weights perform as good as Mode A and Mode B or even better 
for very small population R² and small sample sizes. However, while Mode A and Mode B improve their 
estimation precision as R² and sample size increase, the RMSE of unit weights stays the same or even 
increases. 

In addition, we find that the path coefficients’ RMSE does not depend on the multicollinearity of the 
indicators (Figure 2). However, this should not be surprising as the design permitted multicollinearity 
only within each set of indicators and not across composites. Therefore, the paths between composites 
should not be affected by collinearity.  

                                                             
4 We sample without replacement so that each observation is only selected once for the sample dataset, however, 
observations drawn to the sample dataset are still part of the population dataset to which we calculate the out-of-
sample prediction. Dana and Dawes (2004) note that this might favor regression weights (i.e., Mode B). However, 
with sample sizes much smaller than the population superset, this bias should be very small. 

5 We also assessed the mean absolute error and the mean absolute relative error and did not find any difference in the 
pattern that we report in the paper. The advantage of absolute or squared measures of error is that they not only 
include the bias but also the spread (e.g., standard deviation) of the error. 
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In terms of their ability to recover path coefficients, Mode A and Mode B yield very similar results and 
thus are equally suited for use with formative composites in PLS path modeling. Unit weights should be 
avoided when the focus is on the interpretation of the path coefficients unless very small sample sizes are 
used and low R² values are expected. Even then, the estimation error from unit weights will be so high that 
any interpretations will be questionable. 

   
40 100 500 

Figure 2. Path Coefficient Estimation Error for Different Sample Sizes 

In contrast, the RMSE for the weights depends on the multicollinearity for Mode A and Mode B. Figure 3 
shows that the RMSE increases for Mode B when the correlation between the indicators increases. This 
effect is amplified when sample sizes are low. In contrast, Mode A weights are not as heavily influenced by 
the correlation between indicators and even produce better results when multicollinearity increases. 
Investigating this effect more thoroughly, we find that the mean bias of the weights for both modes 
decreases with higher multicollinearity while the variance of the estimated weights increases for Mode B 
and decreases for Mode A. Thus, Mode B has a higher RMSE because of the large variance in the estimated 
weights even though the mean bias decreases, because of sampling variability. The direction of the bias in 
the weights in all our conditions shows that weights are underestimated in both Mode A and Mode B. This 
is interesting to note as the PLS literature acknowledges overestimation of loadings (Chin 1998; Rigdon 
2013b; Wold 1985) but to the best of our knowledge has not assessed weights.  

Unit weights are not affected by sampling variability and only include the squared bias in the RMSE. 
Estimating the weights with Mode A performs generally better than setting unit weights in terms of RMSE. 
In contrast, estimating weights with Mode B is only preferable to unit weights when multicollinearity is 
low and sample sizes are not very small.  

When researchers want to interpret the weights of the composites in their research they should use Mode 
A (correlation weights) unless sample sizes or expected R² values are high or multicollinearity is supposed 
to be very low between the indicators. As the correlation between formative indicators increases Mode B 
(regression) weights are heavily infected by multicollinearity while correlations weights (Mode A) are not. 

   
40 100 500 

Figure 3. Weights Estimation Error for Different Sample Sizes 

In the design of this study, the true predictability of the dependent composite ranges from 0.2 to 0.8, with 
an overall average of 0.5. Mean overall R2 values that deviate from 0.5 indicate a bias. PLS path modeling 
is known for maximizing the in-sample predictive power of the model (Lohmöller 1989). Hence, both 
Mode A and Mode B show overfitting rates in low sample sizes (Figure 4) or for small R² values (Table A.1 
in Appendix A). Mode A is overfitting less, i.e., it produces smaller R² values that are closer to the true 
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population R² value when sample sizes are small or R² is low. As sample size increases and R² increases 
both modes become more similar and overfitting is reduced, showing R² values closer to the true 
population value (Figure 4 and Table A.1). In contrast, unit weights consistently perform worse than both 
Mode A and Mode B and underestimate the true population R² in all conditions.  

If the focus of the research is to develop a predictive model that has the highest in-sample predictive 
power, then Mode B should be employed as it capitalizes most on the characteristics of the dataset, 
especially when sample sizes are small or R² is low. Research that focuses on explanatory models should 
favor Mode A as it produces sample estimates of the R² value that are closer to the population value. 

   
40 100 500 

Figure 4. In-Sample R² for Different Sample Sizes 

Finally, in terms of out-of-sample prediction, we find that unit weights perform very well in small samples 
and with small population R² values (Figure 5). As sample size increases and population R² increases 
Mode A and Mode B perform better than unit weights. Mode A generally performs better than Mode B 
when sample sizes are not very large and when the R² is smaller. Moreover, the out-of-sample prediction 
of Mode A increases with higher multicollinearity between the indicators of the composites while unit 
weights and Mode B are unaffected by the collinearity. Mode B only outperforms the other two approaches 
in large samples where indicators exhibit very small collinearity.  

In conclusion, Mode A is the preferable approach for out-of-sample prediction when sample sizes are not 
large and R² is medium to small, especially when indicators are correlated. Unit weights are only 
preferable in very small samples with low R² and small correlations between the indicators.  

   
40 100 500 

Figure 5. Out-of-Sample R² for Different Sample Sizes 

The results from the in-sample and out-of-sample prediction analysis are in line with the findings by Dana 
and Dawes (2004) who investigate correlation and regression weights in a simple regression context. It 
shows that the usual approach applied in PLS path modeling, i.e., to use Mode B for formative measures, is 
not always preferable. In fact, our simulations show that in many cases Mode A might be the better 
approach. Thus, researcher using PLS path models with formative composites should be aware of the 
different characteristics of correlation and regression weights (for a summary see Table 2) and not revert 
to regression weights (Mode B) as the only alternative to estimates weights of formative composites in PLS 
path modeling. 
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Conclusion 

We broaden the discussion of multiple indicator structural equation methods by examining when 
composite-based approaches are meaningful and how modeling choices should be made on computing 
composites in PLS path modeling. There has been ample discussion to emphasize that when researchers 
are working with a pure factor-model and are concerned with testing hypotheses based on this factor-
model, they should revert to a factor-based method (e.g., CB-SEM) and not use PLS path modeling 
(Rönkkö and Evermann 2013; Goodhue et al. 2007, 2012). Yet, composite-based approaches are necessary 
as there are many situations where researchers find that 1) the model does not comply with the strict 
assumptions of factor-models (Gefen et al. 2011), 2) measures are composites of observed variables (e.g., 
conceptual variables measured with formative indicators) (Petter et al. 2007), and 3) the 
scientific/practical objective is to develop a predictive model (Shmueli and Koppius 2011). In the first case, 
factor-methods lose their optimality. In the complex world of social science phenomena examined in much 
IS research, empirical models do not always follow the strict assumptions of factor-models. Hence, non-
factor-based methods (e.g., composite-based methods) that do not possess optimality for factor-models, 
but are more flexible, can perform as well—or even better—than factor-based methods. Actually, all 
previous studies comparing PLS path modeling to CB-SEM have investigated both methods in situations 
where the assumptions of factor models held. Thus, it is an open question how composite methods, like 
PLS path modeling, perform in comparison to CB-SEM, when the assumptions of factor-models are not 
fulfilled. In the second and third case, the use of factor-based methods might not even be possible. Factor-
based methods like CB-SEM have restrictions regarding the use of composites in specific positions of the 
model (e.g., endogenous positions) and posit limiting constrains regarding the identification of the model. 
In addition, we have discussed why factor-based methods are not usable for prediction of variables or 
observations outside of the model. All these considerations imply that IS researchers should not limit their 
methodological choices for modeling conceptual variables with multiple indicators to factor-based 
methods, but should also consider alternative approaches like composite-based PLS path modeling. 

While CB-SEM focuses on optimality, PLS path modeling trades optimality for flexibility. Researchers 
using PLS will naturally lose some accuracy in parameter recover compared to optimal factor-based 
methods if the model fulfills the restrictive factor-model assumptions. Yet, they also gain something 
valuable: the ability to predict and the ability to use predictive validity to evaluate the quality of the model. 
Investigating the model for predictive validity (out-of-sample prediction) allows deriving more 
generalizable conclusions and can offer complementary insights into phenomena. 

Therefore, the assessment of composite-based methods, like PLS path modeling (or regressions based on 
unit weighted composites), should move away from a sole focus on parameter recovery. It should include 
predictive validity as a standard assessment when evaluating path models. However, including predictive 
validity as an important part of model assessment does not only apply to researchers who use PLS path 
modeling to estimate models with empirical data, but also to methodology researchers who investigate the 
performance of composite-based methods like PLS path modeling.  

We demonstrate the usefulness of predictive analytics in simulation studies by reconsidering the default 
usage of Mode A for reflective measures and Mode B for formative measures in PLS path modeling. We 
show that researchers employing formatively measured composites in their models should prefer Mode A 
over Mode B when they are concerned about predictive validity, except for the situations where sample 
size is very large or population R² is high and multicollinearity is low (Table 2). Moreover, the simulations 
confirm that out-of-sample predictive validity from PLS analysis will generally be poor unless sample size 
is at least moderate. This finding is in line with recent studies based on parameter recovery questioning 
the usefulness of PLS path modeling for small sample sizes (Goodhue et al. 2012; Rönkkö and Evermann 
2013). When sample size and population R² is low, unit weights provide the best out-of-sample prediction. 
However, with medium or large sample sizes or large population R² Mode A weights outperform unit 
weights and offer good out-of-sample predictive validity. 

Reconsidering the use of Mode B for formative composites might also open up the question of the default 
use of Mode A when measurement is believed to be reflective. However, our results indicate that Mode A 
outperforms Mode B in situations with high multicollinearity. In contrast to formative measures, reflective 
measures should exhibit high correlations among the indicators and thus our results indicate that Mode A 
should continue to be used in such cases. Nevertheless, the general concerns about low predictive validity 
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of composites in very small samples are probably also transferable to this situation. 

Table 2. Summary of Simulation Conclusions 

 Mode A 
(Correlation Weights) 

Mode B 
(Regression Weights) 

Unit Weights 

Bias/ 
Estimation 

Error 

Generally, best for the 
estimation of path coefficients 
in small to medium samples or 

low to medium R² values. 
Best, for the estimation of 
weights with correlation 

between indicators. 

Performs as well as Mode A in 
medium to large samples for 

the path coefficients and 
should not be used for 

estimation of weights when 
strong collinearity affects the 

indicators. 

Only preferable for the 
estimation of path coefficients 
in cases with very low R² and 

very small samples sizes. 
Not usable for the estimation 

of weights. 

In-Sample 
Prediction 

Generally offers in-sample R² 
values that are closest to the 

population value. 

Overestimates the in-sample 
R² value for small sample sizes 

and low R² values. 

Generally not preferable in 
terms of in-sample prediction, 

as the R² is always 
underestimated. 

Out-of-
Sample 

Prediction 

Generally preferable over 
Mode B when strong 

collinearity exist between the 
indicators. 

Preferable over Mode B when 
sample sizes and R² are both 

not very small. 

Performs as well as Mode A in 
large samples or high R² 

situations. 
Is only preferable over the 

other approaches when there 
is nearly no correlation 
between the indicators. 

Preferable only in situations 
with very low sample sizes and 

very low R². 

 
Given that Mode A can be used in both cases, researchers might wonder how they should evaluate whether 
their composite are good composites and behave as expected (i.e., reflective/formative)? We recommend 
that researchers expecting a reflective composite based on theory should evaluate the loadings and 
measures based on loadings (e.g., AVE, composite reliability etc.) of these “reflective” composites just as 
they did before. However, caution is necessary: a composite is not a factor and thus factor-based 
approaches to factor validation will never be perfectly able to assess composites. In contrast, researchers 
expecting a formative composite based on theory should evaluate the weights 6  and other measures 
typically used to validate formative composites (e.g., multicollinearity assessment). In addition, they 
should evaluate content validity rigorously given the importance to include all relevant formative 
indicators in the composite. This is not necessarily important for reflective measures as indicators should 
strongly covary and be interchangeable. 

Limitations and Future Research 

While our study makes contributions, it has its limitations and opens up avenues for future research. First, 
the simulation in this study limits the assessment of Mode A and Mode B to parameter recovery and in-
sample and out-of-sample prediction but does not assess statistical power. Future simulations should 
include an assessment of the statistical power of Mode A and Mode B to estimate composite weights. 
While we employ an exhaustive design with many design-factor constellations to especially illustrate the 
effect of a predictive analysis which resulted in 420,000 PLS path model computations of a Mode A and 
Mode B model, the assessment of statistical significance via bootstrapping (with a usual default of 1,000 
resamples) would blow up the design to an infeasible 420,000,000 model estimations of both Mode A and 
Mode B, and would be difficult to report within the space constraints. Second, we used a simple model 
with only two exogenous and one endogenous composite. Future simulations should also investigate more 
complex models with multiple interrelated endogenous composites. Third, we used only one set of weights 

                                                             
6 Weights and loadings are proportional in Mode A in that the loadings represent the bivariate correlations between 
indicator and composite and weights are scaled correlations to produce unit variance of the composite. However, these 
scaled correlation weights are better comparable to regression weights derived from a Mode B estimation than the 
loadings and should thus be more intuitive and better comparable to older PLS studies where Mode B was usually 
employed for formative composites. 
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which was the same for all three composites and assumed the exogenous composites to be uncorrelated. 
Future research should assess the effect of different weight patterns (e.g., very similar/equal true weights 
vs. very unequal true weights) and the effect of collinearity between the exogenous composites. Fourth, 
researchers should develop appropriate criteria to assess the reliability of composites that are not based on 
factor-methods. Further untangling composite and factor-based methods in their evaluation is a valuable 
step towards higher quality research with composite-based methods. Fifth, concrete performance criteria 
like out-of-sample prediction offer a useful basis for making methodological choices. Future simulations 
studies involving composite methods should routinely assess predictive abilities of the methodological 
choices. Sixth, comparisons of PLS path modeling and CB-SEM (composite-based vs. factor-based 
methods) should also include situations where the model does not comply with the assumptions of a 
factor-model. 

 

Appendix A 

Table A.1 Path Coefficients Estimation Error, In-Sample and  
Out-of-Sample R² for Different Population R² Levels. 

Sample 
Size 

R² 
Path Coefficients RMSE In- Sample R² Out-of-Sample R² 

Mode B Mode A 
Unit 

Weights 
Mode B Mode A 

Unit 
Weights 

Mode B Mode A 
Unit 

Weights 

40 

.20 .191 .158 .136 .42 .35 .18 -.06 .04 .13 

.30 .148 .132 .131 .48 .41 .25 .07 .17 .22 

.40 .126 .118 .127 .53 .48 .32 .20 .28 .31 

.50 .113 .109 .125 .59 .55 .39 .33 .39 .40 

.60 .104 .102 .122 .65 .62 .46 .45 .50 .49 

.70 .097 .097 .122 .72 .69 .53 .57 .61 .57 

.80 .094 .094 .121 .79 .77 .60 .69 .71 .66 

100 

.20 .084 .078 .090 .28 .26 .16 .11 .15 .15 

.30 .072 .070 .090 .37 .34 .23 .23 .25 .24 

.40 .065 .064 .093 .45 .43 .30 .34 .36 .33 

.50 .059 .059 .095 .53 .52 .38 .44 .46 .41 

.60 .053 .054 .098 .62 .61 .45 .55 .56 .50 

.70 .050 .049 .101 .70 .70 .52 .65 .67 .59 

.80 .046 .045 .103 .79 .79 .59 .76 .77 .67 

500 

.20 .034 .034 .056 .22 .21 .15 .19 .19 .17 

.30 .031 .031 .063 .31 .31 .22 .29 .29 .25 

.40 .028 .028 .070 .41 .41 .30 .39 .39 .34 

.50 .025 .025 .077 .51 .50 .37 .49 .49 .42 

.60 .023 .023 .083 .60 .60 .44 .59 .59 .51 

.70 .020 .020 .088 .70 .70 .52 .69 .69 .59 

.80 .018 .018 .093 .80 .80 .59 .79 .79 .68 
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