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ABSTRACT 

ESSAYS IN APPLIED MICROECONOMICS  

ON MEXICO 

BY 

FRANCISCO BELTRAN-SILVA 

MARCH 2020 

 

Committee Chair: Dr. Alberto Chong 

Major Department: Economics 

 

This dissertation comprises three chapters on applied microeconomics that study different 

economic aspects around the intersection between street violence and nutrition in the context of 

Mexico. The first and pivot chapter, titled “Military Interventions and Obesity: Evidence from 

Mexico’s Drug War”, studies the relationship street violence and body weight. This chapter 

examines if exposure to street violence originated in the military interventions against the drug 

trafficking organizations (DTOs) that started in 2006 in Mexico had an impact on weight using 

longitudinal data from a household survey. My results indicate that military operations affect 

weight positively, increasing overweight although not to the extent of inducing obesity.  

The second chapter, titled “Will Violent Crime Incentivize the Hiding of Small Firms?”, 

explores the impact from street violence on a different outcome: tax compliance. This chapter 

examines the relationship between crime exposure and informality of businesses using a rotating 



panel survey matched to municipal homicide rates. My hypothesis is that losses derived from 

crime may take away income that could otherwise be used to afford formality. Also, firms may 

prefer to stay underground to avoid disclosing their existence to criminals. I find that exposure to 

violent crime promotes informality. These results are further corroborated by using temperature 

as an instrumental variable.  

The third chapter, “Fighting Against Hunger: A Country-Wide Intervention and its 

Impact on Birth Outcomes,” steps away from the crime scene to focus on nutrition again. This 

chapter studies the impact of Sin Hambre (SH), a food assistance program introduced in Mexico 

in 2013, on birth weight. I use a difference in difference approach exploiting timing and regional 

variations in exposure to evaluate the impact of the overall program on birthweight. Since 

municipalities were not randomly assigned, linear regression methodologies may lead to biased 

estimates. In order to address these concerns and obtain causal estimates, I employ a multiperiod 

difference-in-difference matching method. I find that exposure to SH leads to moderate impacts 

on birth weight at best.  
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1 Introduction 

The present dissertation comprises three chapters on applied microeconomics that study different 

economic aspects around the intersection between street violence and nutrition in the context of 

Mexico.  

The first chapter in my dissertation examines if exposure to military operations against 

the drug trafficking organizations in Mexico caused any changes in weight-related outcomes 

using the number of operations from military records and longitudinal data from the Mexican 

Family Life Survey (MXFLS). My hypothesis is that these policies and the subsequent violence 

triggered, affected weight-related outcomes by inducing stress as well as by affecting food 

consumption and physical activity behaviors. I estimate a generalized difference in difference 

model that exploits the presumably exogenous regional variations in the number of military 

operations while controlling for selective migration. My results indicate that military operations 

affect weight positively, increasing overweight although not to the extent of inducing obesity. 

Using a score designed to diagnose depression I provide evidence that emotional well-being 

affections may lead these effects. Exploring other potential mechanisms, I cannot rule out that 

food expenditures and reductions in physical activity are potential drivers, but estimates are 

mostly insignificant. Therefore, observed changes may originate in metabolism alterations due to 

stress. 

The second chapter in my dissertation examines the relationship between exposure to 

violent crime and firm informality. I employ a rotating panel survey matched to municipal 

homicide rates and temperature as an instrument for homicide rates and find that exposure to 

violent crime causes existing firms to become informal. My hypothesis is that losses derived 

from crime may take away income that could otherwise be used to afford formality. Also, firms 
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may prefer to stay underground to avoid disclosing their existence to criminals. I find that 

exposure to violent crime promotes informality. On average an additional homicide per 10,000 

people each quarter increases the probability to be informal between 0.6 percentage points and 

1.1 percentage points. These results are further corroborated when using temperature as an 

instrumental variable, which indicates that these estimates range between 13.7 percentage points 

and 17.3 percentage points. 

The third chapter estimates the impact of Sin Hambre (SH), a food assistance policy 

implemented in Mexico in 2013 on birth weight and other birth related outcomes. This national 

policy is a broad targeting and coordination strategy involving a large set of programs from 

several ministries aiming to fight hunger. I use a difference in difference approach exploiting 

timing and regional variations in exposure to evaluate the impact of the overall program on 

birthweight. Since municipalities were not randomly assigned, linear regression methodologies 

may lead to biased estimates. In order to address these concerns and obtain causal estimates, I 

employ a multiperiod difference-in-difference matching method proposed by Imai, Kim and 

Wang (2020), which compares each treated unit to a control unit constructed to be similar to the 

treated observation in terms of outcome and covariate histories.1 I find that exposure to SH leads 

to moderate impacts on birth weight at best. I observe an impact of at most 5 grams for the 

national sample. Focusing on income eligible women only, estimates indicate an impact of at 

most 9 grams. Estimates, however, are not robust across specifications and some estimates point 

into null effects. Results using other methodologies lead to similar conclusions where some 

beneficial impact is observed but not for all specifications. 

  

 
1 Imai, K., Kim, I.S. and Wang, E., 2020. Matching Methods for Causal Inference with Time-Series Cross-Sectional 

Data. 
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2 Military Interventions and Obesity: Evidence from Mexico’s Drug 

War 

2.1 Introduction 

Economic literature indicates that increasing rates in obesity can be explained by several 

economic factors including technological change, income, food prices, urban sprawl, labor force 

participation, among others. 2  According to recent literature, exposure to street violence, 

measured through crime rates, could also be a relevant determinant of obesity (Yu et al., 2016). 

This research is mostly associational and the gap in the literature exists for two reasons. First, 

because of legal and ethical constraints, lab designs cannot induce realistic levels of stress like 

those ascribed to street violence. Second, quasi-experimental study designs are difficult given the 

rarity of exogenous sources of variation in street violence that could address endogeneity 

concerns. 

The military interventions against the drug-trafficking-organizations (DTOs) that started 

in Mexico in 2006 provide an opportunity to study the effect of street violence on obesity. The so 

called “war on drugs” turned Mexico into one of the most violent nations. Including civilians not 

directly involved in the conflict, the country observed a death toll of roughly 234,000 homicides 

from 2006 to 2017 (Hernández Borbolla, 2017). Anecdotal evidence documented by newspapers 

reports people responded by taking shelter indoors to avoid the risks of an ongoing outdoors 

violence ("Violencia en Ciudad Juárez," 2009; "Tierra sin ley," 2011; "Golpea la violencia al 

turismo," 2012; Solera et al., 2012). These context raises questions on the health-related 

consequences associated with the conflict. Previous literature already documents evidence in this 

 
2 For further discussion see Hill et al. (1999), Cutler et al. (2003), Chou et al. (2004), Lakdawalla et al. (2005) and 

Courtemanche et al. (2016). 
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direction as it shows drug-related violence, measured through homicide rates, is associated with 

deleterious impacts on low birthweight and depression, yet, other measures of health have been 

ignored (Brown 2016, Balmori et al. 2015).3 My hypothesis is that the military conflict could 

have affected weight related outcomes by inducing stress as well as by affecting food 

consumption and physical activity behaviors. Aside from the violent ground, Mexico is ideal to 

study this question as it has become one of the countries with the highest rates of obesity after 

the United States.4 Since obesity is notoriously costly in terms of medical care spending, chronic 

conditions incidence, and death rates exploring this subject is of particular interest to Mexico 

(Flegal et al., 2005; Cawley et al., 2012; Sturm, 2012). 5  Lastly, the fact that medical 

infrastructure, namely clinics and hospitals, was not destroyed along the conflict makes this 

military conflict especially appealing. 

The military interventions had their way triggering violence through several pathways. 

First, they provoked a crossfire between the DTOs and official authorities, that is military, navy 

and police forces. Second, by taking down former heads of historically large DTOs they led to 

the creation of multiple smaller DTOs which created further violence (Castillo et al., 2013). 

Lastly, not only the DTOs, but also the military committed human rights violations which 

affected civilians (Jiménez-Cáliz, 2017). Military operations records are a novel and arguably 

better measure of the distress caused by the conflict than homicide rates, the norm across related 

literature. First, military convoys are visible through highways and main roads, as opposed to 

 
3 Similarly, such literature has generally found drug-related violence, measured through homicide rates, adversely 

affects outcomes like migration (Basu et al., 2013, Atuesta et al., 2016), educational attainment (Márquez-Padilla et 

al., 2015, Jarillo et al., 2016, Brown et al., 2017), risk aversion (Brown et al., 2017), perception of insecurity 
(Gutiérrez-Romero 2016), economic activity (Robles et al., 2013, Enamorado et al., 2014) and household 

expenditures (Velásquez 2010), among others. 
4 According to the World Health Organization (2017) as of 2015 the rate of obesity in Mexico was 32.4% while that 

in the US was 38.2%. 
5 For instance, Cawley et al. (2012) estimate that the annual cost of treating obesity in the US is equivalent to 16.5% 

of all national medical care spending. 
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homicides, many of which do not occur in public venues and so are not noticeable. Second, 

military operations are a direct measure of the intensity of policy to be analyzed. Homicide rates, 

for instance, may not capture the impacts from military assaults not resulting in deaths.6 Third, 

given that homicides are not classified with enough detail and many are not reported, any index 

of drug-related violence is subject to measurement error. Fourth, given its unprecedented nature 

the exogeneity of military operations can be unambiguously evaluated through an event study.7 

Admittedly, an inherent disadvantage of military operations is that records are only available at 

year by state level which misses to capture the effect from independent variations at a finer level.  

This paper is relevant for several reasons. First, to the best of my knowledge, I am the 

first to analyze the impact of exposure to military operations on weight. Second, given the 

unprecedented nature of military interventions my paper is the first to provide causal evidence on 

the link between street violence and weight. Third, the use of the number of military operations 

introduces an alternative and cleaner identification to study the impact of this type of conflicts on 

other outcomes as it overcomes endogeneity concerns inherent to homicide rates. Fourth, 

different from research that studies the effect of violence on weight only, I explore several 

potential mechanisms including depression symptoms, safety perceptions, consumption and 

physical activity in the same longitudinal setting.  

The paper is structured in the following way. Section 2 presents a theoretical framework 

to illustrate how street violence could affect weight. Section 3 details the data to be used. Section 

4 describes the empirical methodology. Section 5 presents results. Finally, Section 6 outlines 

conclusions. 

 
6 Figure 2.1 in the Appendix shows the evolution of both military operations and homicide rates. 
7  Information from the Ministry of Defense (SEDENA) also shows soldiers by state are constant until 2006, 

indicating there were no operations of this nature prior to December 2006, at least since 2000. 
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2.2 Theoretical framework 

Based on related literature I assume weight is related to caloric intake and energy expenditure 

through the following linear relationship: 

 𝑊𝑖 = 𝑘𝑖(𝐹) − 𝑒𝑖(𝑃, ℎ) (1) 

where increases in caloric consumption, 𝑘𝑖(𝐹), increase weight though food consumption, 𝐹, and 

increases in energy expenditure 𝑒𝑖(𝑃, ℎ) counteract these increases via physical activity, 𝑃, and 

physiological processes, ℎ. The term 𝑖 indicate functional differences across individuals due to 

lifestyle and genetics. 

Stress can be defined as any situation that disturbs the equilibrium between a living 

organism and its environment like an injury, noise or personal problems (Ranabir et al., 2011). I 

argue that street violence is one such stressor. Evidence on the links between stress and weight 

suggest such relationship arises from behavioral and somatic responses that affect both 𝐹 and 𝑃, 

where somatic responses refer to involuntary changes inherent to the body while behavioral 

responses include deliberate changes (De Vriendt et al., 2009).8  

On somatic responses, literature points out that in general, stress promotes obesity by 

affecting appetite and altering physical activity.9 About food consumption, literature indicates 

stress might be linked to neurotransmitters and hormones that control appetite causing what is 

known as stress-eating, (Björntorp, 2001; Torres et al., 2007; Epel et al., 2001; Oliver et al., 

2000). Regarding physical activity, 𝑃, evidence documents there is a negative causal relationship 

between stress and physical activity mainly expressed through depression episodes where a 

positive relationship is found only among people already in the habit of exercise (Stults-

 
8 Consensus is that in response to a stressor the sympathetic nervous system sends a signal that additional energy is 

required to face a threat which if left unused can lead to weight gain (Foss et al., 2011, Ranabir et al., 2011).  
9 The effect that stress, measured by cortisol levels, has on obesity is well documented in the medical literature 

(Rosmond et al., 1998, Björntorp et al., 2000, Björntorp, 2001, Bose et al., 2009, Ranabir et al., 2011). 
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Kolehmainen et al., 2014).10 Recent findings also show that daily stressors and past depression 

can alter metabolism and promote obesity by decreasing post meal energy expenditures (Kiecolt-

Glaser et al., 2015), the latter of which would affect the functional form of 𝑒𝑖. 

In terms of behavioral responses, street violence could affect weight by altering physical 

activity and food consumption patterns. This is plausible if outdoors activities are costlier due to 

insecurity although individual differences on preferences and proximity to different goods will 

rule such relationship. Behavioral changes could also promote somatic changes if spending more 

time at home reinforces appetite distortions while further dissuading physical activity, 

(Santaliestra-Pasías et al., 2013; Aceves-Martins et al., 2016). 11  Insecurity could have the 

opposite effect if, for instance, it reduces visits to fast-food like restaurants and street-vendors 

stands. Furthermore, street violence could affect decisions related to working, commuting and 

entertainment alternatives which involve different bundles of food and physical activity. The 

former insights suggest that somatic responses to street violence may lead to increases in weight 

but that behavioral responses could go either way. 

2.3 Data 

The data I use for the analysis comes from three main sources. The first is the Mexican Family 

Life Survey (MxFLS), which I use to obtain information on weight related outcomes as well as 

depression symptoms, safety perceptions, food consumption and physical activity to explore 

potential mechanisms. MxFLS is a longitudinal survey conducted in three waves: the first, 

 
10 Since physical activity has beneficial effects on stress coping capacity, mental health, and weight regulation, 

reductions in physical activity following stressful events could have further adverse effects (De Vriendt et al., 2009; 

Stults-Kolehmainen et al., 2014).  
11  TV viewing has widely been identified to promote unhealthy food preferences through exposure to food 

advertisements, a higher energy intake by automatic eating, and overconsumption caused by distraction. Similarly, 

insecurity could motivate purchases of packaged versus fresh food. Packaged foods can be highly caloric and can 

contain food additives known to decrease circulating leptin, a hormone that helps inhibiting hunger (Ciardi et al., 

2012; Mangge et al., 2013). 
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MxFLS-1, in 2002, the second, MxFLS-2, from 2005 to 2006, and the third, MxFLS-3, from 

2009 to 2012.12 The second source consists of records on military operations per state and year 

from the Mexican Secretariat of National Defense (SEDENA- Secretaría de la Defensa 

Nacional).13  These records distinguish between two types of operations: eradications, which 

target drug fields, and interceptions, which target drug-related traffic through land vehicle 

checkpoints and surveillance stations that focus on air and water routes. 14  The third is 

administrative data on daily homicides collected by the National Institute of Statistics and 

Geography (INEGI- Instituto Nacional de Estadística y Geografía) to estimate state and 

municipality homicide rates by month and year as an alternative measure of the conflict 

intensity. 

The main outcomes from MxFLS consist of Body Mass Index (BMI), as well as binary 

indicators for ranges of BMI indicating underweight, (BMI<18.5), normal weight 

(18.5≤BMI<25), overweight (25≤BMI<30) and obesity (30≤BMI). 15  These weight related 

outcomes are derived using clinically measured observations of height and weight. Secondary 

outcomes comprise safety perceptions, depression, food consumption and physical activity 

outcomes. Safety perceptions refer to self-reported measures related to insecurity. Depression is 

quantified based on 20 questions that are used to diagnose depressive syndrome in Mexico. 

These questions, designed and tested by researchers from the Mexican Institute of Psychiatry to 

help diagnosing depression syndrome, can be answered in negative or positive form, in which 

three possibilities are accepted: sometimes, many times, and all the time. Answers are given a 

 
12 MxFLS-1 collects information on 16 of Mexico’s 32 states and is representative of the national population in 

2002. MxFLS-2 and MxFLS-3 relocates and re-interviews almost 90 percent of the original households sampled 

through MxFLS-1. MxFLS re-interviews include individuals or households that grew out from previous samples and 

those who migrated, the latter of which added observations from other states. 
13 Data on military operations were acquired via direct request of SEDENA. 
14 Figure 2.2 shows the cumulative number of military operations by state for different years. 
15 BMI is a weight-to-height ratio calculated by dividing a person’s weight in kilograms by the square of its height in 

meters. 
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value of 1 if negative (No) and a value of 2 to 4 if positive, according to a progressive order. 

Consequently, the scale of measurement that quantifies the depressive syndrome can take any 

value between 20 and 80. I use both the depression score and binary indicators based on 

thresholds determined by the Mexican Institute of Psychiatry that define mild, moderate and 

severe depression. Consumption outcomes consist of food expenses made a week prior to the 

interview at the household level. Consumption measures are additionally adjusted by household 

monthly income to disentangle the direct impact of military interventions on food consumption 

composition away from changes in economic activity that affected income and thus 

consumption. To explore if there are shifts in diet expenses, these are classified in groups based 

on caloric content and common food classifications. Physical activity comprises binary and 

hours per week indicators for weekly exercise and sports activities.  

2.4 Methodology 

The main sample consists of adults that are interviewed on all three waves and are 18 years or 

older at the time of their first interview. Since the exact timing of military interventions is 

ignored, operations are assigned by year of interview. My methodology consists of a generalized 

difference-in-differences approach taking advantage of the staggered nature of eradication and 

interception operations across states and years.16 The main specification can be written in the 

following form: 

𝑦𝑖𝑠𝑡 = 𝛼 + Π𝑀𝑠𝑡 + 𝑋
′
𝑖𝑠𝑡𝛽 + +𝛾𝑡 + 𝛾𝑠 + 𝛾𝑖 + 𝜀𝑖𝑠𝑡 (2) 

where 𝑦𝑖𝑠𝑡 is the outcome variable for individual 𝑖 in state 𝑠 and year 𝑡, 𝑀𝑠𝑡 are the number of 

military operations in state 𝑠 and year 𝑡, 𝑋′𝑖𝑠𝑡 is a vector of demographic control variables, 𝛾𝑡, 𝛾𝑠 

and 𝛾𝑖 are year, state and individual fixed effects, respectively, 𝛼 is the regression intercept, and 

 
16 Since the conflict started in December of 2006, the three waves from MxFLS provide information for two pre-

treatment years (2002, 2005) and 5 post-treatment years (2006, 2009, 2010, 2011, 2012). 
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𝜀𝑖𝑠𝑡  represents the idiosyncratic error term. Individual fixed effects, 𝛾𝑖 , are essential as these 

account for time-invariant unobservables related to lifestyles, genetics, and preferences.17  𝑀𝑠𝑡 

corresponds to the sum of interceptions and eradications operations. I also generate estimates 

using both counts in the same specification under the caveat of collinearity. Since time fixed 

effects capture trends at the national level, I alternatively include region by year fixed effects to 

allow for different trends subnationally.18 Since some individuals may move to safer locations in 

response to street violence, to control for selective migration I use the location where the 

individual lived during the first wave of MxFLS to assign exposure. I cluster errors at the state 

level to correct for the loss of independent variation within the states. If government 

interventions conditional on controls are exogenous, the following condition will hold: 

𝐸[𝜀𝑖𝑠𝑡|𝑠, 𝑡, 𝑖, 𝑋𝑖𝑠𝑡] = 0. (3) 

Alternatively, since weight related outcomes may not respond immediately, I use military 

operations from the previous year. Using the previous year operations could also improve the 

identification as the exact timing of operations within a year is unknown. Along the same lines, I 

study if the effect from cumulative operations using the sum of contemporaneous and previous 

years’ operations. Furthermore, to study the dynamics associated with the impact of military 

operations, I implement distributed lag models including the five previous and subsequent years 

separately.  

A latent concern from studying the relationship between street violence and obesity is 

endogeneity, particularly that arising from residential self-selection.19 In the case of military 

 
17 Given the inclusion of individual fixed effects, state fixed effects are meaningful to the extent that individuals 

move across states. For specifications analyzing outcomes related to food consumption 𝑖 refers to the household. 
18  The regional division used originates in the 2006 Mexican National Development Plan and was the one 

considered by MxFLS to do the sampling process. States belonging to each region are presented in Table 2.8. 
19 Residential self-selection in this context refers to the idea that people are not randomly assigned but choose where 

to live based on their preferences. Such endogeneity concerns may be more salient in other street violence measures 

like homicide or property crime rates. 
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operations this becomes an identification threat if people under socioeconomic conditions or 

preferences that promote obesity are constraint or prefer living in neighborhoods that are targeted 

more heavily by the military. In turn, my results could be driven by trends in state outcomes that 

are correlated with the evolution of the military interventions. Thus, I evaluate this proposition 

formally in an event study analysis. Specifically, I fit the following equation: 

𝑦𝑠𝑡𝑖 = 𝛼 + ∑ 𝜋𝑗1( 𝜏𝑠𝑡 = 𝑗) + 𝛾𝑖 + 𝜆𝑠 + 𝛾𝑡 + 𝛽𝑋𝑠𝑡𝑖 + 𝜖𝑠𝑡𝑖

𝑁

𝑗=−𝑁

 

(4) 

where 𝜏𝑠𝑡  denotes the event year, defined so that 𝜏𝑠𝑡 = 0 if the outcome at state 𝑠 and year 𝑡 

corresponds to the first year 𝑠 was intervened by the military, 𝜏 = 1 if the outcome corresponds 

to one year after the first year 𝑠 was intervened, and so on. Outcomes corresponding to 𝜏 ≤ −1 

pertain to years prior to an intervention in the corresponding state. Coefficients are measured 

relative to 𝜏 = −1 . I consider a window of five years before and five years after the first 

intervention, N=5. The outermost indicators include all previous or subsequent periods beyond 

five years respectively. If military operations are exogenous, coefficients corresponding to 𝜏 ≥ 0 

should be statistically different from zero, and coefficients corresponding to 𝜏 ≤ −1 close to 

zero. 

Additionally, to judge if the effect found from military operations is rather due to 

variations in homicide rates, I provide estimates using municipal homicide rates rates (per 

10,000) as controls for military operations but also as the main source of variation. I run 

specifications using either annual or monthly municipal homicide rates (per 10,000), the latter of 

which can be paired to the month of interview.20  

  

 
20 Homicide rates are assigned using MxFLS-1 as the exposure location, assuming that variations in homicide rates 

are unrelated to residence choices prior to the conflict.  
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2.5 Results 

In this section I present the results from the empirical analysis, results on continuous outcomes 

correspond to ordinary least squares while results on binary outcomes correspond to linear 

probability models. The base specification (1) includes individual, year and state fixed effects.21  

Specification (2) adds demographics.22 Specification (3) includes region by year fixed effects. 

Specification (4) alternatively uses the current residence instead of that corresponding to 

MXFLS-1 to assign treatment. Overall, controlling for selective migration seems to have little 

impact on estimates which can be explained by a small fraction of people migrating out of their 

initial location.23 Estimates represent the effect of an additional military operation. As reference 

and to interpret estimates, the average number of military operations per year and state is of 

around 2.5 operations, with some states having consecutively more than 5 operations on a yearly 

basis. 

Table 2.3 presents results from regressions of weight related outcomes on the number of 

operations. As it can be observed these results point to an increase in BMI as a result of military 

operations which is mainly resulting in shifts away from normal weight and into overweight 

although not into obesity. 24  Given that underweight does not vary in response to military 

operations within individuals, results for underweight are not presented. Estimates indicate that 

on average an additional operation increases BMI by 25 up to 76 g (grams). I interpret BMI 

coefficients in terms of grams (g) considering the average weight and height from the sample 

 
21 Although Mexico is not known for having extremely cold weather, I check for cyclicality concerns by running 

specifications using month indicators, which produce little changes in estimates. 
22 Demographics include age, marital status, years of education, employment status, household size, household 

earnings per month, and rural status. 
23 Roughly 300 out of 7,500 individuals in the sample migrated to a different state during the period of analysis. 

Specifications removing individuals who migrated out of the state they lived in 2002 show equivalent results. 
24 Estimates including only individual fixed effects point into larger impacts on weight gain, however, not including 

year and state fixed effects in this context may fail to capture important unobservables. 
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used are 70 kilograms (kg) and 1.6 meters (m). Similarly, an additional operation increases the 

probability of overweight by 0.3 up to 0.5% and reduces the probability of normal weight by 0.2 

up to 0.4%. Assessing results for different groups suggests effects are positively larger among 

females, family dependents, younger, more educated, and middle-income individuals, which is in 

line with literature that shows effects of stress on weight differ based on age, gender and genetics 

(Foss et al., 2011).  

Figures 2.3 to 2.6 show the results from the event study analysis. These graphs permit to 

test for pre-trends effects that would raise concerns about the validity of the identification 

strategy. In all these graphs, the value at time -1 represents a reference category set to zero that 

corresponds to a year prior to the event. The corresponding estimates suggest the hypothesis of 

military operations being exogenous cannot be rejected as there are no discernable pre-trends. 

The graphs also inform about year specific effects of military operations on outcomes 

considered. In the case of weigh related outcomes such results point that the impact arising from 

military operations could be compounding over the years. This is plausible as stressors could 

continue to have an effect years after exposure. To further explore this possibility, I use 

specifications using former years operations. Using operations from the previous year show 

slightly larger impacts. Using cumulative operations, which includes the sum of the 

contemporaneous and the last five years operations, point into similar conclusions. Implementing 

distributed lag models supports the event study results as operations from the same year and lags 

affect outcomes contrary to leads.  

Since, there could be factors associated to states that both explain the military strategy 

and weight related outcomes, I run separate regressions dropping outlier states based on 

geographical size, population, gross domestic product per capita, and closeness to the border. 
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This analysis shows that the impact is higher in states bordering the US and those with smaller 

areas, but differences in population size and GDP do not seem to drive results. Given that more 

operations could reflect increased efforts to cover a larger ground and smaller states increase 

chances of exposure I alternatively adjust the number of military operations by the size of the 

state in square kilometers. Adjusting by size shows consistently similar results. Specifications 

including eradications and interceptions as separate counts are consistent with the main results 

although significance is lower which is occurs as the two counts are collinear. 

Table 2.4 to Table 2.7 present results on potential mechanisms. Table 2.4 presents results 

on safety perceptions. As it can be observed from this table, people appear to be more afraid of 

being attacked or assaulted during day as well as during night, although effects during day are 

larger. Similarly, people report to go out at night less frequently. Although people report to feel 

less safe compared to five years ago such results are not significant across specifications. Table 

2.5 presents results for depression symptoms. These results indicate that military operations 

increase the depression score on average and move individuals away from the range associated 

with no depression. Although effects are small, they suggest the prevalence of mild and moderate 

depression, although not that of severe depression, increase in response to military operations.  

Table 2.6 shows results using consumption outcomes. Unadjusted food expenditures 

show mixed evidence, however, using food expenditures adjusted by income indicate that 

expenditures on food overall increase indicating that diminishes in consumption could be 

resulting from adverse economic conditions in line with former literature. All such estimates are, 

however, insignificant. Regarding compositional changes, out of home food expenses appear to 

increase proportionally more than home food expenditures, moreover, within home food 

expenditures, classifying them by caloric content shows that high caloric items increase more 
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than low caloric items.  

Table 2.5 shows that doing exercise as well as time doing exercise responds negatively, 

implying. Doing sports activities is unaffected although time doing sports activities does 

increase. The latter is consistent with literature pointing that stress and exercise activity are 

positively related among people already in the habit of exercise as its used as a way to cope with 

stress (Stults-Kolehmainen et al., 2014). Although estimates on physical activity are insignificant 

this may be reasonable. These results, however, cannot discard that physical activity associated 

with working, commuting, entertainment or other activities changed. This is suggested from 

results on Table 2.4 which show that in response to military operations people reported going out 

at night less frequently. 

Controlling for homicide rates in addition to military operations as well as using them 

instead of military operations yield similar results. The effects from homicide rates, however, 

seem to hold only in the short term. Monthly homicide rates affect outcomes measured in the 

same month of interview, but annual homicide rates do not. Although variations in homicide 

rates are a direct outcome from the military operations these specifications help assessing if the 

contribution of military operations is meaningful or is just serving as a proxy for homicide rates. 

These estimates, however, may not be interpret as causal. 

2.6 Discussion 

Overall results from this paper indicate that the military interventions that set off the “war on 

drugs” have a nontrivial impact on weight related outcomes. Although the conflict did not seem 

to affect the incidence of obesity, the increase in overweight could translate into future health 

issues affecting health capital. Some health problems linked to overweight and obesity are type 

two diabetes, high blood pressure, heart disease, certain cancers and pregnancy problems. 
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Although risks in terms of developing health problems are more salient among people with 

obesity, overweight poses similar threats. Since treating chronic health conditions linked to 

overweight and obesity pose large costs in terms of medical care spending, my findings inform 

policy makers in Mexico of potential subsequent health costs associated to the military conflict. 

The findings of this paper provide causal evidence that street violence does impact weight related 

outcomes providing support to the growing literature on the subject. Furthermore, analyzing 

potential mechanisms this work provides a better understanding of this relationship. Specifically, 

I observe an increase in the incidence of depression, particularly mild depression which is 

consistent with the medical literature relating weight gain to stress and depression. Exploring 

other potential mechanisms suggest weight changes are the result of changes in consumption 

patterns and physical activity although these results are not significant indicating metabolic and 

somatic responses to stress might play a rather important role driving this relationship.  
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Figures 

 

Figure12.1. Military operations and homicides 

Number of military operations and homicides (per 10,000) 

 
Note: M refers to number of military operations and H refers to the homicide rate 

per 10,000 population. 

 

Figure22.2. Number of Military Operations 

 

Note: Darker regions indicate a larger number of military operations. 
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Figure32.3. Effect of military interventions on BMI, event study 

 

Figure42.4. Effect of military interventions on overweight, event study 
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Figure5 2.5. Effect of military interventions on obesity, event study 

 

Figure62.6. Effect of military interventions on normal weight, event study 
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Tables 

Table12.1. Descriptive statistics, main variables 

  N. Obs. Mean Std. Min. Max. 

 
     

Weight      

Body Mass Index (BMI) 22,443 27.86 5.28 12 66 

Underweight (BMI<18.5) 22,443 0.02 0.13 0 1 

Normal weight (18.5≤BMI<25) 22,443 0.29 0.45 0 1 

Overweight (25≤BMI<30) 22,443 0.39 0.49 0 1 

Obesity (30≤BMI) 22,443 0.31 0.46 0 1 

Safety perceptions (ext. margins)      
Fear of assault at day time 21,445 0.17 0.37 0 1 

Fear of assault at night time 21,445 0.21 0.41 0 1 

Going out at night frequently 21,440 0.12 0.33 0 1 

Safety vs. 5 years ago 21,445 0.86 0.35 0 1 

Safety measure: changing transportation 21,445 0.07 0.25 0 1 

Safety measure: switching routes 21,443 0.08 0.28 0 1 

Safety perceptions (int. margins)      
Fear of assault at day time 21,445 1.55 0.88 1 4 

Fear of assault at night time 21,445 1.67 0.98 1 4 

Going out at night frequently 21,440 1.61 0.79 1 4 

Safety vs. 5 years ago 21,445 1.85 0.64 1 3 

Demographic controls      
Age 22,443 42.88 16.06 15 97 

Lives in Rural Locality 22,443 0.47 0.5 0 1 

Years of Education 22,443 9.72 4.56 0 23 

Employed 21,463 0.56 0.5 0 1 

Earnings per month (pesos) 19,284 1,569.82 5,546.59 1 333,333 

Married 22,443 0.74 0.44 0 1 

Household size 22,443 4.5 2.06 1 15 

      
Notes: ext. stands for extensive margin and int. for intensive margin.       
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Table22.2. Descriptive statistics, secondary variables 

  N. Obs. Mean Std. Min. Max.   

    
Depression 

 

    
Depression score (DS) 21,452 36.09 15.78 20 81 

No depression (DS<36) 21,452 0.59 0.49 0 1 

Mild depression (36≤DS<46) 21,452 0.15 0.36 0 1 

Moderate depression (46≤DS<66) 21,452 0.2 0.4 0 1 

Severe depression (66≤DS) 21,452 0.06 0.24 0 1 

Self-reported health (ext. margins) 
 

    
Health status 21,465 0.95 0.23 0 1 

Health status vs. one year ago 21,465 0.95 0.23 0 1 

Health status for next year 21,465 0.95 0.23 0 1 

Health status vs. same gender individuals 21,465 0.95 0.23 0 1 

Health status (int. margins) 
 

    
Health status 21,465 3.48 0.69 1 5 

Health status vs. one year ago 21,446 3.12 0.66 1 5 

Health status for next year 21,456 3.3 0.66 1 5 

Health status vs. same gender individuals 21,457 3.3 0.68 1 5 

Risky behaviors (ext. margins) 
 

    
Alcohol 21,546 0.35 0.48 0 1 

Smoking 21,470 0.15 0.35 0 1 

Soft drinks 21,546 0.81 0.39 0 1 

Risky behaviors (imt. margins) 
 

    
Smoking (weekly number of cigarettes) 21,470 4.24 20.75 0 420 

Physical activity 
 

    
Exercise (ext. margin) 21,470 0.15 0.36 0 1 

Exercise (daily hours) 21,470 0.24 0.9 0 20 

Exercise (weekly days) 21,470 0.58 1.47 0 5 

Exercise (implied weekly hours) 21,470 0.96 3.97 0 80 

Sports (ext. margin) 21,467 0.1 0.3 0 1 

Sports (weekly hours) 21,467 0.62 2.86 0 84 

Household food expenditures (pesos) 
 

    
Home food  13,098 609.22 1064.29 0 71,587 

High calories items 13,102 331.46 492.37 0 21,213 

Low calories items 13,100 277.64 743.71 0 50,374 

Out of home food 12,963 33.56 133.37 0 7,500 

Household food expenditures (% of 

income) 

 

    
Home food  10,947 47.41 833.61 0 82,000 

High calories items 10,950 25.65 530.05 0 53,100 

Low calories items 10,948 21.75 311.48 0 28,900 

Out of home food 10,839 2.66 109.58 0 10,000 

      
Notes: ext. stands for extensive margin and int. for intensive margin.       
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     Table 32.3. Military operations and weight related outcomes 

    (1)      (2)      (3)      (4)      (5)    

  
    

BMI 0.130*** 0.010    0.021**  0.030**  0.027**  

                             (0.016)    (0.009)    (0.010)    (0.012)    (0.012)    

Dependent mean           27.89    27.89    27.89    27.89    27.89    

Observations 21475    21475    18513    18513    18504    

      
Overweight 0.003*** 0.003*   0.004**  0.005*** 0.004*** 

 (0.001)    (0.002)    (0.002)    (0.001)    (0.001)    

Dependent mean            0.39     0.39     0.39     0.39     0.39    

Observations 21475    21475    18513    18513    18504    

      
Obesity 0.008*** -0.001    -0.001    -0.001    -0.001    

 (0.001)    (0.001)    (0.001)    (0.002)    (0.002)    

Dependent mean            0.31     0.31     0.31     0.31     0.31    

Observations 21475    21475    18513    18513    18504    

      
Normal weight  -0.010*** -0.002*   -0.003    -0.004**  -0.004**  

 (0.001)    (0.001)    (0.002)    (0.002)    (0.002)    

Dependent mean            0.29     0.29     0.29     0.29     0.29    

Observations 21475    21475    18513    18513    18504    

      
Individual FE Yes    Yes    Yes    Yes    Yes    

Year FE No    Yes    Yes    Yes    Yes    

State FE No    Yes    Yes    Yes    Yes    

Demographics No    No    Yes    Yes    Yes    

Region by Year FE No    No    No    Yes    Yes    

MxFLS1 Used as Exposure Location Yes    Yes    Yes    Yes    No    

            

Note: All specifications include individual fixed effects. Demographics include age, marriage status, 

education level, working status, household size, household monthly income. Errors are clustered at the 

state level. Standard errors are displayed in parenthesis. *Coefficient is significant at 10% level. 

**Coefficient is significant at 5% level. ***Coefficient is significant at 1% level. 
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Table4 2.4. Military operations and fear of attack or assault 

    (1)      (2)      (3)      (4)      (5)    

  
    

Fear of being attacked during day 0.006**  0.007*   0.007**  0.005**  0.005**  

                             (0.002)    (0.003)    (0.003)    (0.002)    (0.002)    

Dependent mean            0.17     0.17     0.17     0.17     0.17    

Observations 21449    21449    18491    18491    18486    

      
Fear of being attacked during night 0.004    0.006*   0.006    0.005*   0.004    

 (0.002)    (0.004)    (0.004)    (0.003)    (0.003)    

Dependent mean            0.21     0.21     0.21     0.21     0.21    

Observations 21449    21449    18491    18491    18486    

      
Safety compared to five years ago -0.014**  -0.005    -0.005    -0.003    -0.003    

 (0.006)    (0.006)    (0.005)    (0.004)    (0.004)    

Dependent mean            0.71     0.71     0.71     0.71     0.71    

Observations 21449    21449    18491    18491    18486    

      
Going out at night frequently -0.001    -0.004*   -0.005**  -0.006*** -0.006*** 

 (0.001)    (0.002)    (0.002)    (0.002)    (0.002)    

Dependent mean            0.12     0.12     0.13     0.13     0.13    

Observations 21444    21444    18487    18487    18482    

      
Individual FE Yes    Yes    Yes    Yes    Yes    

Year FE No    Yes    Yes    Yes    Yes    

State FE No    Yes    Yes    Yes    Yes    

Demographics No    No    Yes    Yes    Yes    

Region by Year FE No    No    No    Yes    Yes    

MxFLS1 Used as Exposure Location Yes    Yes    Yes    Yes    No    

            

Note: All specifications include individual fixed effects. Demographics include age, marriage status, 

education level, working status, household size, household monthly income. Errors are clustered at the 

state level. Standard errors are displayed in parenthesis. *Coefficient is significant at 10% level. 

**Coefficient is significant at 5% level. ***Coefficient is significant at 1% level. 
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Table52.5. Military operations and depression symptoms 

    (1)      (2)      (3)      (4)      (5)    

  
    

Depression score -0.048    0.234**  0.209**  0.258*** 0.251*** 

                             (0.063)    (0.085)    (0.095)    (0.061)    (0.061)    

Dependent mean           36.08    36.08    35.75    35.75    35.75    

Observations 21365    21365    18420    18420    18415    

      
Mild depression -0.000    0.003*   0.001    0.002    0.002    

 (0.001)    (0.001)    (0.002)    (0.001)    (0.001)    

Dependent mean            0.15     0.15     0.15     0.15     0.15    

Observations 21365    21365    18420    18420    18415    

      
Moderate depression -0.001    0.002    0.002    0.003*   0.003    

 (0.001)    (0.002)    (0.002)    (0.001)    (0.002)    

Dependent mean            0.20     0.20     0.19     0.19     0.19    

Observations 21365    21365    18420    18420    18415    

      
Severe depression -0.000    0.001    0.001    0.000    0.000    

 (0.001)    (0.001)    (0.001)    (0.001)    (0.001)    

Dependent mean            0.06     0.06     0.06     0.06     0.06    

Observations 21365    21365    18420    18420    18415    

      
No depression 0.002    -0.006**  -0.004*   -0.005*** -0.005**  

                             (0.002)    (0.002)    (0.002)    (0.002)    (0.002)    

Dependent mean            0.59     0.59     0.60     0.60     0.60    

Observations 21365    21365    18420    18420    18415    

      
Individual FE Yes    Yes    Yes    Yes    Yes    

Year FE No    Yes    Yes    Yes    Yes    

State FE No    Yes    Yes    Yes    Yes    

Demographics No    No    Yes    Yes    Yes    

Region by Year FE No    No    No    Yes    Yes    

MxFLS1 Used as Exposure Location Yes    Yes    Yes    Yes    No    

            

Note: All specifications include individual fixed effects. Demographics include age, marriage status, 

education level, working status, household size, household monthly income. Errors are clustered at the 

state level. Standard errors are displayed in parenthesis. *Coefficient is significant at 10% level. 

**Coefficient is significant at 5% level. ***Coefficient is significant at 1% level. 
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Table62.6. Military operations and food expenses 

    (1)      (2)      (3)      (4)      (5)    

 
     

Home food 5.079    4.411    5.513    0.822    0.777    

 (5.226)    (5.569)    (6.268)    (2.177)    (2.276)    

Dependent mean           47.73    47.73    47.78    47.78    47.78    

Observations 10800    10800    10782    10782    10775    

      
High calories items 3.271    3.028    3.752    0.714    0.766    

 (3.266)    (3.420)    (3.895)    (1.192)    (1.217)    

Dependent mean           25.83    25.83    25.86    25.86    25.85    

Observations 10802    10802    10784    10784    10777    

      
Low calories items 1.808    1.383    1.761    0.108    0.011    

 (1.989)    (2.178)    (2.403)    (1.026)    (1.094)    

Dependent mean           21.90    21.90    21.92    21.92    21.92    

Observations 10801    10801    10783    10783    10776    

      
Out of home food 0.583    1.028    1.146    0.340    0.363    

 (0.576)    (0.783)    (0.848)    (0.237)    (0.243)    

Dependent mean            2.68     2.68     2.68     2.68     2.69    

Observations 10695    10695    10677    10677    10670    

      
Individual FE Yes    Yes    Yes    Yes    Yes    

Year FE No    Yes    Yes    Yes    Yes    

State FE No    Yes    Yes    Yes    Yes    

Demographics No    No    Yes    Yes    Yes    

Region by Year FE No    No    No    Yes    Yes    

MxFLS1 Used as Exposure Location Yes    Yes    Yes    Yes    No    

            

Note: All specifications include individual fixed effects. Demographics include age, marriage status, education 

level, working status, household size, household monthly income. Errors are clustered at the state level. Standard 

errors are displayed in parenthesis. *Coefficient is significant at 10% level. **Coefficient is significant at 5% 

level. ***Coefficient is significant at 1% level. 
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Table72.7. Military operations and physical activity 

    (1)      (2)      (3)      (4)      (5)    

 
     

Exercise -0.000    -0.002    -0.001    -0.001    -0.001    

                             (0.001)    (0.003)    (0.003)    (0.003)    (0.003)    

Dependent mean            0.15     0.15     0.15     0.15     0.15    

Observations 21383    21383    18433    18433    18428    

      
Exercise (weekly hours) -0.039*   -0.034    -0.037    -0.013    -0.015    

 (0.020)    (0.028)    (0.030)    (0.020)    (0.020)    

Dependent mean            0.95     0.95     0.99     0.99     0.99    

Observations 21383    21383    18433    18433    18428    

      
Year FE No    Yes    Yes    Yes    Yes    

State FE No    Yes    Yes    Yes    Yes    

Demographics No    No    Yes    Yes    Yes    

Region by Year FE No    No    No    Yes    Yes    

MxFLS1 Used as Exposure Location Yes    Yes    Yes    Yes    No    

            

Note: All specifications include individual fixed effects. Demographics include age, marriage status, education 

level, working status, household size, household monthly income. Errors are clustered at the state level. Standard 

errors are displayed in parenthesis. *Coefficient is significant at 10% level. **Coefficient is significant at 5% 

level. ***Coefficient is significant at 1% level. 
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Table82.8. Geographic regions 

  

Region States 

    

  
South-Southeast Campeche, Yucatán, Chiapas, Oaxaca, Quintana Roo, 

Tabasco, Guerrero, and Veracruz. 

Center-west Jalisco, Michoacán, Colima, Aguascalientes, Nayarit, 

Zacatecas, San Luis Potosí and Guanajuato. 

Center Ciudad de Mexico, Querétaro, Hidalgo, Tlaxcala, Puebla, 

Morelos and Estado de México. 

Northeast Tamaulipas, Nuevo León, Coahuila, Chihuahua y Durango. 

Northwest Baja California, Baja California Sur, Sonora and Sinaloa. 

    

Note: This division originates in the 2006 Mexican National Development Plan, is 

intended to help coordinating national projects and was the one considered by MxFLS 

to do the sampling process. According to such division some states can belong to two 

regions: Puebla can belong to either the Center or South-Southeast, Chihuahua and 

Durango to the Northeast or Northwest, and Queretaro to the Center or Centerwest 

region. To avoid overlapping regions when creating Region by Year fixed effects either 

possibility is considered in alternative cases like the one outlined in this table. 

Source: Mexican Family Life Survey Users Guide and 2006 Mexican National 

Development Plan. 

 

Table92.9. Food expenditures categories 

    

Categories MxFLS survey items included 

    

    

Home food 
 

Low caloric 
 

Fruits/Vegetables (non-starchy) Bananas, apples, oranges, other fruits, onions, red 

tomatoes, chiles, and other vegetables. 

Poultry and seafood Chicken, chicken eggs, tuna/sardines, and fish/seafood. 

Unrefined carbohydrates Potatoes, milk, legumes, beans, rice, and other cereals. 

High caloric 
 

Refined carbohydrates Corn tortillas, bread/baguette, soup/pasta, cheese, and 

other dairy products. 

Red meat Beef, pork, and other animal products. 

Fats and oils Vegetable oil. 

High in sugar and fat Sodas; beverage juices, purified water, beverages as 

beer tequila rum and powder for preparing water; 

cookies; white sugar; coffee; other industrial/packaged 

products like pancakes, candies, potato chips, etc. 

Out of home food Meals outside of the household. 

    

Note: Caloric content was determined based on Chávez et al. (2010). 
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Table102.10. Variables description 

    

Name Description 

    

  
Military 

eradications 

Military operations targeting drug fields. 

Source: SEDENA. 

Military 

interceptions 

Military operations targeting drug-related traffic through land vehicle checkpoints and 

surveillance stations that focus on air and water routes. 

Source: SEDENA. 

Homicide 

rates 

Number of homicides adjusted by population size multiplied by 10,000. 

Source: INEGI. 

Body Mass 

Index (BMI)  

BMI is obtained by dividing individual measures of individual weight by the square of 

the corresponding height, where weight is expressed in kilograms and height in meters. 

Source: MxFLS. 

Overweight 

(30>BMI≥25) 

Overweight is an individual measure taking the value of one if BMI is greater or equal to 

25 and less than 30, and zero otherwise. 

Source: MxFLS. 

Obesity 

(BMI≥30) 

Overweight is an individual measure taking the value of one if BMI is greater or equal to 

30 and zero otherwise.  

Source: MxFLS. 

High caloric 

food expenses 

High caloric food expenses consist of household purchases of high calorically dense 

food items adjusted by number of household members.a 

Source: MxFLS. 

Low caloric 

food expenses 

Low caloric food expenses consist of household purchases of low calorically dense food 

items adjusted by number of household members.a 

Source: MxFLS. 

Outside of 

home meals 

expenses 

Outside of home meals expenses consists of household purchases of meals out of home 

adjusted by number of household members.a 

Source: MxFLS. 

Exercise 

activity 

Exercise activity refers to an individual binary indicator that takes the value of one if the 

individual reports doing exercise on the week before the interview took place and zero 

otherwise. 

Source: MxFLS. 

a Table 2.10 lists food items available from MxFLS grouped by each category considered. Household 

expenses refer to purchases performed on different specific food items the week before the interview took 

place. For cases where last week purchases are not available purchases from last month are used. 
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3 Will Violent Crime Incentivize the Hiding of Small Firms? 

3.1 Introduction 

Does exposure to violent crime increase firm informality?  While arguably an important 

question, to my knowledge it has not been yet addressed. This is remarkable given that in many 

developing countries the size of the underground economy is rather large and as such constitutes 

a pressing problem. As an example, underground economy represents around forty-five percent 

of the gross domestic product and more than seventy percent of the labor force in Latin America 

(Loayza et al., 2009). It is clear that a better understanding of key informality drivers is needed in 

order to better design policies to deal with this issue. 

In this research I focus on the case of Mexico and take advantage of its notorious increase 

in violent crime in the context of the country’s “war on drugs,” a conflict between the 

government and the drug trafficking organizations that began in 2006 and created large 

variations in violence intensity. In addition, to address potential endogeneity concerns due to 

self-selection I rely on the literature that links weather and violent crime (Carleton and Hsiang, 

2016). I employ temperature as an instrument that adequately complies with the exclusion 

restriction by focusing on non-agricultural firms and accounting for seasonal variations. 

Interestingly, any observed causal link from violent crime exposure to increases in 

informality might signify that firms willing to become formal are in fact discouraged to do so by 

reasons that are beyond the typical determinants of informality currently in the literature, such as 

tax and regulation burden, financial market development, and the quality of the legal system 

(Inchauste et al., 2005). Becoming or staying informal to these firms can be costly in both 

additional effort and loss of resources in order to go underground as well as to avoid being 

uncovered and singled out by criminals. In fact, firm profits in Mexico have decreased during the 
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war on drugs period, which is directly attributed to violent crime. For instance, this is the case of 

local businesses such as gas stations, drugstores, and professional offices, including medical 

doctors and lawyers, as they tend to shorten operating hours in order to reduce exposure to 

violence25. Similarly, the tourism industry, which is particularly large in the country, has shown a 

drastic decline in activity in locations known to be violent as well as in locations linked to roads 

where criminal activity is known to occur26. Furthermore, the fact that criminal organizations 

tend to charge firms with quotas or implicit taxes only tends to compound this problem27. 

The paper is organized as follows. The next section describes the data. Section 3 presents 

the empirical methodology. Section 4 presents the main findings.  Section 5 concludes. 

3.2 Data 

The data come from three main publicly available sources. First, I draw quarterly individual 

information on businesses, including informality, from the National Survey on Employment and 

Occupation (ENOE), which is the primary source of labor force statistics in the country. It is a 

rotating panel survey where individuals are interviewed for five consecutive quarters and then 

replaced.  Second, I collect data on homicide rates by quarter and municipality from official 

reports provided by the National Statistical Agency (INEGI).  Finally, I use temperature averages 

by quarter and state from the National Water Commission (CONAGUA). Matching all available 

data allows us to study the period from 2005 to 2016.  

 The definition of informality employed is the same used by INEGI. Informal businesses 

are those firms owned by household’s members that are not constituted as separate legal entities, 

lack complete accounts that permit a financial separation of their production activities, and/or are 

not registered under specific forms of national legislation, including tax or social security laws. 

 
25 http://www.excelsior.com.mx/2012/08/13/nacional/853135 
26 http://archivo.eluniversal.com.mx/estados/85953.html. 
27 https://www.proceso.com.mx/290237/para-pagar-cuota-al-narco-suben-kilo-de-tortilla-en-michoacan 



31 

 

The details on how the informality variable is constructed as well as the rest of variables in this 

paper is provided in Table 3.1. 

3.3 Empirical Strategy 

I focus on employers and self-employed individuals from the private sector who are sampled for 

the full five quarters of the corresponding rotating panel using information related to their main 

job28. My sample excludes those employed in the agriculture sector and those who are domestic 

employees. I focus on actively working individuals, as I am interested in tax registration shifts of 

ongoing businesses29. My set of controls includes demographic controls such as age, sex, years 

of education, as well as income level. In addition, I include municipal, quarter, and year fixed 

effects.  The dependent variable is a dummy that reflects the informal status of the firm. As such, 

I employ a linear probability approach with the following reduced form: 

𝑦𝑚𝑖𝑡𝑞 = 𝛽0 + 𝛽1𝑥𝑚𝑡𝑞 + 𝛾𝑚 + 𝜂𝑡 + 𝜂𝑞 + 𝜖𝑚𝑖𝑡𝑞, (1) 

where 𝑦𝑚𝑖𝑡𝑞 is the informality status associated with firm 𝑖 in municipality 𝑚 at year 𝑡 in quarter 

𝑞, 𝑥𝑚𝑡𝑞 is the homicide rate (per 10,000) in municipality 𝑚 at year 𝑡 and quarter 𝑞, 𝜂𝑡 stands for 

year fixed effects and 𝜂𝑞  stands for quarter fixed effects and 𝜖𝑚𝑖𝑡𝑞  is the error term. The 

informality status takes a value of one if the firm is regarded as informal and zero otherwise. I 

use homicide rates per 10,000 as the explanatory variable. In addition, I correct for the lack of 

independent variation in homicide rates within municipalities clustering errors at this level. I 

alternatively include state-year fixed effects to allow for different trends at the subnational level 

and individual fixed effects to control for individual heterogeneity. 

 
28 By doing this, I exclude heads of firms that were unemployed, turned into employees or for some reason, were not 

interviewed.  
29 ENOE follows heads of firms, not firms themselves. 
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I further explore endogeneity concerns by instrumenting homicide rates using 

temperature, where the exclusion restriction assumes that variations in temperature do not 

directly affect the incentives to switch registration status after controlling for time fixed effects 

that account for seasonal and annual variations in weather. As outlined above, individuals 

pertaining to the agriculture sector are excluded from the analysis, further ensuring the 

instrument validity. This identification strategy also relies on the assumption that quarterly 

variations in weather changes on average do not differ significantly across municipalities within 

a state in a quarter. 

3.4. Findings 

The main results correspond to the sample consisting of business heads, i.e. employers and self-

employed individuals observed for the full five quarters of the rotating panel. The first three 

columns in Table 3.2 show the linear probability model (LPM) results, which point that on 

average an additional homicide per 10,000 people each quarter increases the probability to be 

informal by in between 0.6 percent and 1.1 percent30. The last three columns in Table 3.2 show 

the results from the second stage least squares from the instrumental variables (IV) approach 

using temperature as an instrument, which indicate that such change corresponds to an increase 

between 13.7 percent and 17.3 percent in the probability to be informal.  Common to IV 

findings, these estimations yield larger coefficients, which is likely the result of the fact that they 

measure LATE impacts.  All results presented include sampling weights.31  

 Table 3.3 shows that my estimates are robust to changes in the way I treat formality and 

informality. In particular, I explore whether results are sensitive to dropping firms that show 

 
30 Probits yield virtually identical results. 
31 Specifications without sampling weights display similar results although the coefficients are slightly smaller. 

Since ENOE does not sample all municipalities each quarter, using sampling weights accounts for 

underrepresentation that may miss to capture variations in homicides. 
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consecutive changes in registration status during any of the five quarters that the firm is followed 

in the rotating panel. Since switches from and to formal registration status of a firm are not 

costless, one might argue that these quarterly changes could be due to potential 

misclassifications32. Panel A in Table 3.3 excludes firms showing at most one formal-informal 

registration switch in any of the five quarters of the rotating panel. Similarly, Panel B in the same 

table excludes firms showing one or more of such formal-informal registration switches.  I 

observe that the findings in Table 3.3 are analogous to the one presented in Table 3.233. 

3.5. Conclusions 

I find that exposure to violent crime promotes informality. On average an additional homicide 

per 10,000 people each quarter increases the probability to be informal between 0.6 percentage 

points and 1.1 percentage points. These results are further corroborated when using an 

instrumental variables approach that is consistent with the exclusion restriction, which indicates 

that these estimates range between 13.7 percentage points and 17.3 percentage points. 

It appears that exposure to violent crime increases the opportunity costs of informality as 

losses and spending on security measures may otherwise be used to afford formality.  An 

additional mechanism at work may be fear.  Owners may prefer to stay underground or reduce 

working hours in order to reduce exposure to violence.  Finally, these findings help inform 

policymakers on the potential benefits that reducing violent crime can have in terms of 

incorporating firms into the regulated sector and thus increasing the tax base.   

 
32 Becoming informal restricts business networks due to unavailability of invoices and access to the financial 

system. Becoming formal, besides the paper work and tax payments implied, may be a risky move as it discloses the 

firm’s existence. 
33 Results are robust to including those that are interviewed less than five times in the rotating panel. In addition, I 

also pursue additional robustness tests by employing alternative definitions of informality different from the official 

ones employed by INEGI. When using a definition based social security registration status, I find slightly less 

statistically significant results, which is reasonable, as firm owners do not necessarily act as workers in their own 

business. These findings are available upon request. Including individual fixed effects shows similar results for the 

LPM but the IV approach is not significant. 
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Table113.1 Description of Variables 
Variable Definition 

Firm Informality Informality status based on ENOE’s questions 4C-4D, 4E, and 4G as 

defined by INEGI. 4C and 4D classify a firm by means of its official 

name. 4E is “business or activity, a) has an establishment and office, b) 

has only an office, c) has only an establishment, d) does not have an office 

or establishment.” 4G is “In this business or activity, a) do you use the 

services of an accountant to keep records? b) do you only use a notebook 

or write personal notes to keep accounting records? c) do you use an 

income booklet or do you have a cash register from the Ministry of 

Finance for small taxpayers? d) you do not keep any accounting records.” 

If 4C and 4D identify the business as complex, informality equals 0. If not 

complex and 4E is a), b) or c), the value depends on 4G: informality is 1 if 

4G is b) or d) and is 0 if it is a) or c). If not complex but 4E is d) then 

informality is 1. Source: ENOE (2005-2016). 

Worker Informality Informality based on social security status using question Q6D from 

ENOE: “Due to this job, do you have access to health services through: a) 

IMSS, b) ISSSTE, c) state ISSSTE, d) other institution, e) none.” Variable 

equals one if response is (a) and 0 otherwise. IMSS refers to social 

security of private sector; ISSSTE refers to that of public sector. Source: 

ENOE (2005-2016). 

Age Age in years. Source: ENOE (2005-2016) 

Sex Binary variable taking the value of 1 if female and 0 if male. Source: 

ENOE from 2005 to 2016. 

Education Years of education based on the last academic degree reported by the 

individual. Source: ENOE from 2005 to 2016. 

Income Reported monthly income. Source: ENOE from 2005 to 2016. 

Homicide rate Number of homicides per quarter and municipality divided by population 

size multiplied by 10,000. Source: INEGI (2005, 2016) and CONAPO 

(2005, 2010). 

Temperature State and quarterly average temperature in Celsius.   Source: NWC (2005, 

2016) 
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Table123.2. Violent Crime and Informality 

 LPM  IV 2SLS 

   (1)       (2)       (3)        (4)       (5)       (6)     

Homicide rate 0.011*** 0.009*** 0.006***  0.156*** 0.137*** 0.173*   

 (0.003)    (0.002)    (0.002)     (0.051)    (0.044)    (0.102)    

Year FE X X X  X X X 

Quarter FE X X X  X X X 

Municipality FE X X X  X X X 

Demographics  X X   X X 

State by year FE   X    X 

Weak instruments KP Statistic  n.a. n.a. n.a.  41.08    41.02    16.95    

10% maximal size critical value n.a. n.a. n.a.   16.38      16.38      16.38     

Observations 482761    482640    482640      482761    482640    482640    

CEOs surveyed at least one time. Sample period corresponds to 2005-2016 and frequency of all variables is 

quarterly. Informality data corresponds to the individual level, homicides to the municipal level and weather data to 

the state level. Homicide rates are in per capita terms (per 10,000). Each column represents a different regression. 

Dependent variable mean is 0.64. Standard errors in parenthesis. All specifications include sampling weights. 

Demographic controls include age, sex, years of education and income level. Errors are clustered at the municipal 

level. *Coefficient is significant at 10% level. **Coefficient is significant at 5% level. ***Coefficient is significant 

at 1% level. 
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Table133.3. Robustness Tests 

 LPM  IV 2SLS 

   (1)       (2)       (3)        (4)       (5)       (6)     

Panel A        

Homicide rate 0.010*** 0.009*** 0.006**   0.155*** 0.139*** 0.188*   

 (0.002)    (0.002)    (0.002)     (0.054)    (0.047)    (0.110)    

Weak instruments KP Statistic  n.a. n.a. n.a.  36.15    36.09    16.43    

10% maximal size critical value n.a. n.a. n.a.   16.38      16.38      16.38     

Observations 391901    391806    391806     391901    391806    391806    

Panel B        

Homicide rate 0.011*** 0.010*** 0.005**   0.156*** 0.141*** 0.178    

 (0.003)    (0.002)    (0.002)     (0.055)    (0.048)    (0.113)    

Dep. Variable mean            0.68     0.68     0.68      0.68     0.68     0.68    

Weak instruments KP Statistic  n.a. n.a. n.a.  37.32    37.27    15.36    

10% maximal size critical value n.a. n.a. n.a.   16.38      16.38      16.38     

Observations 374462    374372    374372     374462    374372    374372    

Year FE X X X  X X X 

Quarter FE X X X  X X X 

Municipality FE X X X  X X X 

Demographics  X X   X X 

State by year FE   X    X 

Sample period is 2005-2016 and frequency of all variables is quarterly. Informality data correspond to the individual 

level, homicides to the municipal level and weather data to the state level. Homicide rates are in per capita terms (per 

10,000). Standard errors are in parenthesis. All specifications include sampling weights. Demographic controls: age, 

sex, years of education and income level. Errors are clustered at the municipal level. Panel A excludes individuals 

where changes do not last more than a quarter but there is at most one such pattern along the five quarters. Panel B 

excludes individuals where changes do not last more than a quarter and there is one or more such patterns along the 

five quarters. Dependent variable mean is 0.67. *Coefficient is significant at 10% level. **Coefficient is significant at 

5% level. ***Coefficient is significant at 1% level. 
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Table143.4. First Stages 

   (1)       (2)       (3)     

Temperature 0.0169*** 0.0169*** 0.0073*   

 (0.0053)    (0.0053)    (0.0041)    

Year FE X X X 

Quarter FE X X X 

Municipality FE X X X 

Demographics  X X 

State by year FE   X 

Observations 482761     482640    482640    

Sample period is 2005-2016 and frequency of all variables is quarterly. Informality data corresponds 

to the individual level, homicides to the municipal level and weather data to the state level. Homicide 

rates are in per capita terms (per 10,000).  Dependent variable mean is 0.64. Standard errors in 

parenthesis. All specifications include sampling weights. Demographic controls include age, sex, 

years of education and income level. Errors are clustered at the municipal level. *Coefficient is 

significant at 10% level. **Coefficient is significant at 5% level. ***Coefficient is significant at 1% 

level. 
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4 Fighting Against Hunger: A Country-Wide Intervention and its 

Impact on Birth Outcomes  

4.1 Introduction 

Despite being a thriving emerging economy, Mexico experiences an unbalanced distribution of 

wealth. This affects more than 53 million people who live below the national poverty line, which 

accounts for 44% of the total population (CONEVAL, 2016a). While stunting and anemia have 

declined in Mexico, undernutrition is still prevalent in several regions (Kroker-Lobos et al., 

2014). Food poverty alone, defined as not having enough income to purchase the basic basket of 

goods, affects 24.6 million people in Mexico, equivalent to 20.1% of the total population 

(CONEVAL, 2016b).34 All at once, overweight and obesity have increased rapidly among all age 

groups (Kroker-Lobos et al., 2014). The joint problem of undernutrition and obesity has 

motivated social assistance programs that not only provide food but that aim to improve 

nutrition, especially among infants. In Mexico, out of 40 million children and adolescents living 

in Mexico, more than half of them lives in poverty (UNICEF, 2018). This is particularly 

worrying as having a disadvantaged socioeconomic status has negative health and human capital 

implications that carry through into adulthood (Currie, 2009).   

Most recently, in 2013, the Mexican government set in motion a large national 

intervention named Sin Hambre (SH) (DOFa, 2013). 35  SH was a broad targeting and 

coordination strategy involving a large set of programs from several ministries aiming to fight 

hunger (Alderman et al., 2017). This was the flagship assistance policy in Mexico from 2013 to 

2018 and it has been one of the most important large-scale food assistance policies implemented 

 
34 Food poverty as defined by CONEVAL refers to not having enough income to purchase the basic basket of goods. 
35 The program was also known as Cruzada Nacional contra el Hambre (CNCH) and can be literally translated as 

National Crusade Against Hunger. Sin Hambre can be translated as No Hunger. 
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in recent years in Mexico and Latin America. The scope of SH was ambitious as it involved 

more than 30 programs and represented average annual expenditures of around 1% of Mexico’s 

GDP from 2013 to 2017 (ASF, various years).36 This is a considerable sum compared to the 

7.5% spent in public social expenditures in the same period in Mexico (OCDE, 2019). 37 

Importantly, SH added new important programs that sought to improve nutrition intake of 

recipients: PAL-Sin Hambre (PAL-SH) and Comedores Comunitarios (CC) (ASF, various years; 

Alderman et al., 2017). PAL-SH constituted a switch from a former cash transfer into a transfer 

delivered utilizing a prepaid card which is restricted to designated grocery stores and specific 

food items, while CC consisted of the inception of several many feeding stations that provided 

meals at discounted prices. Internal evaluations by the government indicate that food and health 

access improved following SH, both for treated individuals and municipalities, CONEVAL 

(2015).38 These evaluations, however, ignore health related outcomes and do not account for 

time trends.39 Overall, there are no studies on the impact of SH on health-related outcomes at the 

national level. To my knowledge, there is only one related study that analyses the impact of CC 

at the local level. This work finds evidence that weight for height and high for weight measures 

for children under five years old improve in response to CC, one component of SH (Natalie et 

al., 2018). The study, however, is limited as it only focuses on CC, does it for a small sample 

from a single state, and does not account for time trends as there is no control group.  

 
36 Information obtained from reports issued by the Auditoria Superior de la Federacion (ASF) from 2013 to 2017. 

ASF is the national organization in charge of auditing governmental organizations in Mexico. 
37 Public social expenditure comprises cash benefits, direct in-kind provision of goods and services, and tax breaks 

with social purposes. It excludes social benefits not provided by general government. 
38 CONEVAL (2015) consists of two reports: the first refers to a panel survey conducted at the household on treated 

individuals while the second focuses on the aggregated results of five municipalities exposed to SH. 
39  Other studies available are mostly qualitative and focus on analyzing SH in terms of its design and 

implementation. Some examples of this research can be found in Caro et al. (2018), Martinez et al. (2016), or Gil et 

al. (2014). 
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Estimating the impact of SH in terms of birthweight seems a natural first stage 

assessment. Birthweight is known as the single most important indicator of infant health. Plus, 

infants are among the most vulnerable groups to hunger. Moreover, an established literature 

identifies that low weight at birth affects health during childhood and adulthood as well as 

human capital accumulation.40 The need to investigate the impact of SH on birthweight is further 

motivated by the fact that eliminating infant malnutrition was one of the main objectives of SH. 

This paper estimates the impact of mother’s exposure to SH on birth weight and the incidence of 

Low Birth Weight (LBW), which refers to births weighting less than 2,500 grams, of her child 

using vital statistics data on birth records. My identification strategy exploits the regional 

variation and timing of the municipality-by-municipality rollout of the nationwide program SH 

using a multiperiod difference-in-difference matching estimator as proposed by Imai, Kim, and 

Wang (2019).41 This methodology pertains to recent literature that emphasizes that regression 

models with time and unit fixed effects are typically biased under the parallel trend assumption 

when units are treated at different points in time (Imai & Kim, 2011; Borusyak and Jaravel, 

2017; Abraham and Sun, 2018; Athey and Imbens, 2018; Chaisemartin and D’Haultfoeuille, 

2018; Goodman-Bacon, 2018). In a nutshell, the proposed methodological framework first 

selects a set of matched control units for each treated unit that on average is similar to the treated 

unit in terms of its outcome and covariate histories. Then it applies a difference-in-difference 

estimator to each treated unit and its synthetic control unit to adjust for unobserved time trends. 

Finally, it averages of all such differences.  

 
40 Pregnant women are among the most vulnerable groups to malnutrition. Each year around 20 million babies are 

born underweight (Fanzo et al., 2018). 
41 The matching method is available via the open-source statistical software, PanelMatch: Matching Methods for 

Causal Inference with Time-Series Cross-Sectional Data, at https://github.com/insongkim/PanelMatch.  

https://github.com/insongkim/PanelMatch
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The methodology chosen is ideal to evaluate the impact of SH due to its particular 

staggered rollout.42  First, Imai, Kim, and Wang (2019) simplify the analysis of data where 

several units receive treatment multiple times and timing differs across units, which is the case of 

SH rollout.43 Similar methodologies merely allow to study cases where one single unit is treated,  

require a large number of units not receiving the treatment at all, or entail complex modeling for 

each time period (Abadie et al., 2010; Arkhangelsky et al., 2018; Xu, 2017; Imai and Tatkovic, 

2015). Second, this matching methodology allows estimating causal effects by synthetically 

constructing control units that suffice the parallel trend assumption. This is especially important 

in the context of SH as the order in which municipalities were treated was not randomly chosen 

and so estimates could be biased. As further explained in the next sections, the poorest 

municipalities were treated first followed by the next poorest. It is important to notice that poorer 

municipalities could derive larger benefits if health at the bottom of the income distribution 

exerts larger benefits (Deaton, 2003). Similarly, poorer municipalities could derive smaller 

benefits due to a lower income and availability of services. The design of the program thus 

makes its evaluation challenging. By comparing each treated unit to a control unit built to be 

similar to the treated observation in terms of outcome and covariate histories this methodology 

can provide a causal and unbiased estimate. Third, this method accounts for post-treatment bias 

since future treatments may be caused by past treatments, something present in SH due to its 

staggered design and for which other methodologies require complex modeling. Lastly, this 

methodology allows computing model-based standard errors for estimates in a non-

computationally intensive way. See Imai, Kim, and Wang (2019) for a detailed literature review 

on alternative methods and their limitations depending on the application context. In addition to 

 
42 The methodology is described in more detail in the next sections.  
43 This process can be considered a generalization of the synthetic control method proposed by Abadie et al. (2010) 

in which only one unit receives the treatment. 
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the multiperiod difference-in-difference methodology mentioned above I use various other linear 

regression identification strategies as robustness checks. 

My main results indicate that exposure to the program has a moderate impact on 

birthweight and LBW at best. Overall, I observe mixed evidence across specifications, with 

estimates leaning towards optimistic yet small effects. While some estimates are pessimistic, 

none of these are significant, nor economically or statistically. My preferred specification, using 

the propensity score weighting matching methodology, shows that SH reduces the fraction of 

LBW births by 0.1 percentage points. Although statistically insignificant, this estimate is 

economically relevant as it represents a decrease of 2.3% with respect to the mean value. In 

terms of birthweight in grams, under this same specification the impact of SH appears to be 

insignificant both economically and statistically as it represents a decrease of 0.4 grams which 

corresponds to a decrease of 0.01% with respect to the mean value. While the propensity score 

weighting methodology provides the best covariate balance, estimates from some refining 

methodologies are more optimistic. Overall, results indicate that SH reduces the fraction of LBW 

by at most 0.4 percentage points (6.7% with respect to the mean value) and increases birthweight 

in grams by at most 6 grams (0.19% with respect to the mean).  

Studying the effect of the program on individuals considered as income eligible to social 

programs indicate larger impacts for some but not all specifications. In particular, the effects 

corresponding to the propensity score weighting methodology do show a reduction of 0.6 

percentage points in the fraction of LBW (10.5% with respect to the mean value) and an increase 

of 9.2 grams in birthweight (0.29% with respect to the mean value). Estimating the impact of SH 

up to two years after the first year of exposure shows some evidence of longer-term benefits in 

line with contemporaneous impacts. Using alternative identification strategies that consist of 
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triple difference in differences approaches that compare eligible to non-eligible individuals in 

treated municipalities against untreated municipalities yield estimates in line with the main 

results, there are beneficial impacts, but these are not observed across all specifications. 

Estimates may be driven by compositional effects associated with fertility. In this regard, while 

estimates for fertility rates show mix evidence, they overall show a reduction in response to the 

program. Such results could be due to conditions in the treated municipalities that reduce fertility 

rates and incentivize investments per child (Rosenzweig et al., 2009). 

My work makes contributions in various regards. First, I am the first to evaluate the 

impact of SH in terms of birthweight and to provide an external evaluation of the program in 

terms of health outcomes. Second, I add to the literature on the impact of assistance policies on 

birthweight for large food assistance programs in developing contexts. Third, I provide one of 

the firsts practical applications of the matching method proposed by Imai, Kim and, Wang 

(2019) to a social program. 

4.2 Sin Hambre program 

SH was a broad coordination and targeting strategy launched in 2013 in Mexico that involved a 

large set of new and existing programs from several ministries. While SH involved several 

programs created in former administrations like Seguro Popular (SP), the universal health 

insurance policy, and Prospera (PDHO), the conditional on school attendance cash transfer, it 

also introduced new important programs that aimed to improve the nutrition intake of recipients 

like PAL-Sin Hambre (PAL-SH) and Comedores Comunitarios (CC) (ASF, various years; 

Alderman et al., 2017). PAL-SH constituted a switch from a former cash transfer into a transfer 

delivered by means of a prepaid card which is restricted to designated grocery stores and specific 

food items, while CC consisted of the inception of several many feeding stations providing meals 
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at discounted prices (DOF, 2013b; SEDESOL, 2013a). While the original SH act included 

around 70 programs, this number decreased to 30 programs in later years (ASF, various years). 

In practice, according to government reports of SH on its attainments in terms of coverage, the 

main programs were the following: CC, LICONSA, PAL, PAL-SH, PAR, PCS, PDHO, PESA, 

PETC, PROCAMPO and SP. The Appendix A1 provides a summary with the description of each 

of these programs.44 

SH is a food assistance policy that was rollout nationally in three stages, assigning a set 

of municipalities to each stage depending on the relative prevalence of poverty and food 

insecurity eventually covering all municipalities (DOF, 2013a). SH treated the most underserved 

municipalities in 2013, the next in 2014 and the rest in 2016. Following this staged strategy, 

PAL-SH and CC were introduced in selected municipalities while formerly existing programs 

like were mandated to prioritize their activities either increasing coverage or simply giving 

preference to eligible individuals from selected municipalities (DOF, 2013a). PAL-SH 

constitutes a switch from a former cash transfer into a transfer delivered by means of a prepaid 

card that is only usable in designated grocery stores and on selected food items (DOF, 2013b). 

CC consists of the inception of several many feeding stations providing meals for free or at 

subsidized prices to specific groups including pregnant women (SEDESOL, 2013a). Figure 2.1 

shows the geographical distribution of treatment across municipalities and years. Details on the 

selection process are provided in Appendix A2. 

 
44 Given that each administration rebrands and modifies previous programs the acronyms and names provided might 

differ across time. Unless otherwise indicated, I use the names and acronyms corresponding to the period from 2000 

to 2012 prior to the introduction of SH.) 
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SH was implemented in municipalities according to stages defined in federal rules.45 In 

January of 2013, the passage of an act announced a first stage covering 400 municipalities in 

2013 (SEDESOL, 2013b). In January of 2014, an amendment to the prior act announced a 

second stage covering 612 municipalities in 2014 and anticipated a third stage to occur in 2015 

covering the rest of the municipalities (SEDESOL, 2014). By the time the first stage was 

announced second, and third stages were unanticipated. In practice, according to rollout 

information obtained directly from SEDESOL, the third stage was also unanticipated to 

recipients as it was postponed and started until 2016.46 SH assigned municipalities to each stage 

depending on the relative prevalence of poverty and food insecurity essentially treating the most 

underserved set of municipalities in 2013, the next in 2014 and the rest in 2016. In the following 

paragraphs I describe the procedure followed by SEDESOL, the original documents detailing the 

procedure are referenced as SEDESOL (2013b) and SEDESOL (2014). 

To determine eligibility into each stage, municipalities were ranked in descending order, 

those most underserved on top, based on four indexes measuring  poverty and food insecurity 

based on information from the 2010 Census and the 2010 MCS-ENIGH, a module from the 

national income and expenditures survey.47 The indexes used to rank municipalities were the 

following: the proportion of people under extreme poverty (P%), absolute number of people 

under extreme poverty (P#), proportion of people under both extreme poverty and food 

insecurity (PI%), and absolute number of people under both extreme poverty and food insecurity 

(PI#). These rankings were then used to establish thresholds that separated a stage from each 

 
45 Social assistance programs in Mexico are both funded and coordinated federally. This means that it is not up to 

the authority of local areas, in this case municipalities, when to start. 
46 The fact that the third stage started in 2016 comes from the rollout information obtained via request to SEDESOL.  
47 MCS-ENIGH refers to the Socioeconomic Conditions Module (MCS- Módulo de Condiciones Socioeconómicas) 

from the National Household Expenditure and Income Survey (ENIGH-Encuesta Nacional de Ingresos y Gastos en 

los Hogares). 
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other in order to roughly include 50% of the objective population during the first stage and an 

additional 25% by the second stage. The objective population amounted to 7.4 million people 

across the country, roughly 5% of the total population, SEDESOL (2013b). The corresponding 

assignment resulted in a first stage assisting 400 municipalities starting in 2013, and a second 

stage assisting the first stage plus 612 additional municipalities starting in 2014, and a third stage 

assisting former and remaining municipalities starting in 2016.48 While most municipalities were 

selected based on these rankings several were chosen using more discrete rules.49 According 

government reports, from 2013 to the first months of 2015, PAL-SH and CC, the main and new 

components, incorporated approximately 731 thousand families and 627 thousand beneficiaries, 

respectively, (PRESIDENCIA, 2015). Considering an average family of four individuals, which 

roughly corresponds to the household population divided by the total households, only 

considering PAL-SH a conservative estimate of the number of individuals treated lies around 3 

million, roughly 2.5% of the total population.50 A lower bound considering that individuals can 

enroll into multiple programs at once, and formerly created programs also enrolled more people 

as part of SH strategy. For instance, during the implementation of SH, LICONSA added 2.6 

million beneficiaries while PDHO added 728 thousand families (PRESIDENCIA, 2015). 

4.3 “Sin Hambre” and birthweight 

Birthweight is known to be strongly associated with socio-economic factors (De Bernabé et al., 

2004; Kramer, 1987; Cnattingius, 2004). At large, SH programs as described in the previous 

section consist of monetary transfers, in-kind transfers, discount prices, training plans, and health 

services. These programs are expected to affect birthweight by promoting nutrition intake. 

 
48 The number of municipalities in 2013, when the selection process was made, was 2,456. As of 2018, the number 

of municipalities is 2,458. 
49 There were 128 municipalities chosen based on such other considerations, 19 for the first and 119 for second 

stage. 
50 Formerly created programs, also increased the number of beneficiaries,  
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Similarly, other programs may have an indirect impact on birthweight as they provide health 

services and improve socioeconomic conditions of women in reproductive age in general.51 

Diverse components therefore may impact birth related outcomes due to exposure during and 

prior to pregnancy.  

PAL-SH and CC, the new components introduced by SH, are particularly important since 

birthweight is widely known to be positively related to malnutrition during and prior to 

pregnancy (Verma et al., 2019). PAL-SH, which is a switch from its former version PAL, 

essentially rotates the budget set away from non-selected food items and expands it towards 

these items. CC, on the other hand, expands the budget set towards the food items included in 

meals provided. The extent to which these components drive results will depend on the number 

of recipients as well as other considerations. First, if households affected by PAL-SH and CC are 

majorly extramarginal, effects arising from PAL-SH and CC on this groups would be larger.52 

This is something likely as eligibility to PAL-SH and CC requires satisfying means tests that 

target low income households. 53  Second, PAL-SH and CC can potentially reduce maternal 

obesity and its negative consequences on newborns, including reducing larger than usual birth 

weight occurrences potentially having a negative effect on birthweight.54 Although this second 

point is less likely, food assistance programs in developed settings have shown that buying food 

unrestrainedly leads to obesity in general (DeBono et al., 2012, Golan et al., 2008).  

 
51 For a detailed review on the medical literature about the determinants of birth weight and how transfers can affect 

it see Almond (2011). 
52 Households can be regarded as inframarginal or extramarginal depending on whether the in-kind food assistance 

exceed regular food expenditures. Households are inframarginal if food expenditures are above the allotment 

provided, in which case program functions as an unrestricted transfer. Households are extramarginal if the allotment 

is below regular food expenditures. 
53 Means tests prevents tagging as eligibility depends on several characteristics hard to manipulate together. 
54 Evidence shows that exposure to maternal obesity is a strong predictor for large for gestational age status (LGA), 

gestational diabetes, among other congenital anomalies (Boney et al., 2005; Leddy et al., 2008, Blomberg et al., 

2010). Large for gestational age (LGA) is an indication of weight above the usual amount for the number of weeks 

of pregnancy that lies above the 90th percentile for that gestational age. 
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4.4 Data 

My main data set refers to the effective rollout by year and municipality of SH. This was 

obtained via direct request from SEDESOL.55 The data obtained provides different enrollment 

measures for all programs considered by SEDESOL to be associated with the strategy of SH. A 

municipality is treated if it has access to any of the programs part of SH. My primary data source 

for the outcome variables consists of vital statistics information on all birth records, a nationwide 

publicly available dataset administered by the Ministry of Health in Mexico. With around 2 

million births per year, vital statistics observations allow to precisely estimate effects from SH. 

My main sample consists of women ages 18 to 44, from calendar years 2008 to 2017. I select 

2008 as this is the first year publicly available. The structure of available variables is overall 

constant for the entire period. In addition, to explore issues related to fertility I use information 

on the number of births and infant deaths, both obtained from the National Institute of Statistics 

and Geography (Instituto Nacional de Estadística y Geografía-INEGI). Similarly, I focus on 

births from women in reproductive age from 2008 to 2017. 

  Because municipalities adopted SH at different stages, I compare SH treatment by virtue 

of municipality and date of birth. Using information on birth date I define treatment based on SH 

availability, with treatment depending on the timing of the outcome variable relative to the 

month the program was launched in the corresponding municipality. My main specification 

assigns SH a value of one if the program is available three months or one quarter prior to birth, a 

proxy of the beginning of the third trimester. This choice is based on related literate that points 

out that the third trimester of birth is the most important in determining weight (Almond et al., 

 
55 SEDESOL stands for Secretaria de Desarrollo Social and can be translated as Social Development Ministry. 
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2011).56 Alternatively, I assign treatment if the program is available two, three, and four quarters 

based on evidence that shows that birth weight is associated with antenatal maternal nutrition 

(Verma et al., 2016).  To control for the possibility that mothers travel to give birth in a different 

location, treatment is assigned using the mother’s municipality of residence and not the place of 

birth of the newborn.57 Alternatively I assign treatment using the mother’s municipality of birth. 

Regarding the availability of treatment, as explained above, the rollout of SH occurred in 

three stages. The first stage was launched on April of 2013 and the second on March of 2014 

according to official and popular press announcements.58 Although the third stage was supposed 

to be launched on 2015 in practice, it started in 2016.59 Different from the first and second 

stages, there is no official information on the actual start of this last stage. In my main 

specifications I assume the third stage started in March of 2016 in line with the previous stage.60 

Given that rollout information is available only at municipality by year level I assume a timing of 

adoption in line with the launch dates for each state.  

Since no municipality can start earlier than the launch date, early adoption should not be 

a concern, however, delays could bias estimates. Such delays could occur due to federal funding 

insufficiencies or implementation issues at the municipal level. Assigning treatment according to 

the availability of the program as of one, two, three, and four months prior to birth can allow to 

identify potential systematic delays at the national level. If the program was in practice delayed 

for a quarter assigning treatment as of one quarter prior to birth will wrongly consider people that 

 
56 This is so because it is during this period when most weight is gained by the baby. 
57 My results could be biased downwards in absolute terms if unhealthier mothers seeking to obtain the subsidy 

move and deliver in treated municipalities. Similarly, assuming the program is effective, this would happen too if 

mothers living in treated municipalities during pregnancy deliver in untreated municipalities in search for better 

hospital services. 
58 Anecdotal evidence in newspapers suggests the time of adoption for the first and second stages coincides with the 

official launch date. No anecdotal information confirms or suggests a solid launch date for the third stage. 
59 Documentation associated with data obtained via request from SEDESOL mentions this explicitly. 
60 I test alternative scenarios for the start of the third stage. 
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are untreated as treated. In this case assigning treatment as two quarters prior to birth will be 

more accurate in identifying treatment, two quarters will be a proxy for one quarter given the 

delay. On the other hand, if the program is not delayed assigning treatment as of two quarters 

prior to birth will wrongly consider people that are treated in the first months of operation of the 

program as untreated. I use different assignments of treatment to identify better the actual timing 

of the program. In addition, to control for potential biases related to differences in the actual start 

of the program, I include the following pre-treatment variables interacted with a time trend: 

fraction of urban area, fraction less than 5 years of age, fraction 65 years or over, fraction with 

income less than the poverty line, the percent of land in the county that is farmland, and 

municipal population.61  

4.5 Methodology: Multiperiod DiD for causal inference 

Recent literature has emphasized that regression models with time and unit fixed effects are 

typically biased under the parallel trend assumption where units are treated at different points in 

time (Imai & Kim, 2011; Borusyak and Jaravel, 2017; Abraham and Sun, 2018; Athey and 

Imbens, 2018; Chaisemartin and D’Haultfoeuille, 2018; Goodman-Bacon, 2018). Imai, Kim and 

Wang (2019) propose a multiperiod difference-in-differences (DiD) methodology that eliminates 

this bias and consistently estimates the average treatment effect for the treated (ATT). In the 

midst of a fast growing literature on causal inference methods for panel data, the method 

proposed by Imai, Kim and Wang (2019) is especially appealing as it applies to cases where 

different units are treated at different points in time, where units can go back and forth between 

treatment and control conditions, and without the need to assume monotonicity.62 This method 

 
61 Research on Food Stamps in the US documents that counties with a greater fraction of urban, black, or low-

income population implemented the program in an earlier date and that counties with more land used in farming 

implement later (Hoynes et al., 2007; Almond et al., 2011). 
62 Monotonicity in this context refers to the case where treatment status increases stochastically within a group. 
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connects two-way fixed effects models, i.e. unit and time fixed effects models, to matching 

methods, relaxing linearity assumptions.  

The identification strategy of this methodology, which is entirely nonparametric, assumes 

that the average potential outcomes under the control condition have a parallel time trend for the 

treatment and control groups without relying on a strict exogeneity assumption. This 

methodology consists of a weighted average of the two-time period two-group difference in 

difference estimators applied to each unit that switches from the control to the treatment 

condition.63 The multi-period DID method employs a matching framework to assure the parallel 

trend assumption holds, essentially generating counterfactual outcomes for each treated 

observation in a given time period using observed outcomes from different time periods of the 

same unit. 64  Importantly, while a traditional DiD estimator requires the absence of causal 

relationship between past outcomes and current treatment, the multi-period DiD accounts for 

such dynamic causal relationships. I present their formulation for the multiperiod difference-in-

difference estimator that accounts for both unit and time fixed effects.65 This refers to the case 

with no time varying confounders, balanced panel dataset and matching based on the period prior 

to treatment. 66  The methodology can include time varying confounders, unbalanced panel 

datasets and matches based on further periods. 

The methodology proposed by Imai, Kim and Wang (2019) evaluates the effect of a 

policy in 𝑡 on both contemporaneous and future outcomes. For each unit 𝑖 = 1,2, … ,𝑁 at time 

𝑡 = 1,2, … , 𝑇, a binary treatment indicator 𝑋𝑖𝑡, taking the value of 1 if treated and 0 otherwise, as 

 
63  Imai & Kim (2019) alternatively name this methodology as a Weighted Fixed Effects (WFE) due to the 

equivalence between the multi-period DID and WFE. 
64 This methodology extends to the case of balanced and unbalanced panel. 
65 A previous paper by Imai & Kim (2019) presented a similar model that accounts for unit fixed effects only. 
66  This formulation, its equivalence to the weighted two-way fixed effects estimator and the standard errors 

calculation can be found in Imai & Kim (2019) and Imai, Kim and Wang (2019). 
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well as a stream of outcome variables 𝑌𝑖,𝑡, … , 𝑌𝑖,𝑡+𝐹 is observed.67 The number of leads, defined 

by 𝐹 , represent the outcome of interest 𝐹  time periods after the administration of treatment, 

where 𝐹 = 0 represents the contemporaneous effect and 𝐹 = 1 the effect a year after. For each 

treated observation (𝑖, 𝑡)  with 𝑋𝑖𝑡 = 1  and 𝑋𝑖,𝑡−1 = 0 , i.e. a treated observation should be 

untreated in the preceding period, the methodology selects control observations with an identical 

treatment history up to a certain number of periods, 𝐿. Since unit must be observed for 𝐹 time 

periods after the treatment is administered and 𝐿  time periods before the treatment is 

administered, different values of 𝐹 will potentially imply different sets of treated and control 

units.  

Once this matching set is determined for each treated observation, this set is refined to 

give more weight to those units that are most similar to each treated unit using matching and 

weighting techniques based on covariates and previous outcomes. The matching methods used, 

the Mahalanobis distance and propensity scores, basically select a subset including up to a 

specific number of most similar control units to the corresponding treatment unit. The weighting 

method used, the inverse propensity score, essentially generalizes matching methods by 

assigning weights giving more weight to those control units that are most similar to the treatment 

unit instead of giving an equal weight. Based on averages over this refined set, synthetic 

counterfactual outcomes are calculated. The effect of a policy is then calculated using a two by 

two difference-in-difference estimator to each treated unit and its synthetic control unit to adjust 

for unobserved time trends. Finally, it averages of all such differences. The calculated Average 

Treatment effect on the Treated (ATT) only considers treated units that have a non-empty 

matching set, i.e. units that change from the control to treatment condition and have at least one 

 
67 Where the outcome is assumed to be realized after the administration of the treatment. 
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counterfactual unit that is untreated while this transition happens. This is important to consider 

when interpreting results as not all observations are part of the calculation. Appendix A3 

explains how the matching sets are constructed and how the ATT is calculated. The reader is 

referred to Imai & Kim (2019) and Imai, Kim and Wang (2019) for a complete description of the 

methodology. 

4.6 Empirical Analysis 

As explained in the data section, treatment at the individual level depends on availability at the 

month of birth. Since treatment is at the municipal level, I collapse data to municipality-year 

cells with the means from 2008 to 2017. As detailed above the treatment variable must be a 

binary variable taking the value of 1 or 0, therefore when collapsing individual level variables, I 

round up the treatment variable which would otherwise be a fraction, to be either 0 or 1.68 

Overall, the distribution of treatment shows that municipalities treated remain treated. The only 

exceptions occur for three municipalities that are untreated throughout the entire period and two 

municipalities that are treated until the second to last year and then become untreated in the last 

year.  

Visualizing treatment variation across municipalities and years for SH is useful to 

understand better how the comparisons between treated and control observations is made. In line 

with Imai and Kim (2019), Figure 2.2 shows the distribution of treatment across years and 

municipalities, where blue and gray rectangles represent treated and control observations 

respectively. As it can be observed less than a fifth of all municipalities gets treated starting 

2013, around a quarter gets treated starting 2014, and the remaining starts to be treated in 2016. 

 
68 This fraction rounds up to 0 or 1 in a municipality-year cell depending on the fraction of births treated. This 

depends on distribution of births across months and the month the program is launched. 
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Constructing the matched set for each treated observation based on treatment history 

requires to define the number of lags to adjust for, 𝐿. I condition this period to be five years, i.e. 

L=5. Five years is the longest period preceding treatment for first stage municipalities. Given the 

particular staggered design of SH, where virtually every unit remains treated, shorter periods of 

time should yield essentially the same result. Figure 2.3 illustrates the distribution of matched 

sizes of control units that share the same five years treatment history as a treated observation.69  

Figure 2.3 indicates that 400 municipalities from the first stage can potentially be 

matched to any of the remaining 2,057 municipalities (rightmost bar), 612 municipalities from 

the second stage can be matched to any of the remaining 1,445 municipalities not part of the first 

and second stage (middle bar), and that the remaining 1,442 municipalities assisted during the 

third stage can be matched to the 3 municipalities never treated. This three units, being untreated, 

have themselves empty matched sets. 

As explained in the previous section to estimate the ATT requires to define other 

matching criteria. Besides the length of the treatment history, 𝐿, which is set to a five years 

period as explained above, one needs to define the number of leads to be estimated, 𝐹. My main 

sample and results refer to the treatment effect on the contemporaneous period, 𝐹 = 0 . In 

addition, I consider up to two time periods after treatment implementation, 𝐹 = 2.70  

To satisfy the parallel trend assumption requires to adjust for confounders such as past 

outcomes and covariates. The main outcomes of interest to be analyzed are birth weight and low 

birthweight. Time-varying covariates include age, years of education, marriage status, insurance 

 
69 This distribution is virtually the same for shorter periods due to the staggered adoption of SH, however, periods of 

six and seven years would exclude municipalities from the first stage and second stage respectively. 
70 This is the maximum number of leads possible considering the first time the program is implemented is in 2013 

and municipalities are observed from 2008 to 2017. As mentioned above, estimates are sensitive to the number of 

leads.  
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availability, per capita public investments, and per capita social assistance transfers.71 Other 

covariates include 2010 municipality variables which are log of population, percentage of land in 

farming, percentage of population five years or younger, percentage of population 65 years or 

older, unemployment rate, percentage of income eligible  population, and average income per 

capita. To assess whether there are extensive effects associated with the program, which would 

arise if SH also increased the number of births or decreased the number of fetal deaths. If SH 

increased the rate of pregnancies that lead to delivery, even if the program had beneficial impacts 

on birth outcomes, inframarginal births that would not otherwise occur could bias estimates in 

the opposite direction. I also present results on other birth related outcomes including very low 

birthweight, gestational age, height and gender. 

An advantage of the methodology proposed by Imai, Kim and Wang (2019) is its 

transparency in how comparisons are made between treated and control observations. My results 

consider treated units as those municipalities from the first and second stage. Matching sets for 

the first stage originate in second and third stage municipalities and matching sets for the second 

stage originate in third stage municipalities. Due to the staggered implementation of the program, 

third stage municipalities essentially do not have any control units and so are not considered as 

treated units.72  

Under the main specification, without controlling for any covariates, using the 

methodology proposed is equivalent to estimate the following two-way fixed effect model but 

assigning particular weights during the estimation process:  

 
71 Social assistance transfers are included to control for other expansions in social programs that occurred during this 

time period. 
72  My main sample excludes three municipalities that remain untreated throughout all the period of analysis. 

Including these three municipalities complicates interpreting results as matching methods do not result in balanced 

covariates. This occurs because including these three municipalities provides the exact same matching set of three 

municipalities for all third stage municipalities and these account for more than half of all municipalities. 

Researchers using this methodology should be aware of these considerations when interpreting their own results. 
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𝑌𝑚𝑡 = 𝛾0 + 𝛾1𝑆𝐻𝑚𝑡 + 𝜆𝑡 + 𝜆𝑚 + 𝜀𝑚𝑡, (1) 

where 𝑌𝑚𝑡 is the outcome variable of interest in municipality 𝑚 at time 𝑡, 𝑆𝐻𝑚𝑡 is an indicator 

variable taking the value of 1 if a municipality is exposed to the program and 0 otherwise, 𝜆𝑡 

refers to year fixed effects, 𝜆𝑚 refers to municipality fixed effects, and 𝜀𝑚𝑡 refers to the error 

term. Without making using of the methodology proposed, estimating 𝛾1would require finding 

the value of 𝛾1̂𝐹𝐸 that solves the following equation: 

𝛾1̂𝐹𝐸 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ ∑  {(𝑌𝑚𝑡 − 𝑌𝑚
̅̅ ̅̅ − 𝑌𝑡

̅̅ ̅̅ + 𝑌 )̅̅ ̅̅ ̅𝑇
𝑡=1

𝑁
𝑚=1  

−𝛾1̂𝐹𝐸(𝑆𝐻𝑚𝑡 − 𝑆𝐻𝑚
̅̅ ̅̅ ̅̅ − 𝑆𝐻𝑡

̅̅ ̅̅ ̅̅ + 𝑆𝐻 )}̅̅ ̅̅ ̅̅ ̅̅ ̅2, 

(2) 

where the bar on top of the variables refer to means within municipalities, within years, and 

across all observations. For the outcome variable, 𝑌𝑚𝑡, 𝑌𝑚
̅̅ ̅̅  is the within municipalities means, 

𝑌𝑡
̅̅ ̅̅  the within years mean, and 𝑌̅̅̅̅  the overall mean. The methodology proposed by Imai, Kim, 

and Wang (2019) gives instead a different weight to each observation:  

𝛾1̂𝑊𝐹𝐸 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ ∑ 𝑊𝑚𝑡{(𝑌𝑚𝑡 − 𝑌𝑚∗̅̅̅̅ − 𝑌𝑡
∗̅̅ ̅ + 𝑌∗)̅̅ ̅̅̅𝑇

𝑡=1
𝑁
𝑚=1  

−𝛾1̂𝑊𝐹𝐸(𝑆𝐻𝑚𝑡 − 𝑆𝐻𝑚
∗̅̅ ̅̅ ̅̅ − 𝑆𝐻𝑡

∗̅̅ ̅̅ ̅ + 𝑆𝐻∗)}̅̅ ̅̅ ̅̅ ̅̅ 2, 

(3) 

where 𝑊𝑚𝑡 refers to weights and asterisks indicate weighted averages using 𝑊𝑚𝑡. Intuitively, what 

these weights do is giving more weight to observations having a comparison set to build a 

synthetic control unit and less weight to those that do not. The reader is referred to Imai, Kim 

and Wang (2019) for a detail explanation on how these weights are calculated.  
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4.7 Empirical results 

Figure 4.4 shows the covariate balance of different matching methods over the pre-treatment 

time period. The vertical axis shows the standardized mean covariate balance for SH treatment. 

The first column shows the results from the methodology before matching based on the treatment 

history. Using the nomenclature of Imai, Kim and Wang (2019), “Before Refinement” refers to 

the case where match is done based on treatment history only, without including covariates and 

outcome histories.73 This column shows the results from matching based on the treatment history 

during the five-year period prior to administration.74 The second, third, and fourth columns show 

the results from refining the matching sets based on the lagged outcomes and covariates using 

the different matching procedures mentioned in the methodology section. As noticed before, 

while the original sample includes three municipalities that are untreated throughout, I exclude 

these from the main results.75  

Table 4.1 shows the average contemporaneous effect of SH on the fraction of births with 

Low Birth Weight (weight<2,500 grams) and the average Birth Weight (grams) using the 

Propensity Score Weighting methodology.76 The Propensity Score Weighting methodology is 

my preferred specification as it provides the best balance in terms of covariate and outcome 

histories. All results are estimated considering a pretreatment history period of five years.77 

 
73 The “Before Matching” case does not refer to an unweighted two-way fixed effects specification. Results from 

linear regressions specifications that correspond to the unweighted two-way fixed effects case are provided below.  
74 Given the staggered implementation of SH, where municipalities remain treated after the first implementation, 

matching based on one and up to five periods of treatment history yield the same results. 
75 Including these municipalities slightly affect results without changing conclusions. Including these municipalities, 

however, make interpreting results less straight forward because these three municipalities provide the exact same 

matching set of exactly three municipalities for all third stage municipalities. Including these municipalities lead to 

covariate balances displaying large differences between the treatment and control groups. I similarly exclude two 

municipalities that go back to the control condition in 2017 after being treated in 2016. 
76 The main results use the mother’s place of residence to assign treatment. Using the mother’s place of birth yields 

similar results. 
77 Due to the staggered implementation of CNCH, alternatively including less than five lags yields essentially the 

same results. 
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Standard errors are based on 1,000 block bootstrap replicates. I assign treatment as of one, two, 

three, or four quarters prior to birth.78  Each column shows the results associated with each 

treatment assignment. Table 4.1 indicates that SH results in a reduction of at most 0.1 percentage 

point, 2.3% with respect of the mean value, in the fraction of births with LBW, and an increase 

in terms of birthweight in grams of at most 1 gram, 0.03% with respect to the mean value. 

Overall, most benefits are observed from exposure as of the start of the second trimester, 

something that could be explained by an effective delay in the rollout of the program of about 

three months. Results from other refining methods associated with the Multiperiod Difference-

in-Difference Methodology are more optimistic about the program both in terms of LBW and 

weight in grams. In terms of LBW, other refinement methods show a reduction of at most 0.4 

percentage points, 6.7% with respect to the mean value. Regarding birthweight, other less 

rigorous refinement methods indicate an increase in birthweight of at most 6 grams, 0.19% with 

respect to the mean value. While most specifications point that the program was beneficial, there 

are some specifications that indicate otherwise. Table A4.4.1 in Appendix A4.4 shows the results 

from all refining methods used. While several estimates are statistically insignificant, these are 

relevant when compared to the mean value and most of them point into moderate benefits from 

the program.  

To investigate if my results could be driven by compositional effects, I estimate the 

impact on SH on fertility rates (per 10,000) and fetal death rates (per 10,000). Overall, as shown 

in Table 4.2, while results are mixed, I find that overall both fertility rates and fetal death rates 

seem to decrease slightly. These effects on fertility could be the result of individuals choosing to 

 
78 Treatment is assigned as of at least one quarter prior to birth as this is a proxy for beginning of the 3rd trimester, 

which is when the newborn gains most of its weight. Treatment as of one quarter prior to birth will regard some 

untreated units as treated if the program was effectively implemented later than the official date. Similarly, treatment 

as of two quarters prior to birth will regard some treated units as untreated. 
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lower the quantity of children to promote quality in response to the program. The fact that fetal 

death rates decreased supports the claim that SH had a positive impact. Figure 4.5 shows the 

covariate balance for both fertility rates and fetal death rates. 

Studying the effect of the program in the longer term shows similar results. Figure 4.6 

and Figure 4.7 show the average effects for the three-year period after SH is implemented using 

also a pretreatment history period of five years for different matching methodologies.79 Using 

one of the Imai, Kim and Wang (2019) methodology attributes, matching control units based on 

the future treatment sequence, I limit the comparison to that of treated units versus not treated 

units over this three year period. Under this setup, treated municipalities correspond to first stage 

municipalities, i.e. those treated from 2013 on, while control units are drawn from third state 

municipalities, i.e. those that are treated from 2016 on. Figure 4.6 indicates an overall consistent 

reduction in the fraction of births with LBW and a slight increase in average birth weight in 

grams.80 Figure 4.7 indicates an overall slight reduction in both fertility and fetal mortality rates. 

The multiperiod matching methodology assigns control units based on the composition of 

each municipality in terms of different demographic indicators including municipality variables 

as well as demographic characteristics. In turn, although not every woman is eligible, we could 

expect matched municipalities to have similar compositions in terms of income eligible women 

since the percentage of income eligible population at the municipal level is included in the list of 

covariates over which the matching procedure is done. Yet, in order to ensure that comparisons 

are made between similarly eligible individuals I restrict the sample to income eligible women. 

In order to do this, I replicate the methodology used by the Mexican government to determine 

 
79 𝐿 = 5 and 𝐹 = 2. 
80 Notice that third stage municipalities are not considered as treated units because they do not have control units 

available to construct matching sets. Second stage municipalities are not part of the control group because these are 

treated from 2014 on. 
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eligibility at the household level. Using this methodology, income eligible women represent 5% 

of the total population. This is consistent with proportion of people originally targeted by SH, 

5%, and the proportion of people treated, at least 2.5% considering PAL-SH alone during the 

first two years. The methodology is detailed in Appendix A4.6. Table 4.3 shows the results from 

a sample that only includes women that are estimated to be income eligible using the propensity 

score weighting. Table 4.3 indicates that SH was especially beneficial for income eligible 

women. Results, however, do not seem to be consistent across all matching methodologies as it 

can be observed in Table A4.6.2 in Appendix A4.6.  

Table 4.4 and 4.5 show the results from using linear regression models. These results 

correspond to the unweighted two-way fixed effects version of Imai, Kim, and Wang (2019).81 

Without controlling for covariates there seems to be a reduction ranging from 0.02 to 0.3 

percentage points in the fraction of births born with LBW, and an increase in average birth 

weight ranging from 3.28 to 5.17 grams. Controlling for covariates, however, reduces the size 

and significance of estimates. Figure A4.5.1 in Appendix A4.5 shows the estimates from event 

studies on the municipality-year means sample. These estimates point out to the existence of 

pretends that further justify the need of testing alternative approaches that can help sufficing the 

parallel-trend assumption. In the end, however, estimates from unweighted linear regressions are 

not entirely different from those coming from the matching procedure. 

Comparisons using municipality-year means may fail to capture the impact of the 

program at the individual level. Figure A4.5.2, shows the event study results using the sample 

with individual observations. Although it is more difficult to rule out the existence of pretends, 

SH shows a detrimental impact in terms of both birthweight and LBW incidence. One particular 

 
81 As mentioned above, the “Before Matching” case, using the nomenclature of Imai, Kim and Wang (2019), 

corresponds refers to the case where match is not done on the treatment history. The “Before Matching” case does 

not refer to an unweighted two-way fixed effects specification. 
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concern to evaluate SH at the individual level is that, not every individual in the municipality 

receives the program. To take this into account, I use the measure of income eligibility 

previously described to implement a triple difference in difference where I compare the change 

from income eligible individuals to that of income ineligible individuals in response to treatment. 

The details on how this income eligibility index is calculated are shown in Appendix A4.6. If the 

program was effective, I would expect income eligible individuals to do better in treated 

locations after the program is launched. Table A4.6.3 shows the results from linear regressions 

interacting the treatment variable with a household level measure of income eligibility 

controlling for year fixed effects, municipality fixed effects, and covariates. Results from Table 

A4.6.3 indicate that income eligible individuals do not necessarily do better as a result of the 

program. Table A4.6.4 controls instead for year fixed effects, state fixed effects, and region by 

year fixed effects, allowing for more variation to be captured by the estimates. Results from this 

specification indicate that the program was beneficial for income eligible individuals. Similar 

results to those in Table A4.6.4 hold when discarding location fixed effects and only including 

year fixed effects.  

As observed from the estimates above, there could be potential biases associated with 

fertility due to better nutrition prior to pregnancy. Better nutrition conditions could either 

promote inframarginal births or could deter pregnancies as parents decide to invest more in fewer 

babies. To tackle this problem, I difference off treatment by time of exposure for women that 

were already pregnant at the time of introduction. The main sample to be analyzed consists of 

births occurring since the first month the program was launched in the first stage in April of 2013 

until 40 weeks ahead, the typical duration of pregnancy. A full description on this specification is 

provided in Appendix A4.7. Results from Table A4.7.1 indicate that being exposed for a longer 
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period, since the first and second trimester of birth as opposed to the third trimester yield benefits 

in terms of birthweight and LBW. It seems, however, that income eligible individuals are not 

doing better with more exposure as it can be observed from differencing off income eligibility. 

Conclusions hold even while including state fixed effects as opposed to municipality fixed 

effects. 

4.8 Discussion 

Pregnant women are among the most vulnerable groups to malnutrition. Worldwide, each year 

20 million babies are born underweight, the main cause being uterine malnutrition (Fanzo et al., 

2018).82 An established literature identifies that having a low birthweight at birth affects health 

during childhood and adulthood as well as human capital accumulation (Behrman et al., 2004). 

This evidence suggests that investing in improving nutrition of pregnant women can have large 

social benefits. In 2013, the Mexican government set in motion Sin Hambre (SH), one of the 

most important large-scale food assistance policies implemented in recent years in Mexico and 

Latin America representing an average annual expenditure of around 1% of Mexico’s GDP from 

2013 to 2017. This paper estimates the overall impact of SH on birth weight using a multiperiod 

difference-in-difference matching method as proposed by Imai, Kim and Wang (2019). The 

results from this paper have a causal interpretation as these satisfy the parallel trend assumption 

according to balance checking diagnostics. 

My results indicate that exposure to the program has at best a moderate impact on 

birthweight and LBW. Overall, I observe mixed evidence across specifications, with estimates 

leaning towards optimistic yet small effects. Nevertheless, while some estimates are pessimistic, 

none of these are significant, nor economically or statistically. I argue this inconsistency may be 

 
82 Uterine malnutrition is a condition that has been associated with socio-economic factors, maternal lifestyles and 

medical risks (De Bernabé et al., 2004; Kramer, 1987; Cnattingius, 2004).  
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related to the program design which makes evaluating it challenging. Since the program 

prioritizes on poor municipalities and poor individuals, control units could be mechanically 

outperforming treated units if the impact was not large enough. Moderate benefits found, some 

of which are statistically and economically significant, are meaningful considering that even 

minor increases in birth weight positively affect adult health status, educational attainment, and 

earnings (Behrman et al., 2004). 

My preferred specification, using the propensity score weighting matching methodology, 

shows that SH reduces the fraction of LBW births by 0.1 percentage points (2.3% with respect to 

the mean value). In terms of birthweight in grams, under this same specification the impact of 

SH represents a decrease of 0.4 grams (0.01% with respect to the mean value). Studying the 

effect of the program on individuals considered as income eligible to social programs indicate 

larger impacts, although not across all specifications. In particular, the effects corresponding to 

the propensity score weighting methodology do show a reduction of 0.6 percentage points in the 

fraction of LBW (10.5% with respect to the mean value) and an increase of 9.2 grams in 

birthweight (0.29% with respect to the mean value). Some of the estimates are in line with 

similar assistance programs. For instance, “Chile Crece Contigo”, an early-life health and social 

welfare program implemented in Chile in 2007, has significant effects on birth weight of 

approximately 10 grams, Clarke et al. (2018). Similarly, these results appear to be comparable to 

the results from the food stamps program in the US which range from 2 to 5 grams for the 

African American subsample, Almond et al. (2011). 
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Figures 

Figure74.1. Distribution of Treatment Across Municipalities and Years 

 

Note: Author’s tabulations of SH implementation by municipality from 2012 to 2017 using information obtained via 

direct request from SEDESOL. The light areas represent untreated municipalities while dark areas represent treated 

municipalities. 
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Figure84.2. Distribution of Treatment across municipalities and years for SH 

 
Note: Figure 4.2 shows the distribution of treatment for SH based on a random sample of 100 municipalities. Blue 

and gray rectangles represent treatment and control municipality-year observations respectively.  
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Figure94.3. Frequency Distribution of the Number of Matched Control Units 

 

 
 
Note: Figure 4.3 shows the distribution of match sizes of control units that share the same treatment history as a 

treated observation for five years prior to the treatment year. The horizontal axis refers to different potential sizes for 

matching sets while the vertical axis refers to the frequency of sizes. 
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Figure104.4. Covariate Balance Under Different Matching Methods, Birthweight and Low Birth 

Weight 

 

Notes: Each plot shows the standardized mean difference (vertical axis) over the pre-treatment time period of five 

years (horizontal axis). The estimation sample includes means by municipality for years including 2008-2017 where 

municipalities with cells including less than 25 observations are dropped. The treatment is assigned as of 3 months 

prior to birth (proxy for beginning of the 3rd trimester). The first column, Before Matching, refers to the balance 

before matching on the five-year treatment history. The second column, Before Refinement, refers to the balance 

after matching on the five-year treatment history but before any refinement method. The remaining columns show 

the covariate balance after applying different refinement methods. Lines represent the balance of the lagged outcome 

variables and covariates over the pre-treatment period. 
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Figure114.5. Covariate Balance Under Different Matching Methods, Fertility and Fetal Deaths  

 

 
Notes: Each plot shows the standardized mean difference (vertical axis) over the pre-treatment time period of five 

years (horizontal axis). The estimation sample includes means by municipality for years including 2008-2017 where 

municipalities with cells including less than 25 observations are dropped. The treatment is assigned as of 3 months 

prior to birth (proxy for beginning of the 3rd trimester). The first column, Before Matching, refers to the balance 

before matching on the five-year treatment history. The second column, Before Refinement, refers to the balance 

after matching on the five-year treatment history but before any refinement method. The remaining columns show 

the covariate balance after applying different refinement methods. Lines represent the balance of the lagged outcome 

variables and covariates over the pre-treatment period. 
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Figure124.6. Estimated Average Longer-Term Effects of SH on Birthweight and Low Birth 

Weight 

 
 
Notes: Each plot estimates the average effects of SH on the outcome variable of interest. The treatment is assigned 

as of 3 months prior to birth (proxy for beginning of the 3rd trimester). The estimation sample includes means by 

municipality for years including 2008-2017 where municipalities with cells including less than 25 observations are 

dropped. Estimates adjust for treatment, outcome and covariate histories during the five-year period prior to 

treatment, i.e. L=5. The estimates for the average effects of SH are shown for the three-year period after the 

transition, i.e., F=4. Five different refinement methods are considered. Controls include 2010 municipality variables 

(log of population, percentage of land in farming, percentage of population five years or younger, percentage of 

population 65 years or older, unemployment rate and average income per capita), age, years of education, marriage 

status, insurance availability, per capita public investments, and per capita social assistance transfers. The vertical 

bars represent 95% confidence intervals based on 1,000 block bootstrap replicates. 
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Figure134.7. Estimated Average Longer-Term Effects of SH on Fertility and Fetal Death Rates 

 

Notes: Each plot estimates the average effects of SH on the outcome variable of interest. The treatment is assigned 

as of 3 months prior to birth (proxy for beginning of the 3rd trimester). The estimation sample includes means by 

municipality for years including 2008-2017 where municipalities with cells including less than 25 observations are 

dropped. Estimates adjust for treatment, outcome and covariate histories during the five-year period prior to 

treatment, i.e. L=5. The estimates for the average effects of SH are shown for the three-year period after the 

transition, i.e., F=4. Five different refinement methods are considered. Controls include 2010 municipality variables 

(log of population, percentage of land in farming, percentage of population five years or younger, percentage of 

population 65 years or older, unemployment rate and average income per capita), age, years of education, marriage 

status, insurance availability, per capita public investments, and per capita social assistance transfers. The vertical 

bars represent 95% confidence intervals based on 1,000 block bootstrap replicates. 
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Tables 

Table154.1. Estimated Average Contemporaneous Effects of SH on Birthweight Outcomes 

Multiperiod Difference-in-Difference Methodology using Propensity Score Weighting 

  SH implemented as of X quarters prior to birth 

  1 qrt 2 qrts 3 qrts 4 qrts 

A. Fraction < 2,500 grams         

SH 0.0001 -0.0014 -0.0005 -0.0011 

   Std. Dev. (0.0008) (0.0011) (0.0007) (0.0009) 

   % Impact (coef/mean) 0.22% -2.32% -0.75% -1.75% 

N. of obs.            19,870 19,870 19,870 19,870 

B. Birthweight in grams     

SH 1.0517 -0.4031 -0.2495 0.0372 

   Std. Dev. (1.5787) (1.6843) (1.47) (1.5044) 

   % Impact (coef/mean) 0.033% -0.01% -0.0% 0.00% 

N. of obs.            19,870 19,870 19,870 19,870 

Notes: Each parameter is from a separate regression of the outcome variable on SH implementation dummy. The 

treatment is assigned as of 2, 3, and 4 quarters prior to birth. The estimation sample includes means by municipality 

for years including 2008-2017 where municipalities including cells with less than 25 observations are dropped. 

Estimates corresponding adjust for treatment, outcome and covariate histories during the five-year period prior to 

treatment, i.e., L=5. Five different methods are considered. Controls include 2010 municipality variables (log of 

population, percentage of land in farming, percentage of population five years or younger, percentage of population 

65 years or older, unemployment rate, average income per capita, and percentage of income eligible population), 

age, years of education, marriage status, insurance availability, per capita public investments, and per capita social 

assistance transfers. Standard errors are in parentheses. Standard errors correspond to block bootstrap replicates. 

*Coefficient is significant at 10% level. **Coefficient is significant at 5% level. ***Coefficient is significant at 1% 

level. 
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Table164.2. Estimated Average Contemporaneous Effects of SH on Fertility and Fetal Deaths 

Multiperiod Difference-in-Difference Methodology using Propensity Score Weighting 

  SH implemented as of X quarters prior to birth 

  1 qrt 2 qrts 3 qrts 4 qrts 

B. Fertility rate per 10,000     

SH -9.10 -0.65 -3.58 -3.58 

   Std. Dev. (4.8648) (7.9361) (5.8401) (5.6046) 

   % Impact (coef/mean) -6.74% -0.48% -2.65% -2.65% 

N. of obs.            19,500 19,500 19,500 19,500 

C. Fetal death rate per 10,000     

SH (1 qrt) -0.07 -0.20 -0.20 -0.20 

   Std. Dev. (0.206) (0.3725) (0.3635) (0.3662) 

   % Impact (coef/mean) -0.65% -1.80% -1.77% -1.77% 

N. of obs.            19,500 19,500 19,500 19,500 

Notes: Each parameter is from a separate regression of the outcome variable on SH implementation dummy. The 

treatment is assigned as of 2, 3, and 4 quarters prior to birth. The estimation sample includes means by municipality 

for years including 2008-2017 where municipalities with cells including less than 25 observations are dropped. 

Estimates adjust for treatment, outcome and covariate histories during the five-year period prior to treatment, i.e., 

L=5. Five different methods are considered. Controls include 2010 municipality variables (log of population, 

percentage of land in farming, percentage of population five years or younger, percentage of population 65 years or 

older, unemployment rate, average income per capita, and percentage of income eligible population), age, years of 

education, marriage status, insurance availability, per capita public investments, and per capita social assistance 

transfers. Standard errors are in parentheses. Standard errors from the matching methods correspond to block 

bootstrap replicates. *Coefficient is significant at 10% level. **Coefficient is significant at 5% level. ***Coefficient 

is significant at 1% level. 
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Table174.3. Estimated Average Contemporaneous Effects of SH on Birthweight Outcomes for 

Income Eligible Individuals, Multiperiod Difference-in-Difference Methodology using 

Propensity Score Weighting 

  SH implemented as of X quarters prior to birth 

  1 qrt 2 qrts 3 qrts 4 qrts 

A. Fraction < 2,500 grams     

SH 0.0042 -0.0063 0.0034 0.0034 

   Std. Dev. (0.0033) (0.0069) (0.0032) (0.003) 

   % Impact (coef/mean) 6.92% -10.5% 5.63% 5.63% 

N. of obs.            1,040 1,040 1,040 1,040 

B. Birthweight in grams     

SH (1 qrt) -18.2769 9.2506 2.639 2.639 

   Std. Dev. (9.2983) (10.7741) (7.7195) (7.9856) 

   % Impact (coef/mean) -0.58% 0.29% 0.08% 0.08% 

N. of obs.            1,040 1,040 1,040 1,040 

Notes: Each parameter is from a separate regression of the outcome variable on SH implementation dummy. The 

treatment is assigned as of 2, 3, and 4 quarters prior to birth. The estimation sample includes means by municipality 

for years including 2008-2017 where municipalities including cells with less than 25 observations are dropped. 

Estimates corresponding adjust for treatment, outcome and covariate histories during the five-year period prior to 

treatment, i.e., L=5. Five different methods are considered. Controls include 2010 municipality variables (log of 

population, percentage of land in farming, percentage of population five years or younger, percentage of population 

65 years or older, unemployment rate, average income per capita, and percentage of income eligible population), 

age, years of education, marriage status, insurance availability, per capita public investments, and per capita social 

assistance transfers. Standard errors are in parentheses. Standard errors correspond to block bootstrap replicates. 

*Coefficient is significant at 10% level. **Coefficient is significant at 5% level. ***Coefficient is significant at 1% 

level. 

  



40 

 

Table184.4. Linear Regression Estimates on the Effect of SH on Birthweight Outcomes, 

unweighted two-way fixed effects not including covariates 

` SH implemented as of X quarters prior to birth 

  1 qrt 2 qrts 3 qrts 4 qrts 
   

 
 

A. Birthweight < 2,500 grams   
 

 

SH -0.00194*** -0.00252*** -0.00315*** -0.00324*** 

                             (0.00066)    (0.00077)    (0.00072)    (0.00071)    

% Impact (coef/mean) -3.16% -4.11% -5.14% -5.29% 

N. of obs.            19870    19870    19870    19870    

     
B. Birthweight in grams    

 
 

SH  3.28**   3.99***  5.09***  5.17*** 

                             (1.43)    (1.55)    (1.49)    (1.50)    

% Impact (coef/mean) 0.10% 0.10% 0.16% 0.16% 

N. of obs.            19870    19870    19870    19870    
   

 
 

Year fixed effects X X X X 

Mun. fixed effects X X X X 

          

Notes: Each parameter is from a separate regression of the outcome variable on SH implementation dummy. The 

treatment is assigned as of 2, 3, and 4 quarters prior to birth. Each column shows the estimate corresponding to each 

of these timings. Controls include 2010 municipality variables (log of population, percentage of land in farming, 

percentage of population five years or younger, percentage of population 65 years or older, unemployment rate, 

average income per capita, and percentage of income eligible population) each interacted with a  linear time trend, 

age, years of education, marriage status, insurance availability, per capita public investments, and per capita social 

assistance transfers. The estimation sample includes municipality by year means from 2008 to 2017. Standard errors 

are in parentheses. Standard errors are clustered at the municipality level. *Coefficient is significant at 10% level. 

**Coefficient is significant at 5% level. ***Coefficient is significant at 1% level. 
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Table194.5. Linear Regression Estimates on the Effect of SH on Birthweight Outcomes, 

unweighted two-way fixed effects including covariates 
` SH implemented as of X quarters prior to birth 

  1 qrt 2 qrts 3 qrts 4 qrts 
   

 
 

A. Birthweight < 2,500 grams   
 

 

SH -0.00018    -0.00063    -0.00028    -0.00039    

                             (0.00065)    (0.00076)    (0.00070)    (0.00069)    

% Impact (coef/mean) -0.29% -1.03% -0.46% -0.64% 

Dep. var. mean  0.06131      0.06131      0.06131      0.06131     

N. of obs.            19850    19850    19850    19850    

     
B. Birthweight in grams    

 
 

SH  0.65     1.08     0.41     0.52    

                             (1.38)    (1.51)    (1.44)    (1.44)    

% Impact (coef/mean) 0.00% 0.03% 0.00% 0.00% 

Dep. Variable mean 3153.53    3153.53    3153.53    3153.53    

N. of obs.            19850    19850    19850    19850    
   

 
 

Year fixed effects X X X X 

Mun. fixed effects X X X X 

Covariates X X X X 

          

Notes: Each parameter is from a separate regression of the outcome variable on SH implementation dummy. The 

treatment is assigned as of 2, 3, and 4 quarters prior to birth. Each column shows the estimate corresponding to each 

of these timings. Controls include 2010 municipality variables (log of population, percentage of land in farming, 

percentage of population five years or younger, percentage of population 65 years or older, unemployment rate, 

average income per capita, and percentage of income eligible population) each interacted with a  linear time trend, 

age, years of education, marriage status, insurance availability, per capita public investments, and per capita social 

assistance transfers. The estimation sample includes municipality by year means from 2008 to 2017. Standard errors 

are in parentheses. Standard errors are clustered at the municipality level. *Coefficient is significant at 10% level. 

**Coefficient is significant at 5% level. ***Coefficient is significant at 1% level. 

 

 

  



42 

 

Appendices 

A Appendix to 4 – Supplemental Tables and Figures 

A4.1. SH’s main assistance programs description 

Acronym1 Objective 

CC Consists of the inception of several many food kitchens providing meals for 

free or at subsidized prices. 

PAL Originally devised to provide unconditional cash transfers were PDHO could 

not due to the unavailability of schools and clinics. With the introduction of 

PAL-SH, PAL remained to provide unconditional cash transfers where the 

unavailability of designated stores would prevent the debit card use.  

PAL-SH  Switch from PAL cash transfer to a transfer delivered by means of a prepaid 

card that is only usable in designated grocery stores and on selected goods. 

LICONSA Although not a program itself, is a parastatal firm that supplies milk at 

subsidized prices. 

PAR  Offers food items and other staples at discounted prices by means of 

designated stores and is operated by DICONSA, a federal agency.  

PCS Promoted training and implemented actions towards reducing post-harvest 

losses due to storage, transportation and commercialization. 

PET Provides temporary income assistance to individuals 16 years or older that 

observe a decrease in income due to economic, social, emergencies or 

disasters. Income is provided in exchange of work for local social projects. 

PDHO2 Cash transfers conditional on school attendance of children, cash transfers 

conditional on clinic visits of both children and old household members, and 

food supplements for women during pregnancy or lactancy and children five 

years old or less. 

PESA Installs family gardens and provides monetary transfers to people performing 

agricultural, aquaculture and fishing activities. 

PETC School free school lunch meals to students in public schools.  

PROCAMPO Monetary transfers to local farmers.  
 

SP Social protection in health that offers public insurance to all citizens, specially 

aiming to promote health coverage for those not formally employed. 
1. Each administration rebrands and modifies the name of social assistance programs. I use the acronyms and 

names corresponding to the period from 2000 to 2012 prior to the introduction of SH: Comedores Comunitarios 

(CC), Sistema de Distribuidoras Conasupo (DICONSA), Leche Industrializada Conasupo (LICONSA), Programa 

de Apoyo Alimentario  (PAL), Programa de Apoyo Alimentario Sin Hambre (PAL-SH ), Programa de Abasto 

Rural  (PAR), Programa de Coinversion Social (PCS), PET (Programa de Empleo Temporal), Programa de 

Desarrollo Humano Oportunidades (PDHO), Proyecto Estratégico para la Seguridad Alimentaria (PESA), 

Programa Escuelas de Tiempo Completo  (PETC), Programa de Apoyos para el Campo (PROCAMPO), and 

Seguro Popular (SP). 

2. It is commonly known as Oportunidades because that was the name it held when the conditional components 

were introduced in 2002. From 2012 to 2018 it changed its name to “Prospera.” A somewhat different version of 

“Oportunidades” was named “Progresa” from 1994-2000 and “Solidaridad” before that. 
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A4.2. SH, Selection Process of Municipalities 

To select municipalities into each stage, SEDESOL first ranked all municipalities in descending 

order, placing the most underserved on top, based on four indexes: P%, the proportion of people 

under extreme poverty, P#, the absolute number of people under extreme poverty, PI%, the 

proportion of people under both extreme poverty and food insecurity, and PI#, the absolute 

number of people under both extreme poverty and food insecurity.83 According to SEDESOL, 

these indexes were calculated using information from the Census and the ENIGH from 2010 as 

this was the latest year available in 2012, a year before the program was launched. In order to 

determine the first stage municipalities, a threshold for each index was determined to select the 

first municipalities that jointly accounted for at least 50% of the estimated objective population 

in 2012, i.e. the set of people under extreme poverty and food insecurity.84 

The selection process followed by SEDESOL had the objective of covering all states in 

the country and in doing so, at least half of the objective population. For the first stage, 

SEDESOL started by selecting the highest ranked municipalities out from each index 

abovementioned: up to 167 based on P%, 184 based on P#, 140 based on PI%, and 150 based on 

PI#.85 A municipality is eligible if it ranks above the corresponding threshold for either of the 

four indexes. After eliminating duplicates, these sets of municipalities together comprise a list of 

381 municipalities from 28 different states. To increase national representativity SEDESOL 

included 19 municipalities based on other related criteria.86 First, it included six municipalities 

from four states not encompassed in the former selection to include all 32 states. Second, it 

 
83 See SEDESOL (2013b) and SEDESOL (2014) for more details. 
84 The first stage covered 51.7% of the objective population (SEDESOL, 2013b). 
85 Other than assisting 50% of the objective population the exact reasoning behind each of these thresholds is not 

explicit in publicly available documents. 
86 The exact motivation behind these thresholds is not expressed in public documentation. 



44 

 

included 9 municipalities that held a significant proportion of the objective population.87 Third, it 

included 4 municipalities where the abovementioned indexes had relevant increments from 2008 

to 2010. This latter process led to a total of 400 municipalities for the first stage. 

For the second stage, SH determined thresholds to reach, together with the first stage, at 

least 75% of the objective population.88 For the second stage, SEDESOL selected the first 455 

municipalities out of each index producing a set of 900 municipalities, including 397 from the 

first stage. In the same vein as in the first stage, additional municipalities were added to 

accommodate the following considerations. First, it added 4 municipalities to increase national 

representativity including one municipality from Colima, a state not previously selected. Second, 

it included 4 municipalities affected by natural disasters in 2013 in the state of Guerrero. Third, it 

included 45 border municipalities not considered in the first stage. Fourth, it included 28 

municipalities from the states of Michoacán, Mexico, and Guerrero from “Tierra Caliente,” a 

region characterized by a hot climate mainly inhabited by indigenous communities that were not 

contained within the first stage. 89 Finally, it included 31 municipalities to reinforce state level 

strategies that were in line with SH. These considerations in addition to the inclusion of three 

municipalities that were selected during the first stage based on alternative rules leads to a total 

of 1,012 municipalities for the second stage, out of which 612 are new additions.90 The third 

stage corresponds to the remaining municipalities in the country. 

  

 
87 These 9 municipalities belong to four out of six municipalities that together hold 56% of the national objective 

population. 
88 The second stage covered an additional 26.7% of the objective population (SEDESOL, 2014). 
89 “Tierra Caliente” is a region within the states of Michoacán, Mexico, and Guerrero characterized by a hot climate 

mainly inhabited by indigenous communities. 
90 (SEDESOL, 2014). 
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A4.3. Multiperiod Difference in Difference Matching Methodology 

Following Imai & Kim (2019) and Imai, Kim and Wang (2019), to form the matching sets for 

any treated observation (𝑖, 𝑡)  three sets of observations need to be defined: the within-unit 

matched set 𝑀𝑖𝑡, the within-time matched set, 𝑁𝑖𝑡, and the adjustment set 𝐴𝑖𝑡. The within-unit 

matched set 𝑀𝑖𝑡  consists of an observation of that unit 𝑖  in the previous period if such 

observation is untreated. The within-time matched, 𝑁𝑖𝑡 , set is defined as a group of control 

observations from units in the same time period that share the same treatment history as 𝑖 from 

time 𝑡 − 1 to 𝑡 − 𝐿, where 𝐿 is the number of lags 𝐿 characterizing the treatment history. The 

adjustment set, 𝐴𝑖𝑡, contains those untreated observations in the previous period corresponding to 

the units in 𝑁𝑖𝑡 . 

 𝑀𝑖𝑡 = {(𝑖
′, 𝑡′): 𝑖′ = 𝑖, 𝑡′ = 𝑡 − 1, 𝑋𝑖′𝑡′ = 0 } (1) 

𝑁𝑖𝑡 = {(𝑖′, 𝑡′): 𝑖′ ≠ 𝑖, 𝑡′ = 𝑡, 𝑋𝑖′𝑡′ = 𝑋𝑖,𝑡′  ∀ 𝑡
′ = 𝑡 − 1,… 𝑡 − 𝐿} (2) 

𝐴𝑖𝑡 = {(𝑖
′, 𝑡′): 𝑖′ ≠ 𝑖, 𝑡′ = 𝑡 − 1, 𝑋𝑖′𝑡′ = 𝑋𝑖,𝑡′∀ 𝑡

′ = 𝑡 − 1,… 𝑡 − 𝐿} (3) 

Equations (1), (2) and (3) define these sets for each treated observation with 𝑋𝑖𝑡 = 1 and 

𝑋𝑖,𝑡−1 = 0, i.e. a treated observation should be untreated in the preceding period. It is possible to 

have some observations with empty sets and so with no control observations sharing the same 

treatment history. This must be considered when interpreting results as these cases will be 

excluded from the calculations. The multi-period DiD estimator of the Average Treatment effect 

on the Treated (ATT), 𝜏̂(𝐹, 𝐿), is an average of two-time period two-group DiD estimators for 

any observation (𝑖, 𝑡)  for which there is a change from control to treatment condition: 

 𝜏(𝐹, 𝐿)̂ =
1

∑ ∑ 𝐷𝑖𝑡
𝑇
𝑡=1

𝑁
𝑖=1

∑∑(𝐷𝑖𝑡(𝑌𝑖,𝑡+𝐹(1)̂ −𝑌𝑖,𝑡+𝐹(0)̂ )

𝑇−𝐹

𝑡=1

𝑁

𝑖=1

, 
(4) 
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where 𝐷𝑖1 = 0 for all 𝑖, 𝐷𝑖𝑡 = 𝑋𝑖𝑡 ∙ 1{|𝑀𝑖𝑡||𝑁𝑖𝑡| > 0} for 𝑡 > 1 and 

𝑌𝑖,𝑡+𝐹(𝑥)̂

=

{
 

 
𝑌𝑖,𝑡+𝐹,                                                   𝑖𝑓 𝑋𝑖𝑡 = 1

𝑌𝑖,𝑡+𝐹−1 +
1

|𝑁𝑖𝑡|
∑ 𝑌𝑖′,𝑡+𝐹

(𝑖′,𝑡)∈𝑁𝑖𝑡

−
1

|𝐴𝑖𝑡|
∑ 𝑌𝑖′,𝑡′+𝐹

(𝑖′,𝑡′)∈𝐴𝑖𝑡

, 𝑖𝑓 𝑋𝑖𝑡 = 0.
 

(5) 

The counterfactual outcome for observation (𝑖, 𝑡) consists of the difference between the 

observed outcome in that period and its outcome in the previous period minus the difference 

between the average outcomes across the same two time periods for the control units of (𝑖, 𝑡). 

Notice that 𝜏̂  depends on 𝐹  and 𝐿 . Since unit must be observed for 𝐹  time periods after the 

treatment is administered and 𝐿  time periods before the treatment is administered, different 

values of 𝐹 will affect the set of treated and control units. The method also allows to analyze the 

effect of stable policies by finding matched control units based on the future treatment sequence. 

In doing so the method classifies units as treated if treatment is in place for 𝐹 time periods and 

their corresponding control units as those that are untreated during that same period. 

Finally, the methodology proposed needs to adjusts for other confounders such as past 

outcomes and time-varying covariates to better satisfy the parallel trend assumption by refining 

the match control sets using different matching and weighting methods.  The matching methods 

used, the Mahalanobis distance and propensity scores, basically select a subset including up to a 

specific number of most similar control units to the corresponding treatment unit. The weighting 

method used, the inverse propensity score, essentially generalizes matching methods by 

assigning weights giving more weight to those control units that are most similar to the treatment 

unit instead of giving an equal weight. 
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A4.4. All Multiperiod Difference-in-Difference Methodologies by Time of Implementation 

Table A4.4.1. Estimated Average Contemporaneous Effects of SH on Birthweight Outcomes, all 

Multiperiod Difference-in-Difference Methodologies 

  Multiperiod Difference-in-Difference Methodology 

SH implemented as of X 

quarters prior to birth 

Before 

Refinement 

Mahalanobis 

Distance 

Matching 

Propensity 

Score Matching 

Propensity 

Score Weighting 

(1) (2) (3) (4) 

A. Fraction < 2,500 grams     

SH (1 qrt) 0.0000 0.0004 0.0006 0.0001 

   Std. Dev. (0.0007) (0.0008) (0.0007) (0.0008) 

   % Impact (coef/mean) -0.00% 0.61% 0.97% 0.22% 

SH (2 qrts) -0.0031* -0.004* -0.0012 -0.0014 

   Std. Dev. (0.0009) (0.0011) (0.0009) (0.0011) 

   % Impact (coef/mean) -5.09% -6.73% -1.94% -2.32% 

SH (3 qrts) -0.0007 -0.0022 0.0001 -0.0005 

   Std. Dev. (0.0007) (0.0007) (0.0009) (0.0007) 

   % Impact (coef/mean) -1.17% -3.70% 0.15% -0.75% 

SH (4 qrts) -0.0009 -0.0025 -0.0006 -0.0011 

   Std. Dev. (0.0007) (0.0008) (0.0011) (0.0009) 

   % Impact (coef/mean) -1.58% -4.13% -1.07% -1.75% 

N. of obs.            19,870 19,870 19,870 19,870 

B. Birthweight in grams     

SH (1 qrt) 0.3155 0.1274 1.0403 1.0517 

   Std. Dev. (1.4558) (1.453) (1.7592) (1.5787) 

   % Impact (coef/mean) 0.010% 0.004% 0.03% 0.033% 

SH (2 qrts) 4.5596** 5.9203*** 1.6047 -0.4031 

   Std. Dev. (1.8991) (2.2218) (1.8721) (1.6843) 

   % Impact (coef/mean) 0.14% 0.187% 0.05% -0.01% 

SH (3 qrts) 0.7589 3.0141** -2.0921 -0.2495 

   Std. Dev. (1.3797) (1.4146) (1.7739) (1.47) 

   % Impact (coef/mean) 0.02% 0.09% -0.06% -0.0% 

SH (4 qrts) 1.0092 3.2779** -2.4026 0.0372 

   Std. Dev. (1.3036) (1.4348) (1.7976) (1.5044) 

   % Impact (coef/mean) 0.03% 0.10% -0.07% 0.00% 

N. of obs.            19,870 19,870 19,870 19,870 

Notes: Each parameter is from a separate regression of the outcome variable on SH implementation dummy. The 

treatment is assigned as of 2, 3, and 4 quarters prior to birth. The estimation sample includes means by municipality 

for years including 2008-2017 where municipalities with cells including less than 25 observations are dropped. 

Estimates corresponding adjust for treatment, outcome and covariate histories during the five-year period prior to 

treatment, i.e., L=5. Five different methods are considered. Controls include 2010 municipality variables (log of 

population, percentage of land in farming, percentage of population five years or younger, percentage of population 

65 years or older, unemployment rate and average income per capita), age, years of education, marriage status, 

insurance availability, per capita public investments, and per capita social assistance transfers. Standard errors are in 

parentheses. Standard errors correspond to block bootstrap replicates. *Coefficient is significant at 10% level. 

**Coefficient is significant at 5% level. ***Coefficient is significant at 1% level. 
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Table A4.4.2. Estimated Average Contemporaneous Effects of SH on Fertility and Fetal Deaths, 

all Multiperiod Difference-in-Difference Methodologies  

  Multiperiod Difference-in-Difference Methodology 

SH implemented as of X 

quarters prior to birth 

Before 

Refinement 

Mahalanobis 

Distance 

Matching 

Propensity 

Score Matching 

Propensity 

Score Weighting 

(1) (2) (3) (4) 

A. Fertility rate per 10,000     

SH (1 qrt) -20.85*** -7.50 -10.01 -9.10 

   Std. Dev. (4.1661) (5.0461) (6.5431) (4.8648) 

   % Impact (coef/mean) -15.4% -5.55% -7.41% -6.74% 

SH (2 qrts) 2.23 7.36* 2.52 -0.65 

   Std. Dev. (4.2145) (4.0624) (4.8557) (7.9361) 

   % Impact (coef/mean) 1.65% 5.45% 1.87% -0.48% 

SH (3 qrts) -10.98 -1.11 -3.50 -3.58 

   Std. Dev. (3.956) (4.6362) (6.6676) (5.8401) 

   % Impact (coef/mean) -8.13% -0.82% -2.59% -2.65% 

SH (4 qrts) -10.98 -1.11 -3.50 -3.58 

   Std. Dev. (4.0744) (4.5538) (7.0903) (5.6046) 

   % Impact (coef/mean) -8.13% -0.82% -2.59% -2.65% 

N. of obs.            19,500 19,500 19,500 19,500 

B. Fetal death rate per 10,000     

SH (1 qrt) -0.08 -0.07 -0.04 -0.07 

   Std. Dev. (0.2209) (0.2348) (0.2531) (0.206) 

   % Impact (coef/mean) -0.77% -0.64% -0.37% -0.65% 

SH (2 qrts) 0.106 0.032 -0.18 -0.20 

   Std. Dev. (0.23) (0.2353) (0.3157) (0.3725) 

   % Impact (coef/mean) 0.91% 0.27% -1.62% -1.80% 

SH (3 qrts) 0.16 0.09 -0.24 -0.20 

   Std. Dev. (0.2402) (0.2574) (0.3587) (0.3635) 

   % Impact (coef/mean) 1.43% 0.77% -2.14% -1.77% 

SH (4 qrts) 0.16 0.09 -0.24 -0.20 

   Std. Dev. (0.251) (0.2556) (0.3572) (0.3662) 

   % Impact (coef/mean) 1.43% 0.77% -2.14% -1.77% 

N. of obs.            19,500 19,500 19,500 19,500 

Notes: Each parameter is from a separate regression of the outcome variable on SH implementation dummy. The 

treatment is assigned as of 2, 3, and 4 quarters prior to birth. The estimation sample includes means by municipality 

for years including 2008-2017 where municipalities with cells including less than 25 observations are dropped. 

Estimates adjust for treatment, outcome and covariate histories during the five-year period prior to treatment, i.e., 

L=5. Five different methods are considered. Controls include 2010 municipality variables (log of population, 

percentage of land in farming, percentage of population five years or younger, percentage of population 65 years or 

older, unemployment rate and average income per capita), age, years of education, marriage status, insurance 

availability, per capita public investments, and per capita social assistance transfers. Standard errors are in 

parentheses. Standard errors from the matching methods correspond to block bootstrap replicates. *Coefficient is 

significant at 10% level. **Coefficient is significant at 5% level. ***Coefficient is significant at 1% level. 
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Table A4.4.3. Estimated Average Contemporaneous Effects of SH on Birthweight Outcomes for 

Income Eligible Individuals, all Multiperiod Difference-in-Difference Methodologies  

  Multiperiod Difference-in-Difference Methodology 

SH implemented as of X 

quarters prior to birth 

Before 

Refinement 

Mahalanobis 

Distance 

Matching 

Propensity 

Score Matching 

Propensity 

Score Weighting 

(1) (2) (3) (4) 

A. Fraction < 2,500 grams     

SH (1 qrt) -0.0054 -0.0053 0.001 0.0042 

   Std. Dev. (0.0039) (0.0037) (0.003) (0.0033) 

   % Impact (coef/mean) -9.00% -8.8% 1.71% 6.92% 

SH (2 qrts) -0.0024 -0.0008 0.0007 -0.0063 

   Std. Dev. (0.0037) (0.0032) (0.0036) (0.0069) 

   % Impact (coef/mean) -3.95% -1.27% 1.09% -10.5% 

SH (3 qrts) 0.0007 0.0024 0.0017 0.0034 

   Std. Dev. (0.0031) (0.0027) (0.0031) (0.0032) 

   % Impact (coef/mean) 1.15% 4.07% 2.80% 5.63% 

SH (4 qrts) 0.0007 0.0024 0.0017 0.0034 

   Std. Dev. (0.0031) (0.0028) (0.0033) (0.003) 

   % Impact (coef/mean) 1.15% 4.07% 2.80% 5.63% 

N. of obs.            1,040 1,040 1,040 1,040 

B. Birthweight in grams     

SH (1 qrt) -2.2758 -2.1188 -11.9217 -18.2769 

   Std. Dev. (7.2284) (7.5535) (8.2151) (9.2983) 

   % Impact (coef/mean) -0.07% -0.06% -0.3% -0.58% 

SH (2 qrts) -1.873 0.7235 0.356 9.2506 

   Std. Dev. (6.432) (6.8954) (7.6776) (10.7741) 

   % Impact (coef/mean) -0.0% 0.02% 0.01% 0.29% 

SH (3 qrts) -2.7034 0.1239 -0.0995 2.639 

   Std. Dev. (6.2846) (6.4161) (7.1635) (7.7195) 

   % Impact (coef/mean) -0.0% 0.00% -0.00% 0.08% 

SH (4 qrts) -2.7034 0.1239 -0.0995 2.639 

   Std. Dev. (6.2731) (6.3386) (7.1355) (7.9856) 

   % Impact (coef/mean) -0.0% 0.00% -0.00% 0.08% 

N. of obs.            1,040 1,040 1,040 1,040 

Notes: Each parameter is from a separate regression of the outcome variable on SH implementation dummy. The 

treatment is assigned as of 2, 3, and 4 quarters prior to birth. The estimation sample includes means by municipality 

for years including 2008-2017 where municipalities with cells including less than 25 observations are dropped. 

Estimates corresponding adjust for treatment, outcome and covariate histories during the five-year period prior to 

treatment, i.e., L=5. Five different methods are considered. Controls include 2010 municipality variables (log of 

population, percentage of land in farming, percentage of population five years or younger, percentage of population 

65 years or older, unemployment rate and average income per capita), age, years of education, marriage status, 

insurance availability, per capita public investments, and per capita social assistance transfers. Standard errors are in 

parentheses. Standard errors correspond to block bootstrap replicates. *Coefficient is significant at 10% level. 

**Coefficient is significant at 5% level. ***Coefficient is significant at 1% level.  



50 

 

A4.5. Event study results 

In this section I show the results from an event study on both the municipality-year means as 

well as the individual level dataset for years from 2008 to 2017. For this purpose, I fit the 

following equation: 

𝑦𝑖𝑡 = 𝛼 + ∑ 𝜋𝑗1( 𝜏𝑖𝑚𝑡 = 𝑗) + 𝛾𝑚 + 𝜆𝑡 + 𝛾𝑠𝑡 + 𝛽𝑋𝑖𝑚𝑡 + 𝜖𝑖𝑡

4

𝑗=−5

 

(1) 

where 𝜏𝑖𝑚𝑡  denotes the event year, defined so that 𝜏𝑖𝑚𝑡 = 0  if the outcome observed at 

municipality 𝑚  and year 𝑡  corresponds to the first year 𝑚  was intervened, 𝜏𝑖𝑚𝑡 = 1  if the 

outcome corresponds to one year after the first year 𝑚 was intervened, and so on. 𝑋′𝑖𝑚𝑡  is a 

vector of demographic control variables at the municipal and individual level, 𝛾𝑡 refers to year 

fixed effects, 𝛾𝑚 refers to municipality fixed effects, 𝛾𝑠𝑡 refers to state by year fixed effects to 

allow for different trends subnationally, 𝛼  is the regression intercept, and 𝜀𝑖𝑡  represents the 

idiosyncratic error term. Outcomes corresponding to 𝜏𝑖𝑚𝑡 ≤ −1  pertain to years prior to an 

intervention in the corresponding state. Coefficients are measured relative to 𝜏 = −1, the omitted 

category. I consider a window of five years before and four years after the first intervention. The 

outermost indicators include all previous or subsequent periods beyond five years respectively. If 

SH is exogenous, coefficients corresponding to 𝜏 ≥ 0 should be statistically different from zero, 

and coefficients corresponding to 𝜏 ≤ −1 close to zero. 
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Figure A4.5.1. Event Study Analysis for Low Birth Weight and Birthweight using municipality 

by year means 

 

Notes: Each figure plots coefficients from an event-study analysis. Coefficients are defined as years relative to the 

year SH is implemented in the municipality. The specification includes municipality fixed effects, year fixed effects, 

state by year fixed effects, and controls at the municipality and individual level. The estimation presented in this 

figure refers to the dataset with municipality-year means for years including 2008-2017. 
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Figure A4.5.2. Event Study Analysis for Low Birth Weight and Birthweight using individual 

observations 

 
 
Notes: Each figure plots coefficients from an event-study analysis. Coefficients are defined as years relative to the 

year SH is implemented in the municipality. The specification includes municipality fixed effects, year fixed effects, 

state by year fixed effects, and controls at the municipality and individual level. The estimation sample includes 

individual observations from 2008-2017. 
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A4.6. Income Eligibility 

The socioeconomic variables selected are both common to CUIS, a questionnaire that is 

conducted on virtually any household applying for registration to a social program, and MCS-

ENIGH, a national survey on income and expenditures of households.91 Based on these variables 

the government estimates the following linear specification: 

𝑙𝑛 𝑍𝑖 = 𝑆𝑖′𝛽 + 𝜖𝑖. (1) 

where 𝑙𝑛  refers to the natural logarithm, 𝑍𝑖  is income, 𝑆𝑖′  is the vector of socioeconomic 

variables and 𝜖𝑖  is the idiosyncratic error. The least squares model is estimated using 

observations from MCS-ENIGH leading to the following equation: 

𝑙𝑛𝑍𝑖̂ = 𝑆𝑖′𝛽̂. (2) 

where 𝑍𝑖̂  is the estimated income and 𝛽̂  is the estimation of 𝛽 . The income of a particular 

household is then calculated substituting the values of each of the selected variables for a 

particular household 𝑗 into equation (2) to obtain the predicted income of that household:  

𝑙𝑛𝑧𝑗̂ = 𝑠𝑗′𝛽̂. (3) 

where 𝑧𝑗̂  is the predicted income for household 𝑗, 𝑠𝑗′ is the vector of selected variables with 

values for 𝑗 and  𝛽̂ is the same vector of coefficients from (2). Since, households sampled in 

CUIS are not necessarily sampled in MCS-ENIGH, this estimation corresponds to an out of 

sample prediction.92 Once the government has the predicted income for a household it classifies 

it as income eligible if the predicted income lies below the threshold selected by the government 

uses for that year distinguishing between rural and urban areas. The criterium or threshold used 

varies from one year to another and is known as Linea de Bienestar Minimo (LBM). I replicate 

 
91 Encuesta Nacional de Ingreso y Gasto de los Hogares 2008 (MCS-ENIGH 2008). Cédula Única de Información 

Socioeconómica (CUIS). 
92 From the government perspective, estimating income using this methodology and not obtaining it directly from a 

survey reduces chances of manipulation by recipients. 
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this methodology using the MCS-ENIGH and the corresponding thresholds for each year in my 

period of analysis.  

Since MCS-ENIGH is released every two years I use the information from MCS-ENIGH 

from a particular year on the vital statistics information of that year and the following to make 

the out of sample prediction.93 Instead of using household demographics included in CUIS to 

predict household income, I use the demographics associated with mothers included in birth 

records to predict household income. These demographics include age, education level, marriage 

status, size of locality, health insurance status, type of health insurance, working status, and type 

of job, all of which are characteristics observed in both the vital statistics and the MCS-ENIGH 

datasets.  

Table A6.1 shows the prediction accuracy within sample. Based on the list of 

socioeconomic variables from the official methodology I select an analogous set of variables 

available in the socioeconomic information in birth records. According to Table A6.1, around 

80% of the observations are correctly classified as eligible or ineligible, and around 20% are 

incorrectly classified as eligible or ineligible. The predictive accuracy of my methodology is 

similar to that reported by the government for 2012, where around 83% of the observations are 

correctly classified and 17% are incorrectly classified, SEDESOL (2015). 

Using this indicator, I implement a triple difference in difference comparing eligible to 

ineligible individuals within treated locations:  

𝑦𝑖𝑡𝑚 = 𝛾0 + 𝐸𝑙𝑖𝑔𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (𝐿𝐵𝑀) + 𝛾1𝑆𝐻𝑖𝑡𝑚⨂𝐸𝑙𝑖𝑔𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (𝐿𝐵𝑀) 

+𝛾3𝑋𝑖𝑡𝑚 + 𝛾𝑚 + 𝛾𝑡 + 𝑒𝑖𝑡𝑚, 

(1) 

 
93 I use 2008 MCS-ENIGH for 2008 and 2009, 2010 MCS-ENIGH for 2010 and 2011, 2012 MCS-ENIGH for 2012 

and 2013, and so forth. 
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where 𝑦𝑖𝑡𝑚 represents the outcome variable; 𝑆𝐻𝑖𝑡𝑚 takes the value of 1 if the birth was exposed 

to the program; 𝑋𝑖𝑡𝑚 is a vector of individual and municipal level control variables;  𝛾𝑚 represent 

municipality fixed effects; 𝛾𝑡  represents year fixed effects, and 𝑒𝑖𝑡𝑚  is the error term. If the 

program had a beneficial impact, we would expect that eligible individuals do better in places 

that are exposed to the program as opposed to those that are in unexposed locations. As it can be 

observed from Tables A6.2, it appears that this is not necessarily the case. To discard this 

possibility, I test for specifications that allow for more variation by not controlling for 

municipality and year fixed effects. Instead, Table A6.3 shows the results from controlling for 

state and year fixed effects while controlling for subnational trends, using region by year fixed 

effects, as well as the poverty indexes used to select municipalities into each stage of SH. These 

results show that the program was beneficial for income eligible women in exposed locations 

relative unexposed locations. 
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Table A4.6.1. Income Eligibility Estimation Accuracy  

Model 

Classification 

Correct Incorrect 

(1) (2) 

2008 86% 14% 

2010 81% 19% 

2012 82% 18% 

2014 82% 18% 

2016 87% 13% 
Each row represents accuracy measures for within sample predictions using information from MCS-ENIGH for 

different years. The first column shows the fraction of women correctly categorized to be eligible or ineligible. The 

second column indicates the fraction of women incorrectly categorized as eligible or ineligible.  
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Table A4.6.2 Linear Regression Estimates on the Effect of SH on Birthweight Outcomes, 

interacting treatment condition with income eligibility 

` SH implemented as of X quarters prior to birth 

  1 qrt 2 qrts 3 qrts 4 qrts 
   

  
A. Birthweight < 2,500 grams   

  
SH 0.00036    -0.00066*   -0.00042    0.00087**  

                             (0.00038)    (0.00039)    (0.00046)    (0.00042)    

Eligibility (LBM) 0.00155*** 0.00141**  0.00141**  0.00136**  
 (0.00057)    (0.00057)    (0.00056)    (0.00055)    

SH ⊗ Eligibility (LBM) 0.00081    0.00123    0.00134*   0.00162**  
 (0.00075)    (0.00077)    (0.00079)    (0.00079)    

Dep. var. mean 0.06558    0.06558    0.06558    0.06558    

N. of obs.            17,023,336 17,023,336 17,023,336 17,023,336 

     
B. Birthweight in grams    

  
SH -5.19*** -1.76*   -0.47    -5.17*** 

                             (0.99)    (0.93)    (1.06)    (1.07)    

Eligibility (LBM) -11.50*** -11.46*** -11.56*** -11.58*** 
 (1.41)    (1.39)    (1.38)    (1.36)    

SH ⊗ Eligibility (LBM) -1.71    -1.93    -1.82    -1.93    
 (1.72)     (1.72)     (1.74)    (1.78)    

Dep. var. mean 3147.61    3147.61    3147.61    3147.61    

N. of obs.            17,023,336 17,023,336 17,023,336 17,023,336 

     
Year fixed effects X X X X 

Mun. fixed effects X X X X 

Covariates X X X X 

          

Notes: Each parameter is from a separate regression of the outcome variable on SH implementation dummy. The 

treatment is assigned as of one quarter prior to birth, each column shows the estimate corresponding to each of these 

timings. Eligibility (LBM) is a dummy variable that takes the value of 1 if an individual is income eligible and 0 

otherwise. The estimation sample includes individual level observations from 2008 to 2017.  Controls include 2010 

municipality variables (log of population, percentage of land in farming, percentage of population five years or 

younger, percentage of population 65 years or older, unemployment rate, percentage of income eligible population, 

and average income per capita) each interacted with a  linear time trend, age, years of education, marriage status, 

insurance availability, per capita public investments, and per capita social assistance transfers. Standard errors are in 

parentheses. Standard errors are clustered at the municipality level. *Coefficient is significant at 10% level. 

**Coefficient is significant at 5% level. ***Coefficient is significant at 1% level. 
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Table A4.6.3 Linear Regression Estimates on the Effect of SH on Birthweight Outcomes, 

interacting treatment condition with income eligibility 

` SH implemented as of X quarters prior to birth 

  1 qrt 2 qrts 3 qrts 4 qrts 
   

  
A. Birthweight < 2,500 grams   

  
SH 0.00003    -0.00094**  -0.00083    0.00026    

                             (0.00045)    (0.00045)    (0.00052)    (0.00050)    

Eligibility (LBM) 0.00304*** 0.00286*** 0.00283*** 0.00270*** 
 (0.00061)    (0.00060)    (0.00059)    (0.00058)    

SH ⊗ Eligibility (LBM) -0.00167**  -0.00136*   -0.00140*   -0.00114    
 (0.00080)    (0.00082)    (0.00083)    (0.00085)    

Dep. var. mean 0.06558    0.06558    0.06558    0.06558    

N. of obs.            17,023,336 17,023,336 17,023,336 17,023,336 

     
B. Birthweight in grams    

  
SH -4.92*** -1.67    -0.57    -4.39*** 

                             (1.46)     (1.45)     (1.65)    (1.56)    

Eligibility (LBM) -16.36*** -16.23*** -16.24*** -16.14*** 
 (1.89)    (1.86)    (1.85)    (1.80)    

SH ⊗ Eligibility (LBM)  2.74     2.69     2.98     2.91    
 (2.13)    (2.14)    (2.20)    (2.23)    

Dep. var. mean 3147.61    3147.61    3147.61    3147.61    

N. of obs.            17,023,336 17,023,336 17,023,336 17,023,336 

     
Year fixed effects X X X X 

State fixed effects X X X X 

Region by year fixed effects X X X X 

2010 Municipality Poverty Indexes X X X X 

Covariates X X X X 

          

Notes: Each parameter is from a separate regression of the outcome variable on SH implementation dummy. The 

treatment is assigned as of one quarter prior to birth, each column shows the estimate corresponding to each of these 

timings. Eligibility (LBM) is a dummy variable that takes the value of 1 if an individual is income eligible and 0 

otherwise. The estimation sample includes individual level observations from 2008 to 2017.  Controls include 2010 

municipality variables (log of population, percentage of land in farming, percentage of population five years or 

younger, percentage of population 65 years or older, unemployment rate and average income per capita) each 

interacted with a  linear time trend, age, years of education, marriage status, insurance availability, per capita public 

investments, and per capita social assistance transfers. Standard errors are in parentheses. Standard errors are 

clustered at the municipality level. *Coefficient is significant at 10% level. **Coefficient is significant at 5% level. 

***Coefficient is significant at 1% level. 
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A4.7. Effect of SH on women already pregnant at the time of the introduction 

The objective of the following specifications is to difference off treatment by time of exposure 

for women that were already pregnant at the time of introduction. I center the analysis on women 

living in the first set of municipalities treated, i.e. the first stage. In addition, this potentially 

corrects for residential section bias of women moving to municipalities they anticipated to be 

treated in later stages. I alternatively use women from each of the other stages. The main sample 

to be analyzed consists of births occurring since the first month the program was launched in the 

first stage until 40 weeks ahead, the typical duration of pregnancy. Succinctly, I use births that 

occurred from April of 2013 to January of 2014 only in first stage municipalities.94  I start by 

running the following specification: 

𝑦𝑖𝑡𝑚 = 𝛾0 + 𝛾1𝑆𝐻2𝑇𝑟𝑖𝑚 𝑖𝑡𝑚 + 𝛾2𝑆𝐻1𝑇𝑟𝑖𝑚𝑖𝑡𝑚 + 𝛾3𝑋𝑖𝑡𝑚 + 𝛾𝑚 + 𝑒𝑖𝑡𝑚, (1) 

Where, 𝑦𝑖𝑡𝑚 represents the outcome variable; 𝑆𝐻1𝑇𝑟𝑖𝑚 𝑚𝑡 takes the value of 1 if the baby was 

born in October, November, December of 2013 or January of 2014 and 0 otherwise; 

𝑆𝐻2𝑇𝑟𝑖𝑚 𝑚𝑡 takes the value of 1 if the baby was born in July, August or September of 2013 and 

0 otherwise; 𝑆𝐻3𝑇𝑟𝑖𝑚 𝑚𝑡, the omitted category, takes the value of 1 if the baby was born in 

April, May or June of 2013 and 0 otherwise; 𝑋𝑖𝑡𝑚 is a vector of individual control variables;  𝛾𝑚 

represent municipality fixed effects; and 𝑒𝑖𝑡𝑚  is the error term. If the program was effective 

among these women, those receiving the treatment for a longer period, i.e. births occurring 

farther ahead from the starting date, should show better results. 

In addition to the main specification I also interact the independent variables with the indicator 

for individual level income eligibility: 

 
94 First stage municipalities launch the program on 4/1/2013 (4/1/2013 + 40 weeks = 1/6/2014). 
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𝑦𝑖𝑡𝑚 = 𝛾0 + 𝐸𝑙𝑖𝑔𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (𝐿𝐵𝑀) + 𝛾1𝑆𝐻2𝑇𝑟𝑖𝑚 𝑖𝑡𝑚⨂𝐸𝑙𝑖𝑔𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (𝐿𝐵𝑀) +

𝛾2𝑆𝐻1𝑇𝑟𝑖𝑚𝑖𝑡𝑚⨂𝐸𝑙𝑖𝑔𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (𝐿𝐵𝑀) + 𝛾3𝑋𝑖𝑡𝑚 + 𝛾𝑚 + 𝑒𝑖𝑡𝑚. 

(2) 
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Table A4.7.1 Linear Regression Estimates on the Effect of SH on Birthweight Outcomes, 

sensitivity to time of introduction for already pregnant women during the first stage of 

implementation 

                             (1) (2) (3) 

        

A. Birthweight < 2,500 grams    

SH- 1st trimester -0.00332*** -0.00326*** -0.00331*** 
 (0.00062)    (0.00062)    (0.00061)    

SH- 2nd trimester -0.00204*** -0.00175**  -0.00151**  
 (0.00072)    (0.00069)    (0.00069)    

Dep. var. mean 0.06087    0.06087    0.06075    

N. of obs. 835719    835719    783148    
 

 
 

 
B. Birthweight in grams   

 
 

    

SH- 1st trimester  7.48***  6.26***  5.91*** 
 (1.35)    (1.35)    (1.39)    

SH- 2nd trimester  0.34    -2.12    -2.29*   
 (1.43)    (1.30)    (1.31)    

Dep. var. mean 3140.20    3140.20    3138.91    

N. of obs. 835719    835719    783148    
 

 
 

 
Mun. fixed effects  X X 

Covariates   X 

  

Notes: Each column is from a separate regression of the outcome variable on SH implementation dummy. Sample 

consists of births occurring since the first month the program was launched in the first stage until 40 weeks ahead in 

time. Treatment is defined based on the time of birth relatively to the start of the program in April of 2013. 𝑆𝐻 −
1𝑠𝑡 𝑇𝑟𝑖𝑚𝑒𝑠𝑡𝑒𝑟 takes the value of 1 if the baby was born in October, November, December of 2013 or January of 

2014 and 0 otherwise; 𝑆𝐻 − 2𝑛𝑑 𝑇𝑟𝑖𝑚𝑒𝑠𝑡𝑒𝑟 takes the value of 1 if the baby was born in July, August or September 

of 2013 and 0 otherwise; 𝑆𝐻 − 3𝑟𝑑 𝑇𝑟𝑖𝑚𝑒𝑠𝑡𝑒𝑟, the omitted category, takes the value of 1 if the baby was born in 

April, May or June of 2013 and 0 otherwise. Eligibility (LBM) is a dummy variable that takes the value of 1 if an 

individual is income eligible and 0 otherwise. Controls include 2010 municipality variables (log of population, 

percentage of land in farming, percentage of population five years or younger, percentage of population 65 years or 

older, unemployment rate and average income per capita) each interacted with a linear time trend, age, years of 

education, marriage status, insurance availability, per capita public investments, and per capita social assistance 

transfers. Standard errors are in parentheses. Standard errors are clustered at the municipality level. *Coefficient is 

significant at 10% level. **Coefficient is significant at 5% level. ***Coefficient is significant at 1% level. 
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Table A4.7.2 Linear Regression Estimates on the Effect of SH on Birthweight Outcomes, 

sensitivity to time of introduction for already pregnant women during the first stage of 

implementation 

                             (1) (2) (3) 

        

A. Birthweight < 2,500 grams    

Eligibility (LBM) -0.01000*** -0.00164    -0.00110    
 (0.00178)    (0.00138)    (0.00169)    

SH- 1st trimester -0.00369*** -0.00357*** -0.00362*** 
 (0.00065)    (0.00064)    (0.00064)    

SH- 2nd trimester -0.00211*** -0.00179**  -0.00177**  
 (0.00077)    (0.00074)    (0.00074)    

SH- 1st trimester ⊗ Eligibility (LBM) 0.00390**  0.00352**  0.00330*   

 (0.00176)    (0.00174)    (0.00175)    

SH- 2nd trimester ⊗ Eligibility (LBM) 0.00293    0.00317    0.00314    
 (0.00206)    (0.00206)    (0.00204)    

Dep. var. mean 0.06075    0.06075    0.06075    

N. of obs. 783,148 783,148 783,148 
 

 
 

 
B. Birthweight in grams   

 
 

Eligibility (LBM) -12.96    -8.45**  -11.70*** 
 (9.78)    (3.33)    (4.01)    

SH- 1st trimester  8.37***  6.72***  6.78*** 
 (1.50)    (1.49)    (1.47)    

SH- 2nd trimester  1.12    -1.41    -1.60    
 (1.64)    (1.47)    (1.47)    

SH- 1st trimester ⊗ Eligibility (LBM) -9.98*** -8.30**  -7.09*   

 (3.80)    (3.65)    (3.69)    

SH- 2nd trimester ⊗ Eligibility (LBM) -7.51*   -8.22**  -8.16**  
 (4.26)    (4.06)    (4.06)    

Dep. var. mean 3138.91    3138.91    3138.91    

N. of obs. 783,148 783,148 783,148 
 

 
 

 
Mun. fixed effects  X X 

Covariates   X 

  

Notes: Each column is from a separate regression of the outcome variable on SH implementation dummy. Sample 

consists of births occurring since the first month the program was launched in the first stage until 40 weeks ahead in 

time. Treatment is defined based on the time of birth relatively to the start of the program in April of 2013. 𝑆𝐻 −
1𝑠𝑡 𝑇𝑟𝑖𝑚𝑒𝑠𝑡𝑒𝑟 takes the value of 1 if the baby was born in October, November, December of 2013 or January of 

2014 and 0 otherwise; 𝑆𝐻 − 2𝑛𝑑 𝑇𝑟𝑖𝑚𝑒𝑠𝑡𝑒𝑟 takes the value of 1 if the baby was born in July, August or September 

of 2013 and 0 otherwise; 𝑆𝐻 − 3𝑟𝑑 𝑇𝑟𝑖𝑚𝑒𝑠𝑡𝑒𝑟, the omitted category, takes the value of 1 if the baby was born in 

April, May or June of 2013 and 0 otherwise. Eligibility (LBM) is a dummy variable that takes the value of 1 if an 

individual is income eligible and 0 otherwise. Controls include 2010 municipality variables (log of population, 

percentage of land in farming, percentage of population five years or younger, percentage of population 65 years or 

older, unemployment rate and average income per capita) each interacted with a linear time trend, age, years of 

education, marriage status, insurance availability, per capita public investments, and per capita social assistance 

transfers. Standard errors are in parentheses. Standard errors are clustered at the municipality level. *Coefficient is 

significant at 10% level. **Coefficient is significant at 5% level. ***Coefficient is significant at 1% level. 
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