Finding densest subgraph in a bi-partite graph

Dhara Shah
dshah8@student.gsu.edu

Sushil Prasad
sprasad@gsu.edu

Danial Aghajarian
daghajarian@cs.gsu.edu

Follow this and additional works at: https://scholarworks.gsu.edu/computer_science_technicalreports

Part of the Theory and Algorithms Commons

Recommended Citation
https://scholarworks.gsu.edu/computer_science_technicalreports/1

This Working Paper is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Computer Science Technical Reports by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact scholarworks@gsu.edu.
Finding densest subgraph in a bi-partite graph

Dhara Shah1, Danial Aghajarian1, and Sushil Prasad1

Department of Computer Science, Georgia State University, Atlanta 30303, USA

\{dshah8@, daghajarian@cs, sprasad@gsu.edu\}

Abstract. Finding the densest subgraph in a bi-partite graph is a polynomial time problem. Also, each bi-partite graph has a densest connected subgraph. In this paper, we first prove that each bi-partite graph has a densest connected subgraph. This proof is different than that of an undirected graph, since our definition of the density is different. We then provide a max-flow min-cut algorithm for finding a densest subgraph of a bi-partite graph and prove to correctness of this binary search algorithm.

Keywords: densest subgraph · bi-partite · max-flow · densest connected

1 Densest subgraph of a bi-partite graph

We observe that there can be multiple densest bi-partite subgraphs of a bi-partite graph. We produce the following proof for this.

Theorem 1. Let \(G(S_1, S_b, E(S_1, S_b)) \), \(G(S_2, S_b, E(S_2, S_b)) \) be bi-partite subgraphs, with \(S_1 \cap S_2 = \emptyset \). We denote the density of this graphs defined by

\[
\rho(G(S_1, S_b, E(S_1, S_b))) = \frac{e_1}{\sqrt{a_1b_1}},
\rho(G(S_2, S_b, E(S_2, S_b))) = \frac{e_2}{\sqrt{a_2b_2}},
\rho(G(S_1 \cup S_2, S_b \cup S_2, E(S_1, S_b) \cup E(S_2, S_b))) = \frac{e_1+e_2}{\sqrt{(a_1+a_2)(b_1+b_2)}}
\]

Prove that \(\frac{e_1+e_2}{\sqrt{(a_1+a_2)(b_1+b_2)}} \leq \max\{\frac{e_1}{\sqrt{a_1b_1}}, \frac{e_2}{\sqrt{a_2b_2}}\} \)

Proof. Without loss of generality, let \(\max\{\frac{e_1}{\sqrt{a_1b_1}}, \frac{e_2}{\sqrt{a_2b_2}}\} = \frac{e_1}{\sqrt{a_1b_1}} \).

This implies,

\[
\frac{e_1}{\sqrt{a_1b_1}} \geq \frac{e_2}{\sqrt{a_2b_2}} \iff e_2 \leq \frac{\sqrt{a_2b_2}}{\sqrt{a_1b_1}} e_1
\]

Now, under this assumption,

\[
\frac{e_1+e_2}{\sqrt{(a_1+a_2)(b_1+b_2)}} \leq \max\{\frac{e_1}{\sqrt{a_1b_1}}, \frac{e_2}{\sqrt{a_2b_2}}\}
\]

\[
\iff \frac{e_1+e_2}{\sqrt{(a_1+a_2)(b_1+b_2)}} \leq \frac{e_1}{\sqrt{a_1b_1}}
\]

(2)
Also, LHS of equation (2) =
\[\frac{e_1 + e_2}{\sqrt{(a_1 + a_2)(b_1 + b_2)}} \leq \frac{e_1 + e_1\sqrt{a_1b_2}}{\sqrt{(a_1 + a_2)(b_1 + b_2)}} \]
Because (1)
\[= \frac{e_1(\sqrt{a_1b_1} + \sqrt{a_2b_2})}{\sqrt{a_1b_1}(a_1 + a_2)(b_1 + b_2)} \]

Hence, if we prove
\[\frac{e_1(\sqrt{a_1b_1} + \sqrt{a_2b_2})}{\sqrt{a_1b_1}(a_1 + a_2)(b_1 + b_2)} \leq \frac{e_1}{\sqrt{a_1b_1}} = \text{RHS of equation (2)} \]
we prove (2).

Here,
\[\frac{e_1(\sqrt{a_1b_1} + \sqrt{a_2b_2})}{\sqrt{a_1b_1}(a_1 + a_2)(b_1 + b_2)} \leq \frac{e_1}{\sqrt{a_1b_1}} \]
\[\iff (\sqrt{a_1b_1} + \sqrt{a_2b_2}) \leq (a_1 + a_2)(b_1 + b_2) \]
\[\iff (\sqrt{a_1b_1} + \sqrt{a_2b_2})^2 \leq (a_1 + a_2)(b_1 + b_2) \]
\[\iff 2\sqrt{a_1b_1a_2b_2} \leq a_1b_2 + a_2b_1 \]
\[\iff \sqrt{(a_1b_2)(a_2b_1)} \leq \frac{a_1b_2 + a_2b_1}{2} \]

This is true since arithmetic mean of two non-negative real numbers is always greater than or equal to their geometric mean. Hence
\[\frac{e_1 + e_2}{\sqrt{(a_1 + a_2)(b_1 + b_2)}} \leq \frac{e_1(\sqrt{a_1b_1} + \sqrt{a_2b_2})}{\sqrt{a_1b_1}(a_1 + a_2)(b_1 + b_2)} \]
\[\leq \frac{e_1}{\sqrt{a_1b_1}} = \max\{\frac{e_1}{\sqrt{a_1b_1}}, \frac{e_2}{\sqrt{a_2b_2}}\} \]

2 Maxflow Densest Subgraph (MDS)

MDS algorithm finds a densest bi-partite subgraph of a Triple Network in polynomial time. Inspired by [2] and [1], we use the max-flow min-cut strategy to obtain the densest bi-partite subgraph.

Definition 1. (Maximum density of a Triple Network) In a Triple Network \(G(V_a, V_b, E_a, E_b, E_c) \), maximum density is \(\rho^* = \max_{S_a \subseteq V_a, S_b \subseteq V_b} \frac{|E_c(S_a, S_b)|}{\sqrt{|S_a||S_b|}} \).

Let \(G_c[S_a, S_b] \) be a bi-partite subgraph of the Triple Network \(G \). Consider the number \(\lambda \) for which \(|E_c(S_a, S_b)| - \lambda \sqrt{|S_a||S_b|} = 0 \). \(\lambda \), thus the density of this graph, depends on ratio \(r = \frac{|S_a|}{|S_b|} \) and \(|E_c(S_a, S_b)| \). Ratio \(r \) can take at most
Proof. Let \(G(V_a, V_b, E_a, E_b, E_c) \) be a Triple Network with \(V_a \neq \phi \), \(V_b \neq \phi \). Let \(G'(V', E') \) be the weighted directed flow network constructed from this network.
as mentioned above. Let S, T be the minimum s-t cut of this flow network. From figure 1(a), if $S = \{s\}$ and $T = V_a \cup V_b \cup \{t\}$, then the value this trivial cut is $2m(|V_a| + |V_b|)$. However, if $S = \{s\} \cup S_a \cup S_b$ and $T = \{V_a \setminus S_a\} \cup \{V_b \setminus S_b\} \cup \{t\}$ then the value of a cut in this flow network is

$$2m|V_a| + 2m|V_b| - \sum_{v_a \in V_a \setminus S_a} 2m - \sum_{v_a \in V_a \setminus S_a} 2m + \sum_{v_a \in S_a} (2m + \frac{\lambda}{\sqrt{r}})$$

$$+ \sum_{v_b \in S_b} (2m + \sqrt{r} \lambda - 2d(v_b)) + \sum_{\{v_b, v_a\} \in E} 2$$

$$= 2m(|V_a| + |V_b|) + \lambda \sqrt{r} |S_b| + \frac{\lambda}{\sqrt{r}} |S_a| - 2|E_c(S_a, S_b)|$$

$$= 2m(|V_a| + |V_b|) - 2(|E_c(S_a, S_b)| + \lambda \sqrt{|S_a||S_b|})(\text{ substitute } r = \frac{|S_a|}{|S_b|})$$

This non-trivial s-t cut, if exists, is minimal. Hence the value of this cut is less than the value of trivial cut. In other words,

$$2m(|V_a| + |V_b|) \geq 2m(|V_a| + |V_b|) - 2(|E_c(S_a, S_b)|$$

$$- \lambda \sqrt{|S_a||S_b|}).$$

Hence, for a non-trivial s-t cut, $|E_c(S_a, S_b)|$$

$$- \lambda \sqrt{|S_a||S_b|} < 0.$$ So if, for given values of λ and r, the flow network renders a non-trivial s-t cut S, T; then the subgraph $S \setminus \{s\} = G_c[S_a, S_b]$ has density λ such that $|E_c(S_a, S_b)| - \lambda \sqrt{|S_a||S_b|} \geq 0$. Which implies that $\rho(S_a, S_b) \geq \lambda$. Hence, maximum density of G has to be higher than the current guess of λ. However, if the flow network renders a trivial s-t cut, no subgraph of G has density λ with given r. Hence, maximum density of G has to be lower than current guess of λ. By repeating this process as a binary search, eventually we will find the smallest λ with $|E_c(S_a, S_b)| - \lambda \sqrt{|S_a||S_b|} = 0$ for the given r. By iterating on possible values of r, the maximum value of such λ is found. This value is maximum density and the corresponding subgraph is a densest subgraph of G.

Theorem 3. MDS algorithm is a polynomial time algorithm.

Proof. The density difference of any two subgraphs of a bi-partite graph $G_c[V_a, V_b]$ is

$$\left| \frac{m}{\sqrt{v_1v_2}} - \frac{m'}{\sqrt{v_1'v_2'}} \right| \geq \frac{1}{|V_a|^2|V_b|^2}$$

with $0 \leq m, m' \leq |E_c|, 1 \leq v_1, v_1' \leq |V_a|, 1 \leq v_2, v_2' \leq |V_b|$. This guarantees that the search for maximum density in the range $0, \sqrt{|V_a||V_b|}$ can be performed with step size $\frac{1}{|V_a|^2|V_b|^2}$, halting in $O(|V_a|^{3/2}|V_b|^{3/2})$ iterations.

Within each iteration of this binary search, the minimum cut of the flow graph is calculated in $O(|V_a| + |V_b|)2(2(|V_a| + |V_b|) + |E_c|)$. Hence, the complexity of algorithm 1 is $O(|V_a|^{4.5}|V_b|^{4.5})$. Adding the cost of BFS for finding connected components in G_a and G_b, the upper-bound still remains unchanged.
Algorithm 1 Maxflow Densest Subgraph (MDS)

Input: Triple Network $G(V_a, V_b, E_a, E_b, E_c)$, with $V_a \neq \emptyset, V_b \neq \emptyset$

Output: A densest bi-partite subgraph $G_c[S_a, S_b]$ of G

1. $possible_ratios = \{ \frac{i}{j} | i \in [1, \ldots |V_a|], j \in [1, \ldots |V_b|] \}$
2. $densest_subgraph = \emptyset, maximum_density = \rho(V_a, V_b)$
3. for ratio guess $r \in possible_ratios$ do
4. $low \leftarrow \rho(V_a, V_b), high \leftarrow \sqrt{|V_a||V_b|}, g = G_c[V_a, V_b]$
5. while $high - low \geq \frac{1}{|V_a||V_b|}$ do
6. $mid = \frac{high + low}{2}$
7. construct a flow graph G' as described in (f1) - (f6) and find the minimum s-t cut S, T
8. $g' = S \setminus \{source \ node \ s\}$
9. if $g' \neq \emptyset$ then
10. $g \leftarrow g'$
11. $low = \max\{mid, \rho(g)\}$
12. else high = mid
13. if maximum_density < low then
14. maximum_density = low
15. densest_subgraph = g

References