Interval Neutrosophic Sets and Logic: Theory and Applications in Computing

Haibin Wang

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

Part of the Computer Sciences Commons

Recommended Citation
doi: https://doi.org/10.57709/1059412

This Dissertation is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Computer Science Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact scholarworks@gsu.edu.
INTERVAL NEUTROSOPHIC SETS AND LOGIC:
THEORY AND APPLICATIONS IN COMPUTING

by

HAIBIN WANG

Under the Direction of Rajshekhar Sunderraman

ABSTRACT

A neutrosophic set is a part of neutrosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. The neutrosophic set is a powerful general formal framework that has been recently proposed. However, the neutrosophic set needs to be specified from a technical point of view. Here, we define the set-theoretic operators on an instance of a neutrosophic set, and call it an Interval Neutrosophic Set (INS). We prove various properties of INS, which are connected to operations and relations over INS. We also introduce a new logic system based on interval neutrosophic sets.

We study the interval neutrosophic propositional calculus and interval neutrosophic predicate calculus. We also create a neutrosophic logic inference system based on interval neutrosophic logic. Under the framework of the interval neutrosophic set, we propose a data model based on the special case of the interval neutrosophic sets called Neutrosophic Data Model. This data model is the extension of fuzzy data model and paraconsistent data model. We generalize the set-theoretic operators and relation-theoretic operators of fuzzy relations and paraconsistent relations.
to neutrosophic relations. We propose the generalized SQL query constructs and tuple-relational calculus for Neutrosophic Data Model.

We also design an architecture of Semantic Web Services agent based on the interval neutrosophic logic and do the simulation study.

INDEX WORDS: Interval neutrosophic sets, interval neutrosophic logic, fuzzy sets, fuzzy logic, semantic Web Services
INTERVAL NEUTROSOPHIC SETS AND LOGIC:
THEORY AND APPLICATIONS IN COMPUTING

by

HAIBIN WANG

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2005
INTERVAL NEUTROSOPHIC SETS AND LOGIC:
THEORY AND APPLICATIONS IN COMPUTING

by

HAIBIN WANG

Major Professor: Rajshekhar Sunderraman
Committee: Yan-Qing Zhang
 Anu Bourgeois
 Lifeng Ding

Electronic Version Approved:

Office of Graduate Studies
College of Arts and Sciences
Georgia State University
December 2005
ACKNOWLEDGEMENTS

I would firstly like to thank my advisor, Rajshekhar Sunderraman, for his guidance during my five years at Georgia State University. He allowed me to work in a relatively independent fashion, while always providing valuable advice and suggestions. Dr. Sunderraman is not only my academic model but also my life model. From him, I learned a lot of valuable things which will benefit my whole life. I would also like to thank my committe members, Dr. Yanqing Zhang, Dr. Anu Bourgeois and Dr. Lifeng Ding, for their enthusiasm and their helpful suggestions.

I am very grateful to the Dr. Florentin Smarandache for his encouragement and insightful suggestions.

In addition to those people mentioned above, various people have provided valuable comments on the work presented in this dissertation. For such comments I would like to thank Praveen Madiraju, Hao Tian, Yuanchun He, Yuchun Tang and a number of anonymous refrees.

I would like to thank my family for their support and encouragement for me to pursue a Ph.D. in the United States. And last, but certainly not least, I would like to thank my wife Yihui and my daughter Velda for their loving support.
TABLE OF CONTENTS

Acknowledgements iv
List of Figures v
List of Acronyms vi
Chapter 1: Introduction 1
 1.1 Motivation .. 1
 1.2 Problem Statement .. 2
 1.3 Contributions ... 2
 1.4 Organization ... 4
Chapter 2: Interval Neutrosophic Sets 5
 2.1 Introduction ... 5
 2.2 Neutrosophic Set .. 9
 2.3 Interval Neutrosophic Set .. 11
 2.4 Properties of Set-theoretic Operators 23
 2.5 Convexity of Interval Neutrosophic Set 24
Chapter 3: Interval Neutrosophic Logic 25
 3.1 Introduction ... 25
 3.2 Interval Neutrosophic Propositional Calculus 27
 3.3 Interval Neutrosophic Predicate Calculus 33
 3.4 An Application of Interval Neutrosophic Logic 39
Chapter 4: Neutrosophic Relational Data Model

4.1 Introduction ... 47
4.2 Fuzzy Relations and Operations ... 51
4.3 Neutrosophic Relations .. 53
4.4 Generalized Algebra on Neutrosophic Relations 58
4.5 An Application .. 63
4.6 An Infinite-Valued Tuple Relational Calculus 67
4.7 A Generalized SQL Query Construct for Neutrosophic Relations 73

Chapter 5: Soft Semantic Web Services Agent

5.1 Introduction ... 80
5.2 Background ... 83
5.3 Architecture of Extensible Soft SWS Agent 86
5.4 Related Work ... 97

Chapter 6: Conclusions

Bibliography 102
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Relationship among interval neutrosophic set and other sets</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Illustration of interval neutrosophic set in R^1</td>
<td>12</td>
</tr>
<tr>
<td>3.1</td>
<td>General Scheme of an INLS</td>
<td>40</td>
</tr>
<tr>
<td>3.2</td>
<td>Conceptual Diagram for Neutrosophication of Crisp Input</td>
<td>43</td>
</tr>
<tr>
<td>4.1</td>
<td>Relationship Among FRDM, PRDM, NRDM and RDM</td>
<td>50</td>
</tr>
<tr>
<td>5.1</td>
<td>Architecture of the Extensible Soft SWS Agent</td>
<td>86</td>
</tr>
<tr>
<td>5.2</td>
<td>Architecture of Repository</td>
<td>88</td>
</tr>
<tr>
<td>5.3</td>
<td>Capability oriented query</td>
<td>89</td>
</tr>
<tr>
<td>5.4</td>
<td>Keyword oriented query</td>
<td>90</td>
</tr>
<tr>
<td>5.5</td>
<td>Publish service advertisement</td>
<td>91</td>
</tr>
<tr>
<td>5.6</td>
<td>Schematic diagram of Neutrosophic Neural Network</td>
<td>93</td>
</tr>
<tr>
<td>5.7</td>
<td>Membership functions of inputs</td>
<td>94</td>
</tr>
</tbody>
</table>
LIST OF ACRONYMS

INS: Interval Neutrosophic Set

INL: Interval Neutrosophic Logic

INLS: Interval Neutrosophic Logic System

SWS: Semantic Web Services
Chapter 1

INTRODUCTION

Essentially all the information in the real world is imprecise, here imprecise means fuzzy, incomplete and even inconsistent. There are many theories existing to handle such imprecise information, such as fuzzy set theory, probability theory, probability theory, intuitionistic fuzzy set theory, paraconsistent logic theory, etc. These theories can only handle one aspect of imprecise problem but not the whole in one framework. For example, fuzzy set theory can only handle fuzzy, vague information not the incomplete and inconsistent information.

In this dissertation, we unify the above-mentioned theories under one framework. Under this framework, we can not only model and reason with fuzzy, incomplete information but also inconsistent information without danger of trivialization. This framework is called Interval Neutrosophic Set (INS) and Interval Neutrosophic Logic (INL). We also propose two applications based on INS and INL.

1.1 Motivation

In a interval neutrosophic set, there are three components, truth-membership function, indeterminacy-membership function and falsity-membership function. Indeterminacy is quantified explicitly and three components are independent. This assumption is very important in many applications, such as information fusion in which we try to combine the data from different sensors.

The interval neutrosophic set is an instance of more general framework called neutrosophic set which was introduced by Florentin Smarandache. A neutrosophic set A defined on universe X, $x = x(T, I, F) \in A$ with T, I and F being the real standard or non-standard subsets of $[0^-, 1^+]$, T is the degree of truth-membership of A, I is the degree of indeterminacy-membership of A and F is the degree of falsity-membership of A.

The interval neutrosophic set and logic is more easy to apply to the scientific and engineering
applications. We call it as “interval” because it is subclass of neutrosophic set and logic, that is we only consider the subunitary interval of $[0,1]$.

1.2 Problem Statement

An interval neutrosophic set A defined on universe $X, x = x(T, I, F) \in A$ with T, I and F being the subinterval of $[0,1]$. The interval neutrosophic set generalizes the following sets:

1. the *classical set*, $I = \emptyset, \inf T = \sup T = 0 \text{ or } 1, \inf F = \sup F = 0 \text{ or } 1$ and $\sup T + \sup F = 1$.

2. the *fuzzy set*, $I = \emptyset, \inf T = \sup T \in [0,1], \inf F = \sup F \in [0,1]$ and $\sup T + \sup F = 1$.

3. the *interval valued fuzzy set*, $I = \emptyset, \inf T, \sup T, \inf F, \sup F \in [0,1], \sup T + \inf F = 1$ and $\inf T + \sup F = 1$.

4. the *intuitionistic fuzzy set*, $I = \emptyset, \inf T = \sup T \in [0,1], \inf F = \sup F \in [0,1]$ and $\sup T + \sup F \leq 1$.

5. the *interval valued intuitionistic fuzzy set*, $I = \emptyset, \inf T, \sup T, \inf F, \sup F \in [0,1]$ and $\sup T + \sup F \leq 1$.

6. the *paraconsistent set*, $I = \emptyset, \inf T = \sup T \in [0,1], \inf F = \sup F \in [0,1]$ and $\sup T + \sup F > 1$.

7. the *interval valued paraconsistent set*, $I = \emptyset, \inf T, \sup T, \inf F, \sup F \in [0,1]$ and $\inf T + \inf F > 1$.

1.3 Contributions

Here, we give the overall contributions. They are broadly summarized as follows:

1. Interval Neutrosophic Sets: We are the first to propose the concept of interval neutrosophic sets. We define the set-theoretic operators on the interval neutrosophic sets and study the various properties of interval neutrosophic sets.
2. Interval Neutrosophic Logic: Based on the interval neutrosophic sets, we create a new logic system called interval neutrosophic logic. We define the syntax and semantics of interval neutrosophic propositional logic and interval neutrosophic predicate logic. We also create neutrosophic logic inference system based on the interval neutrosophic logic.

3. Neutrosophic Data Model: We propose an extension of relational data model called neutrosophic data model. This data model is based on the special case of interval neutrosophic sets, i.e., \(I = \emptyset \). This data model is the generalization of fuzzy relational data model and paraconsistent relational data model. It could model and reason with fuzzy, incomplete and inconsistent information.

4. Infinite-Valued Tuple Relational Calculus for Neutrosophic Database: We define one logic query language called infinite-valued tuple relational calculus for the neutrosophic databases. The syntax of this logic query language is very similar to that of traditional relational databases but its semantics is very different.

5. Generalized SQL Query Construct for Neutrosophic Databases: We define a generalized SQL query language for neutrosophic databases. The syntax of our generalized SQL query construct is similar to that of traditional databases, but its semantics is different.

6. Soft Semantic Web Services Agent: We propose an architecture of soft Semantic Web Services agent which could provide high quality of service of Semantic Web Services. We perform the simulation based on the interval neutrosophic logic, neural network and genetic algorithms. By our knowledge, this is the first one in the literature until now.

1.4 Organization

The rest of the dissertation is organized as follows: Chapter 2 first introduces the interval neutrosophic sets. In this chapter, the definition of interval neutrosophic sets and set-theoretic operators are given and various properties of interval neutrosophic sets are proved. Chapter 3 defines the interval neutrosophic logic based on interval neutrosophic sets including the syntax and semantics.
of the first order interval neutrosophic propositional logic and the first order interval neutrosophic predicate logic. In this chapter, we also design an interval neutrosophic logic inference system based on the first order interval neutrosophic predicate logic. Chapter 4 gives one application of interval neutrosophic sets in the field of relational databases. The neutrosophic data model is the generalization of fuzzy data model and paraconsistent data model. Here, we generalize various set-theoretic and relation-theoretic operations of fuzzy data model to the neutrosophic data model. Chapter 5 gives another application of interval neutrosophic logic. A soft Semantic Web Services agent framework is proposed to facilitate the registration and discovery of high quality Semantic Web Services. The intelligent inference engine module of soft Semantic Web Services agent is implemented using interval neutrosophic logic. Chapter 6 concludes the dissertation.
Chapter 2

INTERVAL NEUTROSOPHIC SETS

A neutrosophic set is a part of neutrosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. The neutrosophic set is a powerful general formal framework that has been recently proposed. However, the neutrosophic set needs to be specified from a technical point of view. Now we define the set-theoretic operators on an instance of a neutrosophic set, and call it an Interval Neutrosophic Set (INS). We prove various properties of INS, which are connected to operations and relations over INS. Finally, we introduce and prove the convexity of interval neutrosophic sets.

2.1 Introduction

The concept of fuzzy sets was introduced by Zadeh in 1965 [104]. Since then fuzzy sets and fuzzy logic have been applied in many real applications to handle uncertainty. The traditional fuzzy set uses one real number $\mu_A(x) \in [0, 1]$ to represent the grade of membership of fuzzy set A defined on universe X. Sometimes $\mu_A(x)$ itself is uncertain and hard to be defined by a crisp value. So the concept of interval valued fuzzy sets was proposed [97] to capture the uncertainty of grade of membership. Interval valued fuzzy set uses an interval value $[\mu^L_A(x), \mu^U_A(x)]$ with $0 \leq \mu^L_A(x) \leq \mu^U_A(x) \leq 1$ to represent the grade of membership of fuzzy set A. In some applications such as expert system, belief system and information fusion, we should consider not only the truth-membership supported by the evidence but also the falsity-membership against by the evidence. That is beyond the scope of fuzzy sets and interval valued fuzzy sets. In 1986, Atanassov introduced the intuitionistic fuzzy sets [23] that is a generalization of fuzzy sets and provably equivalent to interval valued fuzzy sets. The intuitionistic fuzzy sets consider both truth-membership and falsity-membership. Later on, intuitionistic fuzzy sets were extended to the interval valued intuitionistic fuzzy sets [25]. The interval valued intuitionistic fuzzy set uses a pair of intervals $[t^-, t^+]$, $0 \leq t^- \leq
\(t^+ \leq 1 \) and \([f^-, f^+]\), \(0 \leq f^- \leq f^+ \leq 1\) with \(t^+ + f^+ \leq 1\) to describe the degree of true belief and false belief. Because of the restriction that \(t^+ + f^+ \leq 1\), intuitionistic fuzzy sets and interval valued intuitionistic fuzzy sets can only handle incomplete information not the indeterminate information and inconsistent information which exists commonly in belief systems. For example, when we ask the opinion of an expert about certain statement, he or she may say that the possibility that the statement is true is between 0.5 and 0.7 and the statement is false is between 0.2 and 0.4 and the degree that he or she is not sure is between 0.1 and 0.3. Here is another example, suppose there are 10 voters during a voting process. In time \(t_1\), three vote “yes”, two vote “no” and five are undecided, using neutrosophic notation, it can be expressed as \(x(0.3, 0.5, 0.2)\). In time \(t_2\), three vote “yes”, two vote “no”, two give up and three are undecided, it then can be expressed as \(x(0.3, 0.3, 0.2)\). That is beyond the scope of the intuitionistic fuzzy set. So, the notion of neutrosophic set is more general and overcomes the aforementioned issues.

In neutrosophic set, indeterminacy is quantified explicitly and truth-membership, indeterminacy-membership and falsity-membership are independent. This assumption is very important in many applications such as information fusion in which we try to combine the data from different sensors. Neutrosophy was introduced by Florentin Smarandache in 1980. “It is a branch of philosophy which studies the origin, nature and scope of neutralities, as well as their interactions with different ideational spectra” [89]. Neutrosophic set is a powerful general formal framework which generalizes the concept of the classic set, fuzzy set [104], interval valued fuzzy set [97], intuitionistic fuzzy set [23], interval valued intuitionistic fuzzy set [25], paraconsistent set [89], dialetheist set [89], paradoxist set [89], tautological set [89]. A neutrosophic set \(A\) defined on universe \(U\). \(x = x(T, I, F) \in A\) with \(T, I \) and \(F\) being the real standard or non-standard subsets of \(]0^-, 1^+[\). \(T\) is the degree of truth-membership function in the set \(A\), \(I\) is the degree of indeterminacy-membership function in the set \(A\) and \(F\) is the degree of falsity-membership function in the set \(A\).

The neutrosophic set generalizes the above mentioned sets from philosophical point of view. From scientific or engineering point of view, the neutrosophic set and set-theoretic operators need to be specified. Otherwise, it will be difficult to apply in the real applications. In this chapter, we define the set-theoretic operators on an instance of neutrosophic set called Interval Neutrosophic
Set (INS). We call it as “interval” because it is subclass of neutrosophic set, that is we only consider the subunitary interval of \([0, 1]\).

An interval neutrosophic set \(A\) defined on universe \(X\), \(x = x(T, I, F) \in A\) with \(T\), \(I\) and \(F\) being the subinterval of \([0, 1]\). The interval neutrosophic set can represent uncertain, imprecise, incomplete and inconsistent information which exist in real world. The interval neutrosophic set generalizes the following sets:

1. the classical set, \(I = \emptyset\), \(\inf T = \sup T = 0\) or \(1\), \(\inf F = \sup F = 0\) or \(1\) and \(\sup T + \sup F = 1\).

2. the fuzzy set, \(I = \emptyset\), \(\inf T = \sup T \in [0, 1]\), \(\inf F = \sup F \in [0, 1]\) and \(\sup T + \sup F = 1\).

3. the interval valued fuzzy set, \(I = \emptyset\), \(\inf T, \sup T, \inf F, \sup F \in [0, 1]\), \(\sup T + \inf F = 1\) and \(\inf T + \sup F = 1\).

4. the intuitionistic fuzzy set, \(I = \emptyset\), \(\inf T = \sup T \in [0, 1]\), \(\inf F = \sup F \in [0, 1]\) and \(\sup T + \sup F \leq 1\).

5. the interval valued intuitionistic fuzzy set, \(I = \emptyset\), \(\inf T, \sup T, \inf F, \sup F \in [0, 1]\) and \(\sup T + \sup F \leq 1\).

6. the paraconsistent set, \(I = \emptyset\), \(\inf T = \sup T \in [0, 1]\), \(\inf F = \sup F \in [0, 1]\) and \(\sup T + \sup F > 1\).

7. the interval valued paraconsistent set, \(I = \emptyset\), \(\inf T, \sup T, \inf F, \sup F \in [0, 1]\) and \(\inf T + \inf F > 1\).

The relationship among interval neutrosophic set and other sets is illustrated in Fig 2.1.

Note that \(\rightarrow\) in Fig. 2.1 such as \(a \rightarrow b\) means that \(b\) is a generalization of \(a\).

We define the set-theoretic operators on the interval neutrosophic set. Various properties of INS are proved, which are connected to the operations and relations over INS.

The rest of chapter is organized as follows. Section 2.2 gives a brief overview of the neutrosophic set. Section 2.3 gives the definition of the interval neutrosophic set and set-theoretic operations.
Figure 2.1: Relationship among interval neutrosophic set and other sets
Section 2.4 presents some properties of set-theoretic operations. Section 2.5 defines the convexity of the interval neutrosophic sets and proves some properties of convexity. Section ?? concludes the chapter. To maintain a smooth flow throughout the chapter, we present the proofs to all theorems in Appendix.

2.2 Neutrosophic Set

This section gives a brief overview of concepts of neutrosophic set defined in [89]. Here, we use different notations to express the same meaning. Let S_1 and S_2 be two real standard or non-standard subsets, then $S_1 \oplus S_2 = \{x|x = s_1 + s_2, s_1 \in S_1 \text{ and } s_2 \in S_2\}$, $\{1^+\} \oplus S_2 = \{x|x = 1^+ + s_2, s_2 \in S_2\}$. $S_1 \odot S_2 = \{x|x = s_1 - s_2, s_1 \in S_1 \text{ and } s_2 \in S_2\}$, $\{1^+\} \odot S_2 = \{x|x = 1^+ - s_2, s_2 \in S_2\}$. $S_1 \otimes S_2 = \{x|x = s_1 \cdot s_2, s_1 \in S_1 \text{ and } s_2 \in S_2\}$.

Definition 1 (Neutrosophic Set) Let X be a space of points (objects), with a generic element in X denoted by x.

A neutrosophic set A in X is characterized by a truth-membership function T_A, a indeterminacy-membership function I_A and a falsity-membership function F_A. $T_A(x), I_A(x)$ and $F_A(x)$ are real standard or non-standard subsets of $]0^-, 1^+[$. That is

$$T_A : X \rightarrow]0^-, 1^+[,$$ \hspace{1cm} (2.1)

$$I_A : X \rightarrow]0^-, 1^+[,$$ \hspace{1cm} (2.2)

$$F_A : X \rightarrow]0^-, 1^+[.$$ \hspace{1cm} (2.3)

There is no restriction on the sum of $T_A(x)$, $I_A(x)$ and $F_A(x)$, so $0^- \leq \sup T_A(x) + \sup I_A(x) + \sup F_A(x) \leq 3^+$.

Definition 2 The complement of a neutrosophic set A is denoted by \bar{A} and is defined by
\[T_A(x) = \{1^+\} \ominus T_A(x), \] \hspace{1cm} (2.4)
\[I_A(x) = \{1^+\} \oplus I_A(x), \] \hspace{1cm} (2.5)
\[F_A(x) = \{1^+\} \ominus F_A(x), \] \hspace{1cm} (2.6)

for all \(x \) in \(X \).

Definition 3 (Containment) A neutrosophic set \(A \) is contained in the other neutrosophic set \(B \), \(A \subseteq B \), if and only if

\[
\inf T_A(x) \leq \inf T_B(x) , \hspace{0.5cm} \sup T_A(x) \leq \sup T_B(x),
\] \hspace{1cm} (2.7)
\[
\inf I_A(x) \geq \inf I_B(x) , \hspace{0.5cm} \sup I_A(x) \geq \sup I_B(x),
\] \hspace{1cm} (2.8)
\[
\inf F_A(x) \geq \inf F_B(x) , \hspace{0.5cm} \sup F_A(x) \geq \sup F_B(x),
\] \hspace{1cm} (2.9)

for all \(x \) in \(X \).

Definition 4 (Union) The union of two neutrosophic sets \(A \) and \(B \) is a neutrosophic set \(C \), written as \(C = A \cup B \), whose truth-membership, indeterminacy-membership and falsity-membership functions are related to those of \(A \) and \(B \) by

\[T_C(x) = T_A(x) \oplus T_B(x) \ominus T_A(x) \ominus T_B(x), \] \hspace{1cm} (2.10)
\[I_C(x) = I_A(x) \oplus I_B(x) \ominus I_A(x) \ominus I_B(x), \] \hspace{1cm} (2.11)
\[F_C(x) = F_A(x) \oplus F_B(x) \ominus F_A(x) \ominus F_B(x), \] \hspace{1cm} (2.12)

for all \(x \) in \(X \).

Definition 5 (Intersection) The intersection of two neutrosophic sets \(A \) and \(B \) is a neutrosophic set \(C \), written as \(C = A \cap B \), whose truth-membership, indeterminacy-membership and falsity-membership functions are related to those of \(A \) and \(B \) by
\[T_C(x) = T_A(x) \odot T_B(x), \quad (2.13) \]
\[I_C(x) = I_A(x) \odot I_B(x), \quad (2.14) \]
\[F_C(x) = F_A(x) \odot F_B(x), \quad (2.15) \]
for all \(x \) in \(X \).

Definition 6 (Difference) The difference of two neutrosophic sets \(A \) and \(B \) is a neutrosophic set \(C \), written as \(C = A \setminus B \), whose truth-membership, indeterminacy-membership and falsity-membership functions are related to those of \(A \) and \(B \) by

\[T_C(x) = T_A(x) \odot T_A(x) \odot T_B(x), \quad (2.16) \]
\[I_C(x) = I_A(x) \odot I_A(x) \odot I_B(x), \quad (2.17) \]
\[F_C(x) = F_A(x) \odot F_A(x) \odot F_B(x), \quad (2.18) \]
for all \(x \) in \(X \).

Definition 7 (Cartesian Product) Let \(A \) be the neutrosophic set defined on universe \(E_1 \) and \(B \) be the neutrosophic set defined on universe \(E_2 \). If \(x(T_A^1, I_A^1, F_A^1) \in A \) and \(y(T_B^2, I_B^2, F_B^2) \in B \), then the cartesian product of two neutrosophic sets \(A \) and \(B \) is defined by

\[(x(T_A^1, I_A^1, F_A^1), y(T_B^2, I_B^2, F_B^2)) \in A \times B \quad (2.19) \]

2.3 Interval Neutrosophic Set

In this section, we present the notion of the interval neutrosophic set (INS). The interval neutrosophic set (INS) is an instance of neutrosophic set which can be used in real scientific and engineering applications.

Definition 8 (Interval Neutrosophic Set) Let \(X \) be a space of points (objects), with a generic element in \(X \) denoted by \(x \).
An interval neutrosophic set (INS) A in X is characterized by truth-membership function T_A, indeterminacy-membership function I_A and falsity-membership function F_A. For each point x in X, $T_A(x), I_A(x), F_A(x) \subseteq [0, 1]$.

An interval neutrosophic set (INS) in R^1 is illustrated in Fig. 2.2.

![Figure 2.2: Illustration of interval neutrosophic set in R^1](image)

When X is continuous, an INS A can be written as

$$A = \int_X \langle T(x), I(x), F(x) \rangle / x, \ x \in X$$ \hspace{1cm} (2.20)

When X is discrete, an INS A can be written as

$$A = \sum_{i=1}^{n} \langle T(x_i), I(x_i), F(x_i) \rangle / x_i, \ x_i \in X$$ \hspace{1cm} (2.21)

Consider parameters such as capability, trustworthiness and price of semantic Web services. These parameters are commonly used to define quality of service of semantic Web services. In this section, we will use the evaluation of quality of service of semantic Web services [99] as running example to illustrate every set-theoretic operation on interval neutrosophic set.

Example 1 Assume that $X = [x_1, x_2, x_3]$. x_1 is capability, x_2 is trustworthiness and x_3 is price. The values of x_1, x_2 and x_3 are in $[0, 1]$. They are obtained from the questionnaire of some domain experts, their option could be degree of good, degree of indeterminacy and degree of poor. A is an
interval neutrosophic set of X defined by

$$A = ([0.2, 0.4], [0.3, 0.5], [0.3, 0.5]) / x_1 + ([0.5, 0.7], [0.2, 0.3], [0.2, 0.3]) / x_2 +$$

$$([0.6, 0.8], [0.2, 0.3], [0.2, 0.3]) / x_3.$$

B is an interval neutrosophic set of X defined by

$$B = ([0.5, 0.7], [0.1, 0.3], [0.1, 0.3]) / x_1 + ([0.2, 0.3], [0.2, 0.4], [0.5, 0.8]) / x_2 +$$

$$([0.4, 0.6], [0.1, 0.3], [0.3, 0.4]) / x_3.$$

Definition 9 An interval neutrosophic set A is empty if and only if its $\inf T_A(x) = \sup T_A(x) = 0$, $\inf I_A(x) = \sup I_A(x) = 1$ and $\inf F_A(x) = \sup T_A(x) = 0$, for all x in X.

We now present the set-theoretic operators on interval neutrosophic set.

Definition 10 (Containment) An interval neutrosophic set A is contained in the other interval neutrosophic set B, $A \subseteq B$, if and only if

$$\inf T_A(x) \leq \inf T_B(x) \quad , \quad \sup T_A(x) \leq \sup T_B(x),$$

$$\inf I_A(x) \geq \inf I_B(x) \quad , \quad \sup I_A(x) \geq \sup I_B(x),$$

$$\inf F_A(x) \geq \inf F_B(x) \quad , \quad \sup F_A(x) \geq \sup F_B(x),$$

for all x in X.

Definition 11 Two interval neutrosophic sets A and B are equal, written as $A = B$, if and only if $A \subseteq B$ and $B \subseteq A$

Let $\underline{0} = (0, 1, 1)$ and $\underline{1} = (1, 0, 0)$.

Definition 12 (Complement) Let C_N denote a neutrosophic complement of A. Then C_N is a function

$$C_N : N \to N$$

and C_N must satisfy at least the following three axiomatic requirements:

1. $C_N(\underline{0}) = \underline{1}$ and $C_N(\underline{1}) = \underline{0}$ (boundary conditions).
2. Let \(A \) and \(B \) be two interval neutrosophic sets defined on \(X \), if \(A(x) \leq B(x) \), then \(C_N(A(x)) \geq C_N(B(x)) \), for all \(x \) in \(X \). (monotonicity).

3. Let \(A \) be an interval neutrosophic set defined on \(X \), then \(C_N(C_N(A(x))) = A(x) \), for all \(x \) in \(X \). (involutivity).

There are many functions which satisfy the requirement to be the complement operator of interval neutrosophic sets. Here we give one example.

Definition 13 (Complement \(C_N \)) The complement of an interval neutrosophic set \(A \) is denoted by \(\bar{A} \) and is defined by

\[
T_\bar{A}(x) = F_A(x),
\]

\[
\inf I_\bar{A}(x) = 1 - \sup I_A(x),
\]

\[
\sup I_\bar{A}(x) = 1 - \inf I_A(x),
\]

\[
F_\bar{A}(x) = T_A(x),
\]

for all \(x \) in \(X \).

Example 2 Let \(A \) be the interval neutrosophic set defined in Example 1. Then,

\[
\bar{A} = (\langle [0.3, 0.5], [0.5, 0.7], [0.2, 0.4] \rangle/x_1 + \langle [0.2, 0.3], [0.8, 1.0], [0.5, 0.7] \rangle/x_2 + \langle [0.2, 0.3], [0.7, 0.8], [0.6, 0.8] \rangle/x_3.
\]

Definition 14 (\(N \)-norm) Let \(I_N \) denote a neutrosophic intersection of two interval neutrosophic sets \(A \) and \(B \). Then \(I_N \) is a function

\[
I_N : N \times N \rightarrow N
\]

and \(I_N \) must satisfy at least the following four axiomatic requirements:

1. \(I_N(A(x), \bot) = A(x) \), for all \(x \) in \(X \). (boundary condition).
2. \(B(x) \leq C(x) \) implies \(I_N(A(x), B(x)) \leq I_N(A(x), C(x)) \), for all \(x \) in \(X \). (monotonicity).

3. \(I_N(A(x), B(x)) = I_N(B(x), A(x)) \), for all \(x \) in \(X \). (commutativity).

4. \(I_N(A(x), I_N(B(x), C(x))) = I_N(I_N(A(x), B(x)), C(x)) \), for all \(x \) in \(X \). (associativity).

Here we give one example of intersection of two interval neutrosophic sets which satisfies above \(N \)-norm axiomatic requirements. Other different definitions can be given for different applications.

Definition 15 (Intersection \(I_N \)) The intersection of two interval neutrosophic sets \(A \) and \(B \) is an interval neutrosophic set \(C \), written as \(C = A \cap B \), whose truth-membership, indeterminacy-membership, and false-membership are related to those of \(A \) and \(B \) by

\[
\begin{align*}
\inf T_C(x) &= \min(\inf T_A(x), \inf T_B(x)), \\
\sup T_C(x) &= \min(\sup T_A(x), \sup T_B(x)), \\
\inf I_C(x) &= \max(\inf I_A(x), \inf I_B(x)), \\
\sup I_C(x) &= \max(\sup I_A(x), \sup I_B(x)), \\
\inf F_C(x) &= \max(\inf F_A(x), \inf F_B(x)), \\
\sup F_C(x) &= \max(\sup F_A(x), \sup F_B(x)),
\end{align*}
\]

for all \(x \) in \(X \).

Example 3 Let \(A \) and \(B \) be the interval neutrosophic sets defined in Example 1. Then, \(A \cap B = \langle [0.2, 0.4], [0.3, 0.5], [0.3, 0.5] \rangle / x_1 + \langle [0.2, 0.3], [0.2, 0.4], [0.5, 0.8] \rangle / x_2 + \langle [0.4, 0.6], [0.2, 0.3], [0.3, 0.4] \rangle / x_3 \).

Theorem 1 \(A \cap B \) is the largest interval neutrosophic set contained in both \(A \) and \(B \).
Definition 16 (N-conorm) Let U_N denote a neutrosophic union of two interval neutrosophic sets A and B. Then U_N is a function

$$U_N : N \times N \rightarrow N$$

and U_N must satisfy at least the following four axiomatic requirements:

1. $U_N(A(x), 0) = A(x)$, for all x in X. (boundary condition).

2. $B(x) \leq C(x)$ implies $U_N(A(x), B(x)) \leq U_N(A(x), C(x))$, for all x in X. (monotonicity).

3. $U_N(A(x), B(x)) = U_N(B(x), A(x))$, for all x in X. (commutativity).

4. $U_N(A(x), U_N(B(x), C(x))) = U_N(U_N(A(x), B(x)), C(x))$, for all x in X. (associativity).

Here we give one example of union of two interval neutrosophic sets which satisfies above N-conorm axiomatic requirements. Other different definitions can be given for different applications.

Definition 17 (Union U_{N_1}) The union of two interval neutrosophic sets A and B is an interval neutrosophic set C, written as $C = A \cup B$, whose truth-membership, indeterminacy-membership, and false-membership are related to those of A and B by

$$\inf T_C(x) = \max(\inf T_A(x), \inf T_B(x)), \quad (2.35)$$

$$\sup T_C(x) = \max(\sup T_A(x), \sup T_B(x)), \quad (2.36)$$

$$\inf I_C(x) = \min(\inf I_A(x), \inf I_B(x)), \quad (2.37)$$

$$\sup I_C(x) = \min(\sup I_A(x), \sup I_B(x)), \quad (2.38)$$

$$\inf F_C(x) = \min(\inf F_A(x), \inf F_B(x)), \quad (2.39)$$

$$\sup F_C(x) = \min(\sup F_A(x), \sup F_B(x)), \quad (2.40)$$

for all x in X. \qed
Example 4 Let A and B be the interval neutrosophic sets defined in Example 1. Then, $A \cup B = \langle [0.5, 0.7], [0.1, 0.3], [0.1, 0.3] \rangle / x_1 + \langle [0.5, 0.7], [0.2, 0.3] \rangle / x_2 + \langle [0.6, 0.8], [0.1, 0.2, 0.3] \rangle / x_3$.

The intuition behind the union operator is that if one of elements in A and B is true then it is true in $A \cup B$, only both are indeterminate and false in A and B then it is indeterminate and false in $A \cup B$. The other operators should be understood similarly.

Theorem 2 $A \cup B$ is the smallest interval neutrosophic set containing both A and B.

Theorem 3 Let P be the power set of all interval neutrosophic sets defined in the universe X. Then $(P; I_{N_1}, U_{N_1})$ is a distributive lattice.

Proof Let A, B, C be the arbitrary interval neutrosophic sets defined on X. It is easy to verify that $A \cap A = A, A \cup A = A$ (idempotency), $A \cap B = B \cap A, A \cup B = B \cup A$ (commutativity), $(A \cap B) \cap C = A \cap (B \cap C), (A \cup B) \cup C = A \cup (B \cup C)$ (associativity), and $A \cap (B \cup C) = (A \cap B) \cup (A \cap C), A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (distributivity).

Definition 18 (Interval neutrosophic relation) Let X and Y be two non-empty crisp sets. An interval neutrosophic relation $R(X,Y)$ is a subset of product space $X \times Y$, and is characterized by the truth membership function $T_R(x,y)$, the indeterminacy membership function $I_R(x,y)$, and the falsity membership function $F_R(x,y)$, where $x \in X$ and $y \in Y$ and $T_R(x,y), I_R(x,y), F_R(x,y) \subseteq [0,1]$.

Definition 19 (Interval Neutrosophic Composition Functions) The membership functions for the composition of interval neutrosophic relations $R(X,Y)$ and $S(Y,Z)$ are given by the interval neutrosophic sup-star composition of R and S

\begin{align*}
T_{R \circ S}(x,z) &= \sup_{y \in Y} \min(T_R(x,y), T_S(y,z)), \\
I_{R \circ S}(x,z) &= \sup_{y \in Y} \min(I_R(x,y), I_S(y,z)), \\
F_{R \circ S}(x,z) &= \inf_{y \in Y} \max(F_R(x,y), F_S(y,z)).
\end{align*}
If \(R \) is an interval neutrosophic set rather than an interval neutrosophic relation, then \(Y = X \) and
\[
\sup_{y \in Y} \min(T_R(x, y), T_S(y, z)) \quad \text{becomes} \quad \sup_{y \in Y} \min(T_R(x), T_S(y, z)),
\]
which is only a function of the output variable \(z \). It is similar for \(\sup_{y \in Y} \min(I_R(x, y), I_S(y, z)) \) and
\[
\inf_{y \in Y} \max(F_R(x, y), F_S(y, z)).
\]
Hence, the notation of \(T_{R \circ S}(x, z) \) can be simplified to \(T_{R \circ S}(z) \), so that in the case of \(R \) being just an interval neutrosophic set,
\[
T_{R \circ S}(z) = \sup_{x \in X} \min(T_R(x), T_S(x, z)), \tag{2.44}
\]
\[
I_{R \circ S}(z) = \sup_{x \in X} \min(I_R(x), I_S(x, z)), \tag{2.45}
\]
\[
F_{R \circ S}(z) = \inf_{x \in X} \max(F_R(x), F_S(x, z)). \tag{2.46}
\]

Definition 20 (Difference) The difference of two interval neutrosophic sets \(A \) and \(B \) is an interval neutrosophic set \(C \), written as \(C = A \setminus B \), whose truth-membership, indeterminacy-membership and falsity-membership functions are related to those of \(A \) and \(B \) by
\[
\inf T_C(x) = \min(\inf T_A(x), \inf F_B(x)), \tag{2.47}
\]
\[
\sup T_C(x) = \min(\sup T_A(x), \sup F_B(x)), \tag{2.48}
\]
\[
\inf I_C(x) = \max(\inf I_A(x), 1 - \sup I_B(x)), \tag{2.49}
\]
\[
\sup I_C(x) = \max(\sup I_A(x), 1 - \inf I_B(x)), \tag{2.50}
\]
\[
\inf F_C(x) = \max(\inf F_A(x), \inf T_B(x)), \tag{2.51}
\]
\[
\sup F_C(x) = \max(\sup F_A(x), \sup T_B(x)), \tag{2.52}
\]
for all \(x \) in \(X \).

Example 5 Let \(A \) and \(B \) be the interval neutrosophic sets defined in Example 1. Then, \(A \setminus B = \langle [0.1, 0.3], [0.7, 0.9], [0.5, 0.7] \rangle / x_1 + \langle [0.5, 0.7], [0.6, 0.8], [0.2, 0.3] \rangle / x_2 + \langle [0.3, 0.4], [0.9, 1.0], [0.4, 0.6] \rangle / x_3 \).

Theorem 4 \(A \subseteq B \iff \bar{B} \subseteq \bar{A} \)
Definition 21 (Addition) The addition of two interval neutrosophic sets A and B is an interval neutrosophic set C, written as $C = A + B$, whose truth-membership, indeterminacy-membership and falsity-membership functions are related to those of A and B by

$$
\begin{align*}
\inf T_C(x) &= \min(\inf T_A(x) + \inf T_B(x), 1), \\
\sup T_C(x) &= \min(\sup T_A(x) + \sup T_B(x), 1), \\
\inf I_C(x) &= \min(\inf I_A(x) + \inf I_B(x), 1), \\
\sup I_C(x) &= \min(\sup I_A(x) + \sup I_B(x), 1), \\
\inf F_C(x) &= \min(\inf F_A(x) + \inf F_B(x), 1), \\
\sup F_C(x) &= \min(\sup F_A(x) + \sup F_B(x), 1),
\end{align*}
$$

for all x in X.

Example 6 Let A and B be the interval neutrosophic sets defined in Example 1. Then, $A + B = (\langle [0.7, 1.0], [0.4, 0.8], [0.4, 0.8] \rangle) / x_1 + (\langle [0.7, 1.0], [0.2, 0.6], [0.7, 1.0] \rangle) / x_2 + (\langle [1.0, 1.0], [0.2, 0.4], [0.5, 0.7] \rangle) / x_3$.

Definition 22 (Cartesian product) The cartesian product of two interval neutrosophic sets A defined on universe X_1 and B defined on universe X_2 is an interval neutrosophic set C, written as $C = A \times B$, whose truth-membership, indeterminacy-membership and falsity-membership functions are related to those of A and B by

$$
\begin{align*}
\inf T_C(x,y) &= \inf T_A(x) + \inf T_B(y) - \inf T_A(x) \cdot \inf T_B(y), \\
\sup T_C(x,y) &= \sup T_A(x) + \sup T_B(y) - \sup T_A(x) \cdot \sup T_B(y), \\
\inf I_C(x,y) &= \inf I_A(x) \cdot \sup I_B(y), \\
\sup I_C(x,y) &= \sup I_A(x) \cdot \sup I_B(y), \\
\inf F_C(x,y) &= \inf F_A(x) \cdot \inf F_B(y), \\
\sup F_C(x,y) &= \sup F_A(x) \cdot \sup F_B(y),
\end{align*}
$$

for all x in X_1, y in X_2.
Example 7 Let \(A\) and \(B\) be the interval neutrosophic sets defined in Example 1. Then, \(A \times B = \langle [0.6, 0.82], [0.03, 0.15], [0.03, 0.15] \rangle / x_1 + \langle [0.6, 0.79], [0.0, 0.08], [0.1, 0.24] \rangle / x_2 + \langle [0.76, 0.92], [0.03, 0.03], [0.03, 0.12] \rangle / x_3.$

Definition 23 (Scalar multiplication) The scalar multiplication of interval neutrosophic set \(A\) is an interval neutrosophic set \(B\), written as \(B = a \cdot A\), whose truth-membership, indeterminacy-membership and falsity-membership functions are related to those of \(A\) by

\[
\begin{align*}
\inf T_B(x) &= \min(\inf T_A(x) \cdot a, 1), \\
\sup T_B(x) &= \min(\sup T_A(x) \cdot a, 1), \\
\inf I_B(x) &= \min(\inf I_A(x) \cdot a, 1), \\
\sup I_B(x) &= \min(\sup I_A(x) \cdot a, 1), \\
\inf F_B(x) &= \min(\inf F_A(x) \cdot a, 1), \\
\sup F_B(x) &= \min(\sup F_A(x) \cdot a, 1),
\end{align*}
\]

for all \(x\) in \(X\), \(a \in R^+\).

Definition 24 (Scalar division) The scalar division of interval neutrosophic set \(A\) is an interval neutrosophic set \(B\), written as \(B = a \cdot A\), whose truth-membership, indeterminacy-membership and falsity-membership functions are related to those of \(A\) by

\[
\begin{align*}
\inf T_B(x) &= \min(\inf T_A(x)/a, 1), \\
\sup T_B(x) &= \min(\sup T_A(x)/a, 1), \\
\inf I_B(x) &= \min(\inf I_A(x)/a, 1), \\
\sup I_B(x) &= \min(\sup I_A(x)/a, 1), \\
\inf F_B(x) &= \min(\inf F_A(x)/a, 1), \\
\sup F_B(x) &= \min(\sup F_A(x)/a, 1),
\end{align*}
\]

for all \(x\) in \(X\), \(a \in R^+\).
Now we will define two operators: truth-favorite (\(\triangle\)) and false-favorite (\(\nabla\)) to remove the indeterminacy in the interval neutrosophic sets and transform it into interval valued intuitionistic fuzzy sets or interval valued paraconsistent sets. These two operators are unique on interval neutrosophic sets.

Definition 25 (Truth-favorite) The truth-favorite of interval neutrosophic set \(A\) is an interval neutrosophic set \(B\), written as \(B = \triangle A\), whose truth-membership and falsity-membership functions are related to those of \(A\) by

\[
\begin{align*}
\inf T_B(x) &= \min(\inf T_A(x) + \inf I_A(x), 1), \\
\sup T_B(x) &= \min(\sup T_A(x) + \sup I_A(x), 1), \\
\inf I_B(x) &= 0, \\
\sup I_B(x) &= 0, \\
\inf F_B(x) &= \inf F_A(x), \\
\sup F_B(x) &= \sup F_A(x),
\end{align*}
\]

for all \(x\) in \(X\).

Example 8 Let \(A\) be the interval neutrosophic set defined in Example 1. Then, \(\triangle A = \langle \langle 0.5, 0.9, 0.3, 0.5 \rangle, \langle 0.8, 1.0, 0.2, 0.3 \rangle, \langle 0.5, 0.9, 0.2, 0.3 \rangle \rangle / x_1 + \langle \langle 0.5, 0.9, 0.3, 0.5 \rangle, \langle 0.8, 1.0, 0.2, 0.3 \rangle, \langle 0.5, 0.9, 0.2, 0.3 \rangle \rangle / x_2 + \langle \langle 0.5, 0.9, 0.3, 0.5 \rangle, \langle 0.8, 1.0, 0.2, 0.3 \rangle, \langle 0.5, 0.9, 0.2, 0.3 \rangle \rangle / x_3 \).

The purpose of truth-favorite operator is to evaluate the maximum of degree of truth-membership of interval neutrosophic set.

Definition 26 (False-favorite) The false-favorite of interval neutrosophic set \(A\) is an interval neutrosophic set \(B\), written as \(B = \nabla A\), whose truth-membership and falsity-membership functions
are related to those of A by

$$\begin{align*}
\inf T_B(x) &= \inf T_A(x), \\
\sup T_B(x) &= \sup T_A(x), \\
\inf I_B(x) &= 0, \\
\sup I_B(x) &= 0, \\
\inf F_B(x) &= \min(\inf F_A(x) + \inf I_A(x), 1), \\
\sup F_B(x) &= \min(\sup F_A(x) + \sup I_A(x), 1),
\end{align*}$$

(2.83) - (2.88)

for all x in X.

Example 9 Let A be the interval neutrosophic set defined in Example 1. Then, $\nabla A = (\langle [0.2, 0.4], [0, 0], [0.6, 1.0] \rangle / x_1 + \langle [0.5, 0.7], [0, 0], [0.2, 0.5] \rangle / x_2 + \langle [0.6, 0.8], [0, 0], [0.4, 0.6] \rangle / x_3$.

The purpose of false-favorite operator is to evaluate the maximum of degree of false-membership of interval neutrosophic set.

Theorem 5 For every two interval neutrosophic sets A and B:

1. $\Delta (A \cup B) \subseteq \Delta A \cup \Delta B$
2. $\Delta A \cap \Delta B \subseteq \Delta (A \cap B)$
3. $\nabla A \cup \nabla B \subseteq \nabla (A \cup B)$
4. $\nabla (A \cap B) \subseteq \nabla A \cap \nabla B$
2.4 Properties of Set-theoretic Operators

In this section, we will give some properties of set-theoretic operators defined on interval neutrosophic sets as in Section 2.3. The proof of these properties is left for the readers.

Property 1 (Commutativity) \(A \cup B = B \cup A, A \cap B = B \cap A, A + B = B + A, A \times B = B \times A \)

Property 2 (Associativity) \(A \cup (B \cup C) = (A \cup B) \cup C, \)
\(A \cap (B \cap C) = (A \cap B) \cap C, \)
\(A + (B + C) = (A + B) + C, \)
\(A \times (B \times C) = (A \times B) \times C. \)

Property 3 (Distributivity) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C), A \cap (B \cup C) = (A \cap B) \cup (A \cap C). \)

Property 4 (Idempotency) \(A \cup A = A, A \cap A = A, \triangle \triangle A = \triangle A, \bigtriangledown \bigtriangledown A = \bigtriangledown A. \)

Property 5 \(A \cap \Phi = \Phi, A \cup X = X, \) where \(\inf T_{\Phi} = \sup T_{\Phi} = 0, \inf I_{\Phi} = \sup I_{\Phi} = \inf F_{\Phi} = \sup F_{\Phi} = 1 \) and \(\inf T_X = \sup T_X = 1, \inf I_X = \sup I_X = \inf F_X = \sup F_X = 0. \)

Property 6 \(\triangle (A + B) = \triangle A + \triangle B, \bigtriangledown (A + B) = \bigtriangledown A + \bigtriangledown B. \)

Property 7 \(A \cup \Psi = A, A \cap X = A, \) where \(\inf T_{\Psi} = \sup T_{\Psi} = 0, \inf I_{\Psi} = \sup I_{\Psi} = \inf F_{\Psi} = \sup F_{\Psi} = 1 \) and \(\inf T_X = \sup T_X = 1, \inf I_X = \sup I_X = \inf F_X = \sup F_X = 0. \)

Property 8 (Absorption) \(A \cup (A \cap B) = A, A \cap (A \cup B) = A \)

Property 9 (DeMorgan’s Laws) \(\overline{A \cup B} = \overline{A} \cap \overline{B}, \overline{A \cap B} = A \cup B. \)

Property 10 (Involution) \(\overline{A} = A \)

Here, we notice that by the definitions of complement, union and intersection of interval neutrosophic set, interval neutrosophic set satisfies the most properties of class set, fuzzy set and intuitionistic fuzzy set. Same as fuzzy set and intuitionistic fuzzy set, it does not satisfy the principle of middle exclude.
2.5 Convexity of Interval Neutrosophic Set

We assume that X is a real Euclidean space E^n for correctness.

Definition 27 (Convexity) An interval neutrosophic set A is convex if and only if
\[
\begin{align*}
\inf T_A(\lambda x_1 + (1 - \lambda)x_2) &\geq \min(\inf T_A(x_1), \inf T_A(x_2)), \\
\sup T_A(\lambda x_1 + (1 - \lambda)x_2) &\geq \min(\sup T_A(x_1), \sup T_A(x_2)), \\
\inf I_A(\lambda x_1 + (1 - \lambda)x_2) &\leq \max(\inf I_A(x_1), \inf I_A(x_2)), \\
\sup I_A(\lambda x_1 + (1 - \lambda)x_2) &\leq \max(\sup I_A(x_1), \sup I_A(x_2)), \\
\inf F_A(\lambda x_1 + (1 - \lambda)x_2) &\leq \max(\inf F_A(x_1), \inf F_A(x_2)), \\
\sup F_A(\lambda x_1 + (1 - \lambda)x_2) &\leq \max(\sup F_A(x_1), \sup F_A(x_2)),
\end{align*}
\]
for all x_1 and x_2 in X and all λ in $[0,1]$.

Fig. 2.2 is an illustration of convex interval neutrosophic set.

Theorem 6 If A and B are convex, so is their intersection.

Definition 28 (Strongly Convex) An interval neutrosophic set A is strongly convex if for any two distinct points x_1 and x_2, and any λ in the open interval $(0,1)$,
\[
\begin{align*}
\inf T_A(\lambda x_1 + (1 - \lambda)x_2) &> \min(\inf T_A(x_1), \inf T_A(x_2)), \\
\sup T_A(\lambda x_1 + (1 - \lambda)x_2) &> \min(\sup T_A(x_1), \sup T_A(x_2)), \\
\inf I_A(\lambda x_1 + (1 - \lambda)x_2) &< \max(\inf I_A(x_1), \inf I_A(x_2)), \\
\sup I_A(\lambda x_1 + (1 - \lambda)x_2) &< \max(\sup I_A(x_1), \sup I_A(x_2)), \\
\inf F_A(\lambda x_1 + (1 - \lambda)x_2) &< \max(\inf F_A(x_1), \inf F_A(x_2)), \\
\sup F_A(\lambda x_1 + (1 - \lambda)x_2) &< \max(\sup F_A(x_1), \sup F_A(x_2)),
\end{align*}
\]
for all x_1 and x_2 in X and all λ in $[0,1]$.

Theorem 7 If A and B are strongly convex, so is their intersection.
Chapter 3

INTERVAL NEUTROSOPHIC LOGIC

In this chapter, we present a novel interval neutrosophic logic that generalizes the interval valued fuzzy logic, the intuitionistic fuzzy logic and paraconsistent logics which only consider truth-degree or falsity-degree of a proposition. In the interval neutrosophic logic, we consider not only truth-degree and falsity-degree but also indeterminacy-degree which can reliably capture more information under uncertainty. We introduce mathematical definitions of an interval neutrosophic propositional calculus and an interval neutrosophic predicate calculus. We propose a general method to design an interval neutrosophic logic system which consists of neutrosophication, neutrosophic inference, a neutrosophic rule base, neutrosophic type reduction and deneutrosophication. A neutrosophic rule contains input neutrosophic linguistic variables and output neutrosophic linguistic variables. A neutrosophic linguistic variable has neutrosophic linguistic values which defined by interval neutrosophic sets characterized by three membership functions: truth-membership, falsity-membership and indeterminacy-membership. The interval neutrosophic logic can be applied to many potential real applications where information is imprecise, uncertain, incomplete and inconsistent such as Web intelligence, medical informatics, bioinformatics, decision making, etc.

3.1 Introduction

The concept of fuzzy sets was introduced by Zadeh in 1965 [104]. Since then fuzzy sets and fuzzy logic have been applied to many real applications to handle uncertainty. The traditional fuzzy set uses one real value $\mu_A(x) \in [0, 1]$ to represent the grade of membership of fuzzy set A defined on universe X. The corresponding fuzzy logic associates each proposition p with a real value $\mu(p) \in [0, 1]$ which represents the degree of truth. Sometimes $\mu_A(x)$ itself is uncertain and hard to be defined by a crisp value. So the concept of interval valued fuzzy sets was proposed [97] to capture the uncertainty of grade of membership. The interval valued fuzzy set uses an interval value $[\mu_A^L(x), \mu_A^U(x)]$ with $0 \leq \mu_A^L(x) \leq \mu_A^U(x) \leq 1$ to represent the grade of membership of fuzzy
set. The traditional fuzzy logic can be easily extended to the interval valued fuzzy logic. There are related works such as type-2 fuzzy sets and type-2 fuzzy logic [62, 66, 72]. The family of fuzzy sets and fuzzy logic can only handle “complete” information that is if a grade of truth-membership is $\mu_A(x)$ then a grade of false-membership is $1 - \mu_A(x)$ by default. In some applications such as expert systems, decision making systems and information fusion systems, the information is both uncertain and incomplete. That is beyond the scope of traditional fuzzy sets and fuzzy logic. In 1986, Atanassov introduced the intuitionistic fuzzy set [23] which is a generalization of a fuzzy set and provably equivalent to an interval valued fuzzy set. The intuitionistic fuzzy sets consider both truth-membership and false-membership. The corresponding intuitionistic fuzzy logic [24, 26, 27] associates each proposition p with two real values $\mu(p)$-truth degree and $\nu(p)$-falsity degree, respectively, where $\mu(p), \nu(p) \in [0, 1], \mu(p) + \nu(p) \leq 1$. So intuitionistic fuzzy sets and intuitionistic fuzzy logic can handle uncertain and incomplete information.

However, inconsistent information exists in a lot of real situations such as those mentioned above. It is obvious that the intuitionistic fuzzy logic cannot reason with inconsistency because it requires $\mu(p) + \nu(p) \leq 1$. Generally, two basic approaches are used to solve the inconsistency problem in knowledge bases: the belief revision and paraconsistent logics. The goal of the first approach is to make an inconsistent theory consistent, either by revising it or by representing it by a consistent semantics. On the other hand, the paraconsistent approach allows reasoning in the presence of inconsistency as contradictory information can be derived or introduced without trivialization [48]. de Costa’s C_w logic [46] and Belnap’s four-valued logic [33] are two well-known paraconsistent logics.

Neutrosophy was introduced by Smarandache in 1995. “Neutrosophy is a branch of philosophy which studies the origin, nature and scope of neutralities, as well as their interactions with different ideational spectra” [90]. Neutrosophy includes neutrosophic probability, neutrosophic sets and neutrosophic logic. In a neutrosophic set (neutrosophic logic), indeterminacy is quantified explicitly and truth-membership (truth-degree), indeterminacy-membership (indeterminacy-degree) and false-membership (falsity-degree) are independent. The independence assumption is very important in a lot of applications such as information fusion when we try to combine different data from different sensors. A neutrosophic set (neutrosophic logic) is different from an intuitionistic
fuzzy set (intuitionistic fuzzy logic) where indeterminacy membership (indeterminacy-degree) is

\[1 - \mu_A(x) - \nu_A(x) \left(1 - \mu(p) - \nu(p) \right) \]

by default.

The neutrosophic set generalizes the above mentioned sets from a philosophical point of view. From a scientific or engineering point of view, the neutrosophic set and set-theoretic operators need to be specified meaningfully. Otherwise, it will be difficult to apply to the real applications. In chapter 2 we discussed a special neutrosophic set called an interval neutrosophic set and defined a set of set-theoretic operators. It is natural to define the interval neutrosophic logic based on interval neutrosophic sets. In this chapter, we give mathematical definitions of an interval neutrosophic propositional calculus and a first order interval neutrosophic predicate calculus.

The rest of this chapter is organized as follows. Section 3.2 gives the mathematical definition of the interval neutrosophic propositional calculus. Section 3.3 gives the mathematical definition of the first order interval neutrosophic predicate calculus. Section 3.4 provides one application example of interval neutrosophic logic as the foundation for the design of interval neutrosophic logic system. In section ?? we conclude the chapter and discuss the future research directions.

3.2 Interval Neutrosophic Propositional Calculus

In this section, we introduce the elements of an interval neutrosophic propositional calculus based on the definition of the interval neutrosophic sets by using the notations from the theory of classical propositional calculus [73].

3.2.1 Syntax of Interval Neutrosophic Propositional Calculus

Here we give the formalization of syntax of the interval neutrosophic propositional calculus.

Definition 29 An alphabet of the interval neutrosophic propositional calculus consists of three classes of symbols:

1. A set of interval neutrosophic propositional variables, denoted by lower-case letters, sometimes indexed;
2. Five connectives $\wedge, \vee, \neg, \rightarrow, \leftrightarrow$ which are called conjunction, disjunction, negation, implication, and biimplication symbols respectively;

3. The parentheses (and).

The alphabet of the interval neutrosophic propositional calculus has combinations obtained by assembling connectives and interval neutrosophic propositional variables in strings. The purpose of the construction rules is to have the specification of distinguished combinations, called formulas.

Definition 30 The set of formulas (well-formed formulas) of interval neutrosophic propositional calculus is defined as follows.

1. Every interval neutrosophic propositional variable is a formula;

2. If p is a formula, then so is ($\neg p$);

3. If p and q are formulas, then so are

 (a) $(p \land q)$,

 (b) $(p \lor q)$,

 (c) $(p \rightarrow q)$, and

 (d) $(p \leftrightarrow q)$.

4. No sequence of symbols is a formula which is not required to be by 1, 2, and 3.

To avoid having formulas cluttered with parentheses, we adopt the following precedence hierarchy, with the highest precedence at the top:
Here is an example of the interval neutrosophic propositional calculus formula:

$$\neg p_1 \land p_2 \lor (p_1 \rightarrow p_3) \rightarrow p_2 \land \neg p_3$$

Definition 31 The language of interval neutrosophic propositional calculus *given by an alphabet* consists of the set of all formulas constructed from the symbols of the alphabet.

3.2.2 Semantics of Interval Neutrosophic Propositional Calculus

The study of interval neutrosophic propositional calculus comprises, among others, a *syntax*, which has the distinction of well-formed formulas, and a *semantics*, the purpose of which is the assignment of a meaning to well-formed formulas.

To each interval neutrosophic proposition p, we associate it with an ordered triple components $\langle t(p), i(p), f(p) \rangle$, where $t(p), i(p), f(p) \subseteq [0, 1]$. $t(p), i(p), f(p)$ is called truth-degree, indeterminacy-degree and falsity-degree of p, respectively. Let this assignment be provided by an *interpretation function* or *interpretation* INL defined over a set of propositions P in such a way that

$$INL(p) = \langle t(p), i(p), f(p) \rangle.$$

Hence, the function $INL : P \rightarrow N$ gives the truth, indeterminacy and falsity degrees of all propositions in P. We assume that the interpretation function INL assigns to the logical truth $T : INL(T) = \langle 1, 0, 0 \rangle$, and to $F : INL(F) = \langle 0, 1, 1 \rangle$.

An interpretation which makes a formula true is a *model* of the formula.

Let i, l be the subinterval of $[0, 1]$. Then $i+l = [\inf i + \inf l, \sup i + \sup l], i-l = [\inf i - \sup l, \sup i - \inf l], \max(i, l) = [\max(\inf i, \inf l), \max(\sup i, \sup l)], \min(i, l) = [\min(\inf i, \inf l), \min(\sup i, \sup l)]$.

The semantics of four interval neutrosophic propositional connectives is given in Table I. Note that $p \leftrightarrow q$ if and only if $p \rightarrow q$ and $q \rightarrow p$.

Table 3.1: Semantics of Four Connectives in Interval Neutrosophic Propositional Logic

<table>
<thead>
<tr>
<th>Connectives</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>$INL(p)$</td>
<td>$<f(p), 1-i(p), t(p)>$</td>
</tr>
<tr>
<td>$INL(p \land q)$</td>
<td>$<\min(t(p), t(q)), \max(i(p), i(q)), \max(f(p), f(q))>$</td>
</tr>
<tr>
<td>$INL(p \lor q)$</td>
<td>$<\max(t(p), t(q)), \min(i(p), i(q)), \min(f(p), f(q))>$</td>
</tr>
<tr>
<td>$INL(p \rightarrow q)$</td>
<td>$<\min(1, 1-t(p)+t(q)), \max(0, i(q)-i(p)), \max(0, f(q)-f(p))>$</td>
</tr>
</tbody>
</table>

Example 10 $INL(p) = <0.5, 0.4, 0.7>$ and $INL(q) = <1, 0.7, 0.2>$. Then, $INL(-p) = <0.7, 0.6, 0.5>$, $INL(p \land -p) = <0.5, 0.4, 0.7>$, $INL(p \lor q) = <1, 0.7, 0.2>$, $INL(p \rightarrow q) = <1, 1, 0>$. □

A given well-formed interval neutrosophic propositional formula will be called a tautology (valid) if $INL(A) = <1, 1, 0>$, for all interpretation functions INL. It will be called a contradiction (inconsistent) if $INL(A) = <0, 0, 1>$, for all interpretation functions INL.

Definition 32 Two formulas p and q are said to be equivalent, denoted $p = q$, if and only if the $INL(p) = INL(q)$ for every interpretation function INL. □

Theorem 8 Let F be the set of formulas and \land be the meet and \lor the join, then $<F; \land, \lor>$ is a distributive lattice.

Proof We leave the proof to the reader.

Theorem 9 If p and $p \rightarrow q$ are tautologies, then q is also a tautology.

Proof Since p and $p \rightarrow q$ are tautologies then for every INL, $INL(p) = INL(p \rightarrow q) = <1, 0, 0>$, that is $t(p) = 1, i(p) = f(p) = 0, t(p \rightarrow q) = \min(1, 1-t(p)+t(q)) = 1, i(p \rightarrow q) = \max(0, i(q)-f(p)) = 0, f(p \rightarrow q) = \max(0, f(q)-f(p)) = 0$. Hence, $t(q) = 1, i(q) = f(q) = 0$. So q is a tautology.
3.2.3 Proof Theory of Interval Neutrosophic Propositional Calculus

Here we give the proof theory for interval neutrosophic propositional logic to complement the semantics part.

Definition 33 The interval neutrosophic propositional logic is defined by the following axiom schema.

\[
\begin{align*}
\ p & \rightarrow (q \rightarrow p) \\
\ p_1 \land \ldots \land p_m & \rightarrow q_1 \lor \ldots \lor q_n \quad \text{provided some } p_i \text{ is some } q_j \\
\ p & \rightarrow (q \rightarrow p \land q) \\
\ (p \rightarrow r) & \rightarrow ((q \rightarrow r) \rightarrow (p \lor q \rightarrow r)) \\
\ (p \lor q) & \rightarrow r \iff p \rightarrow r \text{ and } q \rightarrow r \\
\ p & \rightarrow q \iff \neg q \rightarrow \neg p \\
\ p \rightarrow q \text{ and } q \rightarrow r & \text{ implies } p \rightarrow r \\
\ p \rightarrow q & \iff p \leftrightarrow (p \land q) \iff q \rightarrow (p \lor q)
\end{align*}
\]

The concept of (formal) deduction of a formula from a set of formulas, that is, using the standard notation, \(\Gamma \vdash p \), is defined as usual; in this case, we say that \(p \) is a syntactical consequence of the formulas in \(T \).

Theorem 10 For interval neutrosophic propositional logic, we have

1. \(\{p\} \vdash p \),

2. \(\Gamma \vdash p \) entails \(\Gamma \cup \Delta \vdash p \),

3. if \(\Gamma \vdash p \) for any \(p \in \Delta \) and \(\Delta \vdash q \), then \(\Gamma \vdash q \).

Proof It is immediate from the standard definition of the syntactical consequence (\(\vdash \)).

Theorem 11 In interval neutrosophic propositional logic, we have:
Proof Proof is straight forward by following the semantics of interval neutrosophic propositional logic.

Theorem 12 In interval neutrosophic propositional logic, the following schema do not hold:

1. $p \lor \neg p$

2. $\neg(p \land q) \leftrightarrow \neg p \lor \neg q$

3. $\neg(p \lor q) \leftrightarrow \neg p \land \neg q$

Proof Immediate from the semantics of interval neutrosophic propositional logic.

Example 11 To illustrate the use of the interval neutrosophic propositional consequence relation, let’s consider the following example.

$p \rightarrow (q \land r)$

$r \rightarrow s$
From $p \rightarrow (q \land r)$, we get $p \rightarrow q$ and $p \rightarrow r$. From $p \rightarrow q$ and $q \rightarrow \neg s$, we get $p \rightarrow \neg s$. From $p \rightarrow r$ and $r \rightarrow s$, we get $p \rightarrow s$. Hence, p is equivalent to $p \land s$ and $p \land \neg s$. However, we cannot detach s from p nor $\neg s$ from p. This is in part due to interval neutrosophic propositional logic incorporating neither modus ponens nor and elimination.

\[q \rightarrow \neg s \]

\[a \]

\section{3.3 Interval Neutrosophic Predicate Calculus}

In this section, we will extend our consideration to the full language of first order interval neutrosophic predicate logic. First we give the formalization of syntax of first order interval neutrosophic predicate logic as in classical first-order predicate logic.

\subsection{3.3.1 Syntax of Interval Neutrosophic Predicate Calculus}

\textbf{Definition 34} An alphabet of the first order interval neutrosophic predicate calculus consists of seven classes of symbols:

1. variables, denoted by lower-case letters, sometimes indexed;

2. constants, denoted by lower-case letters;

3. function symbols, denoted by lower-case letters, sometimes indexed;

4. predicate symbols, denoted by lower-case letters, sometimes indexed;

5. Five connectives $\land, \lor, \neg, \rightarrow, \leftrightarrow$ which are called the conjunction, disjunction, negation, implication, and bimplication symbols respectively;

6. Two quantifiers, the universal quantifier \forall (for all) and the existential quantifier \exists (there exists);
7. The parentheses (and).

To avoid having formulas cluttered with brackets, we adopt the following precedence hierarchy, with the highest precedence at the top:

\[\neg, \forall, \exists \]

\[\land, \lor \]

\[\rightarrow, \leftrightarrow \]

Next we turn to the definition of the first order interval neutrosophic language given by an alphabet.

Definition 35 A term is defined as follows:

1. A variable is a term.

2. A constant is a term.

3. If \(f \) is an \(n \)-ary function symbol and \(t_1, \ldots, t_n \) are terms, then \(f(t_1, \ldots, t_n) \) is a term.

Definition 36 A (well-formed) formula is defined inductively as follows:

1. If \(p \) is an \(n \)-ary predicate symbol and \(t_1, \ldots, t_n \) are terms, then \(p(t_1, \ldots, t_n) \) is a formula (called an atomic formula or, more simply, an atom).

2. If \(F \) and \(G \) are formulas, then so are \((\neg F), (F \land G), (F \lor G), (F \rightarrow G)\) and \((F \leftrightarrow G)\).

3. If \(F \) is a formula and \(x \) is a variable, then \((\forall x F)\) and \((\exists x F)\) are formulas.
Definition 37 The first order interval neutrosophic language given by an alphabet consists of the set of all formulas constructed from the symbols of the alphabet.

Example 12 $\forall x \exists y (p(x, y) \rightarrow q(x)), \neg \exists x (p(x, a) \land q(x))$ are formulas.

Definition 38 The scope of $\forall x$ (resp. $\exists x$) in $\forall x F$ (resp. $\exists x F$) is F. A bound occurrence of a variable in a formula is an occurrence immediately following a quantifier or an occurrence within the scope of a quantifier, which has the same variable immediately after the quantifier. Any other occurrence of a variable is free.

Example 13 In the formula $\forall x p(x, y) \lor q(x)$, the first two occurrences of x are bound, while the third occurrence is free, since the scope of $\forall x$ is $p(x, y)$ and y is free.

3.3.2 Semantics of Interval Neutrosophic Predicate Calculus

In this section, we study the semantics of interval neutrosophic predicate calculus, the purpose of which is the assignment of a meaning to well-formed formulas. In the interval neutrosophic propositional logic, an interpretation is an assignment of truth values (ordered triple component) to propositions. In the first order interval neutrosophic predicate logic, since there are variables involved, we have to do more than that. To define an interpretation for a well-formed formula in this logic, we have to specify two things, the domain and an assignment to constants and predicate symbols occurring in the formula. The following is the formal definition of an interpretation of a formula in the first order interval neutrosophic predicate logic.

Definition 39 An interpretation function (or interpretation) of a formula F in the first order interval neutrosophic predicate logic consists of a nonempty domain D, and an assignment of “values” to each constant and predicate symbol occurring in F as follows:

1. To each constant, we assign an element in D.

2. To each n-ary function symbol, we assign a mapping from D^n to D. (Note that $D^n = \{(x_1, \ldots, x_n) \mid x_1 \in D, \ldots, x_n \in D\}$).
3. Predicate symbols get their meaning through evaluation functions E which assign to each variable x an element $E(x) \in D$. To each n-ary predicate symbol p, there is a function $\text{INP}(p) : D^n \to N$. So $\text{INP}(p(x_1, \ldots, x_n)) = \text{INP}(p(E(x_1), \ldots, E(x_n)))$.

That is, $\text{INP}(p)(a_1, \ldots, a_n) = \langle t(p(a_1, \ldots, a_n)), i(p(a_1, \ldots, a_n)), f(p(a_1, \ldots, a_n)) \rangle$, where $t(p(a_1, \ldots, a_n)), i(p(a_1, \ldots, a_n)), f(p(a_1, \ldots, a_n)) \subseteq [0, 1]$. They are called truth-degree, indeterminacy-degree and falsity-degree of $p(a_1, \ldots, a_n)$ respectively. We assume that the interpretation function INP assigns to the logical truth $T : \text{INP}(T) = \langle 1, 1, 0 \rangle$, and to $F : \text{INP}(F) = \langle 0, 0, 1 \rangle$.

The semantics of four interval neutrosophic predicate connectives and two quantifiers is given in Table II. For simplification of notation, we use p to denote $p(a_1, \ldots, a_i)$. Note that $p \leftrightarrow q$ if and only if $p \rightarrow q$ and $q \rightarrow p$.

Table 3.2: Semantics of Four Connectives and Two Quantifiers in Interval Neutrosophic Predicate Logic

<table>
<thead>
<tr>
<th>Connectives</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{INP}(-p)$</td>
<td>$\langle f(p), 1 - i(p), t(p) \rangle$</td>
</tr>
<tr>
<td>$\text{INP}(p \land q)$</td>
<td>$\langle \min(t(p), t(q)), \max(i(p), i(q)), \max(f(p), f(q)) \rangle$</td>
</tr>
<tr>
<td>$\text{INP}(p \lor q)$</td>
<td>$\langle \max(t(p), t(q)), \min(i(p), i(q)), \min(f(p), f(q)) \rangle$</td>
</tr>
<tr>
<td>$\text{INP}(p \rightarrow q)$</td>
<td>$\langle \min(1, 1 - t(p) + t(q)), \max(0, i(q) - i(p)), \max(0, f(q) - f(p)) \rangle$</td>
</tr>
<tr>
<td>$\text{INP}(\forall x F)$</td>
<td>$\langle \min(t(F(E(x))), i(F(E(x))), \max(F(F(E(x)))) \rangle, E(x) \in D$</td>
</tr>
<tr>
<td>$\text{INP}(\exists x F)$</td>
<td>$\langle \max(t(F(E(x))), i(F(E(x))), \min(F(F(E(x)))) \rangle, E(x) \in D$</td>
</tr>
</tbody>
</table>

Example 14 Let $D = 1, 2, 3$ and $p(1) = \langle 0.5, 1, 0.4 \rangle, p(2) = \langle 1, 0.2, 0 \rangle, p(3) = \langle 0.7, 0.4, 0.7 \rangle$. Then $\text{INP}(\forall x p(x)) = \langle 0.5, 0.2, 0.7 \rangle$, and $\text{INP}(\exists x p(x)) = \langle 1, 1, 0 \rangle$.

Definition 40 A formula F is consistent (satisfiable) if and only if there exists an interpretation I such that F is evaluated to $\langle 1, 1, 0 \rangle$ in I. If a formula F is T in an interpretation I, we say that I is a model of F and I satisfies F.
Definition 41 A formula F is inconsistent (unsatisfiable) if and only if there exists no interpretation that satisfies F.

Definition 42 A formula F is valid if and only if every interpretation of F satisfies F.

Definition 43 A formula F is a logical consequence of formulas F_1, \ldots, F_n if and only if for every interpretation I, if $F_1 \land \ldots \land F_n$ is true in I, F is also true in I.

Example 15 $(\forall x)(p(x) \rightarrow (\exists y)p(y))$ is valid, $(\forall x)p(x) \land (\exists y)p(y)$ is consistent.

Theorem 13 There is no inconsistent formula in the first order interval neutrosophic predicate logic.

Proof It is direct from the definition of semantics of interval neutrosophic predicate logic.

Note that the first order interval neutrosophic predicate logic can be considered as an extension of the interval neutrosophic propositional logic. When a formula in the first order logic contains no variables and quantifiers, it can be treated just as a formula in the propositional logic.

3.3.3 Proof Theory of Interval Neutrosophic Predicate Calculus

In this part, we give the proof theory for first order interval neutrosophic predicate logic to complement the semantics part.

Definition 44 The first order interval neutrosophic predicate logic is defined by the following axiom schema.

$$(p \rightarrow q(x)) \rightarrow (p \rightarrow \forall x q(x))$$

$$(\forall x p(x) \rightarrow p(a))$$

$$(p(x) \rightarrow \exists x p(x))$$

$$(p(x) \rightarrow q) \rightarrow (\exists x p(x) \rightarrow q)$$

Theorem 14 In the first order interval neutrosophic predicate logic, we have:
1. \(p(x) \vdash \forall xp(x) \)

2. \(p(a) \vdash \exists xp(x) \)

3. \(\forall xp(x) \vdash p(y) \)

4. \(\Gamma \cup \{p(x)\} \vdash q, \text{ then } \Gamma \cup \{\exists xp(x)\} \vdash q \)

Proof Directly from the definition of the semantics of first order interval neutrosophic predicate logic.

Theorem 15 In the first order interval neutrosophic predicate logic, the following schemes are valid, where \(r \) is a formula in which \(x \) does not appear free:

1. \(\forall xr \leftrightarrow r \)

2. \(\exists xr \leftrightarrow r \)

3. \(\forall x\forall yp(x, y) \leftrightarrow \forall y\forall xp(x, y) \)

4. \(\exists x\exists yp(x, y) \leftrightarrow \exists y\exists xp(x, y) \)

5. \(\forall x\forall yp(x, y) \rightarrow \forall xp(x, x) \)

6. \(\exists xp(x, x) \rightarrow \exists x\exists yp(x, y) \)

7. \(\forall xp(x) \rightarrow \exists xp(x) \)

8. \(\exists x\forall yp(x, y) \rightarrow \forall y\exists xp(x, y) \)

9. \(\forall x(p(x) \land q(x)) \leftrightarrow \forall xp(x) \land \forall xq(x) \)

10. \(\exists x(p(x) \lor q(x)) \leftrightarrow \exists xp(x) \lor \exists xq(x) \)

11. \(p \land \forall xq(x) \leftrightarrow \forall x(p \land q(x)) \)
12. \(p \lor \forall x q(x) \leftrightarrow \forall x (p \lor q(x)) \)

13. \(p \land \exists x q(x) \leftrightarrow \exists x (p \land q(x)) \)

14. \(p \lor \exists x q(x) \leftrightarrow \exists x (p \lor q(x)) \)

15. \(\forall x (p(x) \rightarrow q(x)) \rightarrow (\forall x p(x) \rightarrow \forall x q(x)) \)

16. \(\forall x (p(x) \rightarrow q(x)) \rightarrow (\exists x p(x) \rightarrow \exists x q(x)) \)

17. \(\exists x (p(x) \land q(x)) \rightarrow \exists x (p(x) \land \exists x q(x)) \)

18. \(\forall x p(x) \lor \forall x q(x) \rightarrow \forall x (p(x) \lor q(x)) \)

19. \(\neg \exists x \neg p(x) \leftrightarrow \forall x p(x) \)

20. \(\neg \forall x \neg p(x) \leftrightarrow \exists p(x) \)

21. \(\neg \exists x p(x) \leftrightarrow \forall x \neg p(x) \)

22. \(\exists x \neg p(x) \leftrightarrow \neg \forall x p(x) \)

Proof It is straightforward from the definition of the semantics and axiomatic schema of first order interval neutrosophic predicate logic.

3.4 An Application of Interval Neutrosophic Logic

In this section we provide one practical application of the interval neutrosophic logic – Interval Neutrosophic Logic System (INLS). INLS can handle rule uncertainty as same as type-2 FLS [66], besides, it can handle rule inconsistency without the danger of trivialization. Like the classical FLS, INLS is also characterized by IF-THEN rules. INLS consists of neutrosophication, neutrosophic inference, a neutrosophic rule base, neutrosophic type reduction and deneutrosophication. Given
an input vector \(x = (x_1, \ldots, x_n) \), where \(x_1, \ldots, x_n \) can be crisp inputs or neutrosophic sets, the INLS will generate a crisp output \(y \). The general scheme of INLS is shown in Fig. 2.1.

Suppose the neutrosophic rule base consists of \(M \) rules in which each rule has \(n \) antecedents and one consequent. Let the \(k \)th rule be denoted by \(R^k \) such that IF \(x_1 \) is \(A^k_1 \), \(x_2 \) is \(A^k_2 \), \ldots, and \(x_n \) is \(A^k_n \), THEN \(y \) is \(B^k \). \(A^k_i \) is an interval neutrosophic set defined on universe \(X_i \) with truth-membership function \(T_{A^k_i}(x_i) \), indeterminacy-membership function \(I_{A^k_i}(x_i) \) and falsity-membership function \(F_{A^k_i}(x_i) \), where \(T_{A^k_i}(x_i), I_{A^k_i}(x_i), F_{A^k_i}(x_i) \subseteq [0,1], 1 \leq i \leq n \). \(B^k \) is an interval neutrosophic set defined on universe \(Y \) with truth-membership function \(T_{B^k}(y) \), indeterminacy-membership function \(I_{B^k}(y) \) and falsity-membership function \(F_{B^k}(y) \), where \(T_{B^k}(y), I_{B^k}(y), F_{B^k}(y) \subseteq [0,1] \). Given fact \(x_1 \) is \(\tilde{A}^k_1 \), \(x_2 \) is \(\tilde{A}^k_2 \), \ldots, and \(x_n \) is \(\tilde{A}^k_n \), then consequence \(y \) is \(\tilde{B}^k \). \(\tilde{A}^k_i \) is an interval neutrosophic set defined on universe \(X_i \) with truth-membership function \(T_{\tilde{A}^k_i}(x_i) \), indeterminacy-membership function \(I_{\tilde{A}^k_i}(x_i) \) and falsity-membership function \(F_{\tilde{A}^k_i}(x_i) \), where \(T_{\tilde{A}^k_i}(x_i), I_{\tilde{A}^k_i}(x_i), F_{\tilde{A}^k_i}(x_i) \subseteq [0,1], 1 \leq i \leq n \). \(\tilde{B}^k \) is an interval neutrosophic set defined on universe \(Y \) with truth-membership function \(T_{\tilde{B}^k}(y) \), indeterminacy-membership function \(I_{\tilde{B}^k}(y) \) and falsity-membership function \(F_{\tilde{B}^k}(y) \), where \(T_{\tilde{B}^k}(y), I_{\tilde{B}^k}(y), F_{\tilde{B}^k}(y) \subseteq [0,1] \). In this chapter, we consider \(a_i \leq x_i \leq b_i \) and \(\alpha \leq y \leq \beta \).

An unconditional neutrosophic proposition is expressed by the phrase: “\(Z \) is \(C \)”, where \(Z \) is a variable that receives values \(z \) from a universal set \(U \), and \(C \) is an interval neutrosophic
set defined on U that represents a neutrosophic predicate. Each neutrosophic proposition p is
associated with $\langle t(p), i(p), f(p) \rangle$ with $t(p), i(p), f(p) \subseteq [0,1]$. In general, for any value z of Z,
$\langle t(p), i(p), f(p) \rangle = \langle TC(z), IC(z), FC(z) \rangle$.

For implication $p \to q$, we define the semantics as:

\[
\begin{align*}
\text{sup} \ t_{p \to q} &= \min(\text{sup} t(p), \text{sup} t(q)), \\
\text{inf} \ t_{p \to q} &= \min(\text{inf} t(p), \text{inf} t(q)), \\
\text{sup} \ i_{p \to q} &= \max(\text{sup} i(p), \text{sup} i(q)), \\
\text{inf} \ i_{p \to q} &= \max(\text{inf} i(p), \text{inf} i(q)), \\
\text{sup} \ f_{p \to q} &= \max(\text{sup} f(p), \text{sup} f(q)), \\
\text{inf} \ f_{p \to q} &= \max(\text{inf} f(p), \text{inf} f(q)),
\end{align*}
\]

where $t(p), i(p), f(p), t(q), i(q), f(q) \subseteq [0,1]$.

Let $X = X_1 \times \cdots \times X_n$. The truth-membership function, indeterminacy-membership function
and falsity-membership function $T_{Bk}(y), I_{Bk}(y), F_{Bk}(y)$ of a fired kth rule can be represented using
the definition of interval neutrosophic composition functions (1.44–1.46) and the semantics of
conjunction and disjunction defined in Table 2.2 and equations (2.1–2.6) as:

\[
\begin{align*}
\text{sup} T_{Bk}(y) &= \sup_{x \in X} \min(\text{sup} T_{A_1^k}(x), \text{sup} T_{A_2^k}(x), \ldots, \text{sup} T_{A_n^k}(x), \text{sup} T_{A_1}(x), \text{sup} T_{B}(y)), \\
\text{inf} T_{Bk}(y) &= \sup_{x \in X} \min(\text{inf} T_{A_1^k}(x), \text{inf} T_{A_2^k}(x), \ldots, \text{inf} T_{A_n^k}(x), \text{inf} T_{A_1}(x), \text{inf} T_{B}(y)), \\
\text{sup} I_{Bk}(y) &= \sup_{x \in X} \max(\text{sup} I_{A_1^k}(x), \text{sup} I_{A_2^k}(x), \ldots, \text{sup} I_{A_n^k}(x), \text{sup} I_{A_1}(x), \text{sup} I_{B}(y)), \\
\text{inf} I_{Bk}(y) &= \sup_{x \in X} \max(\text{inf} I_{A_1^k}(x), \text{inf} I_{A_2^k}(x), \ldots, \text{inf} I_{A_n^k}(x), \text{inf} I_{A_1}(x), \text{inf} I_{B}(y)), \\
\text{sup} F_{Bk}(y) &= \inf_{x \in X} \max(\text{sup} F_{A_1^k}(x), \text{sup} F_{A_2^k}(x), \ldots, \text{sup} F_{A_n^k}(x), \text{sup} F_{A_1}(x), \text{sup} F_{B}(y)), \\
\text{inf} F_{Bk}(y) &= \inf_{x \in X} \max(\text{inf} F_{A_1^k}(x), \text{inf} F_{A_2^k}(x), \ldots, \text{inf} F_{A_n^k}(x), \text{inf} F_{A_1}(x), \text{inf} F_{B}(y)),
\end{align*}
\]

where $y \in Y$.

Now, we give the algorithmic description of INLS.

BEGIN

Step 1: Neutrosophication
The purpose of neutrosophication is to map inputs into interval neutrosophic input sets. Let \(G_i^k \) be an interval neutrosophic input set to represent the result of neutrosophication of \(i \)th input variable of \(k \)th rule, then

\[
\begin{align*}
\sup T_{G_i^k}(x_i) &= \sup_{x_i \in X_i} \min(\sup T_{\tilde{A}_i^k}(x_i), \sup T_{A_i^k}(x_i)), \\
\inf T_{G_i^k}(x_i) &= \sup_{x_i \in X_i} \min(\inf T_{\tilde{A}_i^k}(x_i), \inf T_{A_i^k}(x_i)), \\
\sup I_{G_i^k}(x_i) &= \sup_{x_i \in X_i} \max(\sup I_{\tilde{A}_i^k}(x_i), \sup I_{A_i^k}(x_i)), \\
\inf I_{G_i^k}(x_i) &= \sup_{x_i \in X_i} \max(\inf I_{\tilde{A}_i^k}(x_i), \inf I_{A_i^k}(x_i)), \\
\sup F_{G_i^k}(x_i) &= \inf_{x_i \in X_i} \max(\sup F_{\tilde{A}_i^k}(x_i), \sup F_{A_i^k}(x_i)), \\
\inf F_{G_i^k}(x_i) &= \inf_{x_i \in X_i} \max(\inf F_{\tilde{A}_i^k}(x_i), \inf F_{A_i^k}(x_i)),
\end{align*}
\]

(3.13) – (3.18)

where \(x_i \in X_i \).

If \(x_i \) are crisp inputs, then equations (50–55) are simplified to

\[
\begin{align*}
\sup T_{G_i^k}(x_i) &= \sup T_{A_i^k}(x_i), \\
\inf T_{G_i^k}(x_i) &= \inf T_{A_i^k}(x_i), \\
\sup I_{G_i^k}(x_i) &= \sup I_{A_i^k}(x_i), \\
\inf I_{G_i^k}(x_i) &= \inf I_{A_i^k}(x_i), \\
\sup F_{G_i^k}(x_i) &= \sup F_{A_i^k}(x_i), \\
\inf F_{G_i^k}(x_i) &= \inf F_{A_i^k}(x_i),
\end{align*}
\]

(3.19) – (3.24)

where \(x_i \in X_i \).

Fig. 2 shows the conceptual diagram for neutrosophication of a crisp input \(x_1 \).

Step 2: Neutrosophic Inference

The core of INLS is the neutrosophic inference, the principle of which has already been explained above. Suppose the \(k \)th rule is fired. Let \(G^k \) be an interval neutrosophic set to represent the result
of the input and antecedent operation for kth rule, then

$$\begin{align*}
\sup_{G^k} T(x) &= \sup_{x \in X} \min(\sup_{A_1} T_{\tilde{A}}(x_1), \sup_{A_2} T_{A_2}(x_1), \ldots, \sup_{A_n} T_{A_n}(x_n), \sup_{A_b} T_{A_b}(x_n)), \\
\inf_{G^k} T(x) &= \inf_{x \in X} \min(\inf_{A_1} T_{\tilde{A}}(x_1), \inf_{A_2} T_{A_2}(x_1), \ldots, \inf_{A_n} T_{A_n}(x_n), \inf_{A_b} T_{A_b}(x_n)), \\
\sup_{G^k} I(x) &= \sup_{x \in X} \max(\sup_{A_1} I_{\tilde{A}}(x_1), \sup_{A_2} I_{A_2}(x_1), \ldots, \sup_{A_n} I_{A_n}(x_n), \sup_{A_b} I_{A_b}(x_n)), \\
\inf_{G^k} I(x) &= \inf_{x \in X} \max(\inf_{A_1} I_{\tilde{A}}(x_1), \inf_{A_2} I_{A_2}(x_1), \ldots, \inf_{A_n} I_{A_n}(x_n), \inf_{A_b} I_{A_b}(x_n)), \\
\sup_{G^k} F(x) &= \sup_{x \in X} \max(\sup_{A_1} F_{\tilde{A}}(x_1), \sup_{A_2} F_{A_2}(x_1), \ldots, \sup_{A_n} F_{A_n}(x_n), \sup_{A_b} F_{A_b}(x_n)), \\
\inf_{G^k} F(x) &= \inf_{x \in X} \max(\inf_{A_1} F_{\tilde{A}}(x_1), \inf_{A_2} F_{A_2}(x_1), \ldots, \inf_{A_n} F_{A_n}(x_n), \inf_{A_b} F_{A_b}(x_n)),
\end{align*}$$

(3.25) - (3.30)
where \(x_i \in X_i \).

Here we restate the result of neutrosophic inference:

\[
\begin{align*}
\sup T_{\tilde{B}^k}(y) &= \min(\sup T_{G_k^1}(x), \sup T_{B^k}(y)), \\
\inf T_{\tilde{B}^k}(y) &= \min(\inf T_{G_k^1}(x), \inf T_{B^k}(y)), \\
\sup I_{\tilde{B}^k}(y) &= \max(\sup I_{G_k^1}(x), \sup I_{B^k}(y)), \\
\inf I_{\tilde{B}^k}(y) &= \max(\inf I_{G_k^1}(x), \inf I_{B^k}(y)), \\
\sup F_{\tilde{B}^k}(y) &= \max(\sup F_{G_k^1}(x), \sup F_{B^k}(y)), \\
\inf F_{\tilde{B}^k}(y) &= \max(\inf F_{G_k^1}(x), \inf F_{B^k}(y)),
\end{align*}
\]

where \(x \in X, y \in Y \).

Suppose that \(N \) rules in the neutrosophic rule base are fired, where \(N \leq M \), then, the output interval neutrosophic set \(\tilde{B} \) is:

\[
\begin{align*}
\sup T_{\tilde{B}}(y) &= \max_{k=1}^{N} \sup_{k=1}^{N} T_{\tilde{B}^k}(y), \\
\inf T_{\tilde{B}}(y) &= \min_{k=1}^{N} \inf_{k=1}^{N} T_{\tilde{B}^k}(y), \\
\sup I_{\tilde{B}}(y) &= \min_{k=1}^{N} \sup_{k=1}^{N} I_{\tilde{B}^k}(y), \\
\inf I_{\tilde{B}}(y) &= \max_{k=1}^{N} \inf_{k=1}^{N} I_{\tilde{B}^k}(y), \\
\sup F_{\tilde{B}}(y) &= \min_{k=1}^{N} \sup_{k=1}^{N} F_{\tilde{B}^k}(y), \\
\inf F_{\tilde{B}}(y) &= \max_{k=1}^{N} \inf_{k=1}^{N} F_{\tilde{B}^k}(y),
\end{align*}
\]

where \(y \in Y \).

Step 3: Neutrosophic type reduction

After neutrosophic inference, we will get an interval neutrosophic set \(\tilde{B} \) with \(T_{\tilde{B}}(y), I_{\tilde{B}}(y), F_{\tilde{B}}(y) \subseteq [0, 1] \). Then, we do the neutrosophic type reduction to transform each interval into one
number. There are many ways to do it, here, we give one method:

\[T'_B(y) = \frac{(\inf T_B(y) + \sup T_B(y))}{2}, \]
\[I'_B(y) = \frac{(\inf I_B(y) + \sup I_B(y))}{2}, \]
\[F'_B(y) = \frac{(\inf F_B(y) + \sup F_B(y))}{2}, \]

where \(y \in Y \).

So, after neutrosophic type reduction, we will get an ordinary neutrosophic set (a type-1 neutrosophic set) \(\hat{B} \). Then we need to do the deneutrosophication to get a crisp output.

Step 4: Deneutrosophication

The purpose of deneutrosophication is to convert an ordinary neutrosophic set (a type-1 neutrosophic set) obtained by neutrosophic type reduction to a single real number which represents the real output. Similar to defuzzification [63], there are many deneutrosophication methods according to different applications. Here we give one method. The deneutrosophication process consists of two steps.

Step 4.1: Synthesization: It is the process to transform an ordinary neutrosophic set (a type-1 neutrosophic set) \(\hat{B} \) into a fuzzy set \(B \). It can be expressed using the following function:

\[f(T'_B(y), I'_B(y), F'_B(y)) : [0, 1] \times [0, 1] \times [0, 1] \rightarrow [0, 1] \]

Here we give one definition of \(f \):

\[T_B(y) = a \cdot T'_B(y) + b \cdot (1 - F'_B(y)) + c \cdot I'_B(y)/2 + d \cdot (1 - I'_B(y)/2), \]

where \(0 \leq a, b, c, d \leq 1, a + b + c + d = 1. \)

The purpose of synthesization is to calculate the overall truth degree according to three components: truth-membership function, indeterminacy-membership function and falsity-membership function. The component–truth-membership function gives the direct information about the truth-degree, so we use it directly in the formula; The component–falsity-membership function gives the indirect information about the truth-degree, so we use \((1 - F)\) in the formula. To understand the meaning of indeterminacy-membership function \(I \), we give an example: a statement is “The quality
of service is good”, now firstly a person has to select a decision among \{T, I, F\}, secondly he or she has to answer the degree of the decision in [0, 1]. If he or she chooses \(I = 1 \), it means 100% “not sure” about the statement, i.e., 50% true and 50% false for the statement (100% balanced), in this sense, \(I = 1 \) contains the potential truth value 0.5. If he or she chooses \(I = 0 \), it means 100% “sure” about the statement, i.e., either 100% true or 100% false for the statement (0% balanced), in this sense, \(I = 0 \) is related to two extreme cases, but we do not know which one is in his or her mind. So we have to consider both at the same time: \(I = 0 \) contains the potential truth value that is either 0 or 1. If \(I \) decreases from 1 to 0, then the potential truth value changes from one value 0.5 to two different possible values gradually to the final possible ones 0 and 1 (i.e., from 100% balanced to 0% balanced), since he or she does not choose either \(T \) or \(F \) but \(I \), we do not know his or her final truth value. Therefore, the formula has to consider two potential truth values implicitly represented by \(I \) with different weights (\(c \) and \(d \)) because of lack of his or her final decision information after he or she has chosen \(I \). Generally, \(a > b > c, d \); \(c \) and \(d \) could be decided subjectively or objectively as long as enough information is available. The parameters \(a, b, c \) and \(d \) can be tuned using learning algorithms such as neural networks and genetic algorithms in the development of application to improve the performance of the INLS.

Step 4.2: Calculation of a typical neutrosophic value: Here we introduce one method of calculation of center of area. The method is sometimes called the center of gravity method or centroid method, the deneutrosophicated value, \(dn(T_B(y)) \) is calculated by the formula

\[
 dn(T_B(y)) = \frac{\int_a^b T_B(y)dxdy}{\int_a^b T_Bdy}. \tag{3.48}
\]

END.
Chapter 4

NEUTROSOPHIC RELATIONAL DATA MODEL

In this chapter, we present a generalization of the relational data model based on interval neutrosophic sets. Our data model is capable of manipulating incomplete as well as inconsistent information. Fuzzy relation or intuitionistic fuzzy relation can only handle incomplete information. Associated with each relation are two membership functions one is called truth-membership function T which keeps track of the extent to which we believe the tuple is in the relation, another is called falsity-membership function which keeps track of the extent to which we believe that it is not in the relation. A neutrosophic relation is inconsistent if there exists one tuple a such that $T(a) + F(a) > 1$. In order to handle inconsistent situation, we propose an operator called “split” to transform inconsistent neutrosophic relations into pseudo-consistent neutrosophic relations and do the set-theoretic and relation-theoretic operations on them and finally use another operator called “combine” to transform the result back to neutrosophic relation. For this model, we define algebraic operators that are generalisations of the usual operators such as intersection, union, selection, join on fuzzy relations. Our data model can underlie any database and knowledge-base management system that deals with incomplete and inconsistent information.

4.1 Introduction

Relational data model was proposed by Ted Codd’s pioneering paper [43]. Since then, relational database systems have been extensively studied and a lot of commercial relational database systems are currently available [51, 87]. This data model usually takes care of only well-defined and unambiguous data. However, imperfect information is ubiquitous – almost all the information that we have about the real world is not certain, complete and precise [78]. Imperfect information can be classified as: incompleteness, imprecision, uncertainty, inconsistency. Incompleteness arises from the absence of a value, imprecision from the existence of a value which cannot be measured with suitable precision, uncertainty from the fact that a person has given a subjective opinion about the
truth of a fact which he/she does not know for certain, and inconsistency from the fact that there
are two or more conflicting values for a variable.

In order to represent and manipulate various forms of incomplete information in relational
databases, several extensions of the classical relational model have been proposed [36, 38, 44, 67,
68, 71]. In some of these extensions, a variety of "null values" have been introduced to model
unknown or not-applicable data values. Attempts have also been made to generalize operators of
relational algebra to manipulate such extended data models [36, 44, 71, 69, 70]. The fuzzy set
theory and fuzzy logic proposed by Zadeh [102] provide a requisite mathematical framework for
dealing with incomplete and imprecise information. Later on, the concept of interval-valued fuzzy
sets was proposed to capture the fuzziness of grade of membership itself [97]. In 1986, Atanassov
introduced the intuitionistic fuzzy set [23] which is a generalization of fuzzy set and provably equiv-
alent to interval-valued fuzzy set. The intuitionistic fuzzy sets consider both truth-membership \(T \)
and falsity-membership \(F \) with \(T(a), F(a) \in [0, 1] \) and \(T(a) + F(a) \leq 1 \). Because of the restriction,
the fuzzy set, interval-valued fuzzy set and intuitionistic fuzzy set cannot handle inconsistent inform-
ation. Some authors [22, 32, 39, 41, 61, 80, 83] have studied relational databases in the light of
fuzzy set theory with an objective to accommodate a wider range of real-world requirements and to
provide closer man-machine interactions. Probability, possibility and Dempster-Shafer theory have
been proposed to deal with uncertainty. Possibility theory [103] is built upon the idea of a fuzzy
restriction. That means a variable could only take its value from some fuzzy set of values and any
value within that set is a possible value for the variable. Because values have different degrees of
membership in the set, they are possible to different degrees. Prade and Testemale [81] initially
suggested using possibility theory to deal with incomplete and uncertain information in database.
Their work is extended in [82] to cover multivalued attributes. Wong [100] proposes a method
that quantifies the uncertainty in a database using probabilities. His method maybe is the simplest
one which attached a probability to every member of a relation, and to use these values to provide
the probability that a particular value is the correct answer to a particular query. Carvallo and
Pittarelli [40] also use probability theory to model uncertainty in relational databases systems.
Their method augmented projection an join operations with probability measures.

However, unlike incomplete, imprecise and uncertain information, inconsistent information has
not enjoyed enough research attention. In fact, inconsistent information exists in a lot of applications. For example, in data warehousing application, inconsistency will appear when trying to integrate the data from many different sources. Another example is that in the expert system, there exist facts which are inconsistent with each other. Generally, two basic approaches have been followed in solving the inconsistency problem in knowledge bases: belief revision and paraconsistent logic. The goal of the first approach is to make an inconsistent theory consistent, either by revising it or by representing it by a consistent semantics. On the other hand, the paraconsistent approach allows reasoning in the presence of inconsistency, and contradictory information can be derived or introduced without trivialization [49]. Bagai and Sunderraman [29, 95] proposed a paraconsistent relational data model to deal with incomplete and inconsistent information. The data model has been applied to compute the well-founded and fitting model of logic programming [31, 30]. This data model is based on paraconsistent logics which were studied in detail by de Costa [45] and Belnap [34].

In this chapter, we present a new relational data model – neutrosophic relational data model (NRDM). Our model is based on the neutrosophic set theory which is an extension of intuitionistic fuzzy set theory [56] and is capable of manipulating incomplete as well as inconsistent information. We use both truth-membership function grade α and falsity-membership function grade β to denote the status of a tuple of a certain relation with $\alpha, \beta \in [0, 1]$ and $\alpha + \beta \leq 2$. NRDM is the generalization of fuzzy relational data model (FRDM). That is, when $\alpha + \beta = 1$, neutrosophic relation is the ordinary fuzzy relation. This model is distinct with paraconsistent relational data model (PRDM), in fact it can be easily shown that PRDM is a special case of PIFRDM. That is when $\alpha, \beta = 0$ or 1, neutrosophic relation is just paraconsistent relation. We can use Figure 4.1 to express the relationship among FRDM, PRDM and PIFRDM.

We introduce neutrosophic relations, which are the fundamental mathematical structures underlying our model. These structures are strictly more general than classical fuzzy relations and intuitionistic fuzzy relations (interval-valued fuzzy relations), in that for any fuzzy relation or intuitionistic fuzzy relation (interval-valued fuzzy relation) there is a neutrosophic relation with the same information content, but not vice versa. The claim is also true for the relationship between neutrosophic relations and paraconsistent relations. We define algebraic operators over neutrosophic
relations that extend the standard operators such as selection, join, union over fuzzy relations.

There are many potential applications of our new data model. Here are some examples:

(a) Web mining. Essentially the data and documents on the Web are heterogeneous, inconsistency is unavoidable. Using the presentation and reasoning method of our data model, it is easier to capture imperfect information on the Web which will provide more potentially value-added information.

(b) Bioinformatics. There is a proliferation of data sources. Each research group and each new experimental technique seems to generate yet another source of valuable data. But these data can be incomplete and imprecise and even inconsistent. We could not simply throw away one data in favor of other data. So how to represent and extract useful information from these data will be a challenge problem.

(c) Decision Support System. In decision support system, we need to combine the database with the knowledge base. There will be a lot of uncertain and inconsistent information, so we need...
an efficient data model to capture these information and reasoning with these information.

The chapter is organized as follow. Section 4.2 of the chapter deals with some of the basic definitions and concepts of fuzzy relations and operations. Section 4.3 introduces neutrosophic relations and two notions of generalising the fuzzy relational operators such as union, join, projection for these relations. Section 4.4 presents some actual generalised algebraic operators for neutrosophic relations. These operators can be used for specifying queries for database systems built on such relations. Section 4.5 gives an illustrative application of these operators. Finally, Section ?? contains some concluding remarks and directions for future work.

4.2 Fuzzy Relations and Operations

In this section, we present the essential concepts of a fuzzy relational database. Fuzzy relations associate a value between 0 and 1 with every tuple representing the degree of membership of the tuple in the relation. We also present several useful query operators on fuzzy relations.

Let a relation scheme (or just scheme) Σ be a finite set of attribute names, where for any attribute name $A \in \Sigma$, $\text{dom}(A)$ is a non-empty domain of values for A. A tuple on Σ is any map $t : \Sigma \to \bigcup_{A \in \Sigma} \text{dom}(A)$, such that $t(A) \in \text{dom}(A)$, for each $A \in \Sigma$. Let $\tau(\Sigma)$ denote the set of all tuples on Σ.

Definition 45 A fuzzy relation on scheme Σ is any map $R : \tau(\Sigma) \to [0, 1]$. We let $\mathcal{F}(\Sigma)$ be the set of all fuzzy relations on Σ. \square

If Σ and Δ are relation schemes such that $\Delta \subseteq \Sigma$, then for any tuple $t \in \tau(\Delta)$, we let t^Σ denote the set $\{t' \in \tau(\Sigma) \mid t'(A) = t(A), \text{ for all } A \in \Delta\}$ of all extensions of t. We extend this notion for any $T \subseteq \tau(\Delta)$ by defining $T^\Sigma = \bigcup_{t \in T} t^\Sigma$.

4.2.1 Set-theoretic operations on Fuzzy relations

Definition 46 Union: Let R and S be fuzzy relations on scheme Σ. Then, $R \cup S$ is a fuzzy relation on scheme Σ given by

$$(R \cup S)(t) = \max\{R(t), S(t)\}, \text{ for any } t \in \tau(\Sigma). \square$$
Definition 47 Complement: Let R be a fuzzy relation on scheme Σ. Then, $-R$ is a fuzzy relation on scheme Σ given by

$$(-R)(t) = 1 - R(t), \text{ for any } t \in \tau(\Sigma).$$

Definition 48 Intersection: Let R and S be fuzzy relations on scheme Σ. Then, $R \cap S$ is a fuzzy relation on scheme Σ given by

$$(R \cap S)(t) = \min\{R(t), S(t)\}, \text{ for any } t \in \tau(\Sigma).$$

Definition 49 Difference: Let R and S be fuzzy relations on scheme Σ. Then, $R - S$ is a fuzzy relation on scheme Σ given by

$$(R - S)(t) = \min\{R(t), 1 - S(t)\}, \text{ for any } t \in \tau(\Sigma).$$

4.2.2 Relation-theoretic operations on Fuzzy relations

Definition 50 Let R and S be fuzzy relations on schemes Σ and Δ, respectively. Then, the natural join (or just join) of R and S, denoted $R \Join S$, is a fuzzy relation on scheme $\Sigma \cup \Delta$, given by

$$(R \Join S)(t) = \min\{R(\pi_{\Sigma}(t)), S(\pi_{\Delta}(t))\}, \text{ for any } t \in \tau(\Sigma \cup \Delta).$$

Definition 51 Let R be a fuzzy relation on scheme Σ and let $\Delta \subseteq \Sigma$. Then, the projection of R onto Δ, denoted by $\Pi_{\Delta}(R)$ is a fuzzy relation on scheme Δ given by

$$(\Pi_{\Delta}(R))(t) = \max\{R(u)|u \in t^\Delta\}, \text{ for any } t \in \tau(\Delta).$$

Definition 52 Let R be a fuzzy relation on scheme Σ, and let F be any logic formula involving attribute names in Σ, constant symbols (denoting values in the attribute domains), equality symbol $=$, negation symbol \neg, and connectives \lor and \land. Then, the selection of R by F, denoted $\sigma_F(R)$, is a fuzzy relation on scheme Σ, given by

$$(\sigma_F(R))(t) = \begin{cases} R(t) & \text{if } t \in \sigma_F(\tau(\Sigma)) \\ 0 & \text{Otherwise} \end{cases}$$

where σ_F is the usual selection of tuples satisfying F. □
4.3 Neutrosophic Relations

In this section, we generalize fuzzy relations in such a manner that we are now able to assign a measure of belief and a measure of doubt to each tuple. We shall refer to these generalized fuzzy relations as neutrosophic relations. So, a tuple in a neutrosophic relation is assigned a measure $\langle \alpha, \beta \rangle$, $0 \leq \alpha, \beta \leq 1$. α will be referred to as the belief factor and β will be referred to as the doubt factor. The interpretation of this measure is that we believe with confidence α and doubt with confidence β that the tuple is in the relation. The belief and doubt confidence factors for a tuple need not add to exactly 1. This allows for incompleteness and inconsistency to be represented. If the belief and doubt factors add up to less than 1, we have incomplete information regarding the tuple’s status in the relation and if the belief and doubt factors add up to more than 1, we have inconsistent information regarding the tuple’s status in the relation.

In contrast to fuzzy relations where the grade of membership of a tuple is fixed, neutrosophic relations bound the grade of membership of a tuple to a subinterval $[\alpha, 1 - \beta]$ for the case $\alpha + \beta \leq 1$.

The operators on fuzzy relations can also be generalized for neutrosophic relations. However, any such generalization of operators should maintain the belief system intuition behind neutrosophic relations.

This section also develops two different notions of operator generalisations.

We now formalize the notion of a neutrosophic relation.

Recall that $\tau(\Sigma)$ denotes the set of all tuples on any scheme Σ.

Definition 53 A neutrosophic relation R on scheme Σ is any subset of

$$\tau(\Sigma) \times [0, 1] \times [0, 1].$$

For any $t \in \tau(\Sigma)$, we shall denote an element of R as $\langle t, R(t)^+, R(t)^- \rangle$, where $R(t)^+$ is the belief factor assigned to t by R and $R(t)^-$ is the doubt factor assigned to t by R. Let $V(\Sigma)$ be the set of all neutrosophic relations on Σ.

Definition 54 A neutrosophic relation R on scheme Σ is consistent if $R(t)^+ + R(t)^- \leq 1$, for all $t \in \tau(\Sigma)$. Let $C(\Sigma)$ be the set of all consistent neutrosophic relations on Σ. R is said to be...
If $R(t)^+ + R(t)^- \geq 1$, for all $t \in \tau(\Sigma)$. If R is both consistent and complete, i.e. $R(t)^+ + R(t)^- = 1$, for all $t \in \tau(\Sigma)$, then it is a total neutrosophic relation, and let $T(\Sigma)$ be the set of all total neutrosophic relations on Σ.

Definition 55 R is said to be pseudo-consistent if
$$\max\{b_i|(\exists t \in \tau(\Sigma))(\exists d_i)(\langle t, b_i, d_i \rangle \in R)\} + \max\{d_i|(\exists t \in \tau(\Sigma))(\exists b_i)(\langle t, b_i, d_i \rangle \in R)\} > 1,$$
where for these $\langle t, b_i, d_i \rangle$, $b_i + d_i = 1$. Let $P(\Sigma)$ be the set of all pseudo-consistent neutrosophic relations on Σ.

Example 16 Neutrosophic relation $R = \{\langle a, 0.3, 0.7 \rangle, \langle b, 0.4, 0.6 \rangle, \langle b, 0.2, 0.5 \rangle, \langle c, 0.4, 0.3 \rangle\}$ is pseudo-consistent. Because for $t = a$, $\max\{0.3, 0.4\} + \max\{0.7, 0.6\} = 1.1 > 1$.

It should be observed that total neutrosophic relations are essentially fuzzy relations where the uncertainty in the grade of membership is eliminated. We make this relationship explicit by defining a one-one correspondence $\lambda_\Sigma : T(\Sigma) \rightarrow \mathcal{F}(\Sigma)$, given by $\lambda_\Sigma(R)(t) = R(t)^+$, for all $t \in \tau(\Sigma)$. This correspondence is used frequently in the following discussion.

Operator Generalisations

It is easily seen that neutrosophic relations are a generalization of fuzzy relations, in that for each fuzzy relation there is a neutrosophic relation with the same information content, but not vice versa. It is thus natural to think of generalising the operations on fuzzy relations such as union, join, projection etc. to neutrosophic relations. However, any such generalization should be intuitive with respect to the belief system model of neutrosophic relations. We now construct a framework for operators on both kinds of relations and introduce two different notions of the generalization relationship among their operators.

An n-ary operator on fuzzy relations with signature $\langle \Sigma_1, \ldots, \Sigma_{n+1} \rangle$ is a function $\Theta : \mathcal{F}(\Sigma_1) \times \cdots \times \mathcal{F}(\Sigma_n) \rightarrow \mathcal{F}(\Sigma_{n+1})$, where $\Sigma_1, \ldots, \Sigma_{n+1}$ are any schemes. Similarly, an n-ary operator on neutrosophic relations with signature $\langle \Sigma_1, \ldots, \Sigma_{n+1} \rangle$ is a function $\Psi : \mathcal{V}(\Sigma_1) \times \cdots \times \mathcal{V}(\Sigma_n) \rightarrow \mathcal{V}(\Sigma_{n+1})$.
Definition 56 An operator Ψ on neutrosophic relations with signature $(\Sigma_1, \ldots, \Sigma_{n+1})$ is totality preserving if for any total neutrosophic relations R_1, \ldots, R_n on schemes $\Sigma_1, \ldots, \Sigma_n$, respectively, $\Psi(R_1, \ldots, R_n)$ is also total. \square

Definition 57 A totality preserving operator Ψ on neutrosophic relations with signature $(\Sigma_1, \ldots, \Sigma_{n+1})$

is a weak generalization of an operator Θ on fuzzy relations with the same signature, if for any total neutrosophic relations R_1, \ldots, R_n on schemes $\Sigma_1, \ldots, \Sigma_n$, respectively, we have

$$
\lambda_{\Sigma_{n+1}}(\Psi(R_1, \ldots, R_n)) = \Theta(\lambda_{\Sigma_1}(R_1), \ldots, \lambda_{\Sigma_n}(R_n)).
$$

The above definition essentially requires Ψ to coincide with Θ on total neutrosophic relations (which are in one-one correspondence with the fuzzy relations). In general, there may be many operators on neutrosophic relations that are weak generalisations of a given operator Θ on fuzzy relations. The behavior of the weak generalisations of Θ on even just the consistent neutrosophic relations may in general vary. We require a stronger notion of operator generalization under which, at least when restricted to consistent intuitionistic fuzzy relations, the behavior of all the generalised operators is the same. Before we can develop such a notion, we need that of ‘representations’ of a neutrosophic relation.

We associate with a consistent neutrosophic relation R the set of all (fuzzy relations corresponding to) total neutrosophic relations obtainable from R by filling in the gaps between the belief and doubt factors for each tuple. Let the map $\text{reps}_{\Sigma}: \mathcal{C}(\Sigma) \to 2^{\mathcal{F}(\Sigma)}$ be given by

$$
\text{reps}_{\Sigma}(R) = \{ Q \in \mathcal{F}(\Sigma) \mid \bigwedge_{t_i \in \tau(\Sigma)} (R(t_i))^+ \leq Q(t_i) \leq 1 - R(t_i)^- \}.
$$

The set $\text{reps}_{\Sigma}(R)$ contains all fuzzy relations that are ‘completions’ of the consistent neutrosophic relation R. Observe that reps_{Σ} is defined only for consistent neutrosophic relations and produces sets of fuzzy relations. Then we have following observation.

Proposition 1 For any consistent neutrosophic relation R on scheme Σ, $\text{reps}_{\Sigma}(R)$ is the singleton $\{ \lambda_{\Sigma}(R) \}$ iff R is total. \square
Proof It is clear from the definition of consistent and total neutrosophic relations and from the definition of \textit{reps} operation.

We now need to extend operators on fuzzy relations to sets of fuzzy relations. For any operator \(\Theta : \mathcal{F}(\Sigma_1) \times \cdots \times \mathcal{F}(\Sigma_n) \to \mathcal{F}(\Sigma_{n+1}) \) on fuzzy relations, we let \(\mathcal{S}(\Theta) : 2^{\mathcal{F}(\Sigma_1)} \times \cdots \times 2^{\mathcal{F}(\Sigma_n)} \to 2^{\mathcal{F}(\Sigma_{n+1})} \) be a map on sets of fuzzy relations defined as follows. For any sets \(M_1, \ldots, M_n \) of fuzzy relations on schemes \(\Sigma_1, \ldots, \Sigma_n \), respectively,

\[
\mathcal{S}(\Theta)(M_1, \ldots, M_n) = \{ \Theta(R_1, \ldots, R_n) \mid R_i \in M_i, \text{ for all } i, 1 \leq i \leq n \}.
\]

In other words, \(\mathcal{S}(\Theta)(M_1, \ldots, M_n) \) is the set of \(\Theta \)-images of all tuples in the cartesian product \(M_1 \times \cdots \times M_n \). We are now ready to lead up to a stronger notion of operator generalization.

Definition 58 An operator \(\Psi \) on neutrosophic relations with signature \(\langle \Sigma_1, \ldots, \Sigma_{n+1} \rangle \) is consistency preserving if for any consistent neutrosophic relations \(R_1, \ldots, R_n \) on schemes \(\Sigma_1, \ldots, \Sigma_n \), respectively, \(\Psi(R_1, \ldots, R_n) \) is also consistent. \(\square \)

Definition 59 A consistency preserving operator \(\Psi \) on neutrosophic relations with signature \(\langle \Sigma_1, \ldots, \Sigma_{n+1} \rangle \) is a strong generalization of an operator \(\Theta \) on fuzzy relations with the same signature, if for any consistent neutrosophic relations \(R_1, \ldots, R_n \) on schemes \(\Sigma_1, \ldots, \Sigma_n \), respectively, we have

\[
\text{reps}_{\Sigma_{n+1}}(\Psi(R_1, \ldots, R_n)) = \mathcal{S}(\Theta)(\text{reps}_{\Sigma_1}(R_1), \ldots, \text{reps}_{\Sigma_n}(R_n)). \square
\]

Given an operator \(\Theta \) on fuzzy relations, the behavior of a weak generalization of \(\Theta \) is ‘controlled’ only over the total neutrosophic relations. On the other hand, the behavior of a strong generalization is ‘controlled’ over all consistent neutrosophic relations. This itself suggests that strong generalization is a stronger notion than weak generalization. The following proposition makes this precise.

Proposition 2 If \(\Psi \) is a strong generalization of \(\Theta \), then \(\Psi \) is also a weak generalization of \(\Theta \). \(\square \)

Proof Let \(\langle \Sigma_1, \ldots, \Sigma_{n+1} \rangle \) be the signature of \(\Psi \) and \(\Theta \), and let \(R_1, \ldots, R_n \) be any total neutrosophic relations on schemes \(\Sigma_1, \ldots, \Sigma_n \), respectively. Since all total relations are consistent, and \(\Psi \) is a strong generalization of \(\Theta \), we have that

\[
\text{reps}_{\Sigma_{n+1}}(\Psi(R_1, \ldots, R_n)) = \mathcal{S}(\Theta)(\text{reps}_{\Sigma_1}(R_1), \ldots, \text{reps}_{\Sigma_n}(R_n)),
\]
Proposition 1 gives us that for each i, $1 \leq i \leq n$, $\text{reps}_{\Sigma_i}(R_i)$ is the singleton set $\{\lambda_{\Sigma_i}(R_i)\}$. Therefore, $S(\Theta)(\text{reps}_{\Sigma_1}(R_1), \ldots, \text{reps}_{\Sigma_n}(R_n))$ is just the singleton set:

$$\{\Theta(\lambda_{\Sigma_1}(R_1), \ldots, \lambda_{\Sigma_n}(R_n))\}.$$

Here, $\Psi(R_1, \ldots, R_n)$ is total, and

$$\lambda_{\Sigma_{n+1}}(\Psi(R_1, \ldots, R_n)) = \Theta(\lambda_{\Sigma_1}(R_1), \ldots, \lambda_{\Sigma_n}(R_n)),$$

i.e. Ψ is a weak generalization of Θ.

Though there may be many strong generalisations of an operator on fuzzy relations, they all behave the same when restricted to consistent neutrosophic relations. In the next section, we propose strong generalisations for the usual operators on fuzzy relations. The proposed generalised operators on neutrosophic relations correspond to the belief system intuition behind neutrosophic relations.

First we will introduce two special operators on neutrosophic relations called split and combine to transform inconsistent neutrosophic relations into pseudo-consistent neutrosophic relations and transform pseudo-consistent neutrosophic relations into inconsistent neutrosophic relations.

Definition 60 (Split) Let R be a neutrosophic relation on scheme Σ. Then,

$$\Delta(R) = \{(t, b, d) | (t, b, d) \in R \text{ and } b + d \leq 1\} \cup \{(t, b', d') | (t, b, d) \in R \text{ and } b + d > 1 \text{ and } b' = b \text{ and } d' = 1 - b\} \cup \{(t, b', d') | (t, b, d) \in R \text{ and } b + d > 1 \text{ and } b' = 1 - d \text{ and } d' = d\}.$$

It is obvious that $\Delta(R)$ is pseudo-consistent if R is inconsistent.

Definition 61 (Combine) Let R be a neutrosophic relation on scheme Σ. Then,

$$\nabla(R) = \{(t, b', d') | (\exists b)(\exists d)((t, b', d') \in R \text{ and } (\forall b_i, d_i)((t, b_i, d_i) \rightarrow b' \geq b_i) \text{ and } \langle t, b, d' \rangle \in R \text{ and } (\forall b_i)(\forall d_i)((t, b_i, d_i) \rightarrow d' \geq d_i))\}.$$

It is obvious that $\nabla(R)$ is inconsistent if R is pseudo-consistent.

Note that strong generalization defined above only holds for consistent or pseudo-consistent neutrosophic relations. For any arbitrary paraconsistent intuitionistic fuzzy relations, we should first use split operation to transform them into non inconsistent neutrosophic relations and apply the set-theoretic and relation-theoretic operations on them and finally use combine operation to transform the result into arbitrary neutrosophic relation. For the simplification of notation, the following generalized algebra is defined under such assumption.
4.4 Generalized Algebra on Neutrosophic Relations

In this section, we present one strong generalization each for the fuzzy relation operators such as union, join, projection. To reflect generalization, a hat is placed over a fuzzy relation operator to obtain the corresponding neutrosophic relation operator. For example, ∞ denotes the natural join among fuzzy relations, and \triangleleft denotes natural join on neutrosophic relations. These generalized operators maintain the belief system intuition behind neutrosophic relations.

Set-Theoretic Operators

We first generalize the two fundamental set-theoretic operators, union and complement.

Definition 62 Let R and S be neutrosophic relations on scheme Σ. Then,

(a) the union of R and S, denoted $R \bigcup S$, is a neutrosophic relation on scheme Σ, given by

$$(R \bigcup S)(t) = (\max\{R(t)^+, S(t)^+\}, \min\{R(t)^-, S(t)^-\}), \text{ for any } t \in \tau(\Sigma);$$

(b) the complement of R, denoted $\complement R$, is a neutrosophic relation on scheme Σ, given by

$$(\complement R)(t) = (R(t)^-, R(t)^+), \text{ for any } t \in \tau(\Sigma).$$

An intuitive appreciation of the union operator can be obtained as follows: Given a tuple t, since we believed that it is present in the relation R with confidence $R(t)^+$ and that it is present in the relation S with confidence $S(t)^+$, we can now believe that the tuple t is present in the “either-R-or-S” relation with confidence which is equal to the larger of $R(t)^+$ and $S(t)^+$. Using the same logic, we can now believe in the absence of the tuple t from the “either-R-or-S” relation with confidence which is equal to the smaller (because t must be absent from both R and S for it to be absent from the union) of $R(t)^-$ and $S(t)^-$. The definition of complement and of all the other operators on neutrosophic relations defined later can (and should) be understood in the same way.

Proposition 3 The operators \bigcup and unary \complement on neutrosophic relations are strong generalisations of the operators \cup and unary $-$ on fuzzy relations.
Proof Let R and S be consistent neutrosophic relations on scheme Σ. Then $\text{reps}_\Sigma(R \cup S)$ is the set

$$\{Q \mid \bigwedge_{t_i \in \tau(\Sigma)} (\max\{R(t_i)^+, S(t_i)^+\} \leq Q(t_i) \leq 1 - \min\{R(t_i)^-, S(t_i)^-\})\}$$

This set is the same as the set

$$\{r \cup s \mid \bigwedge_{t_i \in \tau(\Sigma)} (R(t_i)^+ \leq r(t_i) \leq 1 - R(t_i)^-), \bigwedge_{t_i \in \tau(\Sigma)} (S(t_i)^+ \leq s(t_i) \leq 1 - S(t_i)^-)\}$$

which is $S(\cup)(\text{reps}_\Sigma(R), \text{reps}_\Sigma(S))$. Such a result for unary $\widehat{\cdot}$ can also be shown similarly.

For sake of completeness, we define the following two related set-theoretic operators:

Definition 63 Let R and S be neutrosophic relations on scheme Σ. Then,

(a) the intersection of R and S, denoted $R \cap S$, is a neutrosophic relation on scheme Σ, given by

$$(R \cap S)(t) = \langle \min\{R(t)^+, S(t)^+\}, \max\{R(t)^-, S(t)^-\} \rangle, \text{ for any } t \in \tau(\Sigma);$$

(b) the difference of R and S, denoted $R \smallsetminus S$, is a neutrosophic relation on scheme Σ, given by

$$(R \smallsetminus S)(t) = \langle \min\{R(t)^+, S(t)^-\}, \max\{R(t)^-, S(t)^+\} \rangle, \text{ for any } t \in \tau(\Sigma);$$

□

The following proposition relates the intersection and difference operators in terms of the more fundamental set-theoretic operators union and complement.

Proposition 4 For any neutrosophic relations R and S on the same scheme, we have

$$R \cap S = \widehat{\cdot}(\widehat{\cdot}R \cup \widehat{\cdot}S), \text{ and}$$

$$R \smallsetminus S = \widehat{\cdot}(\widehat{\cdot}R \cup S).$$
Proof

By definition, \(\tilde{R}(t) = \langle R(t)^-, R(t)^+ \rangle \)

\(\tilde{S}(t) = \langle S(t)^-, S(t)^+ \rangle \)

and \((\tilde{R} \cup \tilde{S})(t) = \langle \max(R(t)^-, S(t)^-), \min(R(t)^+, S(t)^+) \rangle \)

so, \((\tilde{R} \cup \tilde{S})(t) = \langle \min(R(t)^+, S(t)^+), \max(R(t)^-, S(t)^-) \rangle \)

\(= R \cap S(t). \)

The second part of the result can be shown similarly.

Relation-Theoretic Operators

We now define some relation-theoretic algebraic operators on neutrosophic relations.

Definition 64 Let \(R \) and \(S \) be neutrosophic relations on schemes \(\Sigma \) and \(\Delta \), respectively. Then, the natural join (further for short called join) of \(R \) and \(S \), denoted \(R \bowtie S \), is a neutrosophic relation on scheme \(\Sigma \cup \Delta \), given by

\[(R \bowtie S)(t) = \langle \min\{R(\pi_\Sigma(t))^+, S(\pi_\Delta(t))^+\}, \max\{R(\pi_\Sigma(t))^-, S(\pi_\Delta(t))^-\} \rangle,\]

where \(\pi \) is the usual projection of a tuple. \(\square \)

It is instructive to observe that, similar to the intersection operator, the minimum of the belief factors and the maximum of the doubt factors are used in the definition of the join operation.

Proposition 5 \(\bowtie \) is a strong generalization of \(\bowcirc \).

Proof Let \(R \) and \(S \) be consistent neutrosophic relations on schemes \(\Sigma \) and \(\Delta \), respectively. Then \(\text{reps}_{\Sigma \cup \Delta}(R \bowtie S) \) is the set \(\{Q \in \mathcal{F}(\Sigma \cup \Delta) \mid \bigwedge_{t_i \in \pi(\Sigma \cup \Delta)} (\min\{R_{\pi_\Sigma}(t_i)^+, S_{\pi_\Delta}(t_i)^+\} \leq Q(t_i) \leq 1 - \max\{R_{\pi_\Sigma}(t_i)^-, S_{\pi_\Delta}(t_i)^-\}) \} \) and \(S(\bowcirc)(\text{reps}_{\Sigma}(R), \text{reps}_{\Delta}(S)) = \{r \bowcirc s \mid r \in \text{reps}_{\Sigma}(R), s \in \text{reps}_{\Delta}(S)\} \)

Let \(Q \in \text{reps}_{\Sigma \cup \Delta}(R \bowtie S) \). Then \(\pi_{\Sigma}(Q) \in \text{reps}_{\Sigma}(R) \), where \(\pi_{\Sigma} \) is the usual projection over \(\Sigma \) of fuzzy relations. Similarly, \(\pi_{\Delta}(Q) \in \text{reps}_{\Delta}(S) \). Therefore, \(Q \in S(\bowcirc)(\text{reps}_{\Sigma}(R), \text{reps}_{\Delta}(S)) \).
Let $Q \in S(\alpha)(\text{reps}_\Sigma(R), \text{reps}_\Delta(S))$. Then $Q(t_i) \geq \min\{R_{\pi_\Sigma}(t_i)^+, S_{\pi_\Delta}(t_i)^+\}$ and $Q(t_i) \leq \min\{1 - R_{\pi_\Sigma}(t_i)^-, 1 - S_{\pi_\Delta}(t_i)^-\} = 1 - \max\{R_{\pi_\Sigma}(t_i)^-, S_{\pi_\Delta}(t_i)^-\}$, for any $t_i \in \tau(\Sigma \cup \Delta)$, because R and S are consistent.

Therefore, $Q \in \text{reps}_{\Sigma \cup \Delta}(R \bowtie S)$.

We now present the projection operator.

Definition 65 Let R be a neutrosophic relation on scheme Σ, and $\Delta \subseteq \Sigma$. Then, the projection of R onto Δ, denoted $\hat{\pi}_\Delta(R)$, is a neutrosophic relation on scheme Δ, given by

$$(\hat{\pi}_\Delta(R))(t) = (\max\{R(u)^+ | u \in t^{\Sigma}\}, \min\{R(u)^- | u \in t^{\Sigma}\}).$$

The belief factor of a tuple in the projection is the maximum of the belief factors of all of the tuple’s extensions onto the scheme of the input neutrosophic relation. Moreover, the doubt factor of a tuple in the projection is the minimum of the doubt factors of all of the tuple’s extensions onto the scheme of the input neutrosophic relation.

We present the selection operator next.

Definition 66 Let R be a neutrosophic relation on scheme Σ, and let F be any logic formula involving attribute names in Σ, constant symbols (denoting values in the attribute domains), equality symbol $=$, negation symbol \neg, and connectives \lor and \land. Then, the selection of R by F, denoted $\hat{\sigma}_F(R)$, is a neutrosophic relation on scheme Σ, given by

$$(\hat{\sigma}_F(R))(t) = (\alpha, \beta),$$

where

$$\alpha = \begin{cases} R(t)^+ & \text{if } t \in \sigma_F(\tau(\Sigma)) \\ 0 & \text{otherwise} \end{cases}$$

and

$$\beta = \begin{cases} R(t)^- & \text{if } t \in \sigma_F(\tau(\Sigma)) \\ 1 & \text{otherwise} \end{cases}$$

where σ_F is the usual selection of tuples satisfying F from ordinary relations.

If a tuple satisfies the selection criterion, it’s belief and doubt factors are the same in the selection as in the input neutrosophic relation. In the case where the tuple does not satisfy the selection criterion, its belief factor is set to 0 and the doubt factor is set to 1 in the selection.
Proposition 6 The operators $\hat{\pi}$ and $\hat{\sigma}$ are strong generalisations of π and σ, respectively.

Proof Similar to that of Proposition 5.

Example 17 Relation schemes are sets of attribute names, but in this example we treat them as ordered sequences of attribute names (which can be obtained through permutation of attribute names), so tuples can be viewed as the usual lists of values. Let \{a, b, c\} be a common domain for all attribute names, and let R and S be the following neutrosophic relations on schemes $\langle X, Y \rangle$ and $\langle Y, Z \rangle$ respectively.

\[
\begin{array}{|c|c|}
\hline
 t & R(t) \\
\hline
 (a, a) & \langle 0, 1 \rangle \\
 (a, b) & \langle 0, 1 \rangle \\
 (a, c) & \langle 0, 1 \rangle \\
 (b, b) & \langle 1, 0 \rangle \\
 (b, c) & \langle 1, 0 \rangle \\
 (c, b) & \langle 1, 1 \rangle \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
 t & S(t) \\
\hline
 (a, c) & \langle 1, 0 \rangle \\
 (b, a) & \langle 1, 1 \rangle \\
 (c, b) & \langle 0, 1 \rangle \\
\hline
\end{array}
\]

For other tuples which are not in the neutrosophic relations $R(t)$ and $S(t)$, their $\langle \alpha, \beta \rangle = \langle 0, 0 \rangle$ which means no any information available. Because R and S are inconsistent, we first use split operation to transform them into pseudo-consistent and apply the relation-theoretic operations on them and transform the result back to arbitrary neutrosophic set using combine operation. Then, $T_1 = \nabla(\Delta(R) \bowtie \Delta(S))$ is a neutrosophic relation on scheme $\langle X, Y, Z \rangle$ and $T_2 = \nabla(\pi_{(X,Z)}(\Delta(T_1)))$ and $T_3 = \sigma_{X \sim= Z}(T_2)$ are neutrosophic relations on scheme $\langle X, Z \rangle$. T_1, T_2 and T_3 are shown below:
Consider the target recognition example presented in [94]. Here, an autonomous vehicle needs to identify objects in a hostile environment such as a military battlefield. The autonomous vehicle is equipped with a number of sensors which are used to collect data, such as speed and size of the objects (tanks) in the battlefield. Associated with each sensor, we have a set of rules that describe the type of the object based on the properties detected by the sensor.

Let us assume that the autonomous vehicle is equipped with three sensors resulting in data collected about radar readings, of the tanks, their gun characteristics and their speeds. What follows is a set of rules that associate the type of object with various observations.

Radar Readings:
• Reading r_1 indicates that the object is a T-72 tank with belief factor 0.80 and doubt factor 0.15.

• Reading r_2 indicates that the object is a T-60 tank with belief factor 0.70 and doubt factor 0.20.

• Reading r_3 indicates that the object is not a T-72 tank with belief factor 0.95 and doubt factor 0.05.

• Reading r_4 indicates that the object is a T-80 tank with belief factor 0.85 and doubt factor 0.10.

Gun Characteristics:

• Characteristic c_1 indicates that the object is a T-60 tank with belief factor 0.80 and doubt factor 0.20.

• Characteristic c_2 indicates that the object is not a T-80 tank with belief factor 0.90 and doubt factor 0.05.

• Characteristic c_3 indicates that the object is a T-72 tank with belief factor 0.85 and doubt factor 0.10.

Speed Characteristics:

• Low speed indicates that the object is a T-60 tank with belief factor 0.80 and doubt factor 0.15.

• High speed indicates that the object is not a T-72 tank with belief factor 0.85 and doubt factor 0.15.

• High speed indicates that the object is not a T-80 tank with belief factor 0.95 and doubt factor 0.05.
• Medium speed indicates that the object is not a T-80 tank with belief factor 0.80 and doubt factor 0.10.

These rules can be captured in the following three neutrosophic relations:

Radar Rules

<table>
<thead>
<tr>
<th>Reading</th>
<th>Object</th>
<th>Confidence Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_1)</td>
<td>T-72</td>
<td>((0.80, 0.15))</td>
</tr>
<tr>
<td>(r_2)</td>
<td>T-60</td>
<td>((0.70, 0.20))</td>
</tr>
<tr>
<td>(r_3)</td>
<td>T-72</td>
<td>((0.05, 0.95))</td>
</tr>
<tr>
<td>(r_4)</td>
<td>T-80</td>
<td>((0.85, 0.10))</td>
</tr>
</tbody>
</table>

Gun Rules

<table>
<thead>
<tr>
<th>Reading</th>
<th>Object</th>
<th>Confidence Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1)</td>
<td>T-60</td>
<td>((0.80, 0.20))</td>
</tr>
<tr>
<td>(c_2)</td>
<td>T-80</td>
<td>((0.05, 0.90))</td>
</tr>
<tr>
<td>(c_3)</td>
<td>T-72</td>
<td>((0.85, 0.10))</td>
</tr>
</tbody>
</table>

Speed Rules

<table>
<thead>
<tr>
<th>Reading</th>
<th>Object</th>
<th>Confidence Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td>T-60</td>
<td>((0.80, 0.15))</td>
</tr>
<tr>
<td>high</td>
<td>T-72</td>
<td>((0.15, 0.85))</td>
</tr>
<tr>
<td>high</td>
<td>T-80</td>
<td>((0.05, 0.95))</td>
</tr>
<tr>
<td>medium</td>
<td>T-80</td>
<td>((0.10, 0.80))</td>
</tr>
</tbody>
</table>

The autonomous vehicle uses the sensors to make observations about the different objects and then uses the rules to determine the type of each object in the battlefield. It is quite possible that two different sensors may identify the same object as of different types, thereby introducing inconsistencies.

Let us now consider three objects \(o_1, o_2 \) and \(o_3 \) which need to be identified by the autonomous vehicle. Let us assume the following observations made by the three sensors about the three
objects. Once again, we assume certainty factors (maybe derived from the accuracy of the sensors) are associated with each observation.

<table>
<thead>
<tr>
<th>Radar Data</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Object-id</td>
<td>Reading</td>
<td>Confidence Factors</td>
</tr>
<tr>
<td>o₁</td>
<td>r₃</td>
<td>(1.00, 0.00)</td>
</tr>
<tr>
<td>o₂</td>
<td>r₁</td>
<td>(1.00, 0.00)</td>
</tr>
<tr>
<td>o₃</td>
<td>r₄</td>
<td>(1.00, 0.00)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gun Data</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Object-id</td>
<td>Reading</td>
<td>Confidence Factors</td>
</tr>
<tr>
<td>o₁</td>
<td>c₃</td>
<td>(0.80, 0.10)</td>
</tr>
<tr>
<td>o₂</td>
<td>c₁</td>
<td>(0.90, 0.10)</td>
</tr>
<tr>
<td>o₃</td>
<td>c₂</td>
<td>(0.90, 0.10)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Speed Data</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Object-id</td>
<td>Reading</td>
<td>Confidence Factors</td>
</tr>
<tr>
<td>o₁</td>
<td>high</td>
<td>(0.90, 0.10)</td>
</tr>
<tr>
<td>o₂</td>
<td>low</td>
<td>(0.95, 0.05)</td>
</tr>
<tr>
<td>o₃</td>
<td>medium</td>
<td>(0.80, 0.20)</td>
</tr>
</tbody>
</table>

Given these observations and the rules, we can use the following algebraic expression to identify the three objects:

\[\tilde{\alpha}_{\text{Object-id, Object}}(\text{Radar Data} \bowtie \text{Radar Rules}) \cap \]
\[\tilde{\alpha}_{\text{Object-id, Object}}(\text{Gun Data} \bowtie \text{Gun Rules}) \cap \]
\[\tilde{\alpha}_{\text{Object-id, Object}}(\text{Speed Data} \bowtie \text{Speed Rules}) \]

The intuition behind the intersection is that we would like to capture the common (intersecting) information among the three sensor data. Evaluating this expression, we get the following neutrosophic relation:
Table 4.1: EVAL

<table>
<thead>
<tr>
<th>I_1</th>
<th>q_1</th>
<th>(0.9, 0.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_1</td>
<td>q_2</td>
<td>(1.0, 0.0)</td>
</tr>
<tr>
<td>I_1</td>
<td>q_3</td>
<td>(0.1, 0.8)</td>
</tr>
<tr>
<td>I_2</td>
<td>q_1</td>
<td>(1.0, 1.0)</td>
</tr>
<tr>
<td>I_2</td>
<td>q_3</td>
<td>(0.8, 0.3)</td>
</tr>
</tbody>
</table>

It is clear from the result that by the given information, we could not infer any useful information that is we could not decide the status of objects o_1, o_2 and o_3.

4.6 An Infinite-Valued Tuple Relational Calculus

As an example, suppose in the e-shopping environment, there are two items I_1 and I_2, which are evaluated by customers for some categories of quality q_1, q_2 and q_3. Let the evaluation results be captured by the following neutrosophic relation EVAL on scheme $\{I, Q\}$:

The above neutrosophic relation contains the information that the confidence of item I_1 was evaluated "good" for category q_1 is 0.9 and the doubt is 0.2. The confidence of item I_1 was evaluated "good" for category q_2 is 1.0 and the doubt is 0.0. The confidence of item I_1 was evaluated "poor" for category q_3 is 0.8 and the doubt is 0.1. Also, the confidence of item I_2 was evaluated "good" for category q_1 is 1.0 and the doubt is 1.0 (similarly, the confidence of item I_2 was evaluated "poor" for category q_1 is 1.0 and the doubt is 1.0). The confidence of I_2 was evaluated "good" for category q_3 is 0.8 and the doubt is 0.3. Note that the evaluation results of item I_2 for category q_2 is unknown. The above information contains fuzziness, incompleteness and inconsistency. Such information may be
due to various reasons, such as evaluation not conducted, or evaluation results not yet available, the
evaluation is not reliable, and different evaluation results for the same category producing different
results, etc.

We define a infinite-valued membership function of a neutrosophic relation, which maps tuples
to the pair of values $\langle \alpha, \beta \rangle$, with $0 \leq \alpha + \beta \leq 2$. We use the symbol I to denote the set of these
values, i.e. $I = \{ \langle \alpha, \beta \rangle \}$. Now, for a neutrosophic relation $R = \langle t, R(t)^+, R(t)^- \rangle$ on scheme Σ, its
membership function is a infinite-valued predicate $\Phi_R : \tau(\Sigma) \to I$, given by

$$\Phi_R(t) = \langle R(t)^+, R(t)^- \rangle.$$

In [28], it proposed a 4-valued characteristic function of neutrosophic relation, which maps
tuples to one of the following values: \top (for contradiction), t (for true), f (for false) and \bot (for
unknown). It can be easily verified that when $R(t)^+ = R(t)^- = 1$, it corresponds to \top; when
$R(t)^+ = 1, R(t)^- = 0$, it corresponds to t; when $R(t)^+ = 0, R(t)^- = 1$, it corresponds to f; and
when $R(t)^+ = R(t)^- = 0$, it corresponds to \bot.

The tuple relational calculus provides a very natural, set-theoretic, declarative notation for
querying ordinary relational database management systems. A tuple calculus expression has the
form:

$$\{ t \mid P(t) \},$$

where t is a tuple variable, Σ a scheme, and P is some 2-valued predicate on tuples in $\tau(\Sigma)$. The
expression denotes the set of all tuple values T (from $\tau(\Sigma)$) of the variable t for which the predicate
$P(T)$ is true.

We retain the above simple syntax in the generalised tuple calculus expression for neutrosophic
databases. However, the predicate P is now interpreted as a infinite-valued predicate on tuples.
Moreover, the entire expression now denotes a neutrosophic relation (of which P is the membership
function).

In this section we define the syntax and semantics of legal infinite-valued predicate expressions.
They are defined in relation to a given set of binary comparators on domains associated with the
attribute names appearing in schemes. Most intuitive binary comparators, like $<$ and \leq, produce
2-valued results, but in principle infinite-valued comparators are possible. The basic building blocks of formulas are *atoms*, of which there are four kinds:

1. For any tuple variable *t* and relation *R* on the same scheme, *t* $\notin R$ is an atom. For any tuple value *T* for the variable *t*, the atom *t* $\notin R$ denotes the value $\Phi_R(T)$.

2. For any tuple variable *t*₁ and *t*₂, attribute names *A* and *B* in the schemes of *t*₁ and *t*₂ respectively, and binary comparator Θ such that *A* and *B* are Θ-comparable, $t_1.A \Theta t_2.B$ is an atom. For any tuple values *T*₁ and *T*₂ for the variables *t*₁ and *t*₂ respectively, the atom $t_1.A \Theta t_2.B$ denotes the value $T_1(A) \Theta T_2(B)$.

3. For any tuple variable *t*, constant *c*, and attribute names *A* and *B* such that *A* is in the scheme of *t*, *c* \in $dom(B)$, and *A* and *B* are Θ-comparable, $t.A \Theta c$ is an atom. For any tuple value *T* for the variable *t*, the atom $t.A \Theta c$ denotes the value $T(A) \Theta c$.

4. For any constant *c*, tuple variable *t*, and attribute names *A* and *B* such that *c* \in $dom(A)$, *B* is in the scheme of *t*, and *A* and *B* are Θ-comparable, $c \Theta t.B$ is an atom. For any tuple value *T* for the variable *t*, the atom $c \Theta t.B$ denotes the value $c \Theta T(B)$.

We use infinite-valued connectives $\tilde{\sim}$ (not), $\tilde{\land}$ (and), $\tilde{\lor}$ (or), \exists (there exists) and \forall (for all) to recursively build formulas from atoms. Any atom is a formula, where the formula denotes the same value as the atom.

If *f* and *g* are formulas, and f^+ is truth-degree of the *f*, f^- is falsity-degree of *f*, then $\tilde{\sim} f$, $f \tilde{\land} g$ and $f \tilde{\lor} g$ are also formulas. The values of such formulas are given as the following:

$$\tilde{\sim} f = \langle f^-, f^+ \rangle$$

(4.1)

$$f \tilde{\land} g = \langle \min(f^+, g^+), \max(f^-, g^-) \rangle$$

(4.2)
An intuitive appreciation of the disjunctive connective can be obtained as follows: Given a tuple \(t \), since we believed that it is present in the relation \(R \) with confidence \(R(t)^+ \) and that it is present in the relation \(S \) with confidence \(S(t)^+ \), we can now believe that the tuple \(t \) is present in the “either-\(R \)-or-\(S \)” relation with confidence which is equal to the larger of \(R(t)^+ \) and \(S(t)^+ \). Using the same logic, we can now believe in the absence of the tuple \(t \) from the “either-\(R \)-or-\(S \)” relation with confidence which is equal to the smaller (because \(t \) must be absent from both \(R \) and \(S \) for it to be absent from the disjunction) of \(R(t)^- \) and \(S(t)^- \). The definition of negation and conjunction can be understood in the same way.

The duality of \(\tilde{\wedge} \) and \(\tilde{\lor} \) is evident from the above formulas. It is interesting to note the algebraic laws shown in Table 4.2 that are exhibited by these connectives.

If \(t \) is a tuple variable, \(\Sigma \) a scheme, and \(P \) an infinite-valued predicate on tuples in \(\tau(\Sigma) \), then \(\tilde{\exists}t \) of \(\Sigma|P(t) \) and \(\tilde{\forall}t \) of \(\Sigma|P(t) \) are formulas. If \(P \) is the membership function of the neutrosophic relation \(R \), then the values denoted by these formulas are given by

\[
\tilde{\exists}t \text{ of } \Sigma|P(t) = \langle t_{\tilde{\exists}}, f_{\tilde{\exists}} \rangle, \tag{4.4}
\]

where \(t_{\tilde{\exists}} = \max \{ R(t)^+ \} \), for all \(t \in \tau(\Sigma) \), \(f_{\tilde{\exists}} = \min \{ R(t)^- \} \), for all \(t \in \tau(\Sigma) \).

\[
\tilde{\forall}t \text{ of } \Sigma|P(t) = \langle t_{\tilde{\forall}}, f_{\tilde{\forall}} \rangle, \tag{4.5}
\]

where \(t_{\tilde{\forall}} = \min \{ R(t)^+ \} \), for all \(t \in \tau(\Sigma) \), \(f_{\tilde{\forall}} = \max \{ R(t)^- \} \), for all \(t \in \tau(\Sigma) \).

The extended De Morgan laws can be verified to continue to hold for our generalized infinite-valued semantics for quantifiers, i.e. the following pairs of formulas are equivalent:

\[
\tilde{\exists}t \text{ of } \Sigma|P(t) \equiv \tilde{\forall} (\tilde{\forall}t \text{ of } \Sigma|\tilde{\forall} P(t))
\]

\[
\tilde{\forall}t \text{ of } \Sigma|P(t) \equiv \tilde{\exists} (\tilde{\exists}t \text{ of } \Sigma|\tilde{\exists} P(t))
\]
Table 4.2: Algebraic Properties of Infinite-Valued Propositional Connectives

<table>
<thead>
<tr>
<th>(commutative laws)</th>
<th>(f \lor g = g \lor f)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(f \land g = g \land f)</td>
</tr>
<tr>
<td>(associative laws)</td>
<td>((f \lor g) \lor h = f \lor (g \lor h))</td>
</tr>
<tr>
<td></td>
<td>((f \land g) \land h = f \land (g \land h))</td>
</tr>
<tr>
<td>(distributive laws)</td>
<td>(f \lor (g \land h) = (f \lor g) \land (f \lor h))</td>
</tr>
<tr>
<td></td>
<td>(f \land (g \lor h) = (f \land g) \lor (f \land h))</td>
</tr>
<tr>
<td>(idempotent laws)</td>
<td>(f \lor f = f)</td>
</tr>
<tr>
<td></td>
<td>(f \land f = f)</td>
</tr>
<tr>
<td>(identity laws)</td>
<td>(f \lor f = f)</td>
</tr>
<tr>
<td></td>
<td>(f \land t = f)</td>
</tr>
<tr>
<td>(double complementation)</td>
<td>(\tilde{\sim}(\sim f) = f)</td>
</tr>
<tr>
<td>(De Morgan laws)</td>
<td>(\sim(f \lor g) = \sim f \land \sim g)</td>
</tr>
<tr>
<td></td>
<td>(\sim(f \land g) = \sim f \lor \sim g)</td>
</tr>
</tbody>
</table>

\[\exists t \text{ of } \Sigma| (P(t) \land Q(t)) \equiv \sim(\exists t \text{ of } \Sigma|\sim P(t) \lor \sim Q(t)) \]

\[\exists t \text{ of } \Sigma| (P(t) \lor Q(t)) \equiv \sim(\exists t \text{ of } \Sigma|\sim P(t) \land \sim Q(t)) \]

\[\forall t \text{ of } \Sigma| (P(t) \land Q(t)) \equiv \sim(\forall t \text{ of } \Sigma|\sim P(t) \lor \sim Q(t)) \]

\[\forall t \text{ of } \Sigma| (P(t) \lor Q(t)) \equiv \sim(\forall t \text{ of } \Sigma|\sim P(t) \land \sim Q(t)) \]

It is worth mentioning that in ordinary 2-valued relational calculus caution needs to be exercised in mixing negation and quantifiers in a safe manner as the resulting expressions have the potential of denoting infinite relations, even if all components denote finite relations. Fortunately, as neutrosophic databases are by nature capable of handling infinite relations, safety of expressions is not an issue in infinite-valued calculus.
4.6.1 An Example

Let us now consider an example illustrating some infinite-valued computations. We use the neutrosophic relation EVAL on scheme \(\{I, Q\} \) of the item-category evaluation as example.

Consider the query:

What items showed contradictory evaluation results for some category?

In ordinary relational databases, it is impossible to store contradictory information, let alone entertaining queries about contradiction.

Let \(\Delta = \{I\} \), and \(\Sigma = \{I, Q\} \) be schemes. A tuple calculus expression for this query is:

\[
\{d \in \Delta | (\exists t \in \Sigma | t.I = d.I \land t \notin \text{EVAL} \land \neg t \notin \text{EVAL})\}
\]

In the ordinary 2-valued logic the above query will produce an empty answer due to the condition for the tuple \(t \) to simultaneously be in EVAL as well as not be in EVAL. In infinite-valued logic, however, the query denotes that neutrosophic relation on scheme \(\Delta \) whose membership function is denoted by the infinite-valued predicate expression

\[
\exists t \in \Sigma | t.I = d.I \land t \notin \text{EVAL} \land \neg t \notin \text{EVAL}
\]

That function can be computed by determining the value of the above expression for all possible values of its free variable \(d \), namely \(I_1 \) and \(I_2 \).

For the value \(d = I_1 \), the expression (4.6) can be seen to reduce to the value \(\langle 0.2, 0.8 \rangle \). For the value \(d = I_2 \), the expression (4.6) can be seen to reduce to the value \(\langle 1.0, 0.8 \rangle \). The result is the neutrosophic relation:

| \(I_1 \) | \(\langle 0.2, 0.8 \rangle \) |
| \(I_2 \) | \(\langle 1.0, 0.8 \rangle \) |
The result states that I_1 showed contradictory evaluation result for some category with confidence is 0.2 and doubt is 0.8, so it is safe to conclude that I_1 did not show contradictory evaluation resulti, but I_2 showed contradictory evaluation result for some category with confidence 1.0 and doubt is 0.8, the explanation is that I_2 did show contradictory result for some category and did not show contradictory for other category at the same times.

4.7 A Generalized SQL Query Construct for Neutrosophic Relations

The most popular construct for information retrieval from most commercial systems is the SQL’s SELECT statement. While the statement has many options and extensions to its basic form, here we just present an infinite-valued generalization to the basic form, as generalizing the options then just becomes a trivial matter of detail. The basic form of the statement contains three clauses select, from and where, and has the following format:

$$\text{select } A_1, A_2, \ldots A_m \text{ from } R_1, R_2, \ldots R_n \text{ where } C$$

where

1. $A_1, A_2, \ldots A_m$ is a list of attribute names whose values are to be retrieved by the query,

2. $R_1, R_2, \ldots R_n$ is a list of relation names required to process the query, and

3. C is a boolean expression that identifies the tuples to be retrieved by the query.

Without loss of generality, we assume that each attribute name occurs in exactly one relation, because if some attribute A_i occurs in more than one relation, we require, instead of simply the attribute A_i, a pair of the form $R_j.A_i$ qualifying that attribute. The result of the SELECT statement is a relation with attributes $A_1, A_2, \ldots A_m$ chosen from the attributes of $R_1 \times R_2 \times \cdots \times R_n$ for tuples that satisfy the boolean condition C, i.e.

$$\pi_{A_1, A_2, \ldots A_m}(\sigma_C(R_1 \times R_2 \times \cdots \times R_n)),$$
where π, σ, and \times are the projection, selection and product operations, respectively, on ordinary relations. We retain the above syntax in the generalized SELECT statement for the neutrosophic relations. However, the relation names $R_1, R_2, \ldots R_n$ now represent some neutrosophic relations and C is some infinite-valued condition. The result of the generalized SELECT statement is then the value of the algebraic expression:

$$\pi_{A_1, A_2, \ldots, A_m}(\hat{\sigma}_C(R_1 \hat{\times} R_2 \hat{\times} \cdots \hat{\times} R_n)),$$

where $\hat{\pi}, \hat{\sigma}$, and $\hat{\times}$ are, respectively, the projection, selection and product operations on neutrosophic relations constructed in the next section. Furthermore, the result of the generalized SELECT statement is also a neutrosophic relation.

4.7.1 Infinite-Valued Conditions

In the generalized SELECT statement, we let the condition occurring in the where clause be infinite-valued. The infinite values, except $(1, 0)$ and $(0, 1)$, arise essentially due to any nested subqueries.

For any arithmetic expressions E_1 and E_2, comparisons such as $E_1 \leq E_2$ are simply 2-valued conditions ($\langle 1, 0 \rangle$ or $\langle 0, 1 \rangle$). Let ξ be a subquery of the form

$$(\text{select } \ldots \text{ from } \ldots \text{ where } \ldots)$$

occurring in the where clause of a SELECT statement. And let R be the neutrosophic relation on scheme Σ that the subquery ξ evaluates to. Then, conditions involving the subquery ξ evaluate as follows.

1. The condition

$$\exists \xi$$

evaluates to $\langle \alpha, \beta \rangle$,

$$\alpha = \max \{a\}, a = R(t)^+, \text{ for all } t \in \tau(\Sigma),$$
\[\beta = \min\{b\}, b = R(t)^-, \text{ if } R(t)^+ + R(t)^- \leq 1, b = 1 - R(t)^+, \text{ if } R(t)^+ + R(t)^- > 1, \]
for all \(t \in \tau(\Sigma) \).

2. For any tuple \(t \in \tau(\Sigma) \), the condition

\[t \text{ in } \xi \]

evaluates to \(\phi_R(t) \).

3. If \(\Sigma \) contains exactly one attribute, then for any (scalar value) \(t \in \tau(\Sigma) \), the condition

\[t > \text{any } \xi \]

evaluates to \(\langle \alpha, \beta \rangle \),
\[\alpha = \max\{a\}, a = R(k)^+, \text{ if } t > k, \text{ for some } k \in R, (\beta = \min\{b\}, b = R(k)^-, \text{ if } R(k)^+ + R(k)^- \leq 1, b = 1 - R(k)^+, \text{ if } R(k)^+ + R(k)^- > 1), \text{ if } t > k, \text{ for some } k \in R; \]
\[\alpha = 0, \beta = 1, \text{ otherwise}. \]

An infinite-valued semantics for other operators, such as \(\geq \text{any} \), \(=\text{any} \), can be defined similarly.
Note that conditions involving such operators never evaluate to the value \(\alpha, \beta \), such that \(\alpha + \beta > 1 \).

4. If \(\Sigma \) contains exactly one attribute, then for any (scalar value) \(t \in \tau(\Sigma) \), the condition

\[t > \text{all } \xi \]

evaluates to \(\langle \alpha, \beta \rangle \),
\[(\alpha = \min\{a\}, a = R(k)^-, \text{ if } R(k)^+ + R(k)^- \leq 1, a = 1 - R(k)^+, \text{ if } R(k)^+ + R(k)^- > 1), \text{ if } t \leq k, \text{ for some } k \in R, \beta = \max\{b\}, b = R(k)^+, \text{ if } t \leq k, \text{ for some } k \in R; \]
\[\alpha = 1, \beta = 0, \text{ otherwise}. \]
An infinite-valued semantics for other operators, such as \geq, $=$, can be defined similarly. Note that conditions involving such operators never evaluate to the value (α, β), such that $\alpha + \beta > 1$.

We complete our infinite-valued semantics for conditions by defining the not, and and or operators on them. Let C and D be any conditions, and value of $C = \langle t_c, f_c \rangle$ and value of $D = \langle t_d, f_d \rangle$. Then, the value of the condition not C is given by

$$\text{not } C = \langle f_c, t_c \rangle$$

while the value of the condition C and D is given by

$$C \text{ and } D = \langle \min t_c, t_d, \max f_c, f_d \rangle$$

and that of the condition C or D is given by

$$C \text{ or } D = \langle \max t_c, t_d, \min f_c, f_d \rangle$$

The duality of and and or is evident from their formulas. It is interesting to note the following algebraic laws exhibited by the above infinite-valued operators:

1. Double Complementation Law:

$$\text{not } (\text{not } C) = C$$

2. Identity and Idempotence Laws:

$$C \text{ and } \langle 1, 0 \rangle = C \text{ and } C = C$$

$$C \text{ or } \langle 0, 1 \rangle = C \text{ or } C = C$$

3. Commutativity Laws:

$$C \text{ and } D = D \text{ and } C$$

$$C \text{ or } D = D \text{ or } C$$
4. Associativity Laws:

\[
C \text{ and } (D \text{ and } E) = (C \text{ and } D) \text{ and } E
\]

\[
C \text{ or } (D \text{ or } E) = (C \text{ or } D) \text{ or } E
\]

5. Distributivity Laws:

\[
C \text{ and } (D \text{ or } E) = (C \text{ and } D) \text{ or } (C \text{ and } E)
\]

\[
C \text{ or } (D \text{ and } E) = (C \text{ or } D) \text{ and } (C \text{ or } E)
\]

6. De Morgan Laws:

\[
\text{not} (C \text{ and } D) = (\text{not } C) \text{ or } (\text{not } D)
\]

\[
\text{not} (C \text{ or } D) = (\text{not } C) \text{ and } (\text{not } D)
\]

We are now ready to define the selection operator on neutrosophic relations.

Let \(R \) be a neutrosophic relation on scheme \(\Sigma \), and \(C \) be an infinite-valued condition on tuples of \(\Sigma \) denoted \((t_C(t), f_C(t)) \). Then, the selection of \(R \) by \(C \), denoted \(\tilde{\sigma}_C(R) \), is a neutrosophic relation on scheme \(\Sigma \), given by

\[
(\tilde{\sigma}_C(R))(t) = \langle \min R(t)^+, t_C(t), \max R(t)^-, f_C(t) \rangle.
\]

The above definition is similar to that of the \texttt{and} operator given earlier.

Since performing a simple union is impossible within a \textsc{select} statement, SQL provides a union operator among subqueries to achieve this. We end this section with an infinite-valued semantics of union.

Let \(\xi_1 \) and \(\xi_2 \) be subqueries that evaluate, respectively, to neutrosophic relations \(R_1 \) and \(R_2 \) on scheme \(\Sigma \). Then, the subquery

\[
\xi_1 \text{ union } \xi_2
\]

evaluates to the neutrosophic relation \(R \) on scheme \(\Sigma \) given by

\[
R(t) = \langle \max R_1(t)^+, R_2(t)^+, \min R_1(t)^-, R_2(t)^- \rangle
\]
An intuitive appreciation of the union operator can be obtained as follows: Given a tuple \(t \), since we believed that it is present in the relation \(R_1 \) with confidence \(R_1(t)^+ \) and that it is present in the relation \(R_2 \) with confidence \(R_2(t)^+ \), we can now believe that the tuple \(t \) is present in the "either-\(R_1 \)-or-\(R_2 \)" relation with confidence which is equal to the larger of \(R_1(t)^+ \) and \(R_2(t)^+ \). Using the same logic, we can now believe in the absence of the tuple \(t \) from the "either-\(R_1 \)-or-\(R_2 \)" relation with confidence which is equal to the smaller (because \(t \) must be absent from both \(R_1 \) and \(R_2 \) for it to be absent from the union) of \(R_1(t)^- \) and \(R_2(t)^- \).

4.7.2 An Example

Let us now consider an example illustrating some infinite-valued computations. We use the neutrosophic relation \(\text{EVAL} \) on scheme \(\{I; Q\} \) of the item-category evaluation as example.

Consider the query:

What items showed contradictory evaluation of some category of quality?

A SELECT statement for this query is:

```sql
select I
from EVAL where not ((I;Q) in EVAL)
```

One possible evaluation method for the above query in ordinary 2-valued SQL is to produce the \(I \) attribute of those rows of \(\text{EVAL} \) that satisfy the where condition. Since the where condition in the above case is exactly that row not be in \(\text{EVAL} \), in 2-valued logic the above query will produce an empty answer.

In infinite-valued logic, however, the where condition needs to be evaluated, to one of infinite possible values, for every possible row with attributes \(\Sigma = (I; Q) \). The result is then combined with \(\text{EVAL} \) according to the semantics of \(\hat{p} \), on which \(\hat{\sigma} \) is performed to produce the resulting neutrosophic relation.

Therefore, for each of the 6 rows in \(\tau(\Sigma) \), we first evaluate the where condition \(C \):

Now, \(\hat{\sigma}(\text{EVAL}) \) according to the definition of \(\hat{\sigma} \) evaluates to the neutrosophic relation:

Finally, \(\hat{\tau} \) of the above is the neutrosophic relation:
\[
C = \text{not } ((I, Q) \text{ in } \text{EVAL})
\]

<table>
<thead>
<tr>
<th>((I, Q))</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((I_1, q_1))</td>
<td>((0.2, 0.9))</td>
</tr>
<tr>
<td>((I_1, q_2))</td>
<td>((0.0, 1.0))</td>
</tr>
<tr>
<td>((I_1, q_3))</td>
<td>((0.8, 0.1))</td>
</tr>
<tr>
<td>((I_2, q_1))</td>
<td>((1.0, 1.0))</td>
</tr>
<tr>
<td>((I_2, q_2))</td>
<td>((0.0, 0.0))</td>
</tr>
<tr>
<td>((I_2, q_3))</td>
<td>((0.3, 0.8))</td>
</tr>
</tbody>
</table>

\(I_1 \)	\(q_1 \)	\((0.2, 0.9) \)
\(I_1 \)	\(q_2 \)	\((0.0, 0.1) \)
\(I_1 \)	\(q_3 \)	\((0.1, 0.8) \)
\(I_2 \)	\(q_1 \)	\((1.0, 1.0) \)
\(I_2 \)	\(q_3 \)	\((0.3, 0.8) \)

| \(I_1 \) | \((0.1, 0.8) \) |
| \(I_2 \) | \((1.0, 0.0) \) |
Chapter 5

SOFT SEMANTIC WEB SERVICES AGENT

Web services technology is critical for the success of business integration and other application fields such as bioinformatics. However, there are two challenges facing the practicality of Web services: (a) efficient location of the Web service registries that contain the requested Web services and (b) efficient retrieval of the requested services from these registries with high quality of service (QoS). The main reason for this problem is that current Web services technology is not semantically oriented. Several proposals have been made to add semantics to Web services to facilitate discovery and composition of relevant Web services. Such proposals are being referred to as Semantic Web services (SWS). However, most of these proposals do not address the second problem of retrieval of Web services with high QoS. In this chapter, we propose a framework called Soft Semantic Web Services Agent (soft SWS agent) for providing high QoS Semantic Web services using soft computing methodology. Since different application domains have different requirements for QoS, it is impractical to use classical mathematical modeling methods to evaluate the QoS of semantic Web services. We use neutrosophic neural networks with Genetic Algorithms (GA) as our study case. Simulation results show that the soft SWS agent methodology is extensible and scalable to handle fuzzy, uncertain and inconsistent QoS metrics effectively.

5.1 Introduction

Web services are playing an important role in e-business application integration and other application fields such as bioinformatics. So it is crucial for the success of both service providers as well as service consumers to provide and invoke the high quality of service (QoS) Web services. Unfortunately, current Web services technologies such as SOAP (Simple Object Access Protocol) [13], WSDL (Web Services Description Language) [17], UDDI (Universal Description, Discovery and Integration) [15], ebXML (Electronic Business XML Initiative) [5], XLANG [19], WSFL (Web Services Flow Language) [18], BPEL4WS (Business Process Execution Language for Web Services)
[2], and BSML (Bioinformatic Sequence Markup Language) [1] are all syntax-oriented with little or no semantics associated with them. Computer programs may read and parse them, but with little or no semantic information associated with these technologies, the computer programs can do little to reason and infer knowledge about the Web services.

Current research trend is to add semantics to the Web services framework to facilitate the discovery, invocation, composition, and execution monitoring of Web services. Web services with explicit semantic annotation are called Semantic Web services (SWS). Several projects are underway to try to reach such a goal. For example, OWL-S (previously DAML-S [3] from OWL Services Coalition [9]) uses OWL based ontology for describing Web services. METEOR-S [88] follows the way that relates concepts in WSDL to DAML+OIL ontologies in Web services description, and then provides an interface to UDDI that allows querying based on ontological concepts. The Internet Reasoning Service (IRS-II) [74] is a Semantic Web services framework, which allows applications to semantically describe and execute Web services. IRS-II is based on the UPML framework [76]. The Web Service Modeling Framework (WSMF) [52] provides a model for describing the various aspects related to Web services. Its main goal is to fully enable e-commerce by applying Semantic Web technology to Web services.

In our vision, with the maturing of semantic Web services technologies, there will be a proliferation of public and/or private registries for hosting and querying semantic Web services based on specific ontologies. Currently, there are many public and private UDDI registries advertising numerous similar Web services with different QoS. For example, GenBank [6], XEMBL [20], and OmniGene [8] all provide similar Web services with different quality of services. There are two challenges existing for automatic discovery and invocation of Web services. One is the efficient location of service registries advertising requested Web services and the another is the efficient retrieval of the requested services from these registries with the highest quality of service (QoS). The semantic Web services technologies that we mentioned above can be exploited to solve the first challenge. For the second challenge, we believe that the QoS of semantic Web services should cover both functional and non-functional properties. Functional properties include the input, output, conditional output, pre-condition, access condition, and the effect of service [14]. These functional properties can be characterized as the capability of the service [21]. Non-functional properties include the
availability, accessibility, integrity, performance, reliability, regulatory, security, response time and cost \cite{14} of the Web service.

Several matchmaking schemes have already been proposed to match the service requestor’s requirements with service provider’s advertisement \cite{58, 96, 79}. These schemes basically try to solve the capability matching problem. Here, we must be aware that on the one hand, the degree of capability matching and non-functional properties are all fuzzy, and on the other hand, different application domains have different requirements on non-functional properties. As a consequence, it is not flexible to use classical mathematical modeling methods to evaluate the QoS of semantic Web services. Although there are several existing QoS models \cite{42, 53, 55, 57, 60, 84, 91, 85, 106}, none of them are suitable for the requirements considered in this chapter. These QoS models are based on precise QoS metrics and specific application domains. They cannot handle fuzzy and uncertain QoS metrics.

In this chapter, we propose a framework called \textit{soft semantic Web services agent} (soft SWS agent) to provide high QoS semantic Web services based on specific domain ontology such as gnome. The soft SWS agent could solve the aforementioned two challenges effectively and efficiently. The soft SWS agent itself is implemented as a semantic Web service and comprises of six components: (a) Registries Crawler, (b) Repository, (c) Inquiry Server, (d) Publish Server, (e) Agent Communication Server, and (f) Intelligent Inference Engine. The core of the soft SWS agent is Intelligent Inference Engine (IIE). It uses soft computing technologies to evaluate the entire QoS of semantic Web services using both functional and non-functional properties. In this chapter, we use semantic Web services for bioinformatics as a case study. We employ neutrosophic neural networks with Genetic Algorithms (GA) for the IIE component of our soft SWS agent. The case study illustrates the flexibility and reliability of soft computing methodology for handling fuzzy and uncertain linguistic information. For example, capability of a Web service is fuzzy. It is unreasonable to use crisp values to describe it. So we can use several linguistic variables such as a ”little bit low” and ”a little bit high” to express the capability of services.

The chapter is organized as follows. In section 2, we present the necessary background of the QoS model, semantic Web services, and soft computing methodology. In section 3, we provide the architecture of the extensible soft SWS agent. In section 4, we present the design of the neutrosophic
neural network with GA and simulation results. In section 5, we present related work, and finally, in section 6, we present conclusions and possibilities for future research.

5.2 Background

This section details the background material related to this research. We cover traditional Web services, semantic Web, semantic Web services, soft computing methodology, and the QoS model.

5.2.1 Traditional Web services

Web services are modular, self-describing, and self-contained applications that are accessible over the internet [47]. The core components of the Web services infrastructure are XML based standards like SOAP, WSDL, and UDDI. SOAP is the standard messaging protocol for Web services. SOAP messages consist of three parts: an envelope that defines a framework for describing what is in a message and how to process it, a set of encoding rules for expressing instances of application-defined datatypes, and a convention for representing remote procedure calls and responses. WSDL is an XML format to describe Web services as collections of communication endpoints that can exchange certain messages. A complete WSDL service description provides two pieces of information: an application-level service description (or abstract interface), and the specific protocol-dependent details that users must follow to access the service at a specified concrete service endpoint. The UDDI specifications offer users a unified and systematic way to find service providers through a centralized registry of services that is roughly equivalent to an automated online “phone directory” of Web services. UDDI provides two basic specifications that define a service registry’s structure and operation. One is a definition of the information to provide about each service and how to encode it and the other is a publish and query API for the registry that describes how this information can be published and accessed.

5.2.2 Semantic Web

The current Web is just a collection of documents which are human readable but not machine processable. In order to remedy this disadvantage, the concept of semantic Web is proposed to add
semantics to the Web to facilitate the information finding, extracting, representing, interpreting and maintaining. “The semantic Web is an extension of the current Web in which information is given well-defined meaning, better enabling computers and people to work in cooperation” [35]. The core concept of semantic Web is ontology. “Ontology is a set of knowledge terms, including the vocabulary, the semantic interconnections, and some simple rules of inference and logic for some particular topic” [59]. There are many semantic Web technologies available today, such as RDF [12], RDFS [10], DAML+OIL [4] and OWL [16]. The description logics are used as the inference mechanism for current semantic Web technologies. There are some drawbacks in the description logics [86]. It cannot handle fuzziness and uncertainty associated with concept membership. The current research trend is to combine soft computing with semantic Web [92, 93, 64, 50].

5.2.3 Semantic Web Services

The industry is proposing Web services to transform the Web from “passive state”–repository of static documents to “positive state”–repository of dynamic services. Unfortunately, the current Web services standards are not semantic-oriented. They are awkward for service discovery, invocation, composition, and monitoring. So it is natural to combine the semantic Web with Web services, the so-called semantic Web services. Several projects have been initiated to design the framework for semantic Web services such as OWL-S, IRS-II, WSMF and METEOR-S.

For example, OWL-S 1.0 which is based on OWL is the upper ontology for services. It has three subontologies: ServiceProfile, ServiceModel and ServiceGrounding. The service profile tells “what the service does”; this is, it gives the types of information needed by a service-seeking agent to determine whether the service meets its needs. The service model tells “how the service works”; that is, it describes what happens when the service is carried out. A service grounding specifies the details of how an agent can access a service. Typically a grounding will specify a communication protocol, message formats, and other service-specific details such as port numbers used in contacting the service. In addition, the grounding must specify, for each abstract type specified in the ServiceModel, an unambiguous way of exchanging data elements of that type with the service.
5.2.4 Soft Computing Methodology

“Soft computing differs from conventional (hard) computing in that, unlike hard computing, it is tolerant of imprecision, uncertainty, partial truth, and approximations” [101]. The principal constituents of soft computing are fuzzy logic, neural networks, and generic algorithms. More and more technologies will join into the soft computing framework in the near future. Fuzzy logic is primarily concerned with handling imprecision and uncertainty, neural computing focuses on simulating human being’s learning process, and genetic algorithms simulate the natural selection and evolutionary processes to perform randomized global search. Each component of soft computing is complementary to each other. Using combinations of several technologies such as fuzzy-neural systems will generally get better solutions.

5.2.5 QoS Model

Different applications generally have different requirements of QoS dimensions. Rommel [84] and Stalk and Hout [91] investigate the features with which successful companies assert themselves in the competitive world markets. Their result showed that success is based on three essential dimensions: time, cost and quality. [55] associates eight dimensions with quality, including performance and reliability. Software systems quality of service has been extensively studied in [42, 57, 60, 106]. For middleware systems, Frlund and Koisinen [53] present a set of practical dimensions for distributed object systems reliability and performance, which include TTR (time to repair), TTF (time to failure), availability, failure masking, and server failure. Gardaso, Miller, Sheth and Arnold [54] propose a QoS model for workflows and Web services processes based on four dimensions: time, cost, reliability and fidelity.

In this paper, we construct a QoS model for semantic Web services. It is composed of the following dimensions: capability, response time, and trustworthiness. In order to be more precise, we give our definitions of the three dimensions as follows:

1. The capability of a semantic Web service can be defined as the degree to which its functional properties match with the required functional properties of the semantic Web service requestor;
2. The *response time* of a semantic Web service represents the time that elapses between service requests arrival and the completion of that service request. Response time is the sum of waiting time and actual processing time;

3. The *trustworthiness* of a semantic Web services is the extent to which it is consistent, reliable, competent, and honest.

5.3 Architecture of Extensible Soft SWS Agent

The extensible soft SWS agent can provide high QoS semantic Web services based on specific ontology. The extensible SWS agent uses centralized client/server architecture internally. But itself can also be and should be implemented as a semantic Web service based on specific service ontology. The extensible soft SWS agent comprises of six components: (a) Registries Crawler; (b) SWS Repository; (c) Inquiry Server; (d) Publish Server; (e) Agent Communication Server; (f) Intelligent Inference Engine. The high level architecture of the extensible soft SWS agent is shown in Figure 1. Each of the components is described next.

![Figure 5.1: Architecture of the Extensible Soft SWS Agent](image-url)
5.3.1 Registries Crawler

As we pointed out before, the current UDDI registry only supports keyword based search for the Web services description. Under the Semantic Web environment, UDDI registry must be extended to be ontology-compatible which supports semantic matching of semantic Web services’ capabilities. One possible way is to map the OWL-S service profiles into current UDDI registry’s data structure. Semantic Web service providers will publish the service profiles of semantic Web services in the public or private specific service ontology-oriented UDDI registries or directly on their semantic Web sites. The specific ontology based semantic Web services registries crawler has two tasks:

1. Accessing these public and private specific service ontology-oriented UDDI registries using UDDI query API to fetch the service profiles, transforming them into the format supported by our repository, and storing them into the repository using the publish API of our repository;

2. Crawling the semantic Web sites hosting the specific ontology based semantic Web services directly to get the service profiles, transforming them into the format supported by the repository, and storing them into repository using the publish API for the repository.

The registries crawler should be multithreaded and should be available 24x7. The registries crawler must also be provided the information of highest level specific service ontology before its execution.

5.3.2 SWS Repository

The specific ontology based semantic Web services repository will store service profiles of semantic Web services. The architecture of repository is shown in Figure 2.

The internal communication module provides the communication interface between the repository and the registries crawler, inquiry server, publish server, and the agent communication server. If a message is an advertisement, the internal communication module sends it to the OWL-S/UDDI transformer that constructs a UDDI service description using information about the service provider and the service name. The result of publishing with the UDDI is a reference ID of the service. This ID combined with the capability description and non-functional properties of the advertisement are sent to the OWL-S matching engine that stores the advertisement for capability matching. If a
message is a query, the internal communication module sends the request to the OWL-S matching engine that performs the capability matching. After calculating the degree of capability, the OWL-S matching engine will feed the degree of capability and non-functional properties to the intelligent inference engine to get the entire Quality of Service (QoS). The service with highest QoS will be selected. The result of the selection is the advertisement of the providers selected and a reference to the UDDI service record. The combination of UDDI records and advertisements is then sent to the inquiry server. If the required service does not exist, OWL-S matching engine will transfer the query to the agent communication server through the internal communication module. The matching algorithm used by OWL-S matching engine is based on the modified algorithm described in [77]. The modified algorithm considers not only the inputs, outputs, preconditions and effects, but also service name.
5.3.3 Inquiry Server

The specific ontology based semantic Web services inquiry server provides two kinds of query interface: a programmatic API to other semantic Web services or agents and a Web-based interface for the human user. Both interfaces support keyword oriented query as well as capability oriented searches.

For capability oriented query, the inquiry server transforms the service request profile into the format supported by the repository such as OWL-S service profile and sends the query message to the internal communication module of the repository. The internal communication module sends the service profile to the OWL-S matching engine and returns back the requested advertisement to the inquiry server and then on to the service requestor. The process is shown in Figure 5.3:

![Diagram of Capability oriented query](image)

Figure 5.3: Capability oriented query

For the keyword oriented queries, the inquiry server will directly send the query string to the internal communication module as a query message and the internal communication module sends
the query string to the UDDI Registry and returns back the requested UDDI records to the inquiry server and then on to the service requestor. The process is shown in Figure 5.4:

![Figure 5.4: Keyword oriented query](image)

We use SOAP as a communication protocol between service requestors and the inquiry server.

5.3.4 Publish Server

The specific ontology based semantic Web services publish server provides the publishing service for other agents and human users. It has two kinds of interface. One is the programmatic API to other semantic Web services or agents and another is for the human user which is Web-based. The publish server will transform the service advertisement into the format supported by the repository such as OWL-S service profile and sends the publish message to the internal communication module. The internal communication module sends the transformed OWL-S service profile to the OWL-S/UDDI transformer. The OWL-S/UDDI transformer will map the OWL-S service profile into UDDI registries data structure, and store the OWL-S service profile and reference ID of service into OWL-S matching engine. The process is shown in Figure 5.5:
If the advertised semantic Web services are not in the domain of the soft SWS agent, the internal communication server will transfer the advertisements to the agent communication server which will try to publish the advertisements into other soft SWS agents. SOAP is used as a communication protocol between service publisher and the publisher server.

5.3.5 *Agent Communication Server*

The soft semantic Web services agent communication server uses a certain communication protocol such as Knowledge Query and Manipulation Language (KQML) and Agent Communication Language (ACL) to communicate with other soft SWS agents. If the current soft SWS agent cannot fulfill the required services (query and publish), the agent communication server is responsible for transferring the requirements to other soft SWS agents, getting results back, and conveying the results back to the service requestors. The current KQML and ACL should be extended to be
ontology-compatible to facilitate the semantic oriented communication.

5.3.6 Intelligent Inference Engine

The intelligent inference engine (IIE) is the core of the soft SWS agent. The soft SWS agent
is extensible because IIE uses soft computing methodology to calculate the QoS of the semantic
Web services with multidimensional QoS metrics. IIE gets the degree of capability matching and
non-functional properties' values from OWL-S matching engine and returns back the whole QoS
to OWL-S matching engine. In the next section, we show the design of an IIE using neutrosophic
logic, neural networks, and genetic algorithms.

5.3.7 Design of Intelligent Inference Engine

This section shows one implementation of IIE based on neutrosophic logic, neural network and
genetic algorithm. A schematic diagram of the four-layered neutrosophic neural network is shown
in Figure 3. Nodes in layer one are input nodes representing input linguistic variables. Nodes in
layer two are membership nodes. Membership nodes are truth-membership node, indeterminacy-
membership node and falsity-membership node, which are responsible for mapping an input lin-
guistic variable into three possibility distributions for that variable. The rule nodes reside in layer
three. The last layer contains the output variable nodes [65].

As we mentioned before, the metrics of QoS of Semantic Web services are multidimensional.
For illustration of specific ontology based Semantic Web services for bioinformatics, we decide to
use capability, response time and trustworthiness as our inputs and whole QoS as output. The
neutrosophic logic system is based on TSK model.

5.3.8 Input neutrosophic sets

Let x represent capability, y represent response time and z represent trustworthiness. We scale the
capability, response time and trustworthiness to [0,10] respectively. The graphical representation
of membership functions of x, y, and z are shown in Figure 4.
Layer 1
(input layer)

Layer 2
(membership layer)

Layer 3
(rule layer)

Layer 4
(output layer)

Figure 5.6: Schematic diagram of Neutrosophic Neural Network
Figure 5.7: Membership functions of inputs
5.3.9 Neutrosophic rule bases

Here, we design the neutrosophic rule base based on the TSK model. A neutrosophic rule is shown below:

IF \(x \) is \(I_1 \) and \(y \) is \(I_2 \) and \(z \) is \(I_3 \) THEN \(O \) is \(a_{i,1} \ast x + a_{i,2} \ast y + a_{i,3} \ast Z + a_{i,4} \).

where, \(I_1, I_2 \) and \(I_3 \) are in low, middle, and high respectively and \(i \) in \([1,27]\). There are totally 27 neutrosophic rules. The \(a_{i,j} \) are consequent parameters which will be obtained by training phase of neutrosophic neural network using genetic algorithm.

5.3.10 Design of deneutrosophication

Suppose, for certain inputs \(x, y \) and \(z \), there are \(m \) fired neutrosophic rules. To calculate the firing strength of \(j \)th rule, we use the formula:

\[
W_j = W_x^j \ast W_y^j \ast W_z^j, \tag{5.1}
\]

where

\[
W_x^j = (0.5 \ast t_x(x) + 0.35 \ast (1 - f_x(x)) + 0.025 \ast i_x(x) + 0.05),
\]

\[
W_y^j = (0.5 \ast t_y(y) + 0.35 \ast (1 - f_y(y)) + 0.025 \ast i_y(y) + 0.05),
\]

\[
W_z^j = (0.5 \ast t_z(z) + 0.35 \ast (1 - f_z(z)) + 0.025 \ast i_z(z) + 0.05),
\]

where \(t_x, f_x, i_x, t_y, f_y, i_y, t_z, f_z, i_z \), are the truth-membership, falsity-membership, indeterminacy-membership of neutrosophic inputs \(x, y, z \), respectively.

So the crisp output is:

\[
O = \sum_{j=1}^{m} W_j \ast (a_{j,1} \ast x + a_{j,2} \ast y + a_{j,3} \ast Z + a_{j,4}) / (\sum_{j=1}^{m} W_j) \tag{5.2}
\]

5.3.11 Genetic algorithms

GA is a model of machine learning which derives its behavior form a metaphor of the processes of evolution in nature. This is done by creation within a machine of a population of individuals represented by chromosomes. Here we use real-coded scheme. Given the range of parameters
(coefficients of linear equations in TSK model), the system uses the derivate-free random search-GA to learn to find the near optimal solution by the fitness function through the training data.

1. Chromosome: The genes of each chromosome are 108 real numbers (there are 108 parameters in the neutrosophic rule base) which are initially generated randomly in the given range. So each chromosome is a vector of 108 real numbers.

2. Fitness function: The fitness function is defined as

\[E = \frac{1}{2} \sum_{j=1}^{m} (d_j - o_j)^2 \]

(5.3)

3. Elitism: The tournament selection is used in the elitism process.

4. Crossover: The system will randomly select two parents among the population, then randomly select the number of cross points, and simply exchange the corresponding genes among these two parents to generate a new generation.

5. Mutation: For each individual in the population, the system will randomly select genes in the chromosome and replace them with randomly generated real numbers in the given range.

5.3.12 Simulations

There are two phases for applying a fuzzy neural network: training and predicting. In the training phase, we use 150 data entries as training data set. Each entry consists of three inputs and one expected output. We tune the performance of the system by adjusting the size of population, the number of generation and probability of crossover and mutation. Table 1 gives the part of prediction results with several parameters for output \(o \).

In Table 1, No. of generation = 10000, No. of population = 100, probability of crossover = 0.7, probability of mutation = 0.3. The maximum error of prediction result is 1.64. The total prediction error for 150 entries of testing dataset is 19%. By our observation, designing reasonable neutrosophic membership functions and choosing reasonable training data set which is based on
Table 5.1: Prediction Result of Neutrosophic Neural Network

<table>
<thead>
<tr>
<th>Input x</th>
<th>Input y</th>
<th>Input z</th>
<th>Desired output</th>
<th>Real output o</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.51</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>1.71</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>2.59</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>9</td>
<td>3</td>
<td>3.52</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>3.81</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>4.92</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>9</td>
<td>6</td>
<td>5.43</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>5.90</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>6.45</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>7.36</td>
</tr>
</tbody>
</table>

A specific application domain can reduce the prediction error a lot. Here the example is just for illustration.

5.4 Related Work

MWSDI (METEOR-S Web Service Discovery Infrastructure) is an infrastructure of registries for semantic publication and discovery of Web services [98]. MWSDI supports creating registry federation by grouping registries that are mapped to the same node in Registries Ontology. MSWDI is based on the P2P model, so the registries are considered as peers. In our work, the soft SWS agents also can be regarded as peers. MWSDI uses the Registries Ontology to maintain a global view of the registries, associated domains and uses this information during Web service publication and discovery. The limitation of MWSDI is that it supports only capability matching of Web services and does not consider non-functional properties of Web services. The soft SWS agent can be viewed as an enhancement over MWSDI as it provides the service for discovering semantic Web services.
with the highest whole QoS.

The MWSDI approach annotates WSDL by associating its input and output types to domain specific ontologies and uses UDDI structures to store the mapping of input and output types in WSDL files to domain specific ontologies. It is similar to our work where we use OWL-S ontology directly to enable the semantic description of Web services.

SWWS (Semantic Web enabled Web Services) proposes a semantic-oriented service Registry which is similar to our idea [11]. It has five components: Profile Crawler, UDDI Integration Engine, Registry API, Ontology Server and Query Interface. The service modelling ontology is stored in the ontology server. All individual service descriptions are stored as instances of the service description ontology and are also managed by the ontology server. SWWS does not support quality based semantic Web services discovery.

OASIS/ebXML describes an architecture of service registry [7]. The registry provides a stable store where information submitted by a submitting organization is made persistent. Such information is used to facilitate ebXML based B2B partnerships and transactions. Submitted content may be XML schema and documents, process descriptions, ebXML Core Components, context descriptions, UML models, etc. It focuses mainly on the registry information model and discusses issues like object replication, object relocation and lifecycle management for forming registry federation. It does not use semantic Web and semantic Web services technologies.
Chapter 6

CONCLUSIONS

How to model and reason with fuzzy, incomplete and even inconsistent information is an important research topic. In this dissertation, we propose a general framework called interval neutrosophic set to unify the fuzzy set, intuitionistic fuzzy set, paraconsistent set, etc. Based on the interval neutrosophic sets, we introduce the interval neutrosophic logic, especially we define the syntax and the semantics of the first order interval neutrosophic propositional logic and the first order interval neutrosophic predicate logic. We also introduce the neutrosophic logic inference system based on the first order interval neutrosophic predicate logic. We give two applications based on the interval neutrosophic set and interval neutrosophic logic.

In chapter 2, we have presented an instance of neutrosophic set called the interval neutrosophic set (INS). The interval neutrosophic set is a generalization of classic set, fuzzy set, interval valued fuzzy set, intuitionistic fuzzy sets, interval valued intuitionistic fuzzy set, interval type-2 fuzzy set [66] and paraconsistent set. The notions of containment, complement, N-norm, N-conorm, relation, and composition have been defined on interval neutrosophic set. Various properties of set-theoretic operators have been proved. In the next chapter, we will discuss the interval neutrosophic logic and logic inference system based on interval neutrosophic set.

In chapter 3, we give the formal definitions of interval neutrosophic logic which are extension of many other classical logics such as fuzzy logic, intuitionistic fuzzy logic and paraconsistent logics, etc. Interval neutrosophic logic include interval neutrosophic propositional logic and first order interval neutrosophic predicate logic. We call them classical (standard) neutrosophic logic. In the future, we also will discuss and explore the non-classical (non-standard) neutrosophic logic such as modal interval neutrosophic logic, temporal interval neutrosophic logic, etc. Interval neutrosophic logic can not only handle imprecise, fuzzy and incomplete propositions but also inconsistent propositions without the danger of trivialization. The chapter also give one application based on the
semantic notion of interval neutrosophic logic – the Interval Neutrosophic Logic Systems (INLS) which is the generalization of classical FLS and interval valued fuzzy FLS. Interval neutrosophic logic will have a lot of potential applications in computational Web intelligence [105]. For example, current fuzzy Web intelligence techniques can be improved by using more reliable interval neutrosophic logic methods because T, I and F are all used in decision making. Such robust interval neutrosophic logic methods can also be used in other applications such as medical informatics, bioinformatics and human-oriented decision-making under uncertainty. In fact, interval neutrosophic sets and interval neutrosophic logic could be applied in the fields that fuzzy sets and fuzzy logic are suitable for, also the fields that paraconsistent logics are suitable for.

We have presented a generalization of fuzzy relations, intuitionistic fuzzy relations (interval-valued fuzzy relations) and paraconsistent relations, called neutrosophic relations, in which we allow the representation of confidence (belief and doubt) factors with each tuple. The algebra on fuzzy relations is appropriately generalized to manipulate neutrosophic relations.

Various possibilities exist for further study in this area. Recently, there has been some work in extending logic programs to involve quantitative paraconsistency. Paraconsistent logic programs were introduced in [37] and probabilistic logic programs in [75]. Paraconsistent logic programs allow negative atoms to appear in the head of clauses (thereby resulting in the possibility of dealing with inconsistency), and probabilistic logic programs associate confidence measures with literals and with entire clauses. The semantics of these extensions of logic programs have already been presented, but implementation strategies to answer queries have not been discussed. We propose to use the model introduced in chapter 4 in computing the semantics of these extensions of logic programs. Exploring application areas is another important thrust of our research.

We developed two notions of generalising operators on fuzzy relations for neutrosophic relations. Of these, the stronger notion guarantees that any generalised operator is “well-behaved” for neutrosophic relation operands that contain consistent information.

For some well-known operators on fuzzy relations, such as union, join, projection, we introduced generalised operators on neutrosophic relations. These generalised operators maintain the belief system intuition behind neutrosophic relations, and are shown to be “well-behaved” in the sense mentioned above.
Our data model can be used to represent relational information that may be incomplete and inconsistent. As usual, the algebraic operators can be used to construct queries to any database systems for retrieving vague information.

In chapter 5, we discussed the design of an extensible soft SWS agent and gave one implementation of Intelligent Inference Engine. The soft SWS agent supports both keyword based discovery as well as capability based discovery of semantic Web services. The primary motivation of our work is to solve two challenges facing current Web services advertising and discovery techniques. One is how to locate the registry hosting required Web service description and another is how to find the required Web service with highest QoS in the located registry. The soft SWS agent solves both these problems efficiently and effectively. The soft SWS agent is built upon semantic Web, Web services, and soft computing technologies. The soft SWS agent could be used in WWW, P2P, or Grid infrastructures. The soft SWS agent is flexible and extensible. With the evolution of soft computing, more and more technology can be integrated into the soft SWS agent. We used specific ontology based semantic Web services for bioinformatics and neutrosophic neural network with genetic algorithm as our study case. The training time is short and training results are satisfactory. The soft SWS agent will return the desired semantic Web services based on the entire QoS of semantic Web services. In the future, we plan to extend the architecture of the soft SWS agent to compute the entire QoS workflow of semantic Web services to facilitate the composition and monitoring of complex semantic Web services and

apply it to semantic Web-based bioinformatics applications.

As the future work, we will find more application areas to which can apply the interval neutrosophic set and logic theory. We also plan to implement the whole system of the soft Semantic Web Services agent.
BIBLIOGRAPHY

[3] Daml-s 0.9 draft release.

[13] Simple object access protocol (soap) 1.2.

[14] Understanding quality of service for web services.

[18] Web services flow language (wsfl) 1.0.

[20] Xml web services for embl (xembl).

[58] J. Gonzalez-Castillo, D. Trastour, and C. Bartonili. Description logics for matchmaking of services.

