Spring 1991

A Physiologic Evaluation of the Sports Massage

Tommy Boone

Rae Cooper

Walter R. Thompson
Georgia State University, wrthompson@gsu.edu

Follow this and additional works at: https://scholarworks.gsu.edu/kin_health_facpub

Part of the Kinesiology Commons

Recommended Citation

This Article is brought to you for free and open access by the Department of Kinesiology and Health at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Kinesiology Faculty Publications by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact scholarworks@gsu.edu.
ATHLETIC TRAINING

The Journal of the National Athletic Trainers' Association, Inc.

Editor-in-Chief and Journal Committee Chairman
Steve Yates, MS, ATC
Sports Medicine Unit
Wake Forest University
Winston-Salem, NC 27109

Editor
Ken Knight, PhD, ATC
Physical Education Department
Indiana State University
Terre Haute, IN 47809

Assistant Editors
Ed Filmore, PhD
Indianapolis, IN 46208
Barbara Manning
Winterville, NC 28590

Departmental Editors
Dennis Aten, MS, RPT, ATC
Eastern Illinois University
Charleston, IL 61920
Brian Barry, MA, ATC
San Diego State University
San Diego, CA 92162
Deless Brubaker, EdD, ATC
Life College
Marietta, GA 30060
Phil Calliot, EdD, ATC
Artesia, NM 88210

Executive Director/Secretary
Alan A. Smith, Jr.
NATA National Headquarters
2952 Stemmons Freeway
Dallas, Texas 75247-6103
Phone (214) 637-6282 • FAX (214) 637-2206

Assistant Executive Director
Amanda W. Culbertson
NATA National Headquarters
2952 Stemmons Freeway
Dallas, Texas 75247-6103
Phone (214) 637-6282 • FAX (214) 637-2206

Board of Directors

Volume 26 — Spring 1991 • Athletic Training, JNATA
CEU CREDIT QUIZ

PREVENTION AND TREATMENT OF PATELLAR ENTRAPMENT FOLLOWING INTRA-ARTICULAR ACL RECONSTRUCTION
Joseph E. Tomaro, PT, ATC

ARTICLES

KNEE REHABILITATION FOLLOWING ANTERIOR CRUCIATE LIGAMENT REPAIR/RECONSTRUCTION: AN UPDATE
James G. Case, MA, ATC Bernard F. DePalma, MEd, ATC, RPT Russell R. Zelko, MD

RAPID REHABILITATION FOLLOWING ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION
Dale F. Blair, MS, ATC, CSCS Robert P. Wills

FUNCTIONAL PERFORMANCE TESTS FOR THE ANTERIOR CRUCIATE LIGAMENT INSUFFICIENT ATHLETE
Scott M. Lephart, PhD, ATC David H. Perrin, PhD, ATC Freddie H. Fu, MD Kimberly Minger, ATC

A PHYSIOLOGIC EVALUATION OF THE SPORTS MASSAGE
Tommy Boone, PhD Rae Cooper, MS Walter R. Thompson, PhD

THE EFFECT OF PRE-PERFORMANCE MASSAGE ON STRIDE FREQUENCY IN SPRINTERS
Peter A. Harmer, PhD, ATC

ANKLE JOINT STRENGTH, TOTAL WORK, AND ROM: COMPARISON BETWEEN PROPHYLACTIC DEVICES
Gale M. Gehlsen, PhD David Pearson, PhD Rafael Bahamonde, MS

QUALITY PHYSICALS THAT GENERATE FUNDS FOR THE TRAINING ROOM
Suzanne E. Heinzman, MS, ATC

AN INFECTION CONTROL POLICY FOR THE ATHLETIC TRAINING SETTING
Denise L. Webster, MS, ATC David A. Kaiser, MPE, ATC

OPTIMAL PRACTICE TIMES FOR THE REDUCTION OF THE RISK OF HEAT ILLNESS DURING FALL FOOTBALL PRACTICE IN THE SOUTHEASTERN UNITED STATES
Kennon Francis, PhD Ronald Feinstein, MD Joel Brasher, MS

TIP FROM THE FIELD

SHOULDER POSITIONING FOR OPTIMAL TREATMENT EFFECTS
Allan Lovinger, MEd, ATC Brent C. Mangus, EdD, ATC Christopher D. Ingersoll, PhD, ATC

STUDENT ATHLETIC TRAINER FORUM

A CASE OF “FROZEN ELBOW” FOLLOWING IMMOBILIZATION FOR A FRACTURED CLAVICLE
Angeline Bonners, BS, ATC

Departments

Abstracts ...86
Book Reviews ..90
Current Literature ...95
Editor-In-Chief’s Comments ..5
Guide to Contributors ..92
Potpourri ..88
Video Review ...94
ABSTRACT: This study determines the physiological responses of 10 healthy college-age subjects during submaximal exercise on the treadmill with and without a prior 30-minute sports massage. The Beckman Metabolic Measurement Cart was used to determine the subjects' steady-state responses. Cardiac output was determined by the indirect CO₂ Fick method; mixed venous PCO₂ was calculated using the equilibrium CO₂ rebreathing method. No significant differences in central (HR, SV, Q) or peripheral (a-vO₂diff) responses were found between the two submaximal exercise tests. Also, there were no significant differences in lactic acid (LA) and blood pressure responses. The results indicate that massage immediately prior to submaximal exercise at 80% intensity had no effect on the subjects' cardiovascular systems.

One of the unresolved questions in athletics is the physiological benefits of massage, yet it is well accepted as an integral part of coaching and athletic conditioning. Athletes have come to accept massage as a way to improve performance. Physical therapists, orthopedists, and osteopaths use massage for rehabilitation (19) and to promote relaxation (9). Many claims have been made for the use of massage, but few are based on controlled and carefully designed laboratory studies (4,5,16,21). For example, there seems to be some agreement that massage does not hasten nerve growth, remove subcutaneous fat, or increase muscle strength (6). Not surprisingly, however, many athletes use massage to alleviate muscle cramps and remove lactic acid (14); increase pain threshold, flexibility, and coordination (11); stimulate circulation and improve the transport of energy to muscles (15,17); and speed up healing and restoration of joint mobility (11). Unfortunately, the basis for prescribing massage relies solely on practical experience rather than scientific principles (2). The recuperative benefits may be more psychological than physiological.

Part of the difficulty in distinguishing psychological and physiological benefits lies with the lack of adequate scientific research to test various hypotheses. Therefore, athletes should probably be cautious of the various massage programs purportedly designed to enhance physical performance, and restore and/or maintain normal muscle function.

The purpose of this study was to determine whether the sports massage results in positive physiological responses during submaximal exercise, and whether the responses were caused by the central or peripheral adjustments.

METHODS

Ten healthy male volunteers (age = 28 ± 2.6 yrs, wt = 65.2 ± 9.2 kg) were studied. The procedure was fully explained, and informed consent was obtained prior to the study. This investigation was approved by the institution's Human Subjects Review Committee.

The subjects participated in both the Control Session (exercise without prior massage) and the Treatment Session (exercise with prior massage). The order of the sessions per subject was determined by a table of random numbers.

The submaximal exercise on the treadmill was designed to elicit 80% of the subjects' maximal heart rates. The following formula was used to determine the desired heart rate intensity: Exercise HR (bpm) = 220 - age (years). At “0” grade, the treadmill speed was increased per subject to approximate the desired heart rate response. The same exercise conditions were repeated during the second exercise test.

The sports massage therapist used alternating deep strokes and broad cross-fiber strokes of the lower extremities (i.e., the muscles were squeezed, compressed, and rolled) for a duration of 30 minutes. The therapist, an Australian trained masseur, worked with athletes who considered massage critical to their performance.

Oxygen consumption was determined every minute by...
the Beckman Metabolic Measurement Cart (MMC), which was calibrated by certified gas prior to exercise. Blood pressure was monitored by auscultation of the left brachial artery using a standard mercury manometer. Heart rate was derived from the electrocardiograph during the last 15 seconds of each minute of exercise. Cardiac output was estimated during the last minute of exercise using the MMC Clinical Exercise Testing Program. Arterial CO₂ (PaCO₂) was derived from the end-tidal PCO₂ (PETCO₂). Mixed venous PCO₂ (PvCO₂) was derived from the rebreathing procedure during which the subjects were disconnected from the non-breathing valve and connected to a bag filled with 11.75% CO₂ in oxygen. A Beckman MMC recorder was used to graphically examine the CO₂ signal generated during the rebreathing to ensure that a satisfactory PCO₂ equilibrium was achieved. Stroke volume was calculated by dividing cardiac output by heart rate. Arteriovenous oxygen difference was calculated by dividing oxygen consumption by cardiac output. Lactic acid was determined upon cessation of exercise using the spectrophotometric (Gilford Stasar III) technique (18).

RESULTS
Means and standard deviations were computed for all physiological responses (Table 1). Paired t-test indicated no significant differences (p > .05) between the Control Session exercise data (exercise without prior massage) and the Treatment Session exercise data (exercise with prior massage).

DISCUSSION
This study found that the sports massage did not result in an improved exercise performance, and that the subjects’ physiological responses during 10 minutes of steady-state treadmill exercise reflects the peripheral adjustment to maintaining exercise oxygen consumption. Exercise oxygen consumption was derived from similar and peripheral adjustments. Both exercise tests at 80% of maximum heart rate required the same oxygen consumption (i.e., 3 L/min for the Control Session and 3.1 L/min for the Treatment Session). Therefore, the 30-minute massage just prior to exercise did not provide the subjects with increased oxygen flow to the body tissues. This finding is in contradiction to comments made by some sports massage enthusiasts (11). Without the massage, subjects exercised just as efficiently as when they had received the massage.

Oxygen consumption is the product of oxygen transport (i.e., Q = HR x SV) and oxygen utilization (i.e., a-V0₂ difference). Improvement in a steady-state exercise oxygen consumption can be the result of either a change in oxygen transport or a change in oxygen utilization. A change in the transport of oxygen is generally characterized by a decrease in exercise heart rate, an increase in stroke volume, and no change in cardiac output. The decrease in heart rate at the same exercise cardiac output is indicative of a more efficient heart rate (1,7,10,12,13,20). However, this response did not occur. Heart rate was unchanged with massage. Also, there was no change in arteriovenous oxygen difference (which reflects the peripheral adjustment to maintaining exercise oxygen consumption). The subjects’ oxygen utilization was the same with sports massage as without it.

The changes just described (but which did not occur in this study) allow for a more efficient physiological performance at the same oxygen consumption value. Therefore, had the changes occurred, the subjects would have been more physiologically efficient at the same energy expenditure. It was also anticipated that the sports massage might result in a lower oxygen consumption response at the same exercise load. That is, it was thought that the subjects’ exercise heart rate might decrease with no change in stroke volume (following the sports massage). The resultant effect would therefore be a smaller exercise cardiac output; the product of which would yield a smaller oxygen consumption, assuming that the extraction of oxygen in the periphery (i.e., oxygen utilization) was unchanged.

In this regard, several researchers (3,8) have shown that oxygen consumption is not constant. Benson et al. (3), for example, found that their subjects were able to lower steady-state exercise oxygen consumption by eliciting the relaxation response. Their results are interesting in that oxygen consumption during a fixed exercise bout was thought to be constant with each performance. One would expect that, had the sports massage helped the subjects in the present study, economically speaking, the metabolic cost of the exercise would have decreased. A finding of this type would be considered a positive influence of massage on performance (given that the subjects would recover faster).

It is also possible that an enhanced running economy is reflected in a decrease in lactic acid. This has led some researchers (14) to expect that massage prior to exercise affects the magnitude of the lactic acid response. It is very tempting to assume that with less lactic acid during exercise, the subjects would be able to exercise longer and recover faster. Again, a finding of this type would be considered a

Table 1. A physiological comparison of the Control (exercise without massage) and Treatment (exercise with massage) responses during 10 minutes of steady-state treadmill exercise (Mean and Standard Deviation)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Control</th>
<th>Treatment</th>
<th>t-ratio</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>VO₂ (L/min)</td>
<td>3.0 ± 3</td>
<td>3.1 ± .4</td>
<td>.97</td>
<td>.62</td>
</tr>
<tr>
<td>Q (L/min)</td>
<td>22.1 ± 3.1</td>
<td>22.0 ± 3.2</td>
<td>.05</td>
<td>.96</td>
</tr>
<tr>
<td>HR (bpm)</td>
<td>162.7 ± 9.5</td>
<td>159.3 ± 8.3</td>
<td>.96</td>
<td>.64</td>
</tr>
<tr>
<td>SV (ml)</td>
<td>135.2 ± 17.5</td>
<td>137.4 ± 21.3</td>
<td>.37</td>
<td>.72</td>
</tr>
<tr>
<td>a-V0₂ diff (ml/100 ml)</td>
<td>13.1 ± 1.6</td>
<td>13.9 ± 1.3</td>
<td>.34</td>
<td>.74</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>166.6 ± 26.0</td>
<td>168.4 ± 24.3</td>
<td>.25</td>
<td>.80</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>79.2 ± 10.8</td>
<td>74.6 ± 9.0</td>
<td>-1.41</td>
<td>.19</td>
</tr>
<tr>
<td>LA (mM/L)</td>
<td>2.2 ± .8</td>
<td>2.0 ± .6</td>
<td>.78</td>
<td>.54</td>
</tr>
</tbody>
</table>

VO₂ = oxygen consumption; Q = cardiac output; HR = heart rate; SV = stroke volume; a-V0₂ diff = arteriovenous oxygen difference; SBP = systolic blood pressure; DBP = diastolic blood pressure; LA = lactic acid; Non-significant (p>0.05); paired t-test.
ADVANCED ANKLE SUPPORT AT 1/10TH THE COST OF TAPE

With the cost of taping one pair of ankles for one football season hovering at a hefty $400, it's no wonder more and more teams are turning to the laced ankle brace for protection and support.

And McDavid's A-101 Ankle Guard is fast becoming the first choice of thousands of trainers, players and sports medicine professionals alike.

Studies show that a good quality laced ankle brace is actually preferable to tape. The support and protection ankle braces provide is equal to—and often better than—that of tape, yet the cost is a fraction of tape costs.

Pete Farrell, head athletic trainer at New York's Potsdam College, uses the A-101 on basketball players. "The A-101 doesn't loosen up, so it holds its tension much longer than tape," Farrell explains. "It provides better support for extended periods."

In fact, the McDavid A-101 has been proven at hundreds of U.S. colleges, with 60% of top college conference football teams that use laced ankle guards choosing it over competitive models.

Winning Combination

A perfect balance of protection, support, durability and comfort, the trim, lightweight A-101 won't restrict an athlete's speed or agility. And it offers features not found on any other ankle brace.

The unique elastic forefoot minimizes tongue migration and helps it slip on easily. A notched-front design lets feet flex and extend freely. Spring-steel stays provide medial and lateral stability to resist inversion and eversion.

That's why Trainer Farrell favors the A-101 over competitive braces. "It prevents inversion more effectively, plus it simply holds up much better," Farrell notes. "It doesn't have to be retightened at halftime."

The guard is extremely durable, too. "Even in mud or rain, the A-101 really holds up," says Kay Mitchell, head athletic trainer at Pennsylvania's Grove City College. "We tried a different brace, and eyelets popped out all over. One player went through four in one season."

The A-101's sewn-in arch support and elastic heel inset ensure a snug, supportive, yet comfortable flexible fit. "With its elastic in the back for the Achilles, it won't cut in," Mitchell notes.

Ease of application is a big plus, too. As Mitchell explains, "It's more efficient, especially if you have only one trainer."

The A-101 fits either ankle and comes with a season-long guarantee unmatched by any other ankle brace. For more information and a full line catalog, write McDavid at 5420 W. Roosevelt Rd., Chicago, IL 60650 or call 1 800 237-8254. (In Illinois, call 1 312 626-7100.)

How to survive an attack by tigers, lions and ornery bulldogs.

In the top college conferences, 80% of the teams using laced ankle guards chose McDavid. Why? Because a McDavid Ankle Guard provides support and protection without restriction.

Its one-piece construction increases stability. Yet it allows maximum comfort, from the exclusive notched front to the elastic heel and sewn arch.

And, a McDavid Ankle Guard is guaranteed to last the entire season. If your team is preparing to battle cougars, bears or even gators, remember the McDavid Ankle Guard.

For information write McDavid, 5420 W. Roosevelt Rd., Chicago, IL 60650 or call 1 800 237-8254. (In Illinois, call 1 312 626-7100.)

Ankle Guard available with optional polyethylene inserts shown above.
positive reason for massage. However, our data indicated that the subjects' lactic acid responses following steady-state exercise were not significantly different. It appears justified to state that the physiological benefits of the sports massage are questionable.

REFERENCES