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FAN-LINEAR MAPS AND FAN ALGEBRAS

JOHN HULL

ABSTRACT. Fan algebras arise from fan-linear maps, a special class of functions defined on
partitions of the nonnegative integer lattice in the plane. These algebras are natural objects
of study in commutative algebra as they include many classical examples of commutative
rings. Additionally, the ubiquity of this structure has only recently been identified, therefore
little is known regarding the properties of these algebras. We begin our study by classifying
all fan-linear maps via the conditions imposed on them by their domains. This classification
includes a general result regarding the universal group of cones in lattices of arbitrary
dimension. We then go on to show that the set of all fan-linear maps on any fixed partition
is necessarily a finitely-generated affine semigroup. Finally, this leads to the conclusion that
the set of fan algebras corresponding to a fixed partition and a fixed set of ideals forms a
finitely generated semigroup. This is accomplished through the identification of generating
maps in the semigroup of all fan-linear maps with generating algebras and the description
of a natural additive operation.
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1. INTRODUCTION

Let Iy, ..., I, be a collection of ideals in a Noetherian domain R, let f = {fi,..., fn} be a
collection of special functions f;: N> — N called fan-linear maps, and let u and v be indexing
variables. Fan algebras are bi-graded rings of the following form:

Yab, ) = @Iﬁ(m o IOy as (1, s) ranges over N2

Fan algebras first appeared in the work of Sara Malec (see [2],[3]) and we cite here an
important property of these objects.

Theorem 1.1. (/2], Theorem 2.3.3) Fan algebras are finitely generated as R-algebras.

In what follows, we extend Malec’s work by presenting a classification of all fan-linear
maps. The study begins by examining the nonnegative integer lattice in the plane in order
to deduce the general properties that it imposes on fan-linear maps (which have this lattice as
their domain). Subsequently, we use these properties to describe all such maps and derive a
correspondence between the set of all such maps and other semigroups similar to N2. Finally,
we present a brief examination of fan algebras in this new context.

2. PRELIMINARIES

Note that throughout this paper we take the convention that 0 € N and I° = R for any
nonzero ideal [ of an integral domain R. To begin, we will develop an intuitive grasp of what
a fan-linear map is and then discuss some general elements of semigroup theory necessary
for further study of the objects before us. The first treatment of fan-linear maps will be
concrete - we will avoid, for the time being, general and abstract conclusions. An affine
semigroup is most simply described as a semigroup that can be identified as subsemigroup
of Z¢. The affine semigroup N2, where addition is defined componentwise, is best visualized
as the integer coordinate pairs in the northeastern quadrant of the real plane adjoined with
the integer coordinates on the positive axes:

N2

A fan of cones in N? is somewhat of a partition of N? (although certainly not in the strictest
sense); to construct a fan, we first n-sect the entire quadrant with positively oriented rays
of rational slope meeting at the origin:
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Za,b

Above, we see that the entirety of N? is a union of these slices, and this segmenting is
exactly what we mean when we say a fan. We use the notation X, to denote one of these
fans, the details of which we will explain later. By convention, we order and index each of
the slices in a clockwise manner and the collection of the coordinates that reside within or
on the defining rays of any one of these slices is what we call a cone in N2. In the example
above, we have a fan of 3 cones which we may label @)y, @1 and ()2. The integer coordinates
that fall on either ray of the two rays (including the axes when necessary) that define any
of these cones ); constitute a face of that cone. Note that this implies that a non-axis face
can be seen as the intersection of two cones (hence why a fan is not a true partition of N?).
For example, below we show the cone (); alone:

-

o

With this picture in mind, we may construct a more formal criterion for cone membership.
In the case above, we see that the integer coordinates in N? which lie in ; can be described
entirely by the integer coordinates between (inclusive) the lines of rational slope y = ;;x and
Yy = %Jc. For this to occur at the point (r, s), we must have % <2< ;Z. Consequently, we may
say that in this case, the faces of Q)1 are defined by (4,7) and (7,4). Note that in the same
manner, the faces of @)y are defined by (0,1) and (4,7), while the faces of Q2 are defined
by (1,0) and (7,4). This leads to the conclusion that we may define cone membership as
follows:

Definition 2.1. (Cone Membership Criterion) For any cone @); in an arbitrary fan 3, p
where the faces of Q; are defined by (p;,¢;) and (pit1,¢ir1), the element (r,s) € N? is a
member of @); if and only if ?—i <L ;17? where we take the convention that § < % for all

(a,b) € N2

2.1. Fan-Linear Maps. A fan-linear map is a function f: N> — N defined with two
specific requirements corresponding to a given fan. The first requirement is that for any
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(r1,81), (12, 82) in a given cone @Q;, we must have that f[(rq, s1)+(ra, s2)] = f(r1, $1)+f(r2, $2).
In this case, we may say that f is additive on Q;, but since Q; is a subsemigroup of N? (clo-
sure under addition is easily verified) and N is a semigroup as well, this is the same as
saying that f is a semigroup homomorphism when restricted to ();. The second require-
ment is that for (ry,s1) € Q; and (rg,s3) € Q; (where ¢ may or may not be equal to j),
fllr1,s1) + (72, 82)] < f(r1,s1) + f(r2,82). We call this property subadditivity.

Example 2.2. Consider the function max(r,s): N> — N. We may view this function as
fan-linear map on the fan described as N? segmented by the ray y = z:

Zab

g

As the convention dictates, we take (g to be the coordinates on or above the line y = x
and () to be the coordinates on or below it. When we restrict the max(r, s) function
to say )1 and agree that max(r,s) = r when r > s, we have that max(r +71,s+s') =
r+ 1’ = max(r,s) + max(r’, s'), so max(r, s) is a semigroup homomorphism when restricted
to Q1. It follows similarly that this is the case when max(r, s) is restricted to Q. To verify
subadditivity, assume that (r,s) € Qy and (r',s') € Q1 and (r + 1,5+ §') € Qp. Then
max(r +1,s+5) =s+ 5 < s+ =max(r,s) + max(r',s'). If (r+r,s+5") € Q1, then
max(r +1,s+ ) =r+1r <s+r" =max(r,s) + max(r’, s’). Collecting these observations,
max(r, s) is a semigroup homomorphism on each cone and is subadditive on all of N2, hence
max(r, s) is a fan-linear function.

Upon closer examination, we see that we may regard the function max(r, s) as a piecewise
function where each piece is a semigroup homomorphism:

s if (r,s) € Qo
rif (r,s) € Q1

max(r, s) =

Indeed, for any fan-linear map f: N> — N defined on a fan of any number of cones n, we
may write f in such a way. Where g;: ); — N is a semigroup homomorphism fori =1,... n,
f can be considered as the following piecewise function:
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’

gi(r,s) if (r,s) € Qo
g2(r,s) if (r,s) € @4

\ gn(r,s) if (r;s) € Qn

These semigroup homomorphisms must meet other requirements, but because they are
the essential building blocks of fan-linear maps and our task is to classify every such map,
the first step is to deduce what form each of the g;: ); — N can take. This is handled in
section 3, but before we move on to that development, it is essential that we gather some
tools to examine the concerned semigroups more rigorously.

2.2. Cone Semigroup Properties. Much of the theory of affine semigroups that applies
to cones as we know them from our previous discussion is stated in terms of the properties
in systems of linear inequalities in R2. For this reason, we will reconcile our understanding
of a cone in N? with this other view. We illustrate this concept with an example.

Example 2.3. Consider the following set:

4
A:{(x,y)€R2]y—?xZO}ﬂ{(x,y)EIW|y—£x§0}

This is exactly the set of real coordinates above and below (inclusive) the lines y = %x
and y = ;Z:z: respectively in the first quadrant of R2.

A

Now consider the integer coordinates that lie within and on the boundaries of A.
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......

A

It is clear then that the cone ()1 that we previously examined can be viewed as the set
ANN2. Considering this construction of ); has some advantages that we will exploit in the
classification of all fan-linear maps. In order to facilitate our handling of affine semigroups
that are not necessarily contained within N2, we will present all of the following semigroup
theory in full generality. First, we give some important definitions.

Definition 2.4. For fixed zi,...,23,,b € R, a hyperplane in RF is a
set A = {(al, oo ap) ERF | ayry + -+ apry, = b}. A half-space  deter-
mined by A is the set {(al, coap) ERF | ayry + -+ apxy > b} or the set
{(al,...,ak) ERY | aywy + -+ + apay < b}.

Definition 2.5. A polyhedral cone C' in R? is the intersection of finitely many closed half-
spaces in R? each determined by a hyperplane containing the origin. A hyperplane H C R¢
containing the origin is called a supporting hyperplane if H N C # {0} and C' is a subset of
a closed half-space determined by H. In this case, H N C' is called a face of C.

Note that the sets {(z,y) € R? | y — 2z >0} and {(z,y) € R?* | y — Lz < 0} form half
spaces, and the supporting hyperplane of each is y — %x =0 and y — ;Zx = 0 respectively.
By the above definitions, the set A in example 2.3 is a polyhedral cone in R2.

Theorem 2.6. ([4], Corollary 7.1a) (Farkas-Minkowski-Weyl Theorem) A cone C' is poly-
hedral if and only if it is finitely generated, i.e. C = {1 + -+ + M|\ € Ry} for
c1,...,cr € RY.

For the set A in example 2.3, we may choose the integer pairs (4,7) and (7,4) as generators
so that A = {A1(4,7) + Xa(7,4) | A1, A2 € R5p}. The polyhedral cone A can now be further
classified.
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Definition 2.7. A polyhedral cone C' = {A\jc; + -+ + A\, |\ € R} is said to be rational
if we may choose all ¢y,...,¢c, € Q¢ C R% We say that C' is trivial when all ¢; = 0 and that
C is nontrivial otherwise. We say that C' is a ray if C = {\c | A € Rs¢} for some c € R?.

We may then conclude that A is a rational cone since both (4,7) and (7,4) are elements
of Z*> C Q2. Tt is already clear that (; is an affine semigroup, but the following theorem
gives us the ability to readily identify affine semigroups embeddable in Z¢ where d > 2.

Theorem 2.8. (/5], Proposition 7.16) (Gordan’s Lemma) If C' C R is a rational cone and
A is any subgroup of Z2, then C' N A is an affine semigroup.

We say that a commutative semigroup with identity S is finitely generated if S is trivial
or there exists si,...,s; € S such that S = {nys; + -+ mgsx | n; € N}. Finding such
generators greatly simplifies the study of such semigroups, especially if there exists a unique
minimal set of such generators. The next theorem implies that most of the semigroups
encountered in this study have this property.

Theorem 2.9. (/5/, Proposition 7.15) A semigroup C' is said to be pointed if it contains
the identity and the identity is the only invertible element in C, i.e. C' N (—=C) = {0}. Any
pointed affine semigroup C' has a unique finite minimal generating set.

Consider Q; = ANN? from before. We see that as (0,0) € Q; and that Q; N (—=Q;) =
{(0,0)} (where —Q); denotes the reflection of ); about the origin). This shows that @, is a
pointed affine semigroup and in fact, this is true for any cone in N? [as N*N(—N?) = {(0,0)}].
We may then extract a unique minimal generating set for ); which we highlight below:

Q

For any finitely generated subsemigroup of N2, we call its minimal generating set a Hilbert
basis. There is a symmetry in the Hilbert basis for Q; = A N N2, and it is of a manageable
size, however, in general this is not to be expected. Depending on the slopes of the bounding
hyperplanes defining a cone in N2, finding a unique minimal generating set can be very
cumbersome. Once it is found, it can be even more difficult to verify that it is indeed
the unique minimal generating set. We have chosen to rely on the Normaliz package
executable in Macaulay2 to extract minimal generating sets of pointed affine semigroups
when necessary; this tool saves a great deal of time.

In familiar territory, finite generation can be a simplifying property of extreme value.
As an example, if B is a linearly independent generating set for a free module F', every
R-module homomorphism ¢: F' — M is completely determined the images of the basis
elements ¢(b). The converse of this is also true; that is, every map b — m € M defined for
all b € B determines a unique R-module homomorphism A: R™ — M. This property of free
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R-modules not only makes their study more accessible; since every R-module is the quotient
of a free R-module, this property can be leveraged in the study of R-modules that are not
necessarily free.

In the unfamiliar territory of cones  C N?, it is true that every semigroup homomorphism
defined on @) can be completely determined by the images of the basis elements; however,
the converse property that every set map on the unique minimal set of generators induces
a semigroup homomorphism is not true in general (and specifically not true in the case of
homomorphisms ¢g: @ — N for nontrivial cones @ in N?). In the following section, we give
a theorem that supports the classification of all fan-linear maps with relative ease.

3. FIRST ORTHANT CONE HOMOMORPHISMS

Consider a semigroup homomorphism g : Q — N where @ is a cone in N? and assume
that {hq,...,hs} is the Hilbert basis for (). We know that the image of g is determined
by the images of the generators for @; that is, if ¢ € @, ¢ = nihy + -+ + nghg, then
g(q) =n1g(h1) + -+ - +nrg(hg) € N. The issue arises in that the minimal generating set for
@ will rarely give a means of uniquely representing the elements of (). There may be several
ways to write ¢ € () in terms of the h;, and even if there were a dependable rule for choosing
such a representation, it would do little to simplify the piecewise form of fan-linear maps:

.

gl(r7 5) if (7”, S) S QO

o(7, s if (r, s 1
fgy =] B9 G0 €Q

\ gn(r,s) if (r;s) € Q,

If we chose to study a fan-linear map by its mapping of the generators for the cones on
which it is defined, we would immediately encounter problems. First, it is unlikely that the
cones of a given fan would even have a comparable number of generators between them,
so studying the interactive properties of the map between each cone could be exceedingly
difficult. Secondly, we do not have a universal mapping property that allows us to define
arbitrary maps in terms of the generators and the ability define such maps is essential to
the study and utility of fan algebras. It is best then to escape the classification of cone
homomorphisms in terms of Hilbert bases and somehow state g(r,s) in terms of r and s.
This problem is what motivates the main result of this section. In what follows, we classify
the universal group for cones in N¢ for all positive d and obtain the desired description of all
maps from these cones into N.

Definition 3.1. ([1], page 32-33) For a semigroup S, the universal group of S'is a group G(5)
together with a homomorphism ~: S — G(S) such that for every homomorphism ¢: S — G
where G is a group, there exists a unique group homomorphism £: G(S) — G such that
p =& ory. The group G(5) exists for all semigroups S and is unique up to isomorphism.
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Definition 3.2. Let S be a commutative, additive semigroup S with identity and let a, b, c €
S. S is called reduced if a+ b = 0 implies that a = b = 0, cancellative if a + ¢ = b+ ¢ implies
that a = b, and power cancellative if n - a = n - b implies that a = b.

Even when a semigroup S is a subsemigroup of a group G, it is not generally true that the
universal group G(S) is the group generated by the elements of S (i.e. by closing S under
sums of inverses). The following proposition is therefore essential to our arguments.

Proposition 3.3. (1], pg. 36) Let S be a nonempty cancellative commutative semigroup.
An abelian group G is isomorphic to the universal group G(S) if and only if S is isomorphic
to a subsemigroup T of G such that every g € G can be written as a — b for some a,b € T.

The following theorem shows that the universal group G(Q) of a cone is free of rank
corresponding to the rank of the “smallest” real vector space containing A when Q = ANN<.

Theorem 3.4. Let A C R? be a pointed rational cone in the first orthant such that d =
min {n | A = R"} and let Q = ANN? so that Q is a cone in N%. The following must be
true:

(1) The universal group G(Q) is a free Z-module of rank d.

(2) A map ¢: Q — Z is a homomorphism of semigroups if and only if ¢(r1,...,rq) =
a1ry + -+ 4+ aqrq for some aq,...,aq € 7.

(3) If A={ Mz + -+ Mg | i € R}, then Im(¢) C N if and only if ¢(8;) € N for
at least one B; = \jx; € Q for eachi=1,...,q.

Proof. To prove (1), note that since @ is a subsemigroup of the group Z%, Q is cancellative
and commutative. Since () is pointed, we may extract a Hilbert basis Hg for (). Consider
the group H = (h | h € Hg) as a subgroup of Z?. Then Q is isomorphic to a subsemigroup
T of H where T is the semigroup of all finite sums of elements h € Hg. We also have that
forall g € H, g = nihy + - - - + nihy for some n; € Z, so after grouping the nonnegative and
negative terms we may write ¢ = a — b for a,b € T. By Proposition 3.3, we may conclude
that G(Q) = H so that G(Q) is identifiable as a subgroup of Z2.

Since G(Q) is a subgroup and therefore a Z-submodule of Z? and Z is a principal ideal
domain, G(Q) is free of rank d’ < d. We will proceed to show that d’ = d so that G(Q) = Z-.
First, we claim that for any two rational cones C;, Cy C R? in the first orthant, if C; N"N? =
Oy N N9, then C; = Cy. By contrapositive, if C; # Cs, then without loss of generality there
must exist some generator x for C; such that z ¢ Cy (otherwise C; = C5). Since € Q¢, we
may choose some nonzero N € N such that N -2 € N¢. Also, observe that N -z € C;\Cs
(otherwise =N -z € Cy) and therefore N - x ¢ Co N N%. Consequently, C; NN #£ C, N N,

N
proving our claim. Now consider the following rational cone in R%:

A = {>\1h1 + - +)\khk | )\z € Rzo,hi € HQ}

This is the rational cone generated by the Hilbert basis of (), and since @ =
{mihy + -+ mghy, | m; € N h; € Hg}, we see immediately that @ = A’ N N¢.  Conse-
quently, ANN? = A/NN9 so A = A’. If d < d where again d’ is the free rank of G(Q), then
Hq does not contain d elements that are linearly independent over Z. It follows then that A
does not contain d elements that are linearly independent over R; but this implies A — R*®
for some s < d, contradicting the minimality of d. Conclude that d’ = d so that G(Q) = Z<.

The proof of (2) follows naturally; since G(Q) = Z¢, every semigroup homomorphism
¢: Q — @ factors through a unique Z-module homomorphism ®: Z¢ — G that we may



FAN-LINEAR MAPS AND FAN ALGEBRAS 11

define on the standard basis of Z?. In the case where G = Z, any such homomorphism
¢: Q — Z must be given by (r1,...,7q) = m®(er) + - + rqa®(eq) = a1y + - - + agry for
some a; = $(e;) € Z. For the converse, the linearity of ¢: Q) — Z defined by (rq,...,7r4) —
ai1ry + - -+ 4 aqrq is easily verified.

For (3), the forward implication is trivial. For the converse, note that for any w € @,
w = ANz + -+ A\xy where \; € R5p and z; € Q7 by the assumption that the cone A is
rational. As R is a field, we may factor out the denominators that appear in each z; and
replace each with some a; € Z? so that w = pyay + - - - + pyay. Since w,ay, ..., ap € Z, it
is easily verified that each p; € Qs0; to see this, simply let the ; generate Q¢ so that w is
the solution to a solvable overdetermined system in Q. Choose some positive integer N that
clears the denominator of all the p;. By the implicit hypothesis that ¢ is well-defined and
since each Np; € N, we have the following:

Nw = Npiag+---+ Npyay
¢(Nw) = ¢(Npia1) + -+ + ¢(Npyay,)
No(w) = Npig(ar) + -+ Npgg(ay)
Since N is a positive integer, we may divide through to obtain the identity:
ow) = piglar) + -+ pad(ayg)

By hypothesis, at least one ¢(5;) € N where 5; = \jx; = p;a, so by the above identity,
p; "p(B:) = ¢(a;). Consequently, ¢(a;) € N since p; > 0 and it follows then that Im(¢) C N.
This completes the proof of the theorem. O

We immediately obtain the following corrollary which can be directly applied to the prob-
lem of classifying fan-linear maps on N2,

Corollary 3.5. Let A = {\iz1 + Aaxo | Ai € Ruo} be a rational cone in the first quadrant
of R? so that the x; are linearly independent in R%. If Q = ANN?, then ¢: Q — Z is a

semigroup homomorphism if and only if ¢(r,s) = ar + bs for some a,b € Z. Furthermore,
Im(¢) C N if and only if ¢(B8;) € N for some B; = \jx; € Q fori=1,2.

4. A CoMPLETE CLASSIFICATION OF FAN-LINEAR MAPS

We now move on to the main task of this study, the classification of all functions from
which fan-algebras arise. First, we give formal definitions to some of the objects with which
we have already dealt intuitively.

Definition 4.1. For a finite indexing set I, a fan is a collection ¥ C P(R?) of cones {C;}icr
so that the following conditions are satisfied:

(1) No C; is a ray.

(2) The faces of each C; are also in X.

(3) The intersection of any pair of cones, when the intersection is not {0}, is a shared
face of the two cones.
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Definition 4.2. Let ¥ = {C;}!; C P(R?) be a fan such that (], C; gives exactly the first
quadrant of R? and each Cj is rational. Let a = {po,...,pns1} and b = {qo,...,qns1} sO
that each (p;,¢;) and (pit1, ¢i+1) define the faces of C;, each p; and ¢; are relatively prime,

and Zf—ﬁ < % for i = 0,...,n. Define a fan in N? of n + 1 cones to be the collection

Yab = {Qi}l, where each Q; = C; N N? is a cone in N?, noting that |J_,Q; = N?. For
Qi € Yab, Qi NQiy1 is a face of ¥, and we say that each (p;, ¢;) and (pit1,git1) define a
face of Q;.

Herein, we will be discussing only fans in N2, therefore when we say a fan of n + 1 cones,
we mean fan in N? of n + 1 cones. Then next few definitions and propositions give a formal
definition of fan-linear maps and show that for any fixed fan ¥,, the set of all fan-linear
maps on X, p is itself a semigroup.

Definition 4.3. Let f be a function so that addition is an associative binary operation
defined on both the domain and range of f. Further assume that Range( f) is totally ordered.
We say that f is subadditive if f(z +vy) < f(z) + f(y) for all z,y € Domain(f).

Definition 4.4. Let ¥, be a fan of n + 1 cones. A fan-linear map on X,p is a map
f : N — N such that for cones Qo, Q1,...,Qn € Yap, f is a semigroup homomorphism
when restricted to each Q; and f is subadditive on N* = [J_, Q.

As a result of the discussion in the previous section, we may write any fan-linear maps in
a much simplified form.

Proposition 4.5. Let f : N> — N be a fan-linear map on Zayp, = {Qo, Q1,...,Qn}. Then f

can be written as a piecewise function:

/

agr +bos  if (r,8) € Qq
ar +bis  if (r,s) € Qq

anr+bys if (r,8) € Qy

where each a;,b; € 7.

Proof. This follows immediately from Corollary 3.5 and the definition requiring that f is a
semigroup homomorphism when restricted to each cone @);. [l

Proposition 4.6. If f and g are subadditive on N?, then f + g is subadditive on N2.

Proof. If f and g are subadditive on N? then for all x,y € N2, (f +g)(x +vy) = f(z +y) +
9z +y) < f(@) + fly) +9(x) +9(y) = (f +9)(@) + (f +9) (). 0

Definition 4.7. Let F (X, ) denote the collection of all fan-linear maps on a fixed fan X, p,.

Proposition 4.8. The collection F (£ap) is a commutative, additive semigroup with identity
under the operation of function addition.
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Proof. Let Yap = {Q0,Q1,...,Qn}t. If f,g € Fan(Xay), then for each z,y € Q;, (f +
9z +y) = flat+y) +gl@+y) = f(z)+ fly) +9(x) + 9(y) = (f + 9)(x) + (f + 9)(¥).
By Proposition 4.6, f + g is subadditive on N? and as function addition is associative,
(F(Zap),+) is a semigroup. Since the zero function 0 : N* — N is linear on each Q;
and subadditive on N?, 0 € F (X,3), and as addition commutes in the codomain (N, +),
(F (Xap),+) is commutative. O

The following map is essential to the classification of all fan-linear maps and leads to the
conclusion that the set F (X, ) of all fan-linear maps defined on a given fan 3, , is an affine
semigroup.

Definition 4.9. Let p and ¢ be relatively prime positive integers. Define f,, : N> = N so
that:

0 if

S |w

>
fpﬂ(r’ S) =
qgr—ps if 2 <

Rl
v Wk

We call f,, the determining map of (p,q) and note here that as gr > ps for all (r,s) € N?
such that f < g, fp.q 1s nonnegative on N2.

Proposition 4.10. For any relatively prime pair (p,q) € N?, the determining map f,, is
subadditive on N2.

Proof. Choose (r,s) and (r',s") in N® so that £ > 1 and f,—: <4 If jii: > 1, then f,q(r +

7“’73 + 3’) =0< fp,q(r/,sl) =0+ fp,q(rl,s/) = fp#}(T? S) + fp,q(ﬂ, 3/), If iii: < %, then
foalr + 1", +58") =q(r+71") —p(s +5) = qr + @' — ps — ps’. Since & > %, it follows
that ps > gr and qr + qr' — ps — ps’ — (¢v' — ps’) = qr — ps < 0 which implies that
Tpa(r+1",s4+5) <0+ f,,(r",8") = fpq(r,8) + frq(r',s'). It follows that f,, is subadditive
on N2, O

Example 4.11. Recall the fan given in Example 2.2 which has faces determined by the
coordinates (0, 1), (1,1), (1,0).

Zab

g

Consider the max(r, s) function from same example which we wrote in piecewise form.
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s if (r,s) € Qo
roif (r,s) € Q1

max(r, s) =

The determining map gives us the ability to rewrite this function as the sum of a semigroup
homomorphism mapping ()9 — Z and f;;. The determining map f;; is given by:

0 iff >1
fin =

r— 38 if§<1

Let f(r,s) = s+ fia(r,s). If (r,s) € Qq, then f(r,s) =s+r—s=r. If (r,s) € Q, then
f(r,s) = s+ 0= s. This shows that f(r,s) = max(r, s) for all (r,s) € N2. In this manner,
we may use the determining maps of coordinates defining the faces ¥, of to give necessary
and sufficient conditions on all fan-linear maps defined according to any fan >, .

Theorem 4.12. Fiz a fan X, of n+ 1 cones. Assume that for Yap = {Qo, Q1 ..., Qn},
the faces of Yap are defined by {(p;, ¢;) € N>} A function f on Y.y, is fan-linear if and
only if:
f(rys) = aor +bos + k1 - fpr.00(1,8) + - 4 kn+ fongn(7,5)
With the following conditions:
(1) k; >0 fori=1,...,n
(2) fe) 20 for all @ € {(pi, i) € N*}155

Proof. Let f be a map that is fan-linear on X,1. By Proposition 4.5, we may write f as

follows: )
aor +bos  if (r,s) € Qo
Frs) = air +bis  if (r,s) € Q1
\ an,r +bps if (r,s) € Qy
For some i € {1,...,n}, choose two cones ();_1 and @; so that these cones share the face

(pi, ¢;). By the assumption that f is well defined, we must have a;,_1p; + b;_1¢; = a;p; + b;q;
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which implies that (a;—1 — a;)p; = (b; — bi_1)q;. As p; and ¢; are relatively prime, we must

have that a;_; — a; = dq and b; — b;_1 = dp so that a; = a,_1 — dg; and b; = b;_1 + dp; for

some d € Z. Then we may rewrite f:

(
aor + bos

;17 + bi,IS

f(T,S) =

anr + bys

Zf (7“, S) S QO

Zf (7’,5) c Qifl

(ai—1 —dg;))r + (bi_1 + dp;)s if (r,s) € Q;

if (r,5) € Qn

Define a connected subfan of ¥, to be the sequential union Q; U @41 U --- U Q) for
J <k jke{01,....,n}. Let fo, , o, denote the restriction of f to the connected subfan
Qi—1 U Q;. It is clear that fo, | .0.(r,s) = ai—17 + bi_15 + (—d) fp, 4: (1, 8) where f,, ., is the

determining map of (p;, ¢;).

Now choose some (r,s) € Q;—1 and (1, s") € @; so that the sum (r 4+ 7', s + s') lies in @Q);.

The map f is subadditive, which implies that:
for+rs+¢

ai—1(r+7') +bi1(s + ') + (=d) fp, 0, (r + 7,5+ 5

)
)
—d- fpq(r+r,s+5)
—d[gi(r +71") —pi(s + 5')]

)

—d(qir — pis
—dg;r

IANIAN IN IN DA

IN

f(rs) + f(r' +§)
ai—1(r+71") +bi—1(s +8") + (=d) fp,.q; + (=5) fp.q(7,5)

—d - fp,q. (1",
—d(qir" — pis’)
0

—dp;s

Since (1, s) € Q;_1 C N? r and s must satisfy the inequality ¢;r < p;s. It follows then that
for —dg;r < —dp;s to hold, we must have —d > 0 which implies that d < 0. Let k; = —d > 0
so that we may now write fo, ,.(7,8) = @17 + bi_1s + ki - fp,q,(r,8) for a;_q1,b,_1 € Z,

k; € N.

It follows then that if a;—1 = Qo + ]{?1(]1 + o+ ki—IQi—l and bi—l = b() — klpl — = ki—lpi—la

the restriction of f to the connected subfan U Q; is given by fo,..0, = aor + bos + ky -

=0
Toran(158) + -+ kica - foi 101 (1,8) + ki - fp.q:(r,s). Consequently, we see that for all
(r,s) € N2, f(r,s) = aor + bos + k1 fpr.u(1,8) + -+ + kn = fpo 0n(r,8) for ky, ... k, € N.
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Note that this implies condition (1). Since f is fan-linear and this implies that f(Q;) C N
for each i = 0,1, ..., n, condition (2) follows.

For the converse, assume that f is a map satisfying the given condition that f(r,s) =
aor +bos+ k1 forq(ry8)+-+kn [y, 4. (1, s) for all (r,s) € N2, Assume further that k; > 0
foralli =1,...,n and f(a) > 0 for all & € {(0,1) = (po,q0), (P1,01),---, (Pn,qn), (1,0) =
(Prst1s Gni1) }- In order to show that f is fan-linear, we must show that f is a semigroup ho-
momorphism that maps into N when restricted to each cone ); and also that f is subadditive
on all of N2,

Let (r,s) € Q; for any i € {0,1,...,n}. As f, , vanishes when > > Z—j, we see that
f(rys) =aor +bos+ ki forq(r,s)+ -+ ki fo0rs)=(a+ kg + -+ kig)r + (bo —
kipr—---—kp;)sforall (r,s) € Q;. Let (r,s), (1, s") € Q; and let a’ = ag+k1q1+- - -+kiq; and
b =by—kipi—---—kip;. Then f(r+r',s+5) =d (r+r)+b0(s+s) =adr+bs+ar'+0's =
f(r,s) + f(r',s") which shows that f is a semigroup homomorphism when restricted to Q;.
Since f|, is a semigroup homomorphism into Z, by Corollary 3.5 and the conditions of
the hypothesis, Im(fp,) C N for each i. Note that the map (r,s) — aor + bps is linear
on N?| which implies that it is trivially subadditive on N?. By Proposition 4.10, f,, 4 is
subadditive for each i = 1,...,n. Since the sum of subadditive functions is subadditive by
Proposition 4.6, k; - f,, 4 is subadditive for each ¢ = 1,...,n. It follows then that since f is
the sum of subadditive functions, f(r,s) = aogr + bos + k1 - fp,q (1, 8) + -+ kn  fpn.q.(1,5)
is subadditive on N?. This completes the proof. 0

4.1. Representative Semigroup and Correspondence with F (X,p). We now show
that F (Xap) is naturally isomorphic to an affine semigroup that embeds in Z"*? when X,
is composed of n + 1 cones.

Definition 4.13. Fix a fan ¥, = {Qo, Q1,...,Qn} of n + 1 cones with faces defined by

{(pi,q;) € N?} 4. Let Cf@&b) = {(a,b,ky,...,k,) € Z""?} so that:

(1) k; >0fori=1,...,n

(2) ap; + bpz + kl(glpz - szl) + -+ ki—l(%—lpi — Qipi—1> Z 0 fOI' all i = 0, 17 e, n.

We call Cf(Ea ) the correspondence semigroup of F (Xap)-

,b

Proposition 4.14. CF(Eab) is an affine semigroup and has a finite and unique minimal set

of generators.
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Proof. Let B be the set of coordinates (a,b,ki,...,k,) € R"2 that satisfy the following

inequalities:

S|

1+b-0+k-qu+---+ky- ¢ >0
@ pnt+b-qnt+kr (P — @upr) + -+ Fno1 s (Gu-1Pn — @uPn-1) +kn -0 >0
a Ppn1+b-gno1+ki- (@Pn-1— @uo1p1) + - + kn—2 - (Gn-1Pn — @Pn—1) + +kn—1-0+k,-0>0

a-po+b-ga+ki-(qp2—q@p1) +ke-0+---+k,-0>0
aprt+b-qg+k-0+--+k,-0>0
G0 b- 1tk Ot eethy-0>0

Then B is the intersection of finitely many closed linear half-spaces in R"*2. Considering
the resulting equations by setting the inequalties to equations, it follows that each bounding
hyperplane of these half-spaces contains the origin. B is therefore a polyhedral cone in R"*2,
and by Theorem 2.6, B = {\1by + -+ + \by| A € Rsp}

Since the bounding hyperplanes of B are all solutions to linear equations with integer
coefficients, it is clear that each has a solution set in Q"*2, so we may take by, ...,b, € Q"*?
which implies that B is a rational cone. Since Cr4) C B consists of all coordinates in B
with integer entries, it follows that C'f(anb) = BNZ""? and by Theorem 2.8, C’f( ) is an

affine semigroup.
We now claim that Cf(Eab) is pointed. Consider (a,b, ki,...,k,) € CF(Eab)' With

Za,b

the possibility that a < 0, two cases arise. First, if not all b, ky,...  k, are zero, then
asb>0and k; > 0 for all i = 1,...,n, (—a,=b,—ky,...,—k,) ¢ Cf(Ea,b)' Second, if
all b = ky = -+ = k, = 0 and a # 0, then we must have that a > 0 by condition
(3) of definition 4.13. This implies that (—a,0,0,...,0) ¢ Cr. It follows then that
CF(Ea,b) N (_CF(Za,b)> = {0} and by Theorem 2.9, CF(Z&b) has a unique finite minimal
generating set. ([l

Now we establish the natural isomorphism.

Theorem 4.15. There is an isomorphism of semigroups between the semigroup of fan-linear
maps F (Xap) and the affine semigroup C’]_.(Ea o) Note that in particular, this shows that

F (Zap) is an affine semigroup with a finite and unique minimal set of generators.

Proof. Define the set map ® from Of(Eab) to F(Xap) by (a,b,k1,... ky,) — f(r,s) =
ar +bs + ki - forq(rys) + -+ kn - fpoq.(r,s). This map is clearly well defined and the
conditions of definition 4.13 imply that k; > 0 for i = 1,...,n and f(a) > 0 for all a €

{(07 1) = (p07QO)a (pla(h)a ) (pnv%z)a (170) = (pn+17Qn+1>}' Then by Theorem 4127 ® is
surjective.
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Suppose that ar +bs + ky - fp, 4, (1,8) + -+ kn - fpoq.(r,8) =ar + s+ k- for0(r,s)+
otk fonan (1, 8) for all (r, s) € N2 Then evaluating the given fan-linear maps at (0,1), we
see that b = b'. Next, evaluating at (py, q1), we have that ap; +bg, = a'p1 +b'q1. Asb =1V it
follows that a = a’. Similarly, by successively evaluating at (p;, ¢;) for each i =2,... ,n+ 1,
we have that k; = k] for each @ = 1,...,n. This shows that ® is injective.

Since ®[(a,b, ky,..., k,) + (', 0k}, ... k)] = P[(a+ a0+ U, ki +K|,....kn + k)] =
(a+da)r+ (b+0V)s+ (ki + k) - fpl,ql(r, s)+ -+ (ko + ) - fpn,qn(r, s) = ar + bs +
ki forg(ris) + -+ kn fongu(rys) Far+ s+ k- fona(rs)+ -+ k- fpa.(rs) =
O(a,b, ky,... k)] + @, 0, k... KL)], we see that ¢ is a semigroup homomorphlsm and

rn

therefore an isomorphism. 0

Because F (Xap) is a pointed affine semigroup, we now can assume that for any fixed fan
Yab, there exists a unique, minimal set of fan-linear maps ¢i,...,gx € F (Xap) such that
every fan-linear map can be written as f(r,s) = nygi(r,s) + -+ + ngge(r,s). In fact, the
above correspondence gives us a method to find such generating functions; we simply need
to find the generators for CF(Za,b) which are uniquely determined by X, 1.

5. FAN ALGEBRAS

For this section, assume that we are given a fan ¥, . First, we recall the definition of a
fan algebra.

Definition 5.1. Given ideals I3, ..., I, in a Noetherian domain R, a fan ¥, of cones in
N?, and fan-linear maps fi, ..., f,, define a fan-algebra of f = (fi,..., fn) on Xap as:

B(Ea,b, f) = @7’781{1(r78) L. lecn(r,s)urvs

In order to study fan-algebras in the context of semigroups, we need an associative binary
operation that allows to classify certain sets of fan algebras as such.

Proposition 5.2. Let B,y, be the set of all fan algebms on a fized fan Xay,. For A,B € B,p,
A=0,, [ yrys gnd B = D.. JOT) L gem S yrys - define G(A,B) = C =
D,.. ]lfl(r’s) i) Jfl (rs) L Jggms)yrys., Then G: Bap X Bap — Bap is an associative,
commutative binary operation with identity so that Bay forms a semigroup.

Proof. First, we must show that the operation above is well defined. Assume that
@ ]fl(ns) ]fn(r,s) TyS — @ns ]1f{(r,8) .. ]’f (r,s) v’ and @ Jith(r,s) cel Jom TS)UTUS =
G}m Jars) J’gm(”)u’"vs Because u and v are indexing varlables, it follows that
@r’s [{1(7"5) [fn(rs @rsjlfl s ---I;zf’ll(r’s)urvs if and only if flfl(r’s) - 'L{n(r’s) _

[{f{(ns)u-[;f"(r’s) for all (r,s) € N2 To show well definition, it is enough

to show that under the assumptions above [J'%) ... /() gou(ns) . gom(rs)

[ ) i) g ) for any fixed (1, 5) € N2, but since the left and the right
side of this equation are ideals in R, it is clear then that the equation holds. Associativity
follows similarly since A(BC) = (AB)C for any ideals A, B,C' C R, and commutativity
follows from the assumption that R is commutative. We may also take the polynomial ring
in u and v, that is R[u,v] = &, sRu"v®, to be the identity element of this operation so that
Bab forms a semigroup with the claimed properties. O
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To highlight the fact that the above operation is a commutative semigroup operation, we
write G(A,B) as A+ B and forn € N, n- A=A+ .--+ A. For convenience herein, we will
—_—

n times
use the notation o € N* meaning that o = (r, s), and we write u"v* = u®. Next, we use the

semigroup properties of the affine semigroup F (X,1) to show that fixing a set of ideals and
considering all of the fan algebras constructed on those ideals establishes a finitely generated
subsemigroup of By p.

Proposition 5.3. Let J = {[,...,L,} be a finite family of nonzero ideals in R and let

Bab(J) denote the set of all fan algebras of the form A = @affcl(a)~--l7{"(a)ua. Then
Ban(J) is a finitely generated subsemigroup of Bap.

Proof. Let A = @I . [["®ye and B = @ 19" ... 17y, Then A + B =
@alfl(a) L [7{”(&)[191((1) L Ign(a)ua _ ]1(f1+91)(a) . LanJrgn)(a)
linear, A+ B € Ban(J).

Now consider A € Bap(J), A = @alfl(a) I ye A F (Xap) is a pointed affine

semigroup by Theorem 4.15, there exists a unique minimal set of fan-linear maps {by, ..., b}
such that F (Xap) = {c1b1 + - - + cmbi | ¢; € N}, Then we may rewrite fi, ..., fu:

fl (Oé) = Clel (Oé) + -4 cl,mbm(a)

[0}

u®, and as each f; + g; is fan-

Fl@) = cnabi(@) + - + cnmbm(@)

Let B; ; = @alfj(a)ua fori=1,...,n, 5 =1,...,m, noting that since 0 is a fan-linear map,
Bij € Ban(J). We may write A:

A = @alfla ]f"(a)uo‘

= g ort@rrenbn(@) | penibi(@) e tenmbn(@) o

= @aIfl 1b1(01) . [lcl,mbm(a) L. Izn’lbl(a) L [Zn’mbm(a)ua

= @alfl 1b1(a) . [Zn’lbl(a)jlcl 2b1,2(a) . [fl,mbm(a) o [zn’mbm(a)ua

= @alfl lbl(Dl) —|— —|— @a[Cn lbl( )uOé + P _|_ @alfl,mbm(a)ua _|_ . + @a[Cnﬂnbm(a)uO‘
)

BI04+ B (I V) oru® - Do (1" V) U - B (I Ve
= c11-Big+- +Cn,1 Bni+cioBig +"'+Cl,m‘31,m+"'+Cn,m'8n,m

It follows that the set of B;; = ®41; by generate Bab(J). O

Now we know that for any finite family J of ideals in R, the semigroup Ban(J) is finitely
generated, so it is of immediate interest to know when Ba1,(J) is an affine semigroup.

5.1. Affine Semigroup Criteria.

Definition 5.4. A family 7 of ideals in R is called cancellative if I.J; = IJ, implies that
Jy = Jo forall I, Jy,Jo € Z, and power cancellative if J = JJ implies that J; = Js.

Theorem 5.5. ([1/, page 56) A finitely generated commutative semigroup S is affine, i.e.
S embeds into Z¢ for some d € N if and only if S is reduced, cancellative, and power
cancellative.

Definition 5.6. Let Z be a family of nonzero ideals in R with R € Z. The multiplicative
semigroup of Z, denoted S(Z), is the collection of all finite products of elements of Z:
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S(I):{H[uez}

finite

Proposition 5.7. The multiplicative semigroup S(Z) is a commutative semigroup with iden-
tity under the operation of ideal multiplication. Furthermore, S(Z) is reduced and if |Z| < oo,
then S(I) is finitely generated.

Proof. For any two ideals [ and J in R, [J ={>" ...i1j | i € I,j € J} is an associative and
commutative binary operation, hence S(Z) is a commutative semigroup. Since R € Z and
RI = IR = I for any ideal I of R, R serves as the identity element of S(Z). Since IJ = R
implies that R C I, it follows that S(Z) is reduced. Finite generation of S(Z) under the
hypothesis that Z has finite cardinality follows directly from the definition of Z. 0J

Note that by construction, the semigroup of fan algebras B, (Z) can be viewed as a subset
of the set of all sequences on elements of S(Z) indexed by N2. Addition in Bap(Z) can be
seen as component-wise multiplication of sequences {aq}, o2 Where each a, € S(Z), and for
this reason, important semigroup properties of B,y (Z) are completely determined by the
semigroup properties of S(Z). For instance, we observe here without proof that Bay(Z) is
clearly reduced for any nonempty family Z of ideals in R, as is the case with S(Z). Next,
we show show that other important properties of Ba(Z) are dependent on the properties of

S(T).

Proposition 5.8. Let T be a family of nonzero ideals in R so that R € Z. The semigroup
Bab(Z) is cancellative and respectively power cancellative if and only if S(I) is is cancellative
and respectively power cancellative.

Proof. Assume that Ba,(Z) is cancellative and respectively power cancellative. Note that the
map 7y : (7, ) — ris fan-linear on any given fan ¥, , (as it is linear), hence n-my: (r,s) — n-r
is fan-linear for all n € N. To show that S(Z) is cancellative, let Iy,...,I; € Z and assume
that [ ... [inthn — pHh L pinthn Tt follows then that:

@ <]1(j1+1€1) .. ]r(Ljn-&-kn))m(a) u — @ (]fjl"!‘hl) o ]fljn—f—hn))m(a) o

@ ]fjl“rk’l)ﬂ'l(a) . ]7(Zjn+kn)7r1(a)ua _ @ I£j1+h1)7r1(a) o ]flj"—"h")m(a)ua

«

Since B, p is cancellative, we may factor the term €, Iflm(a) o g from both sides
and achieve:

@ I{Clﬂl(a) .. ]ﬁ"”l(a)uo‘ — @ [{Ll“l(a) e [gnﬂl(a)ua

Considering o = (1,0), we have that I}*---Ify = [ ...I"y which implies that
If ... [k — [P ... [hn This shows that S(Z) is cancellative. To show that S(Z) is power
cancellative, assume that I7"* ... [k — [ehi. .. pmebn - Then as before:

@ I{n-kﬂn(a) . I:Ln.knwl(a)ua _ @ ]In.hurl(oz) . I:Ln-hnﬂ—l(a)ua
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m- @ I{ﬁm(a) . ]ﬁnm(a)ua —m- @ I{l17r1(0¢) o ]g"m(a)ua

Since Bap is power cancellative, we see in the same manner as before that I} --- [Fn =
IM...I" hence S(T) is power cancellative. Now assume that S(Z) is a cancella-
tive and respecitively power cancellative semigroup. If @ I f e)tar(e) | ph(@ton(@)ya
@, 1) L @@ e oy @) ph(@)t0n(@) _ ph@he) | (e th(e)

for all « € N%. Since S(Z) is cancellative this implies that 19 ... [§n(®) = (@) .. in(@)

for all & € N2, so @, 19" ... 1" = @ 1" .. ﬁ"(a)u and therefore B,y, is can-
cellative.
Similarly, if n - @, I/ ... 19" @ue = . @, 1. " “ue for some n > 0, then

o) pren(e) . preha(e) e (o for all a € N2, Since S(Z) is power cancellative, we

have that €, Ilgl(a) o i@y =P, Ihl N A O

Corollary 5.9. Let J be a finite family of nonzero ideals in R. The semigroup of fan-
algebras Bap(J) is affine if and only if S(J) is affine.

Proof. Here, we simply take the additional hypothesis that 7 is finite from which it follows
that both B,p(J) and S(J) are finitely generated and reduced as semigroups. The claim
then follows immediately from Proposition 5.8. U

Lemma 5.10. Let J be a finite family of ideals with J C I, where T is a family of nonzero
ideals of R and R € I. IfT = S(I) (i.e. T is closed under finite products) and T is cancella-
tive, then S(J) is cancellative; if T is power cancellative, then S(J) is power cancellative.
In particular, if T is cancellative and power cancellative, then S(J) is an affine semigroup.

Proof. Note that J C Z implies that S(J) C S(Z) = Z. If for any I,.J1,Jo, € Z, I.J; =
1J, implies that J; = J,, then for any Iy,...,1, € J, the equation IJH"“- [t =
[ et implies that I - .- [k = .. I,’}" since [7' - -- IJ» is an element of Z. The
power cancellative property follows similarly and the third assertion is therefore clear. [

The above lemma is useful in simplifying arguments regarding when a finite family J
generates an affine semigroup Bap(J).

Proposition 5.11. Let J be a finite family of nonzero principal ideals in a unique factor-
ization domain R. The semigroup of fan algebras Bayn(J) is affine.

Proof. Note that the product of two principal ideals is principle, hence the family Z of all
nonzero principal ideals in any domain is closed under finite products. By Lemma 5.10, it
is enough to show that Z is cancellative and power cancellative. Assume that I.J; = I.J; for
I,Ji,Jo € Z. Then where I = (i), J; = (j1) and Jy = (ja), ij1 = wijp for some unit u € R,
so j1 = ujo and hence J; = Jy. If JI' = JJ, then j7 = uj3 for some unit v in R. Because
R is a unique factorization domain, it is easy to see that j; = u'js for some unit v’ € R and

hence J; = Js. ]

We note that the above proposition implies that the same is true for any finite family of
ideals in a principal ideal domain. Also, the proof shows that the cancellative property holds
for principal ideals in any domain R.
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Proposition 5.12. Let K be a field and R = Klxy,...,z,) = K[x| and let J be a finite
family of monomial ideals in R. The semigroup of fan algebras Bap(J) is affine.

Proof. First, note that the family ZU R, where Z is the family of all monomial ideals of R, is
closed under multiplication; for I = (x*)4ea and J = (x”)scp where A and B are finite sets
of multidegrees, I.J = (x**# )(a,8)caxB- To show that Z cancellative and power cancellative,
we proceed by contrapositive. Assume that J; = (x%)g,ep, and Jo = (x2)g,ep,. If Jy # Jo,
without loss of generality we may assume that there is some 3; € B; such that x ¢ J,
(otherwise J; C Jy). Observe that for this to occur, the multidegree 31 < fs for all 55 € By
under some appropriately chosen monomial order. Then for any ideal I € ZU R, I is nonzero
and hence Ix% ¢ I.J, = ZﬁQEBQ Ix?2 so IJ; # 1.J,. In the same manner, assuming again
that x%1 ¢ Jy, it is clear that since 51 < fs for all By € By, n- [ < Z?:l Bo, for any n
(possibly repeated) fa, € Ba. It follows that x"# ¢ J = Y bacBs Ji %P2 g0 that J& # J3.
Then Z U R is cancellative and power cancellative which implies that B, (J) is affine. O

We also wish to know when a family J is such that B, (J) is necessarily not affine. We
give some conditions below.

Example 5.13. If 7 is a finite family of nonzero ideals of R such that J contains a nilpotent
or a proper, nonzero idempotent ideal, then B, (J) is not affine. If R is an Artinian ring,
then for any finite family J containing I such that (0) C I C R, Bap(J) is not affine.

Proof. If I € J and I* = (0) for some k, then I* = (0)* but I # (0) (since J is a family
of nonzero ideals). It follows that S(J) is not power cancellative and hence Bap(J) is not
affine. If R # I € J and I = I?, then RI = I? and I # R, hence S(J) and subsequently
Bab(J) is not cancellative and therefore not affine. Similar to the case where I is idempotent,
assume that R is Artinian and choose some k € N such that I* = [**¢ for all i € N. Then
RI* = I**! but I # R, hence S(J) is not affine. O

Recall the definition of the determining map:

0 if

S |w

>
fpﬂ(r’ S) =
qr—ps if 2 <

S |
"V WK

Due to the conditions defining membership in Cf(Ea o)’ it is easy to see that if (p, ¢) # (1,0)
or (0,1) is an element on a face of ¥,p, then the map f,, will be included in the unique
minimal set of generators for F (X,p). Then as implied in Proposition 5.3, we may take
@, "1 “u* to be a generator for Bay(J) whenever I € J. It is useful then to describe
the fan algebra @@ 1 Fra(@)y® when possible.

Proposition 5.14. Let J C T so that T = S(Z) is cancellative. If I € J and (17 : I"*) € T
for all (r,s) € N2, then @, I'v+(Du® = D) L7 17) ul™),

Proof. Observe that if 2 > %, then gr < ps and I C [P, so [/ra(™) = [0 = R = ([7": [P*),
If 2 < %, then gr > ps so that gr — ps > 0. Now ([7: [P5)[P5 C [9" = [9PS[PS by
definition, and since [97P* C ([9: [P*), we have that [9P[P* C ([9: [P®) [P*. Then
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(197 IPs) [P = [77~P5[PS and by the cancellative property of Z, we have that ([97: [P%) =
Jar—ps — [fp,q(rvs). ]

Note that the above situation always occurs when R is a principle ideal domain and also for
monomial ideals (it is known that the ideal quotient of monomial ideals is again a monomial
ideal). As a final effort for this study, we return to the exploration of intersection algebras
and provide a simple proof that the intersection algebra of co-maximal ideals in a domain R
is finitely generated.

Proposition 5.15. Let I and J be co-maximal ideals in a Noetherian domain R. Then the
intersection algebra of I and J is finitely generated.

Proof. First, we recall that for any co-maximal ideals I and J in R, I N J = IJ. This
follows easily; if a € I N J, since 1 =i+ j for some ¢ € I, j € J, a = ai + aj and it
follows that since ai,aj € IJ, a € IJ. As IJ C I N J trivially, IJ = I N J. Note also that
I"+ J* = R for any such ideals and any (r, s) € N?; otherwise, I" is proper and contained in
some maximal ideal m, and so is J®. Since m is prime, I, J and hence I 4+ J are contained
in m, false by the assumption that I and J are co-maximal. As I" N J* = ["J® we may
write @, ) I" N Juv* = B, I"Juv* = P, [719) Jm2(rs)y e where 1: (r,8) 7
and my: (r,s) — s. Since each m; is additive on N? and therefore subadditive, both m; are
fan-linear on any fan X, y, so it follows that the the intersection algebra of I and J is in fact
a fan algebra and therefore finitely generated. ([l
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