2015

Vibrational Spectroscopy of Photosystem I

Gary Hastings
Georgia State University, ghastings@gsu.edu

Follow this and additional works at: https://scholarworks.gsu.edu/phy_astr_facpub

Part of the *Astrophysics and Astronomy Commons*, and the *Physics Commons*

Recommended Citation

This Article is brought to you for free and open access by the Department of Physics and Astronomy at [ScholarWorks @ Georgia State University](https://scholarworks.gsu.edu). It has been accepted for inclusion in Physics and Astronomy Faculty Publications by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact scholarworks@gsu.edu.
Vibrational spectroscopy of photosystem I☆

Gary Hastings

Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA

1. Overview

This review focuses on the use of low-temperature (77 K), microsecond time-resolved step-scan (TRSS) FTIR difference spectroscopy (DS) to study the quinones occupying the A1 binding site in photosystem I (PSI) photosynthetic reaction centers (RC). In Section 2 the role PSI plays in photosynthesis is described, and the cofactors involved in light-driven electron transfer leading to solar energy conversion are introduced. The energetics of the solar conversion process in PSI is outlined, and specific structural details of the quinone cofactor occupying the A1 protein binding site are introduced. Other quinones that have been incorporated into the A1 binding site and studied using TRSS FTIR DS are discussed. In Section 3 TRSS FTIR DS is presented and early work that was undertaken to assign the bands in the spectra is outlined. Computational work that has been undertaken to help assess the appropriateness of proposed band assignments is reviewed. In Section 4 recent works undertaken using PSI particles with isotope labeled quinone incorporated, or completely different quinones incorporated, are discussed. In Section 5 vibrational spectroscopy studies associated with quinones in the Qb binding site in purple bacterial reaction centers are briefly outlined and compared to vibrational spectroscopy studies associated with quinones in the A1 binding site.

Abbreviations: A1, secondary electron acceptor bound in photosystem I; Chl-a, chlorophyll-a; DFT, density functional theory; DS, difference spectra/spectrum/ spectroscopy/spectroscopic; DDS, double difference spectrum; C=O, carbonyl; ET, electron transfer; FTIR, Fourier transform infrared; H-bond, hydrogen bond; μs, microsecond; ms, millisecond; MM, molecular mechanics; ns, nanosecond; NQ, 1,4-naphthoquinone; OD, optical density; PSI, photosystem I; P680, plastoquinone-9; PQ9, phylloquinone (2-methyl, 3-phytyl 1,4-naphthoquinone); PBRC, purple bacterial reaction center; QM, quantum mechanical; RC, reaction center; Rh, Rhodobacter; RT, room temperature; Synechocystis sp. PCC 6803, Synechocystis sp. PCC 6803; TR, time-resolved; WT, wild type, 2MNQ, 2-methyl, 1,4-naphthoquinone; 2PhNQ, 2-phytyl 1,4-naphthoquinone

☆ This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.

© 2014 Elsevier B.V. All rights reserved.
2. Introduction

In photosynthesis, light drives a set of reactions that result in products essential for the maintenance of life on earth [2]. In oxygen-evolving organisms two photosystems, called photosystems one and two (PSI and PSII), capture and convert solar energy independently [2-4]. The solar conversion reactions occur in a centralized pigment-protein unit called a reaction center (RC). In the RC, light is used to drive electrons vectorially, via a series of acceptors, across a biological membrane. This separation of charges over a biological membrane is the principle mechanism of solar energy conversion in all photosynthetic systems.

From a global perspective, PSI catalyzes the formation of the reducing product NADPH that is used to assimilate carbon dioxide into complex organic molecules [2]. More specifically, PSI is the enzyme that uses light to catalyze the transfer of electrons from plastocyanin to ferredoxin across the thylakoid membrane [5]. PSI consists of 13 or more protein subunits, many of which have been characterized [6-8]. The terminal ET components, FA and FB, are bound to the PsaC subunit. The arrangement of the ET cofactors in the PSI RC is outlined in Fig. 1. The cofactors bound to PsaA or PsaB are labeled with a subscript A or B, respectively. Fig. 1 is generated using the 2.5 Å x-ray crystal structure of trimeric PSI particles from the cyanobacterium Synechococcus elongatus (PDB file accession number 1BJO) [10].

P700, the primary electron donor in PSI, is a dimeric chlorophyll-a (Chl-a) species [11]. Actually P700 is a Chl-a/Chl-a heterodimeric species (P700* in Fig. 1), where Chl-a is an isomer of Chl-a [12]. The primary electron acceptor, A0, is a monomeric Chl-a molecule [13]. A1 is a phylloquinone (PhQ) molecule [9]. PhQ (or vitamin K1) is a 2-methyl-3-phytyl, 1, 4-naphthaquinone, the structure of which is shown in (PB/PA in Fig. 1), were Chl-a subunits called PsaA and PsaB [10]. The terminal ET components, FA and FB, are bound to the PsaC subunit. The cofactors bound to PsaA or PsaB are (4Fe-4S) iron sulfur clusters [14,15].

In PSI, following light excitation of P700, an electron is transferred to A0 in ~5 ps (Fig. 2) [16]. Stabilization of the charge-separated state is achieved by ET from A0 to A1 in ~50 ps [16,17]. To further stabilize the charge separated state, the electron is transferred from A1 to Fx in ~280 ns at room temperature (RT) [18], and then on to FA and FB (Fig. 2).

In cyanobacterial PSI particles at room temperature (RT), forward ET from A1 to FA is characterized by a time constant of ~280 ns (Fig. 2) [18]. As the temperature is lowered in PSI becomes heterogeneous, with three distinct processes being observed at 77 K: 1) In ~45% of the PSI particles, P700* A1 recombines with a time constant of ~245 μs at 77 K [18]. This latter time constant was observed for PSI particles from S. elongatus. For PSI from Synechocystis sp. PCC 6803 (S6803) at 77 K, we observe a lifetime of ~300 μs (Fig. 2, and see below). 2) In ~20% of the PSI particles the P700* Fx state forms, and then recombines in the 5–100 ms time range [18]. In ~35% of the PSI particles irreversible charge separation occurs. Spectroscopic signatures associated with this latter fraction are not observable in experiments involving repetitive flash illumination.

The reasons underlying the changes in photochemistry in PSI as the temperature is lowered are not entirely clear. It has been suggested that different conformational substates are frozen below the liquid to glass transition of the medium (~180 K in 65% glycerol) [18]. To further complicate issues, PSI contains two almost identical chains of ET cofactors (Fig. 1), and the degree to which each branch is active in ET is becoming clearer [19,20], with the 280 ns and ~300 μs components at RT and 77 K being associated with ET along the A-branch. It has also been suggested that the ~20% of reaction centers that undergo irreversible ET at 77 K could be associated with ET along the B-branch [21,22].

Often in the literature, the quinone in the A1 binding site is simply referred to as A1. Here the quinone in the binding site will be referred to by name, while the term A1 will be reserved for the actual binding site, thus PhQ occupies the A1 binding site in regular PSI particles.

It is now well established that the ET cofactors in large photosynthetic protein complexes can be studied in molecular specific detail using light-induced FTIR difference spectroscopy (DS) [23–27]. Much of the work to date utilizes a continuous light-source to photoincitate a steady-state population of radical pair states. For example, in PSI the P700* Fx state recombines in ~80 ns at RT (Fig. 2), and it is straightforward to photoincitate a large population of this excited state. For radical pair states with lifetimes in the ~200 ns to ~500 μs range, static excited populations are usually very small, and time-resolved (TR) methods are preferred for the collection of FTIR DS associated with the transient species [1]. By far the most widely used approach is time-resolved step-scan (TRSS) FTIR DS [1,28-32].

For PSI photosynthetic protein complexes, bands in the difference spectra have an intensity that is ~1 × 10^-3 (in absorbance or optical density (OD) units) or less [33,34]. In most cases one is interested in resolving fractional changes in these bands, and for most purposes a sensitivity approaching 1–2 × 10^-5 is desirable [1]. This is not possible for ns time resolved step-scan (TRSS) FTIR DS, but is possible for microsecond (μs) TRSS FTIR DS. Sensitivity is limited in ns TRSS FTIR DS due mainly to the unavailability of transient digitizers with high dynamic range and bandwidth [1].

Recently, 24-bit transient digitizers with 200 kHz bandwidth have become available, and are standard, or optional, in research grade FTIR instruments. Such digitizers (should) allow very high sensitivity TRSS FTIR measurements with time resolution down to ~5 μs. Some of the work discussed in this review was undertaken using a 24-bit, 200 kHz transient digitizer. In addition, 16 bit, 100 MHz transient digitizers are now available, which may lead to high sensitivity TRSS FTIR measurements with time resolution in the ~10–100 ns range. To date, no ns TRSS FTIR work utilizing such digitizers have been reported.

In a previous review on the use of TRSS FTIR DS for the study of A1 in PSI [1] information on the instrumentation used for the studies was included, and the reader is referred to that review for further details.
For PSI, only the ET cofactors P700 and A1 have been studied using FTIR DS. \((P700^+\rightarrow P700) \) FTIR DS have been produced using (static) photo-accumulation techniques, and several comprehensive reviews of work undertaken to understand the nature of the bands in \((P700^+\rightarrow P700) \) FTIR DS have appeared in the literature, the last being in 2006 [27]. Several works from our group [35–37], and others [38], have appeared since then. Most of this recent work is related to calculation of the normal modes of Chl-\(\alpha \) molecules in solution, and how the results from these calculations can be used to gain insight into the nature of the bands in \((P700^+\rightarrow P700) \) FTIR DS, and how they are modified upon isotope labeling [35]. In the interests of keeping this review to a manageable size, these most recent works will not be reviewed here.

This review will focus on work undertaken to obtain and interpret TRSS FTIR DS associated with quinones that occupy the A1 binding site in PSI. In PSI, a PhQ molecule occupies the A1 binding site. PhQ is a 2-methyl, 3-phytyl, 1, 4 naphthoquinone. The structure and numbering for PhQ is outlined in Fig. 3. As will be discussed further below, other quinones can be incorporated into the A1 binding site in PSI. So far, TRSS FTIR DS have been obtained for PSI particles with PhQ, plastoquinone-9 (PQ9), 2-methyl naphthoquinone (2MNQ) and 2-phytyl naphthoquinone (2PhNQ) incorporated into the A1 binding site. The structure and numbering for these quinones are also outlined in Fig. 3.

The PhQ molecule occupying the A1 binding site has a midpoint potential close to \(-800 \text{ mV}\) (see [21] for a review). This makes it one of the most reducing quinones in biology. This unprecedented redox potential is in part a result of interactions of PhQ with the surrounding protein environment. The crystal structure of PSI at 2.5 Å resolution [12] provides a detailed view of the amino acids surrounding the PhQ cofactor, and suggests several possible pigment-protein interactions. Fig. 4 shows a view of the PhQ molecule bound to PsaA (denoted \(A_{1A} \) in Fig. 1) and several of the surrounding amino acids. The \(B \)-side is very similar. The indole ring of TrpA697 (S. elongatus numbering) is \(\pi \)-stacked with the PhQ ring plane. The hydroxyl side chain of SerA692 could be hydrogen (H)-bonded to the backbone oxygen of MetA688. MetA688 also ligates the central magnesium atom of the \(A_{1} \) chlorophyll-\(\alpha \). The indole NH group of TrpA697 may also be H-bonded to the hydroxyl oxygen of SerA692. The crystal structure suggests that the \(C=O \) group of PhQ is probably not H-bonded whereas the \(C=O \) is H-bonded to the backbone NH group of LeuA722. Clearly there is an asymmetry in H-bonding to the PhQ C=O groups.

As outlined above, it has not proven possible to study the \(P700^+A_1 \) state using under physiological conditions (at or near RT) using ns TRSS FTIR DS. Femtosecond TR transient absorption spectroscopy (visible pump IR probe) has been used to study PSI particles, and a \((P700^+A_1\rightarrow P700A_1) \) IR DS was obtained [39]. No further work has been forthcoming in this area, however.

To study the \(P700^+A_1 \) state under non-physiological conditions (at RT) only microsecond (\(\mu \text{s} \)) TR techniques are required. Sensitivities close to \(2 \times 10^{-5} \) are required, however. This is difficult but achievable using \(\mu \text{s} \)-TR FTIR DS. So far, only our research group has produced \(\mu \text{s} \) TRSS \((P700^+A_1\rightarrow P700A_1) \) FTIR DS at 77 K [1].

At the heart of most of the recent FTIR DS work undertaken to study the A1 binding site is the demonstrated capability of incorporating different quinones into the binding site simply by incubating PSI particles in a molar excess of the quinone of interest. This incubation method for quinone incorporation relies on mutant cells in which genes that code for enzymes involved in PhQ biosynthesis have been disrupted [40, 41]. For example, in mutants where the \(\text{menB} \) gene has been deactivated PhQ biosynthesis is inhibited and, perhaps surprisingly, plastoquinone-9 (PQ9) is recruited into the A1 site [40–42]. We will refer to PSI particles from these mutant cells as \(\text{menB}^- \) PSI particles. In \(\text{menB}^- \) PSI it has been found that foreign quinones can replace PQ9 in the A1 binding site, simply by incubating the particles in a large molar excess of the quinone of interest [43–45].

3. \((P700^+A_1^-\rightarrow P700A_1^-) \) and \((A_1^-\rightarrow A_1) \) FTIR DS at 77 K

Fig. 5A shows TRSS \((P700^+A_1^-\rightarrow P700A_1^-) \) FTIR DS in the 1770–1400 cm\(^{-1}\) region obtained using wild type (WT) PSI particles from S6803. Also shown are the corresponding spectra obtained using \(\text{menB}^- \) PSI particles from S6803 that have been incubated in the presence of PhQ. The spectra for the two samples are very similar, demonstrating that PhQ has been incorporated into the A1 binding site in \(\text{menB}^- \) PSI.
particles. The (P700$^+$–P700) FTIR DS at 77 K shown in Fig. 5A for menB$^-$ PSI particles incubated in the presence of PhQ is very different to that obtained for straight menB$^-$ PSI particles that have not been incubated in the presence of quinones. In this latter case a TR FTIR DS is obtained that is dominated by bands associated with the P700 triplet state (3P700) [43]. The (3P700–P700) FTIR DS displays an intense difference band at 1635(−)/1594(+) cm$^{-1}$. The lack of such a band in the spectra in Fig. 5A, especially at 1594 cm$^{-1}$, demonstrates that PhQ added to the buffer is incorporated into the A1 binding site in nearly all of the reaction centers. Such a high level of incorporation was also indicated from EPR spectroscopic studies [44].

An approach that has been taken in the past is to subtract the static, photo-accumulated (P700$^+$–P700) FTIR DS (also shown in Fig. 5A) from the TR (P700$^+$–P700) FTIR DS, to produce a so called (A1–A1) FTIR DS. Such (A1–A1) FTIR DS obtained using WT and menB$^-$ PSI particles are shown in Fig. 5A, and an expanded version is shown in Fig. 5B. Similar spectra have been presented previously for WT PSI particles from S6803 [1,46], and for menB$^-$ PSI particles from S6803 with PhQ incorporated into the A1 binding site [43], albeit at a slightly lower signal to noise ratio. When different quinones are incorporated into the A1 binding site, we have found that in some cases the (P700$^+$–P700) FTIR DS is slightly altered. This observation suggests that in these cases the above describe spectral subtraction is important. However, the applicability of the subtraction depends on the fact that the TR and static (P700$^+$–P700) FTIR DS are identical. By comparing static and TRSS (P700$^+$–P700) FTIR DS at RT we have found that the transient and relaxed spectra are indeed very similar [29], providing some support that this spectral subtraction is appropriate.

To gain an appreciation of the noise level achievable/required for these TRSS FTIR measurements on PSI particles, it is useful to consider the kinetics of the absorption changes at various IR frequencies. Fig. 6 shows the time-course of the absorption changes at 1754, 1748, 1495 and 1415 cm$^{-1}$ for menB$^-$ PSI samples with PhQ incorporated. The initial amplitude of the 1754 cm$^{-1}$ time-course is -2×10^{-4} (in OD units), and the noise level is close to 10^{-5}. No corrections have been applied to the data in Fig. 6. The TRSS data at the four frequencies are fitted simultaneously to a single exponential function (plus a constant), and a lifetime of 304 μs is found, which is similar to that found previously [1,47]. To verify and support the TRSS FTIR data, in our lab we routinely also use ns to ms TR absorption spectroscopy in the visible spectral region, under identical conditions to that used in the FTIR measurements (in the FTIR measurements very concentrated protein samples in a very short path-length sample cell are used). The inset in Fig. 6 shows the kinetics of the absorption changes at 703 nm, following 532 nm laser excitation of menB$^-$ PSI with PhQ incorporated, at 81 K. Encouragingly, the same time constant (within error) is obtained in both the visible and IR TR measurements.
3.1. Origin of the bands in the \((A_1 - A_1)\) TRSS FTIR DS

3.1.1. Global isotope labeled PSI particles

As a first approach to understanding the nature of the bands in TRSS \((A_1 - A_1)\) FTIR DS (Fig. 5B) global \(^{15}\)N, \(^{13}\)C and \(^2\)H isotope labeled PSI particles were studied [47]. Based on observed isotope induced band shifts a tentative list of band assignments was suggested. These assignments are outlined in Table 1. Some of these assignments are based on the following criteria:

1) In the simple harmonic oscillator approximation, \(\text{C} = \text{O}\) and \(\text{C} = \text{C}\) modes are expected to downshift ~40 and ~60 cm\(^{-1}\), respectively, upon \(^{13}\)C labeling. For Chl-\(\alpha\) molecules, \(^{13}\)\(^3\) ester and \(^{13}\)\(^1\) keto \(\text{C} = \text{O}\) modes are expected to downshift ~44 cm\(^{-1}\) upon \(^{13}\)C labeling [48].

2) For chlorophyll-\(\alpha\) molecules, \(^{13}\)\(^3\) ester and \(^{13}\)\(^1\) keto \(\text{C} = \text{O}\) modes are expected to downshift ~6 and ~4 cm\(^{-1}\) upon deuteration (\(^2\)H labeling) [49].

3) From a consideration of the FTIR absorption spectra for the isotope labeled PSI particles, amide I absorption bands are expected to downshift ~38/0/12 cm\(^{-1}\) upon \(^{13}\)C/\(^{15}\)N/\(^2\)H labeling, respectively [47].

Assignments 1 and 2 indicate that the \(A_0\) chlorophyll-\(\alpha\) pigment is perturbed upon \(A_1\) reduction, presumably via a long range electrostatic interaction. Such electro-chromic effects are entirely reasonable and are expected in PSI, as was discussed previously [1].

Despite the extensive use of global isotope labeling, there is still ambiguity in some of the proposed band assignments, partly because of limited signal to noise ratio in the spectra, and partly because of multiple overlapping spectral features. Upon consideration of FTIR...
absorption spectra for PhQ in solution, which show that a PhQ C=O mode is found near 1662 cm\(^{-1}\), and is \(-40\) cm\(^{-1}\) higher than that of bands due to C=C modes [50], it is unlikely that assignment 5 in Table 1 is correct. In addition, the 1415 cm\(^{-1}\) band was suggested to be due to a \(\gamma_C\) mode of PhQ\(^{-}\). Later work (discussed below) indicates that the 1415 cm\(^{-1}\) band may contain a small contribution from \(\gamma_C\) groups, but the mode is considerably more complicated, and a 58 cm\(^{-1}\) \(\delta_C\) induced band shift is unlikely.

3.1.2. Vibrational frequency calculations

Up until ~2005, computational studies (vibrational frequency calculations) were rarely undertaken in parallel with experiment, to assess whether proposed assignment of bands in FTIR DS were reasonable. To this address, Bandaranayake et al. [50] undertook density functional theory (DFT) based vibrational frequency calculations (at the B3LYP 6-31G+(d) level) for neutral and reduced, unlabeled, \(^{13}\)C, \(^2\)H and \(^{15}\)O isotope labeled PhQ in the gas phase. Calculations for PhQ in solvent (using the integral equation formalism of the polarized continuum model IEF PCM) (G. Hastings, unpublished data), and using higher levels of theory [50], leads to the same conclusions as that presented in reference [50].

Although calculations were undertaken only for gas phase PhQ, some trends were noted and could be usefully applied to a consideration of experimental (A\(_1\) – A\(_1\)) FTIR DS (Fig. 5B):

1. C=O modes of PhQ absorb ~40 cm\(^{-1}\) higher in frequency than quinonic C=O modes of PhQ. However, \(\gamma\) O modes of PhQ\(^{-}\) absorb ~23 cm\(^{-1}\) lower in frequency than \(\gamma\) C modes. If the 1494 (+) cm\(^{-1}\) band in Fig. 5B is due to \(\gamma\) C mode of PhQ\(^{-}\), then this calculated prediction could indicate that at least part of the 1511 (+) cm\(^{-1}\) band (or the poorly resolved shoulder near 1516 cm\(^{-1}\)) could be due to \(\gamma\) C mode of PhQ\(^{-}\).

2. Deuteration (\(^2\)H) induced shifts of C=O and \(\gamma\) C modes are very different for neutral and reduced PhQ [50]. It is calculated that the C=O/ \(\gamma\) C modes of neutral PhQ will downshift 2/11 cm\(^{-1}\), while \(\gamma\) O/ \(\gamma\) C modes of PhQ\(^{-}\) will downshift 18/26 cm\(^{-1}\), upon deuteration. This is a clear indication that \(\gamma\) O/ \(\gamma\) C modes of PhQ\(^{-}\) are considerably mixed with C=H bending vibrations, unlike the corresponding modes of neutral PhQ. Although these calculated results seem useful, utilizing this information to identify bands in the experimental spectra is still fraught with difficulty and, of course, if the C=O modes are also hydrogen (H) bonded this will further complicate analysis of any \(^2\)H induced frequency shifts.

Following on from these calculations for PhQ and PhQ\(^{-}\) in the gas phase, later calculations included molecular groups that were H-bonded to the C=C=O group of PhQ [46,51]. This was done specifically in an attempt to better simulate the vibrational properties of the quinone occupying the A\(_1\) binding site in PSI (Fig. 4).

4. PSI with different quinones incorporated into the A\(_1\) binding site

One way to test the validity of the band assignments listed in Table 1 is to study PSI particles in which the PhQ in the A\(_1\) binding site has been replaced with a closely related analogue, or by a completely different quinone, or by an isotope labeled version of PhQ. By monitoring how
bands shift in (A1 − A1) FTIR DS obtained with these altered PSI particles one can assess the appropriateness of the above listed assignments. Such experiments could also provide information on new possible band assignments.

As mentioned above, this approach for studying PSI particles with modified or different quinones incorporated into the A1 binding site became an attractive possibility with the creation of mutant cyanobacterial cells in which the genes that code for enzymes involved in PhQ biosynthesis were disrupted/inactivated. Various mutant cell lines have been produced when various genes were disrupted, giving rise to the so-called men (men is an abbreviation for menaquinone) mutants [40,41,52–55].

In menB, D and E mutant cells, PhQ biosynthesis is inhibited and a PQ6 molecule is recruited to the A1 binding site [40,41]. The structure and numbering for PQ6 is outlined in Fig. 3.

The menG gene codes for a methyl-transferase. Inactivation of the menG gene leads to the synthesis of a PhQ analogue that lacks a 2-methyl group. This PhQ analogue is incorporated into the A1 site in PSI, and it functions nearly as effectively as PhQ in WT cells [54]. Cells in which the menG gene is inactivated will be called menG− cells below. In menG− cells, a PhQ analogue in which the methyl group (of PhQ) is replaced with a hydrogen atom occupies the A1 binding site [54]. Here this methyl-less PhQ analogue is referred to as 2PhNQ (as an abbreviation for 2-phytyl naphthoquinone) (Fig. 3). The loss of the methyl group will alter the electronic structure of the naphthoquinone (NQ) headgroup, which is expected to lead to altered frequencies of some of the bands in the (A1 − A1) FTIR DS.

4.1. Incorporation of 2PhNQ into the A1 binding site in PSI

TRSS (A1 − A1) FTIR DS have been obtained using menG− PSI particles at 77 K. In addition, vibrational frequency calculations comparing 2PhNQ and PhQ (in the gas phase) have been undertaken [46]. In an attempt to more accurately simulate the vibrational properties of quinones in the A1 binding site (Fig. 4), sets of calculations were also undertaken for PhQ and 2PhNQ in the presence of an H-bond to the C=O group provided by either a water molecule or the backbone NH group of a truncated leucine residue. Note that in these and previous vibrational frequency calculations the phytol chain is truncated to only a single phytol unit, with the rest of the chain being replaced by a hydrogen atom. We have found that inclusion of more than one phytol unit does not lead to significant modification of the vibrational mode frequencies or intensities associated with groups of the NQ ring (not shown).

Experimentally it is found that the PhQ− band at 1494 cm−1 in Fig. 5B up-shifts to ~1498 cm−1 when 2PhNQ is incorporated into the A1 binding site. Interestingly, the band at 1415 cm−1 is unaltered. Comparison of the experimental results with vibrational frequency calculations indicated that the shift of 1494 cm−1 band was compatible with it being due to a C−C–O mode of PhQ− in the A1 binding site. The lack of any shift of the 1415 cm−1 band (found experimentally) is also compatible with vibrational frequency calculations. The calculations show that the 1415 cm−1 band (calculated at an unscaled frequency of 1471 cm−1 for PhQ in the gas phase [46]) is due to C−H bending vibrations that are weakly coupled to aromatic C=C stretching and antisymmetric C−C–O stretching vibrations. Such a complex mode description is also appropriate when the C=O group is H-bonded [46]. Thus assignment 10 in Table 1 gives an incomplete description of the nature of the vibrational mode responsible for the 1415 cm−1 band. Assignment 10 in Table 1 was based on a hypothesized 13C induced downshift of 58 cm−1 for the 1415 cm−1 band. If the calculated mode description for the 1415 cm−1 band is appropriate, then there is no possibility that it will downshift 58 cm−1 upon 13C labeling, and hence the hypothesized/suggested 13C induced downshift of the 1415 cm−1 band [47] is incorrect.

The (A1 − A1) FTIR DS for menG− mutant PSI displays some quite considerable alterations compared to WT PSI. These alterations appear to emanate from altered amide I and II vibrational modes. This might suggest some change in the orientation of 2PhNQ in the A1 binding site relative to PhQ. However, magnetic resonance studies argue against this hypothesis as they showed that 2PhNQ is oriented in the A1 binding site in a similar manner to PhQ [54].

Although it was suggested to be the case, the data in Ref. [46] are not consistent with the idea that a band at 1654 cm−1 is due to a C=O mode of neutral PhQ. For PhQ in THF, the antisymmetric C=C–O mode (antisymmetric vibration of both C=O groups) occurs at ~1662 cm−1 [51]. So for PhQ in the A1 binding site in PSI, C=O modes are likely to be found at frequencies below 1662 cm−1. Since 2PhNQ C=O modes are calculated to be ~7 cm−1 higher in frequency than for PhQ, one expects C=O modes of 2PhNQ in the A1 binding site to be found at frequencies below ~1699 cm−1. From (menG− – WT) FTIR double difference spectra (DDS) [46], there are no obvious bands that point to the vibrational frequencies of the C=O groups of either PhQ or 2PhNQ.

4.2. Incorporation of 18O isotope labeled PhQ into the A1 binding site in PSI

18O labeled PhQ has been incorporated into menB− PSI, and by comparing (A1 − A1) FTIR DS for PSI with unlabeled and 18O labeled PhQ incorporated an (18O−16O) FTIR DDS has been produced [51]. In these measurements, in most of the RC's, both oxygen atoms of the quinone are 18O labeled, and the extent of incorporation of the 18O label into PhQ is ~70% [51]. Since P700 (and/or nearby amide modes) will not be impacted by 18O labeling of PhQ, there is no need to subtract (P700−18O−P700–16O) FTIR DS to produce (A1−A1) FTIR DS. With this in mind, Fig. 7A shows TRSS (P700−18O−P700–16O) FTIR DS obtained using PSI particles with unlabeled (16O) and 18O labeled PhQ incorporated into the A1 binding site. The (18O−16O) FTIR DDS is also shown. The DDS shown in Fig. 7A is similar to that presented previously [51].

For (18O–16O) FTIR DDS, in the neutral quinone spectral region (1770–1550 cm−1), bands of unlabeled PhQ are positive while bands of 18O PhQ are negative. In the anion spectral region (1550–1350 cm−1), bands of unlabeled PhQ− are negative while bands of 18O PhQ− are positive.

As indicated previously, and as is also clear in the DDS in Fig. 7B, a band at 1495 cm−1 in the 18O spectrum downshifts 14 cm−1 to 1481 cm−1 in the 16O spectrum. If the 1495 cm−1 band is due to a C−O mode of PhQ− then the next question is: Should such a mode downshift only 14 cm−1 upon 18O labeling?

In the simple harmonic oscillator approximation, a C=O mode at 1650–1495 cm−1 is expected to downshift 36–40 cm−1. From DFT based vibrational frequency calculations, however, C=O modes of neutral PhQ are found to downshift ~29 cm−1. A 29 cm−1 18O induced downshift is in good agreement with experimental FTIR absorption spectra for 18O and 16O labeled neutral PhQ in solution (THF) [51].

For PhQ−, however, C−O modes are calculated to downshift ~14 cm−1 upon 18O labeling. Thus the 18O induced downshift of a C−O mode of PhQ− is half that of a C=O mode of neutral PhQ. Part of the reason for a smaller 18O induced downshift for C−O modes of PhQ− is that these modes are more strongly coupled to C−H bending vibrations than are the corresponding modes in the neutral state.

From DFT based vibrational frequency calculations for PhQ− with the C=O group H-bonded to the backbone NH of a leucine residue, it was predicted that there would be only one intense antisymmetric coupled C−O stretching vibration, unlike the case for the neutral state of PhQ, where it is calculated that the C=O modes uncouple upon asymmetric H-bonding [51]. Fig. 7B shows a calculated DDS obtained from an ONIOM type, QM/MM calculation for PhQ in the A1 binding site. The calculated spectrum is very similar to that found previously [51], and the modes giving rise to the features in the spectrum are also similar to that derived previously.

What could not be ascertained with confidence previously was what happened to the 1415 cm−1 band upon 18O labeling of PhQ. This is clear in Fig. 7B, however, where it is shown that the band at 1415 cm−1 downshifts 6 cm−1 upon 18O labeling. This downshift is about half that
expected for a PhQ $^-$ C=O mode. This observed downshift indicates that the 1415 cm^{-1} band is due to a mixed mode with some C=O character. In the above discussion it was concluded (from computational work) that the 1415 cm^{-1} band is due to a mode consisting of C\equivH bending vibrations that are weakly coupled to C\equivC stretching and antisymmetric C\equivO stretching vibrations. The observed 6 cm^{-1} 18O induced downshift of the 1415 cm^{-1} band seems to support this calculated mode composition. The similarity in the calculated and experimental DDS (Fig. 7B) suggests that the computational approach employed is appropriate.

The DDS in Fig. 7B suggest the presence of a negative band at -1517 cm^{-1}, that may downshift -6 cm^{-1} upon 18O labeling. Above it was suggested that a band at 1511 cm^{-1} (or shoulder at 1516 cm^{-1}) in Fig. 5B might be due to a PhQ $^-$ C\equivC mode. Thus the negative band at 1517 cm^{-1} (Fig. 7B) may be due to a PhQ $^-$ C\equivC mode with some C=O character.

Of the TRSS FTIR DS that have been produced so far, one major difficulty has been the unambiguous identification of bands associated with neutral PhQ. Part of the difficulty is that the C\equivO bands of PhQ overlap amide I absorption bands, making an unambiguous identification difficult. It is becoming clear, however (see above), that a C\equivO mode of neutral PhQ gives rise to a feature near -1654 cm^{-1}. The positive feature near 1654 cm^{-1} in the DDS in Fig. 7A is therefore associated with a C\equivO mode of neutral PhQ. What happens to this 1654 cm^{-1} feature upon 18O labeling, is not entirely clear. The most likely possibility is that the 1654 cm^{-1} feature downshifts 29 cm^{-1} to 1625 cm^{-1} upon
The RT flash-induced absorption changes at 703 nm for PSI with 2MNQ incorporated is shown in Fig. 9B, and indicates that the P700\(^+\)\(_A\) state recombines in 14.4 ms. This result has never been reported in the literature, although it has been mentioned in a thesis dissertation.[44] The observation that P700\(^+\)\(_A\) recombines in 14.4 ms, and not ~3 or 80 ms, is a clear indication that 2MNQ is incorporated into the A\(_1\) binding site. Given that nearly all of the bleaching at 703 nm recovers with a 14.4 ms lifetime (Fig. 9B), it is reasonable to conclude that 2MNQ is incorporated into nearly all of the menB\(^-\) PSI particles.

Fig. 9A shows the RT flash-induced absorption changes at 487 nm. Flash induced, RT absorption changes at 487 nm is used to probe forward ET from A\(_1\) to F\(_x\).[60,61] For PSI with PhQ/PQ9 in the A\(_1\) binding site, forward ET (at RT) is characterized by time constants of ~280 ns,[18, 60,61] ~15 μs[42], respectively. That is, forward ET is ~50 times slower for PSI with PQ9 in the A\(_1\) binding site compared to WT PSI with PhQ in the A\(_1\) binding site.

Forward ET rates for menB\(^-\) PSI with 2MNQ incorporated into the A\(_1\) binding site have not been reported, but the data in Fig. 9A indicate the lifetime is ~3.4 μs. This measured lifetime can be used to estimate the redox potential of 2MNQ in the A\(_1\) binding site, but such a discussion will considerably digress from the subject matter at hand.

Fig. 9 also shows 77 K flash-induced absorption changes at 703 nm (D) and at several frequencies in the IR (C) for menB\(^-\) PSI with 2MNQ incorporated into the A\(_1\) binding site. Time constants of 221 μs (C) or 206 μs are calculated, which are essentially the same within the noise level of the experiment. This 206–221 μs time constant is indicative of recombination of the P700\(^+\)\(_A\) state, and is roughly 100 μs faster than that found for PSI with PhQ in the A\(_1\) binding site (Fig. 6). The fact that the two TR approaches (Fig. 5C and D) give similar results is encouraging. The fact that the different recombination lifetimes for PSI with 2MNQ or PhQ in the A\(_1\) binding site are well resolved using TRSS FTIR DS is also encouraging.

4.3.2. TRSS FTIR DS for PSI with 2MNQ in the A\(_1\) binding site

For the (2MNQ–PhQ) DDS in Fig. 8A, in the neutral quinone spectral region (1770–1550 cm\(^{-1}\)), 2MNQ bands are negative while bands of PhQ are positive. In the anion spectral region (1550–1400 cm\(^{-1}\)), bands of 2MNQ\(^-\) are positive while bands of PhQ\(^-\) are negative.

One striking feature in the DDS in Fig. 8A is that there are many bands, particularly in the 1770–1600 cm\(^{-1}\) region, where amide I protein bands, and bands associated with neutral quinones, predominate. This suggests that the phytol chain leads to some modification of the protein environment surrounding the quinone, but possibly also in the protein environment surrounding P700 (by subtracting (P700\(^+\)\(_A\)–P700A\(_1\)) FTIR DS to produce DDS, contributions from alterations in P700 due to quinone exchange will also contribute to the DDS). Analysis of the features in the DDS in the neutral region (-1770–1600 cm\(^{-1}\)) is therefore complex and poorly understood at present. On the other hand, one very interesting feature in the DDS in Fig. 8A is the difference band at 1633(+1)/1640(−) cm\(^{-1}\). This could suggest a H-bonded C=O of neutral PhQ at 1633 cm\(^{-1}\), with the corresponding mode of 2MNQ at 1640 cm\(^{-1}\). It was suggested above that a 1633(+1) cm\(^{-1}\) feature in the DDS in Fig. 7A could be due to H-bonded C=O of neutral PhQ. This latter suggestion was not without problems, however, so it is still fair to say that the vibrational frequency of the H-bonded C=O group of neutral PhQ in the A\(_1\) binding site has not been established unambiguously.

Analysis of the absorption changes in the anion spectral region (1550–1400 cm\(^{-1}\)) of the DDS in Fig. 8B appear less convoluted. One prominent observation in the DDS is the 1494(−)/1504(+1) cm\(^{-1}\) derivative feature. As discussed above, the 1494 cm\(^{-1}\) band is due to a PhQ\(^-\) \(\delta \mathrm{C}_1\) mode, which appears to upshift to 1504 cm\(^{-1}\) upon removal of the phytol tail of PhQ. Thus, with 2MNQ in the A\(_1\) binding site, a \(\delta \mathrm{C}_1\) mode of 2MNQ\(^-\) appears at 1504 cm\(^{-1}\), 10 cm\(^{-1}\) higher than the corresponding mode of PhQ\(^-\). This result is in good agreement with...
DFT based vibrational frequency calculations for PhQ$^-$ and 2MNQ$^-$ in the gas phase [56].

Another clear feature in the DDS in Fig. 8B is the derivative feature at 1415(−)/1428(+) cm$^{-1}$. As discussed above, for PhQ in the A$_1$ binding site, the feature at 1415 cm$^{-1}$ has been assigned to a mode in which C=O and C-C stretching vibrations are coupled to C-H bending vibrations. The DDS indicates that this mode is at 1428 cm$^{-1}$ for 2MNQ$^-$. That is, replacement of the phytol tail of PhQ with an H atom results in a 13 cm$^{-1}$ upshift of this mode. DFT based vibrational frequency calculations for non-H-bonded PhQ$^-$ and 2MNQ$^-$ in the gas phase appear to indicate that a band of PhQ$^-$ downshifts 7 cm$^{-1}$ upon replacement of the phytol chain of PhQ$^-$ with an H atom, however [56]. Clearly, these gas phase calculations inadequately model this aspect of the experimental spectra.

The calculated spectrum outlined in Fig. 8B, which considers H-bonded quinones, indicates a band of 2MNQ$^-$ at 1437 cm$^{-1}$, with the corresponding band for PhQ$^-$ being 6 cm$^{-1}$ lower. This latter calculation agrees with the experimental spectra. So calculations that include an H-bond to the C$_4$=O group are required to adequately model this aspect of the experimental spectra. The calculated band frequencies, their relative intensities, as well as the shift expected when 2MNQ is incorporated, do not match the experiment particularly well, however. Clearly, even more sophisticated vibrational frequency calculations are required, and such QM/MM type ONIOM calculations are beginning in our lab.

![Fig. 8.](image-url)
The DDS in Fig. 8B display a derivative feature at 1472(−)/1485(+), cm^{-1}. This feature may indicate a band of PhQ− at 1472 cm^{-1} with a corresponding band in 2MNQ− at 1485 cm^{-1}. It is difficult to infer the presence of a PhQ− band at 1472 cm^{-1} from the DDS in Fig. 7, however.

Another feature in the DDS in Fig. 8B is the negative/positive band at 1518/1526 cm^{-1}, possibly indicating a band of PhQ− at 1518 cm^{-1} with a corresponding band in 2MNQ− at 1526 cm^{-1}. This proposal is in line with the DDS in Fig. 7, where a negative feature appears at 1517 cm^{-1}, downshifting to 1511 cm^{-1} upon 18O labeling. A band of PhQ− at ~1517 cm^{-1} may also be compatible with the (A1−A1) FTIR DS in Fig. 5B, which displays a positive shoulder at ~1517 cm^{-1}. As suggested above, the feature near 1517 cm^{-1} may be due to a PhQ− c=c mode with some C=O character. This proposal is consistent with DFT based vibrational frequency calculations, where it is known that C=O modes of PhQ− and 2MNQ− are higher in frequency than C=O modes.

5. Vibrational spectroscopic properties of quinones occupying other protein binding sites

To gain a more detailed understanding of the vibrational spectroscopic properties of quinones in the A1 binding site in PSI, it is useful to also consider work undertaken to study quinones in other protein binding sites. In particular, much work (both computational and experimental) has been undertaken to investigate the vibrational spectroscopic properties of quinones occupying the Qa binding site in purple bacterial reaction centers (PBRCs) from Rhodobacter (Rb.) sphaeroides. In WT PBRCs from Rb. sphaeroides ubiquinone-10 (UQ) occupies the QA binding site. Fig. 10 shows a structural model of UQ in the Qa binding site. UQ is a 2,3-dimethoxy, 5-methyl, 6-isoprenoid, 1,4-benzoquinone. For UQ in the Qa binding site the C1=O is H-bonded to the backbone NH group of AlaM260. The C4=O is H-bonded to the imidazole NH group of HisM219. This imidazole also ligates the non-heme iron atom.

Comparing Figs. 4 and 10 it seems there are similarities in quinone binding in the QA and A1 sites. From simply comparing the structures, however, it is difficult to assess if UQ in the QA binding site is more or less symmetrically H-bonded than PhQ− in the A1 binding site. This question has been addressed from the vantage point of EPR spectroscopic studies [57], which suggests that PhQ− in PSI is very asymmetrically H-bonded (perhaps even only the C4−O group of PhQ− is H-bonded), considerably more so than UQ− in the Qa site in PBRCs.

Vibrational spectroscopic studies of quinones in the Qa binding site are more advanced than corresponding studies of quinones in the A1 binding site. There are several reasons for this: Firstly, (Qa−Qa) FTIR DS have been produced using photo-accumulation techniques. Photo-accumulation techniques can achieve higher sensitivity, and are considerably simpler to implement than TR techniques. Secondly, quinone incorporation into the Qa binding site in PBRCs is straightforward, and thirdly specifically 13C isotope labeled UQs have been incorporated.
into the Q$_b$ binding site, and isotope edited FTIR DS have been produced [62,63]. This specific 13C isothe labeling (carbon atoms 1–4 of UQ have been specifically 13C labeled and incorporated) allows one to clearly discriminate protein bands from pigment bands in (Q$_b$–Q$_a$) FTIR DS. 13C labeled 2MNQ has been incorporated into the A$_1$ binding site in PSI and studied using EPR spectroscopy [57]. Corresponding FTIR DS studies have not been published as of yet, although see reference [56] for a preliminary study.

(Q$_b$–Q$_a$) FTIR DS have been obtained for PBRCs with specific isotope labeled quinones incorporated [62,63], and the constructed isotope edited FTIR DS displays features (bands) that are associated only with the quinone in the binding site. For neutral UQ in the Q$_b$ binding site, bands at 1660, 1628 and 1601 cm$^{-1}$ were assigned to the C$_1$=O, C$_3$=O, and C$_4$=O groups, respectively [62,63]. The C$_1$=O group vibrational frequency is similar to that found for non-H-bonded UQ in solution, whereas the C$_3$=O vibrational frequency is downshifted ~59 cm$^{-1}$. From these results it was concluded that the C$_1$=O/C$_3$=O group of neutral UQ in the Q$_b$ binding site is very weakly/very strongly H-bonded, respectively [62,63]. These conclusions are not supported by crystal structural data (Fig. 10) and other types of EPR and FTIR data [64–66], however.

To address this issue ONIOM type QM/MM calculations aimed at modeling the experimental isotope edited (Q$_b$–Q$_a$) FTIR DS were undertaken. Calculations were only undertaken for the neutral state of UQ in the Q$_b$ binding site [64]. The ONIOM calculated spectra agree well with the experimental spectra. However, the calculations indicated that a very strongly H-bonded C$_3$=O group of UQ in the Q$_b$ binding site is not required in order to explain the experimental spectra. The UQ in the Q$_b$ binding site is still calculated to be asymmetrically H-bonded, but the C$_3$=O group is downshifted ~32 cm$^{-1}$, and not ~59 cm$^{-1}$, because of H-bonding.

It is worth noting that even with the large amount of experimental FTIR data available, it appears that it was still difficult to unambiguously interpret the experimental spectra, and it was only through a combination of experiment and computation that the above issue was adequately resolved.

To help confirm the validity of the QM/MM vibrational frequency calculations that were undertaken [64], further similar QM/MM calculations were undertaken for the neutral state of several different quinones incorporated into the Q$_b$ binding site and, again, the calculated isotope edited FTIR DS were found to agree well with experimental spectra [67]. In all of the experimental spectra, and in the QM/MM calculated spectra, two separate bands due to the neutral quinone C=O modes were well resolved. This band separation being mainly a result of differences in H-bonding to each C=O group.

Sufficiently sensitive TR FTIR DS has not been undertaken using PSI particles with specifically 13C$_1$ and 13C$_4$ labeled PhQ (or 2MNQ) incorporated into the A$_1$ binding site (see reference [56], however), and the location of the bands associated with the C=O modes of the neutral quinone in the A$_1$ binding site have not been established with certainty. From the data discussed in this article it is clear that a band at ~1654 cm$^{-1}$ is due to a C=O mode of neutral PhQ in the A$_1$ binding site (Table 1). It was suggested above that another C=O mode of neutral PhQ could give rise to a feature at ~1633 cm$^{-1}$. If this hypothesis is appropriate then the separation of the two C=O modes of PhQ in the A$_1$ binding site is 21 cm$^{-1}$, which is somewhat less than that found for UQ in the Q$_b$ binding site (32 cm$^{-1}$). This suggests that the asymmetric H-bonding environment may be somewhat greater for neutral UQ in the Q$_b$ binding site. This suggestion is only for the neutral quinone, but it is noted that it is at odds with conclusions derived from EPR studies of the quinone anion radicals in the A$_1$ and Q$_b$ binding sites (see below) [57]. Of course, the suggested band assignments for the C=O groups of neutral PhQ in the A$_1$ binding site have not been tested/verified by ONIOM-type QM/MM vibrational frequency calculations, as has been done for UQ in the Q$_b$ binding site. Clearly, more experimental data (specific isotope labeling of incorporated quinones), in combination with computational work, are required to establish band assignments unambiguously.

As mentioned above, experimental (Q$_b$–Q$_a$) isotope edited FTIR DS have been obtained by two groups [62,63]. Both groups incorporated specifically 13C$_1$ and 13C$_4$ labeled UQ into the Q$_b$ binding site, and both obtained very similar isotope edited FTIR DS. For data in the anion spectral region (1500–1400 cm$^{-1}$), one group proposed that their data suggested that the two C=O modes of UQ$^-$ are coupled, and that the coupled C=O mode is also coupled to C=C modes [62]. The other group suggested that the C=O modes of UQ$^-$ are mainly uncoupled, with the C$_4$=O and C$_3$=O groups giving rise to bands at 1486 and 1466 cm$^{-1}$, respectively. In this latter case a distinct H-bond asymmetry that is typical for neutral UQ is preserved for UQ$^-$. This difference in hypothesis between the two groups has not been resolved.

In principle, QM/MM calculations could help address this issue. However, calculations for UQ$^-$ in the Q$_b$ binding site are more complicated than for the neutral state, partly because of spectral congestion in the anion spectral region, and partly because of a greater degree of mixing of the two UQ C=O and C=C modes. Isotope induced changes in the degree of mode mixing, in addition to isotope induced frequency shifts in an already congested spectral region, leads to calculated isotope edited DS that are complex, and that are difficult to compare to experimental spectra simply by visual inspection (G. Hastings, unpublished data). Because of these difficulties ONIOM type QM/MM calculated isotope edited difference spectra associated with UQ$^-$ in the Q$_b$ binding site have yet to be presented. So the extent of asymmetric H-bonding for UQ$^-$ in the Q$_b$ binding site is still an open question, at least in terms of analysis by FTIR DS.

As outlined above, for PhQ$^-$ in the A$_1$ binding site there is no doubt that a C=O mode gives rise to a band at 1495 cm$^{-1}$, while a mixed mode (with some C=O character) gives rise to a band at 1415 cm$^{-1}$. In contrast, for PhQ$^-$ incorporated into the Q$_b$ binding site in PBRCs, a single C=O mode is found at ~1444 cm$^{-1}$, while a predominantly C=C mode is found at 1478 cm$^{-1}$ [65]. This comparison suggests that the binding of PhQ$^-$ in the Q$_b$ and A$_1$ binding sites is very different. No QM/MM vibrational frequency calculations have been undertaken for PhQ$^-$ in either the Q$_b$ or A$_1$ binding sites, so questions on the nature of semiquinone binding in the Q$_b$ or A$_1$ binding site are open, at least from the standpoint of vibrational spectroscopy. Specific hypotheses have
been proposed from EPR spectroscopic studies, however [57]. How or whether the hypotheses proposed from EPR studies are compatible with FTIR DS studies is, again, an open question.

6. Vibrational spectroscopy for assessing cofactor function

One commonly asked question is how knowledge of vibrational frequencies associated with molecular groups of bound quinones can be related to cofactor function. For the most part this question is essentially about how the observed spectroscopic data can be used to infer the redox potential of the quinone of interest in the binding site. Parameters (band assignments) derived from FTIR DS measurements relate to the electronic structure of the cofactor in both the neutral and reduced states, which in turn can be used to determine redox properties. That is, to relate spectroscopic parameters to cofactor function, one approach is to assess how calculated spectroscopic parameters for particular molecular models relate to the experimental data. If the calculated vibrational frequencies for the neutral and reduced states for a particular molecular model compare well to experiment, then the constructed molecular model could be viewed as appropriate or useful, and it can then be used to calculate other parameters, such as single point energies and electron affinities, which directly relate to redox potential.

So far, for PhQ and PhQ− (and other quinones) in the A1 binding site, the vibrational frequencies of the molecular groups are just becoming available, and detailed vibrational frequency calculations to test hypothesis based on the experimental data are only just beginning. Given this dearth of knowledge, it is not surprising that little has been published so far concerning the redox properties of quinones in the A1 binding site, as can be inferred from vibrational spectroscopic data.

7. Summary

The experimental work that has been undertaken, as described in this review, indicates that TRSS FTIR DS studies of quinones in the A1 binding site are still in their infancy, with a range of experiments possible for spectroscopic studies of quinones in the A1 binding site in PSI. or it is only just becoming available. Thus there are many opportunities for the experimental data needed to assess the calculations is not available, and it is only just becoming available. Thus there are many opportunities in both the experimental and computational realms for vibrational spectroscopic studies of quinones in the A1 binding site in PSI.

Acknowledgments

Some of the recent work outlined in this manuscript was supported by the Qatar National Research Fund, grant 4-183-1-034. Older work was supported by the National Research Initiative of the United States Department of Agriculture Cooperative State Research Education and Extension Service (2004-35318-14889). Much of the recent time resolved step scan FTIR spectroscopy work, as well as much of the computational work, was undertaken by Nan Zhao. All of the visible time resolved spectroscopy work was undertaken by Hiroki Makita. Nan and Hiroki are currently graduate students in my research group. I would also like to acknowledge all previous students who have worked with me in this area, in particular Velautham Sivakumar, Priyangi Bandaranayake, Ruili Wang and Sreeja Parameswaran.

References

