Georgia State University

ScholarWorks @ Georgia State University

Computer Science Technical Reports Department of Computer Science

2021

Improving Grading and Feedback of Programming Assignments
Using Version Control: An Experience Report

Jillian Morgan
Georgia State University

Michael Weeks
Georgia State University

Follow this and additional works at: https://scholarworks.gsu.edu/computer_science_technicalreports

b Part of the Computer Sciences Commons

Recommended Citation

Morgan, Jillian and Weeks, Michael, "Improving Grading and Feedback of Programming Assignments
Using Version Control: An Experience Report" (2021). Computer Science Technical Reports. 3.
https://scholarworks.gsu.edu/computer_science_technicalreports/3

This Report is brought to you for free and open access by the Department of Computer Science at ScholarWorks @
Georgia State University. It has been accepted for inclusion in Computer Science Technical Reports by an
authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/computer_science_technicalreports
https://scholarworks.gsu.edu/computer_science
https://scholarworks.gsu.edu/computer_science_technicalreports?utm_source=scholarworks.gsu.edu%2Fcomputer_science_technicalreports%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.gsu.edu%2Fcomputer_science_technicalreports%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science_technicalreports/3?utm_source=scholarworks.gsu.edu%2Fcomputer_science_technicalreports%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

Improving Grading and Feedback of Programming
Assignments Using Version Control: An Experience
Report

Jillian Morgan and Michael Weeks

Abstract—Leaving meaningful, actionable feedback that stu-
dents will read and, most importantly, follow-up on, is essential
for strengthening their programming skills. In addition, being
capable with version control platforms, such as git, is a
desired skill in industry. Could a marriage between the two,
leaving meaningful feedback for student submissions in a version
control system, lead them to be better programmers while
improving the time and quality of instructors’ feedback? This
experience report describes how we used GitHub Classroom for
programming assignment submission and assessment in CS2. We
provide examples of typical feedback using various assessment
mechanisms, describe the process of assignment submission for
students, the assessment process for instructors, and reflect on
students’ reception towards the process and the value, in terms
of time and quality, for the instructor.

I. INTRODUCTION

Programming assignments are the necessary evil of com-
puter science in academia. After all, the best way to learn
programming is by doing. Programming assignments provide
a way for students to practice and hone their skills. However,
they are very time consuming to grade, especially when the
desire is to provide feedback that gives students insight and
considerations for improving their skills. According to [1]], the
components of grading a programming assignment are whether
the

1) program produces the desired output

2) tasks are performed without using too much processing

time and memory space

3) code is easy to understand and, as such, maintain.

When examining programming assignments for these com-
ponents, providing useful, easily understandable feedback is
paramount as it helps students identify weaknesses in their
skills.

In addition to growing their programming skills, computer
science students could also greatly benefit from the addition of
industry-standard tools and technology to our curriculum. One
such tool is a version control system called git. Introducing
students to a professional tool will allow: students to work on
multiple machines (university-owned or personal), instructors
and TAs to have an up-to-date copy of students’ work for more
meaningful office hours, and patterns in student programming
to be identified [2]]. It would also give students an edge when
interviewing for competitive positions and a solid foundation
once hired. Even though using version control systems is an
important skill, it is usually not included in a CS curriculum

(3.

In this paper, we propose a method for improving the time
and quality of feedback on programming assignments using a
popular git-based distributed version control system, GitHub
[4]]. It provides a complete version history for tracking changes
to documents.

The rest of this paper is organized as follows. An in-
troduction to grading programming assignments and version
control systems is in Section Section explains the
assignment setup and submission and feedback processes.
Our experiences introducing git for programming assignment
submission and feedback are discussed in Section leading
to our conclusions and future work in Section [Vl

II. BACKGROUND

In order to understand the impact of using git-based
version control for grading programming assignments, it is
first helpful to understand how programming assignments are
typically graded and how version control systems work.

A. Grading Programming Assignments

As mentioned earlier, programming assignments are notori-
ously tricky and time-consuming to grade while providing one
of the best ways for students to practice their programming
skills. For this reason, many instructors, especially those with
large class sizes, are moving towards automated or, at least,
semi-automated grading tools.

Cheang et al. created an automated grading tool called
Online Judge, modeled on the way programs are tested during
the ACM International Collegiate Programming Contest. It
uses “simple string matching” [1]] to determine whether the
student’s output matches predetermined output provided to the
tool and used memory space and processing time efficiently.
The focus of [3] is on providing quick, 24-hour, objective
assessment for students. Students can use the tool at any time
while working on their assignments to receive written and
numeric feedback on their assignments to ensure they are on
the right track. Adams discusses his tool, Aristotle, in [6].
Aristotle is an open-source, semi-automated program grading
tool for senior-level undergraduate and graduate courses that
allows an instructor to import and build and test submissions
and generate a report that can give the instructor more context
to evaluate the code manually. It is worth noting that Aristotle
can be integrated with GitHub’s education tool for instructors,
GitHub Classroom [7]]. This tool allows institutions to create

assignments that students can submit to GitHub. For a detailed
study on automated grading tools, see [S].

Automatic grading is not a fail-safe system, however. As
Adams mentions, it is not possible for a computer to assess
some of the criteria for an assignment in a meaningful way [6].
Automated grading can only focus on whether the submitted
program produces predetermined output and whether the tasks
are performed efficiently in some cases [1]. The automated
system cannot determine whether the method used to get to
this output was correct for the assignment given. For assessing
such tasks and providing meaningful feedback for a student to
improve his programming skills, some instructor intervention
is required.

This intervention can take the form of merely writing de-
scriptive comments for the assignment in a Learning Manage-
ment System (LMS). This does not always provide feedback
that is easy to follow, as it is somewhat detached from the
lines of code. Feedback for programming assignments should
be tied to the line itself so that students can find their exact
problems to fix to improve their programming skills.

Intervention can also be done as in [9] where Yan et
al. describe their programming assignment submission tool,
Pensieve. It allows teaching assistants (TAs) and instructors
to provide formative feedback to be given on assignments in
progress rather than summatively at the end of the assignment.
It is used to facilitate a conversation about the process by
“thoughtfully” integrating human feedback which is essential
for introductory programming students. The primary focus of
Pensieve is on large CS1 courses with in-class and grading
support, with less focus on how to use VCSs [9].

One instructor intervened technique that we employ to
provide this feedback on specific lines of code is to convert
programming assignment submissions into a PDF that can then
be annotated. Fig. [I] shows an example.

Dont impoct what you olont need.

2
: ;::::::;@-S“(jmg imports all of ¢ ub] pactaye,

do you v oot lines?

this.last = last;
this.initial =

wha would
a MJ'& le
mrpal loe
a oboube?

e Lnother:
Fig. 1: Example Annotated Feedback

Even for a small and short example like this one, providing
this type of feedback is still very time consuming and does not
provide the opportunity for students to gain experience using
industry-standard technology such as version control systems.

B. Version Control Systems

Anyone who creates documents has used rudimentary
version control at one time or another. This typically
takes the form of saving documents with naming conven-
tions such as proposal.doc, proposal_final.doc,

or proposal_050120.doc. In the computing industry,
programmers use version control systems (VCS) to aid this
by not only keeping track of the different versions of a file,
but also of what was changed on each iteration. Version control
systems can either be centralized or distributed. A centralized
version control system stores the repository on a remote server
(known as the main). Meaning that all changes are made
directly to the master; this is known as a commit. A distributed
version control system, on the other hand, employs the same
fundamental model with one key exception; rather than a
single copy of a remote master repository that each developer
is sharing, each developer has their own local version of
the master copy, separate from the others. When a developer
wishes to work on the code in the repository, he downloads
(called a pull) the code to his local machine. When ready, he
makes the changes locally, then uploads the changes back to
the remote server (called a push). If he is ready to change the
master repository, he can issue a request to merge the changes
from his remote repository to the master. A comparison of
these systems is illustrated in Fig. [2]

Computer A

master

repository

Computer B

Computer A

local
repository

master
repository

Computer B

(b) Distributed

Fig. 2: Centralized vs. Distributed Version Control System

In a collaborative environment, like the programming indus-
try, a VCS also keeps track of which team member made which
changes. In recent years, there has been a growing desire in
the industry for students to be able to use VCSs when they
enter the workforce. In April 2018, a recent graduate talked to
current students and asked what she wished she learned, she
said ”git”, without hesitation. Additionally, several leaders
from a company with which we are partnered have expressed
a wish for interns to experience git-based tools. GitHub and
many other VCSs use the git system as their backbone. git
provides commands for working with the VCS that students
and instructors need to learn to use the system.

We know that this is useful for students, but what benefit
do instructors gain from going through the process of, in
most cases, learning git themselves [10], and teaching these
commands to students? We argue that instructors would see
an improvement in their workflow when it comes to grading
programming assignments.

Studies on using git in the classroom have been ongo-
ing for the past several years. Based on anecdotal reports
from students interviewing for or being placed in internships,
Kelleher [11] explored teaching git to second- and third-
year students, before their participation in an internship. The
students, with no prior knowledge of git or VCSs, worked
in groups of four on a software project from inception to
deployment and utilized GitHub to manage the project. The
focus for the second-year students was to learn to clone
repositories. They used a GUI application to clone roughly
80% of the exercises needed to be completed. The third-year
students, on the other hand, used a command prompt and their
goal, in addition to cloning repositories, was to create their
own repositories, commit and push to remote repositories, and
create and checkout branches (a divergence from the main line
of commits to work on without messing with the main line of
commits). Kelleher [11] discovered numerous benefits from
utilizing git and GitHub in this way:

e secure assignment submission much like an LMS

« possibility to see student work as it progresses

« students were able to better organize their source files by
using a VCS

e use of a gitignore file allowed less cumbersome file
submissions

« the tool encouraged students to manage their code more
diligently

« several students used git for projects in other courses as
well, driven by the fact that they were using an industry-
standard tool

Haaranen and Lehtinen [3]] discuss how version control
could be taught in a web development course, evaluated from
both students’ and instructors’ point of view. Their study
uses a course with 225 third-year students. Recommended
prerequisites for this course were CS2 and a database course.
Though this was merely a recommendation, it would mean
that some, if not most, of the students had some coding
experience and could be taught more advanced git features
and commands. A webservice running GitLab (a service
similar to GitHub) and their LMS was used rather than hosting
assignments on GitHub itself. Data was gathered from a
feedback survey administered to students and usage data from
their forked repositories. 92% of the respondents said they had
a positive attitude towards using git in the course. 72% of the
students responding to the survey did have at least some git
experience prior to starting the course. Haaranen and Lehtinen
also noted that the instructors found their workflow simplified
by using git to manage course assets.

Gowtham discussed implementing git as part of graduate
and undergraduate computational sciences and engineering
curriculum in 4000-level courses. Gowtham noted that the
students were better prepared for real-world expectations and
the instructor was better able to give timely feedback to
students while also being able to monitor their progress on
projects and assignments. Gowthan noted that “adopting git
gave the teacher and opportunity to distribute the course
materials to students with relative ease and provide timely
feedback to partial submissions.” The majority of students

understood version control and the need for it, but did not
want to learn newer technology [12].

Clifton et al. investigated adding version control to an in-
troductory CS course (CS1) to “enhance course management.”
The focus was on Subversion, a centralized VCS, and on how
the instructors and teaching assistants from two sections of
a CS1 course could improve their workflow and “reduce ad-
ministrative demands.” They found that using version control
allowed “instructors to provide direct and timely feedback to
students.” [[13]

In an earlier study [14], Zagalsky et al. gathered data from
the instructors’ experiences using git in the classroom. The
instructors who were interviewed used GitHub as a way to host
course-related content and for students to submit assignments.
In hosting course content, they found that students were able to
gain a sense of community as they could suggest revisions to
course content via pull requests, a way to ask collaborators
to review your changes. They also found that there was
transparency in how active the students were via several
different features in GitHub, which encouraged participation.
Most importantly, the instructors noted that GitHub has some
of the more essential features that an LMS has, like assignment
delivery and submission, but lacks other essential features like
grading management tools.

Rosenbloom et al. [15] discuss the use and administration
of git in CS undergraduate courses using an in-house in-
stallation of git rather than an already established service
like GitHub. They had students submit and organize group
work. The students would tag a commit as the one they
wanted to submit, then the instructors/graders would clone and
check out that commit and create a new feedback branch for
disseminating feedback.

Most of these studies [12], [3], [L1] were done with upper-
level courses where students have a more mature understand-
ing of programming languages and are more likely to grasp the
commands faster and feel more comfortable with them. The
studies that did use git or GitHub for assignment submission
either only provided feedback on partial submissions [12] or
did not mention how doing so affected grading workflow [14],
[L5]].

Reid and Wilson [2] discuss moving a class from a
command-line or web assignment submission process to Con-
current Version Systems, an early VCS that stores the history
of a single file rather than a whole project like git-based
VCS does. After their study, they were convinced that it should
be introduced during a students second year to get working
knowledge of industry standard tools early on, but do not state
whether there is a benefit in the workflow for instructors. We
intend to show that grading with git improves the workflow
for instructors regarding assignment submission and grading.

III. USING VERSION CONTROL FOR IMPROVED GRADING
This experience is still ongoing as we work to improve and

streamline our workflow. The following discusses the basics
of our workflow.

A. Assignment Setup

GitHub has tools and tutorials specifically designed for
students and educators to learn new tools and technology via
their GitHub for Education program [16]. One such tool is
GitHub Classroom [7], which provides a way for students to
use the GitHub VCS to submit assignments. Setting up an
assignment using GitHub Classroom only takes a few minutes
of clicking through their wizard.

The course section used for this study is at a small in-
stitution with small class sizes (between 30 and 40 students
per section) and no TAs. We had about 35 students in one
CS2 course section, comprised of both CS and IT majors and
taught by a single instructor, use GitHub Classroom to submit
programming assignments via git. It is worth mentioning that
this institution requires students to have access to a laptop for
class use and completing assignments.

There were three assignments total, each designed to take
roughly 2-3 hours to complete over a span of 2 weeks, typical
of assignments in our programming courses. Given the nature
of the material, the first assignment was independent of the
others. For this assignment they were given some starter
code to give them structure and guidance, as well as some
additional pointers on completing the assignment. The third
assignment built off the second and the students were to review
feedback on the second assignment and update their code
before continuing on to the third. All assignments were to
be done individually and were of moderate difficulty, though
the students’ perception is likely that the difficulty level was
much higher.

Once the assignment was created in GitHub Classroom, a
link was provided for students, creating a private repository
(accessible only by the instructors and students) with the
starter code included, or an empty one if no starter code
is provided. Assignment instructions were given in the LMS
like all other course content. The GitHub Classroom link was
embedded in these instructions.

Near the beginning of the semester, the instructor spent
about half of one class period (about 30-45 minutes) showing
the students how to use the basic git commands using a
terminal (command-line) window in order to understand the
process and importance of version control. This lecture was
recorded and a written summary of instructions was provided
in the LMS for students to review as often as needed.

B. Assignment Submission

Students logged in to the LMS to get the instructions
and the GitHub Classroom link to create the repository for
the assignment. There were separate links for the first and
second/third assignments, providing separate repositories.

They worked on the assignment on their own computers
either in a text editor or one of our approved lightweight IDEs
(i.e., JGrasp or Dr. Java). Once they were ready to commit
to the repository, either periodically as they worked on the
assignment or, most likely, at the end when they were ready
to submit their final work, they would use the git commands.

Once the deadline passed, the instructor visited GitHub
Classroom to review the code in each repository and leave
comments for improvement.

C. Grading Assignments and Leaving Feedback

The instructor views the assignment in GitHub Classroom to
see all the repositories that have been created by the students
using the link provided in the assignment instructions. If the
students make their own repository without using the link
provided, the repository is not linked to the assignment. From
there, the instructor goes through each file in the assignment.
This is sometimes several files depending on the material
covered in the assignment, like inheritance in Java, as an
example. The instructor clicks on each line (or clicks and drags
to select several) where they would like to provide feedback to
reference it in a new issue. An issue can be used in industry
by users to leave feedback or report bugs and can even be
used as a way for an individual or group to assign tasks to
be completed. An example of an issue can be seen in fig. [3]
Issues typically cover one specific problem to fix.

Avoid "hard coding” values, where possible

Write | Preview

nstead of:

5p2020_CS2_Assignment01/YourLastNameFirstinitial Assignment1.java
Line 32 in 18febds

rand.nextInt(2);

Consider if you can find a way to reference the size of the array instead.

[Styling with Markdown is supported

=
Fig. 3: Leaving Feedback as an Issue in GitHub

In addition to writing comments for a particular problem,
a line of code can be referenced right in the issue, that when
clicked on, will take the student directly to that line of code
where it can be modified.

The editor used for issues (and pull requests) allows the use
of Markdown, a language for formatting plaintext documents.
With it, the instructor can add text formatted as code, tables,
and images to the comments to provide additional detail that
is easy to read and follow.

If the issue is assigned to a student, they are notified
via email and can reply to continue the discussion or make
changes to their code based on this feedback, prompting the
student to place more emphasis on honing their skills than
submitting something, receiving a grade, and not looking at it
again.

To increase the speed of leaving feedback, when creating
issues, the instructor compiled a list of frequently used com-
ments from which to copy and paste into issues for other
students, since students will largely make the same mistakes.
This also allows the instructor to see a pattern in the comments
left to clarify topics for which several students seem to be
confused.

Once feedback was left in each student’s repository, grades
were assigned manually in the LMS. It is worth noting that
GitHub Classroom has a way to connect with some popular

LMSes. The LMS used by this institution is not included in
this list and we found it not easy to set up as it required several
approvals from campus and technical administrators, so it was
not used for this study.

IV. THE EXPERIENCE

There were some initial hurdles with getting the students
started with git, which was to be expected. First, there was
confusion on the basic command-line instructions for things
such as navigating to a directory and whether the git com-
mands were standard across operating systems. Two course
sections were used for this experience and to distinguish
between the two, we will refer to the course where git was
used as the experience section and the other as the base
section.

A. Submitting Assignments using git and GitHub

Concerning the git commands, the learning curve was
much steeper than anticipated. Students were more focused
on the required course work, so when it came time to submit
the files in GitHub, they were at a loss, even with the video
and written tutorials they could reference. In most cases, they
ended up using GitHub’s Add File drop-down menu to upload
their file to the repository from their browser window rather
than use a terminal window. Since the focus was on simply
becoming familiar with the git commands and the process of
using a VCS, this was acceptable. They were also given the op-
tion, after the first assignment, to use graphical interface tools
for version control, namely SourceTree or GitHub Desktop,
as they were are available for multiple operating systems. The
students could use either of these products if they chose to, but
no class time was dedicated to showing them how to use any
tool in particular as the process for committing and pushing
files to their repository, which we felt is the basis for how to
use these tools, had previously been discussed. Furthermore,
we wanted them to be able to get their feet wet, so to speak,
and explore how to use these tools on their own.

The hope was that students would embrace the version
control aspect of submitting their assignments with git and
commit and push along the way; only about 19% of the
students did. They started early and would commit as they
made changes, leaving a full version history. The rest of the
students worked as typical undergraduates, waiting until the
last minute, pushing the final product.

B. Leaving Feedback in GitHub

At the time of writing this paper, leaving feedback in
GitHub via issue tracking was more time consuming than we
had hoped. The instructor of the course in our study used the
emacs text editor in “org mode” [17] on a normal basis as a
way to organize tasks and create to-do lists. It allows you to
clock tasks in and out as you work on them to see how much
time is being spent on a task. We used this feature to determine
how long it took to leave feedback via GitHub, shown in Table
m

Each time the instructor stopped and restarted grading, a
timestamp was recorded by the emacs text editor to give a

TABLE I: Duration for Leaving Feedback via GitHub and
Annotated PDF

Experience Section Base Section

Assignment 1 4:40 0:47
Assignment 2 2:58 2:08
Assignment 3 3:50 2:42

Times are in hours:minutes format

duration for each grading session and a total was calculated
for the task. It is of note that this method is contingent on
the instructor remembering to clock in when starting and out
when stopping (e.g., for a break, to teach a course, at the end
of the day, etc.) and this was sometimes difficult. However,
it does still provide a rough approximation of the time spent
leaving feedback.

For comparison, the same assignments were given the
following semester in the base section, a CS2 course taught
by the same instructor, containing 21 students, using the
instructors usual way of leaving feedback via annotated PDFs.
With roughly 30 of the 35 students submitting Assignment 1
in the experience section, it took a little more than 4.5 hours
to leave feedback for each student, compared to 47 minutes
for the 20 of 21 students in the base section.

We suspect this large difference in time could be due to
several factors: the initial learning curve for the instructor in
terms of leaving feedback in GitHub, the nature of leaving
feedback via issue tracking, and the difficulty of grading the
specific submissions. For the latter, it is our experience that
students will often type their code at the last minute, with
no time for testing and refining, leaving the instructor trying
to determine how to assign a grade to the submission and
with lots of feedback to give. This was quite a challenge
with the issue tracker as it would redirect to a different page
to create the new issue, forcing the instructor to navigate
back to the home page of the repository after completing
the feedback for that issue and start from the beginning,
having to keep track of the last lines reviewed. This may
only consist of a few mouse clicks, but was still tedious and
time consuming. Additionally, the time to leave feedback for
base section assignments does not include the time it took to
download the files and convert to a PDF for annotation as both
were negligible. The downloading process was relatively quick
depending on network speed and size of assignments and the
instructor previously wrote a python script to convert source
code files to PDF. Another possible reason for the difference
in time is that students rarely had the same problem, so more
time than expected was spent typing different feedback for
each student rather than being able to copy/paste feedback for
a common problem.

The time was improved with Assignment 2 (only a 50
minute difference between experience and base), but increased
again when giving feedback for Assignment 3. While there
was less of a learning curve this time around, the assignment
was the most complex of the three with multiple files that
took longer to assemble into a single PDF per student for
the base section and longer to leave feedback on for the
experience section. The ability to create a feedback branch

and generate a pull request, as mentioned in [15], was added
to GitHub Classroom between assignments 2 and 3 and it was
used to give feedback for Assignment 3. This added a slight
learning curve for the instructor once again, but proved to be
a much faster and more streamlined way of both leaving and
reviewing feedback. Comments were left with individual lines
of code rather than in a separate window and the students
were automatically notified when a code review was initiated
via pull request. They could go to the pull request to view the
feedback received and even reply to it, starting a conversation
with the instructor, further enhancing their learning experience.

As a matter of fact, more students responded to the feedback
left in GitHub, roughly 12%, than they did to feedback left
in the LMS, roughly 10%. While this is not a very large
difference, it is a step in the right direction.

Lastly, some of the students really embraced the version
control process and committed files regularly and engaged in
conversation on how to improve their skills. Others did not
understand the underlying concept of version control and still
submitted several versions of the same source files rather than
reverting to a previous version and making modifications from
there if necessary.

On the whole, it was a challenging, but rewarding experi-
ence that we would recommend to any instructors looking to
add version control functionality to their programming classes.

C. Lessons Learned

There were quite a few things we learned during this
experience, specifically:

o There should be an assignment for students to get accli-
mated with git and GitHub before starting their regular
assignment submissions

e The instructor should use git during lecture while
showing examples to get the students used to using it
more often so they can see how it works and how it can
be useful, as mentioned in [2]]

o There should be some built-in commit dates throughout
an assignment to motivate the students to start early and
commit often so that there is a history of their work,
allowing us to find patterns in how they program in order
to better guide them

e With such a steep learning curve for the students to
use the git commands, we should consider showing
the easier ways to commit and push files to the remote
repository up front or using a custom IDE as in [9]

o GitHub Classroom is improving, but still has a ways to
go in terms of features to make it more classroom and
assignment submission friendly. For example, students
are allowed to push files to the repository after the
deadline and it is not so obvious that the submission was
late, so there needs to be a workaround for instructors
when grading

« While issue tracking is a standard practice, it was very
time consuming and seemed more cumbersome to allow
for conversations, but pull requests excelled in this area

« We did not allow the students to merge changes made in
response to feedback into their master copy, a standard

part of code review in industry. This should be considered
for future semesters or in more advanced classes

e The VCS environment is perfect for smaller, more fre-
quent, incremental assignments that may be less stressful
on instructor and student alike, allowing us to give more
assignments and more feedback to improve students’
skills

Note that the first two lessons are being implemented in a
course that is ongoing at the time of writing this paper and they
are proving to help the students get more quickly acclimated
to the git commands and to committing their work often,
leaving a history of their work for review.

V. CONCLUSION

In utilizing VCS in a small CS2 class, we encountered some
resistance to git’s learning curve, which is steep even for
professionals. Despite that, it was our experience that some
students welcomed the idea.

Using these tools, we were able to provide detailed and
meaningful feedback to students with a way to alert them
that new feedback was available. We noticed that students
would reply to the issues shortly after receiving the notification
to justify their choices, ask for clarification, or express their
newfound understanding of a concept. Some even went back to
edit their code based on the feedback left in the issues, which
we ordinarily would not be aware of unless they divulged this
information.

We suspect that using this method to provide meaningful
feedback to students will change their mindsets when it comes
to completing programming assignments and improve their
programming skills. To that end, our future plans include
assessing how a change of this nature affects student learning,
attitudes towards programming, and give them the tools they
need to sharpen their skill set.

Our experiences using git for programming assignment
submission and feedback thus far have been promising for the
instructor. To ensure this is worth adding to courses throughout
the curriculum, we need to get a student’s point of view and
that of other instructors in the discipline. Additionally, it would
be of interest to see whether this could scale for large classes
and/or those utilizing teaching assistants.

We believe doing so will allow students to learn about
VCSs, which they would need for future employment. While it
does not seem to reduce the time it takes to grade programming
assignments, we remain confident it will help instructors in
courses across the discipline improve their workflow and
provide more substantial feedback in a way that encourages
conversation, thus allowing us to further improve our students’
skills.

REFERENCES

[1] B. Cheang, A. Kurnia, A. Lim, and W.-C. Oon, “On automated grading
of programming assignments in an academic institution,” Computers &
Education, vol. 41, no. 2, pp. 121-131, 2003.

[2] K. L. Reid and G. V. Wilson, “Learning by doing: introducing version
control as a way to manage student assignments,” in Proceedings of
the 36th SIGCSE technical symposium on Computer science education,
2005, pp. 272-276.

[3]

[4]
[5]

[7]
[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]
(171

L. Haaranen and T. Lehtinen, “Teaching git on the side: Version
control system as a course platform,” in Proceedings of the 2015
ACM Conference on Innovation and Technology in Computer Science
Education. ACM, 2015, pp. 87-92.

Github. [Online]. Available: https://github.com/

K. Ala-Mutka and H.-M. Jarvinen, “Assessment process for program-
ming assignments,” in IEEE International Conference on Advanced
Learning Technologies, 2004. Proceedings. 1EEE, 2004, pp. 181-185.
M. D. Adams, “Aristotle: A flexible open-source software toolkit for
semi-automated marking of programming assignments,” in 20/7 IEEE
Pacific Rim Conference on Communications, Computers and Signal
Processing (PACRIM). 1EEE, 2017, pp. 1-6.

[Online]. Available: https://classroom.github.com/

S. Wasik, M. Antczak, J. Badura, A. Laskowski, and T. Sternal, “A
survey on online judge systems and their applications,” ACM Computing
Surveys (CSUR), vol. 51, no. 1, pp. 1-34, 2018.

L. Yan, A. Hu, and C. Piech, “Pensieve: Feedback on coding process
for novices,” in Proceedings of the 50th ACM Technical Symposium on
Computer Science Education, 2019, pp. 253-259.

J. Lawrance, S. Jung, and C. Wiseman, “Git on the cloud in the
classroom,” in Proceeding of the 44th ACM technical symposium on
Computer science education. ACM, 2013, pp. 639-644.

J. Kelleher, “Employing git in the classroom,” in 2014 World Congress
on Computer Applications and Information Systems (WCCAIS). 1EEE,
2014, pp. 1-4.

S. Gowtham, “Revision control system (rcs) in computational sciences
and engineering curriculum.” in XSEDE, 2014, pp. 76-1.

C. Clifton, L. C. Kaczmarczyk, and M. Mrozek, “Subverting the
fundamentals sequence: using version control to enhance course man-
agement,” ACM SIGCSE Bulletin, vol. 39, no. 1, pp. 86-90, 2007.

A. Zagalsky, J. Feliciano, M.-A. Storey, Y. Zhao, and W. Wang, “The
emergence of github as a collaborative platform for education,” in
Proceedings of the 18th ACM Conference on Computer Supported
Cooperative Work & Social Computing. ACM, 2015, pp. 1906-1917.
A. Rosenbloom, S. Sharmin, and A. Wang, “Git: Pedagogy, use and
administration in undergraduate cs,” in Proceedings of the 2017 ACM
Conference on Innovation and Technology in Computer Science Educa-
tion. ACM, 2017, pp. 82-83.

[Online]. Available: https://education.github.com/

C. Dominik, The Org Mode 7 Reference Manual-Organize your life with
GNU Emacs. Network Theory Ltd., 2010.

https://github.com/
https://classroom.github.com/
https://education.github.com/

	Improving Grading and Feedback of Programming Assignments Using Version Control: An Experience Report
	Recommended Citation

	Introduction
	Background
	Grading Programming Assignments
	Version Control Systems

	Using Version Control for Improved Grading
	Assignment Setup
	Assignment Submission
	Grading Assignments and Leaving Feedback

	The Experience
	Submitting Assignments using git and GitHub
	Leaving Feedback in GitHub
	Lessons Learned

	Conclusion
	References

