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TREATMENT COMPARISON IN BIOMEDICAL STUDIES USING SURVIVAL FUNCTION

by

MENG ZHAO

Under the Direction of Dr. Yichuan Zhao

ABSTRACT

In the dissertation, we study the statistical evaluation of treatment comparisons by evaluat-

ing the relative comparison of survival experiences between two treatment groups. We construct

confidence interval and simultaneous confidence bands for the ratio and odds ratio of two survival

functions through both parametric and nonparametric approaches.

We first construct empirical likelihood confidence interval and simultaneous confidence bands

for the odds ratio of two survival functions to address small sample efficacy and sufficiency. The

empirical log-likelihood ratio is developed, and the corresponding asymptotic distribution is derived.

Simulation studies show that the proposed empirical likelihood band has outperformed the normal

approximation band in small sample size cases in the sense that it yields closer coverage probabilities

to chosen nominal levels.

Furthermore, in order to incorporate prognostic factors for the adjustment of survival func-

tions in the comparison, we construct simultaneous confidence bands for the ratio and odds ratio of

survival functions based on both the Cox model and the additive risk model. We develop simulta-

neous confidence bands by approximating the limiting distribution of cumulative hazard functions

by zero-mean Gaussian processes whose distributions can be generated through Monte Carlo sim-

ulations. Simulation studies are conducted to evaluate the performance for proposed models. Real

applications on published clinical trial data sets are also studied for further illustration purposes.



In the end, the population attributable fraction function is studied to measure the impact

of risk factors on disease incidence in the population. We develop semiparametric estimation of

attributable fraction functions for cohort studies with potentially censored event time under the

additive risk model.

INDEX WORDS: Additive risk model, Attributive fraction function, Censoring,
Confidence band, Counting Process, Cox Regression, Empirical
likelihood, Martingale, Odds ratio, Ratio, Right censored data,
Survival function
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Chapter 1

INTRODUCTION

In clinical trials and related medical studies, physicians and medical researchers often impose

significant concentrations on the comparison of two treatments in order to justify the effect of

a new medicine or a new cure. Statistical analysis usually provides important reference to the

quantitative evaluation of medical advantages of one treatment over another. Modeling inaccuracy,

however, might sometimes result in severe damages both financially and ethically, especially to

those studies involving human beings. Such concern has triggered my research interest to focus on

the development of statistical methods on the evaluation of treatment comparison results.

We study both parametric and nonparametric statistical approaches for constructing confidence

intervals and simultaneous confidence bands for the ratio and odds ratio of survival functions of two

targeted groups. We develop methods to account for adjusted covariates in order to improve the

practical applicability of our models. Methodological details are presented in the following, along

with future research plans.

Due to the well-known small sample efficacy of empirical likelihood based methods, we first

adopt the empirical likelihood for constructing simultaneous confidence bands for the odds ratio

of two survival functions derived from the type of clinical trial data that has two groups receiving

different treatments. For more practical convenience, the empirical likelihood confidence interval is

also given. The empirical log-likelihood ratio function is developed, and the corresponding asymp-

totic distribution is derived. Moreover, the conventional normal approximation method is also

implemented in comparison with the empirical likelihood based method in order to demonstrate

the methodological advantage of our proposed method. Simulation studies show that the proposed

empirical likelihood band has outperformed the normal approximation band in small sample size

cases in the sense that it yields closer coverage probabilities to chosen nominal levels.

When diagnostic results indicate that a certain treatment has time-varying effects, in order

to better assess a treatment over another, it becomes both clinically meaningful and statistically

reasonable to incorporate information from prognostic factors to allow necessary adjustments of
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survival functions. For such reason, we developed methods to construct simultaneous confidence

bands for both the ratio and odds ratio of two survival functions under both the multiplicative

risk model and the additive risk model to provide physicians with more information for diagnostic

judgment.

Based on the martingale central limit theorem, we can show that both the process of survival

ratio and survival odds ratio converge weakly to zero-mean Gaussian processes (Andersen et al. [5]).

It is commonly recognized that the limiting Gaussian process does not have independent increment,

and hence numerical realization of the limiting distribution becomes quite intricate, which hinders

the construction of confidence bands. Lin et al. [47] propose a simulation method in resolving

such issues for a single survival function. Our approach in this dissertation research uses a similar

method by uniformly consider both samples under a stratified Cox’s regression. Simulation results

have shown coverage probabilities of proposed confidence bands to be sufficiently accurate toward

to the normal level. Further illustrations are fulfilled by two real clinical trial data sets.

Equivalently important as the multiplicative risk model, the additive risk model is another

principle framework for evaluating the association between risk factors and survival. Such model

possesses great analytical value for the statistical evaluation of treatment comparison. Most im-

portantly, systemized by Lin and Ying [51], the additive model has a closed form for the estimator

of regression parameters so that the two-sample formulation becomes much more straightforward

with significantly reduced computational cost. Song et al. [74] and Yin and Hu [81] have studied

confidence bands for the survival function as well as the cumulative hazard function based on the

additive risk model. Lee and Hyun [42] extended the work to study the difference of two survival

functions. But to the best of our knowledge, confidence bands that accompany the ratio or odds

ratio of two survival functions remain unavailable. Since the ratio of two survival functions can

be treated as an indicator of the relative risk, and the odds ratio carries the idea of odds that has

many special applications in epidemiology, it is better to consider both the ratio and the odds ratio

together for complete methodological reference. We developed simultaneous confidence bands for

such purpose, designed for a variety of specific applications. Martingale processes under the additive

risk model fail to retain the independent increment structure, and therefore cannot be transformed

into a standard Brownian bridge. Asymptotically equivalent processes have to be considered analo-
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gously to those mentioned by Lin et al. [47] in order to search for proper critical values to construct

simultaneous confidence bands.
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Chapter 2

EMPIRICAL LIKELIHOOD FOR THE ODDS RATIO OF TWO SURVIVAL

FUNCTIONS WITH RIGHT CENSORING

In the present chapter, we study pointwise confidence intervals as well as simultaneous con-

fidence bands for the odds ratio of two survival functions, by introducing the empirical likelihood

(EL) method. We develop EL procedures for two-sample survival odd ratios and establish major

theoretical results. Simulation studies are conducted to compare the relative performance between

the proposed method and the normal approximation method. Proofs are relegated to the Appendix

A.

2.1 Motivation

Being an alternative quantity in the measure of association, the odds ratio can be obtained

easily from either a cohort study or a clinical trial. Concentrations on the odds ratio have become

popular in recent literature of biomedical researches. More and more physicians and epidemiologists

began to adopt the odds ratio in analyzing clinical trial results and evaluating epidemiological find-

ings. See Zhang and Yu [85] for a discussion about the odds ratio in cohort studies and Cummings

[20] for a famous example.

Recall bias is a big issue in case-control studies. Consider, for instance, a case-control study on

individuals over 80 years of age in terms of early-stage Alzheimer’s disease, where cases are those

with the disease and controls are those showing no symptoms. The time-to-event, a fairly difficulty

event for elderly people to recall, is the time elapsed since last reading a newspaper (See Hassan [32]

for a recent discussion of the general issue of recall bias). We believe that under time reversal, one

way of resolving the recall bias issue is to consider the data with recall bias as a right censored data

with lack of recall beyond certain time in the past causing the right censoring. The time-to-event

can be modeled by survival functions, therefore comparing the odds of survival functions between

cases and controls will furnish a mathematically reasonable measurement in evaluating cases versus

controls.
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Furthermore, it is both statistically meaningful and clinically referential to construct confidence

bands for the odds ratio of survival functions as a graphical test for the proportional odds model.

For instance, to see if there is any diagnostic advantage of one treatment over another, one could

check whether the constructed confidence band contains an indicator line of constant one. There is

a formal test for the proportional odds (Dauxois and Kirmani [23]), but a graphical test might be

more enlightening and intuitive.

The normal approximation (NA) based confidence regions have some known limitations. For

instance, confidence intervals constructed are always symmetric, which may not be desirable in every

situation, and the coverage probability of a 100(1−α)% interval estimator for the true survival odds

ratio is also noticeably less than the nominal level when the sample size is small (as shown in our

simulation study). Compared to a normal approximation one, EL-based confidence regions have the

following advantages: (1) It reduces complexity on statistical inferences, due to the dispensability

of deriving a variance estimator; (2) It produces better coverage accuracy in small sample cases;

(3) It is not necessarily symmetric, which allows the resulting interval and band estimates to better

reflect the shape of a specific data. Moreover, EL-based confidence regions are range-preserving,

transform-respecting and asymmetric since they rely solely on the features of the data to determine

the shape of the confidence region.

These considerations motivate us to propose an EL approach for constructing simultaneous

confidence bands for the odds ratio of two survival functions.

Many authors have investigated the use of the EL approaches in survival analysis. The first

contribution is attributed to Thomas and Grunkemeier [75]. Subsequently, Owen [57, 58] introduced

the EL terminology and proved a number of fundamental results. Owen [61] further provides a

comprehensive summary of EL methods. Li [44] and Murphy [57] developed theoretical foundations

for deriving empirical likelihood ratio functions with censored data. Li et al. [45] review and

summarize the various results of many literatures using EL in time-to-event problems. Particularly,

McKeague and Zhao [55] constructed a simultaneous confidence band for the ratio of two survival

functions based on independent, right-censored data. In the subsequent work, McKeague and Zhao

[56] develop a method of estimating both the difference and the ratio of two distribution functions

based on the EL method. Their method can be extended to estimate either the difference or ratio of

the unadjusted cumulative hazard functions. Shen and He [71] derived EL based confidence bands
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for the difference of two survival functions. Ren [66] applied weighted EL to case-control logistic

regression models.

2.2 Main Results

We consider two independent samples with right censoring. For j = 1, 2, let {Tji, i =

1, 2, . . . , nj} be i.i.d. failure times from the distribution Fj. Let {Cji, i = 1, 2, . . . , nj}, from the

distribution Gj, be non-negative i.i.d. censoring times independent of failure times. With right

censoring, we denote observations for each sample as

(Xji, δji), (2.1)

where Xji = min(Tji, Cji), and δji = I(Tji ≤ Cji) is the censoring indicator. Note that throughout

the chapter, we use I(A) for the indicator function of set A. Define the odds ratio of two survival

functions as

θ(t) =
1− S1(t)

S1(t)

/
1− S2(t)

S2(t)
.

With the loss of generality, let 0 ≤ Tj1 ≤ · · ·TjNj
< ∞ be ordered uncensored survival times

of sample j = 1, 2, and write

rji =

nj∑
k=1

I(Xjk ≥ Tji), dji =

nj∑
k=1

I(Xji = Tji, δjk = 1)

to denote the number of subjects ”at risk” prior to time Tji and ”dead” at time Tji, respectively.

Moreover, define

Kj(t) =

Nj∑
i=1

I(Tji ≤ t), j = 1, 2.

Let Γ be the space of all survival functions defined on [0,∞). For any S1, S2 ∈ Γ, the empirical

likelihood function is defined as

L(S1, S2) =
2∏

j=1

nj∏
i=1

[Sj(Xji−)− Sj(Xji)]
δji [Sj(Xji)]

1−δji .
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For fixed t, denote the true odds ratio as θ0(t) =
1−S1(t)
S1(t)

/
1−S2(t)
S2(t)

> 0. The empirical likelihood ratio

can be written as

R(θ0, η, t) =
sup

{
L(S1, S2) : S1(t) =

η
η+θ0(t)−θ0(t)η

, S2(t) = η, S1, S2 ∈ Γ
}

sup{L(S1, S2) : S1, S2 ∈ Γ}

where η is a nuisance parameter such that 0 < η < 1.

Referring to Li [44], we can rewrite the log-likelihood ratio function as:

lnR(θ0, η, t) =
2∑

j=1

Kj(t)∑
i=1

{
(rji − dji) ln

(
1 +

λj

rji − dji

)
− rji ln

(
1 +

λj

rji

)}
, (2.2)

where the Lagrange multipliers λ1, λ2 satisfy

K1(t)∑
i=1

ln

(
1− d1i

r1i + λ1

)
− ln

(
η

η + θ0(t)− θ0(t)η

)
= 0, (2.3)

K2(t)∑
i=1

ln

(
1− d2i

r2i + λ2

)
− ln(η) = 0. (2.4)

Furthermore, to maximize lnR(θ0, η, t), η satisfies

λ1
∂E1(η, λ1, λ2, t)

η
+ λ2

∂E2(η, λ1, λ2, t)

η
= 0,

where, E1(η, λ1, λ2, t) and E2(η, λ1, λ2, t) denote the left hand sides of equation (2.3) and (2.4),

respectively. It follows that,

λ1

n

(
θ0(t)

η + θ0(t)− ηθ0(t)

)
+

λ2

n
= 0. (2.5)

In order to present our main result, we introduce the following notations. For any cdf F , denote

F̄ = 1− F and define aF , bF of F as

aF = inf{x : F (x) > 0} and bF = sup{x : F (x) < 1}.
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Additionally, define

σ2
j (t) =

∫ t

0

dFj(s)

Sj(s−)H̄j(s)
, j = 1, 2, (2.6)

where for sample j, Fj is the distribution function of the survival time Xji and Hj is that of the

censored time Zji.

Write

σ2(t) =
(1− S2)

2σ2
1(t)

p1
+

(1− S1)
2σ2

2(t)

p2
, (2.7)

where p1 and p2 are constant numbers between 0 and 1.

Theorem 1. Let τ1, τ2 ∈ R such that aF1∨aF2 < τ1 < τ2 < bH1∧bH2 and suppose nj/n → pj ∈ (0, 1),

as n → ∞, where n = n1 + n2, then for any t ∈ [τ1, τ2], there exists a solution ηE(t) to equation

(2.5) almost surely, such that ηE(t) = arg sup
η
R(θ0, η, t), and

−2 logR(θ0, η, ·)
D→ W 2(·)

σ2(·)
, (2.8)

where

W (t) =
(1− S2(t))W1 (σ

2
1(t))√

p1
+

(1− S1(t))W2 (σ
2
2(t))√

p2
, (2.9)

and W1,W2 are independent standard Brownian motions.

Corollary 1. Assuming that nj/n → pj as n → ∞, then for any t such that aF1∨aF2 < t < bH1∧bH2,

we have

−2 logR(θ0, η, t)
D→ χ2

1 . (2.10)

Now, we will show how to construct the empirical likelihood confidence band for θ0(t). By

Theorem 1 and the continuous mapping theorem, we can show that

sup
t∈[τ1,τ2]

{−2σ2(t) logR(θ0, η, t)}
D→ sup

t∈[τ1,τ2]
W 2(t).
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From Andersen et al. [5], p. 262, we know

σ̂2
j (t) = nj

Kj(t)∑
i=1

dji
rji(rji − dji)

= σ2
j (t) + op(1), as nj → ∞, j = 1, 2, (2.11)

which yield that

σ̂2(t) =
(1− Ŝ2)

2σ̂2
1(t)

p̂1
+

(1− Ŝ1)
2σ̂2

2(t)

p̂2
(2.12)

is a consistent estimator for σ2(t), where Ŝj(t) is the Kaplan-Meier estimator of Sj(t).

Thus, we can construct the asymptotic 100(1− α)% confidence band for θ0(t) as

In,α = {(t, θ) : −2σ̂2(t) logR(θ, ηE, t) ≤ K2
α[τ1, τ2], t ∈ [τ1, τ2]}, (2.13)

where Kα[τ1, τ2] is the upper α-quantile of the distribution of sup
t∈[τ1,τ2]

|W (t)|. Practically, based on

Lin et al. [47], Monte Carlo methods can be used to simulate such distribution.

For fixed t, by Corollary 1, a pointwise confidence interval with asymptotic coverage probability

of 1− α is given as

In,α(t) = {θ : −2 logR(θ, ηE, t) ≤ Cα}

where Cα is the upper α-quantile of χ2
1.

2.3 Simulation Study

We conduct a simulation study to compare the performance of the proposed EL method and

a normal approximation (NA) based method in terms of coverage probability of both pointwise

confidence intervals and simultaneous confidence bands.

We first derive the NA type confidence band for θ0(t). Write

θ̂n(t) =
1− Ŝ1(t)

Ŝ1(t)

/
1− Ŝ2(t)

Ŝ2(t)
,
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where Ŝ1(t) and Ŝ2(t) are Kaplan-Meier estimators for S1 and S2. Note that according to the CLT

of Ŝj(t) (Andersen et al. [5]), we know

n
1/2
j (Ŝj(·)− Sj(·))

D→ Sj(·)Wj(σ
2
j (·)), j = 1, 2.

Thus, it follows by the functional delta method that

√
n
(
θ̂(·)− θ(·)

)
D→ W ∗(·), (2.14)

where

W ∗(·) = S2(·)
S1(·)(1− S2(·))2

·
[
(1− S2(·))W1(σ

2
1(·))√

p1
+

(1− S1(·))W2(σ
2
2(·))√

p2

]
.

Therefore, the asymptotic 100(1− α)% confidence interval of θ0(t) is

I∗n,α(t) = θ̂n(t)± zα/2
Ŝ2(t)

Ŝ1(t)(1− Ŝ2(t))2
σ̂∗(t)√

n
,

where

σ̂∗2(t) =
(1− Ŝ2(t))

2σ̂2
1(t)

p̂1
+

(1− Ŝ1(t))
2σ̂2

2(t)

p̂2
.

Similarly, the asymptotic 100(1 − α)% normal approximation type confidence band for t ∈ [τ1, τ2]

is defined as

θ̂n(t)± n−1/2K∗
α[τ1, τ2], t ∈ [τ1, τ2], (2.15)

where K∗
α[τ1, τ2] is the upper α-quantile of the distribution of sup

t∈[τ1,τ2]
|W ∗(t)|, which can be generated

through Monte Carlo methods.

In our simulations, both survival time and censoring time are generated independently from

Exponential distributions. Four different sample sizes, i.e., 30, 50, 80 and 100, respectively, have

been selected for the first sample and identical sample sizes have been assigned to the second

one correspondingly. In addition, two different censoring rates (CR), 10% and 30%, are selected.

Under each setting, 1000 repetitions are conducted to measure coverage probabilities through Monte

Carlo simulations. More specifically, we set F1 = Exp(2.3), F2 = Exp(1) and generate censoring
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distributions G1 = Exp(20), G2 = Exp(8) to generate a 10% CR, while G1 = Exp(9), G2 = Exp(2.3)

to guarantee a 30% CR.

Two different nominal levels, α = 0.90 and α = 0.95 are chosen to compare the performance

of our empirical likelihood (EL) confidence band with that of the normal approximation (NA) type

one. We set τ1 = 0.1 and τ2 = 2.5 to generate Kα[τ1, τ2] and K∗
α[τ1, τ2]. When sample size is small,

τ2 will be adjusted to guarantee an effective sample size, #{(i, j) : Tji >= τ2}, at τ2 of at least 10%

of the total sample size in avoiding instability (Hollander et al. [33]). Detailed results are reported

in Table 1.

For fixed t, our proposed empirical likelihood confidence interval, In,α(t) and the normal ap-

proximation one, I∗n,α(t), are also studied for further justification. Simulation results at t = 1.1 are

summarized in Table 2 in Appendix B.

From the above two tables, we may be able to make the following conclusions. It can shown

that both EL confidence bands and confidence intervals generally give more accurate coverage prob-

abilities in small sample sizes, which are much closer to the nominal level than those of the normal

approximation method. More specifically, simultaneous empirical likelihood confidence bands gen-

erally outperform the normal approximation type bands for virtually all different sample sizes, with

more stable and consistent performance. As expected, the advantages of the proposed empirical

likelihood methods for constructing pointwise confidence intervals gradually disappear as sample

size becomes larger.

2.4 Remarks

The aforementioned method can be further extended to semiparametric estimators with ad-

justed covariates. Consider

θ(t|Z1, Z2) =
1− Ŝ1(t|Z1)

Ŝ1(t|Z1)

/
1− Ŝ2(t|Z2)

Ŝ2(t|Z2)
,

where Z1 are possible time-varying covariates of sample 1, and Z2 are those of sample 2.

Incorporating adjusted covariates to empirical likelihood based estimator will provide useful

information of more relevant risk factors while at the same time maintaining small sample efficiencies

of the empirical likelihood based method. Moreover in many applications, it is more reasonable to
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assume the survival and censoring time to be independent depending on covariates (risk factors),

then introducing a regression model, say, the Cox model, will become quite necessary.
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Chapter 3

CONFIDENCE BANDS FOR THE RATIO AND ODDS RATIO OF SURVIVAL

CURVES UNDER THE COX MODEL

In this chapter, we study simultaneous confidence bands for the ratio and odds ratio of two

survival functions under the Cox model. In Section 3.1, we introduce the research motivation. In

Section 3.2, major inference results for constructing both Equal precision (EP) and Hall-Wellner

(HW) type confidence bands are presented for the ratio of survival functions based on the Cox

regression model. In Section 3.3, simultaneous confidence bands are constructed for the survival

odds ratio. In Section 3.4, simulation studies are conducted to evaluate the performance of the

proposed method. Two real applications demonstrating the utility of the proposed technique are

given in Section 3.5, using the primary biliary cirrhosis data from the Mayo Clinic, as well as the

chronic myelogenous leukemia data from the International Bone Marrow Transplant Registry and

German CML Study Group. Conclusions and discussions are presented in Section 3.6. Proofs are

summarized in Appendix A.

3.1 Motivation

In biomedical applications, it is usually of primary desires to compare the survival rates of two

treatments (Zhang and Klein [86]). When diagnostic results imply possible associations between

some time-varying effects and a certain designated treatment, it is clinically reasonable to consider

what times the two treatments differ from each other. Zhang and Klein [86] points out that the

question is particularly essential when one treatment has a higher early survival rate but fails in the

long term. The authors have also provided a typical example in comparing the survival rates of bone

marrow transplantation (BMT) and the traditional chemotherapy patients, where BMT patients

might have a higher early mortality rate, but a lower death rate as time goes by. The desire

motivates us for using the Cox model in order to incorporate more information from time-varying

effects that might eventually affect the survival rates.
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However, to evaluate the comparison of two treatment effects in terms of hazard ratios by

the Cox model, the absence of proportionality can be problematic. Zhang and Klein [86] has

suggested an informal but more straightforward test by the use of graphical methods. Possible

choice will include plotting the estimated cumulative (log) baseline hazard rates from stratified Cox

models. Andersen [3] develops plots of the estimated cumulative hazard rate from one treatment

over another, and Arjas [6] constructed relevant plots based on a modified total time on test statistic.

Several methods have been proposed in literatures for comparing two treatments using differ-

ent types of functions in the field of survival analysis; for example, Kalbfleisch and Prentice [36],

Schemper [69] and Xu and O′Quigley [78] all considered cumulative hazard ratios. Zhang and Klein

[86] measured the difference of two survival functions based on the proportional hazards model,

while Wei and Schaubel [76] proposed an estimator of the ratio of baseline cumulative hazards in

two populations under a stratified Cox model.

To the best knowledge of us, however, methodologies concentrating on simultaneous confidence

bands for the ratio or odds ratio of survival functions, in the presence of regression covariates that

enable possible adjustments of survival functions, still remain unavailable. In Chapter 3, we propose

our solution under the stratified Cox regression model. That is, we estimate the ratio of two survival

functions,

R(·; z0) = S1(·; z0)/S2(·; z0),

by

R̂(·; z0) = Ŝ1(·; z0)/Ŝ2(·; z0) = e(Λ̂2(·;z0)−Λ̂1(·;z0)),

and the survival odds ratio

OR(·; z0) =
S1(·; z0)

1− S1(·; z0)

/
S2(·; z0)

1− S2(·; z0)
,

by

ÔR(·; z0) =
Ŝ1(t; z0)

1− Ŝ1(t; z0)

/
Ŝ2(t; z0)

1− Ŝ2(t; z0)
=

eΛ̂2(t;z0) − 1

eΛ̂1(t;z0) − 1
,

under a particular set of covariate values, where Λ̂i(·; z0), i = 1, 2 are the Breslow (Breslow [10])

estimators of cumulative hazard functions.
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To find simultaneous confidence bands for R(·; z0) and OR(·; z0), using the martingale central

limit theorem, it can be shown that both

WR(·; z0) =
√
n
[
R̂(·; z0)−R(·; z0)

]
and

WOR(·; z0) =
√
n
[
ÔR(·; z0)−OR(·; z0)

]
converge weakly to zero-mean Gaussian processes. It is well-known that the independent increment

assumption is not kept by those Gaussian processes. In this chapter, we follow Lin et al. [47] to

conduct simulations on our proposed bands using a similar approach.

3.2 Confidence Bands for the Ratio of Two Survival Functions

For subject j in group i, denote Tij as survival time and Cij as censoring time, and assume

that Tij and Cij are independent conditional on Zij(·), where Zij(·) are bounded covariates. For

patients of group i, we fit a Cox regression model (Cox [17]) stratified on treatments specifying the

hazard function λi(t; z) for the failure time Ti under covariate Z(t) = z(t) by the following form

λi(t; z) = λi0(t)e
β′z(t),

where β is a p-vector of unknown regression coefficients, z(t) is a p-vector of possibly time-varying

covariates and λi0(t) is the unspecified baseline hazard function.

Therefore, the cumulative hazard function Λi(t; z) becomes

Λi(t; z) =

∫ t

0

eβ
′z(u)λi0(u)du.

By Breslow [10], for group i, the baseline cumulative hazard function Λi(t) can be consistently

estimated by

Λ̂i0(t) =

ni∑
j=1

I(Xij ≤ t)∆ij∑ni

j=1 Yij(Xij)eβ̂
′Zij(Xij)

(3.1)
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where β̂ is the MLE of β and Xij = min(Tij, Cij) is the censored survival time for subject j of

group i with ∆ij = I(Tij ≤ Cij) being the corresponding censoring indicator. In addition, write

Yij(t) = I(Xij ≥ t), indicating if subject j of group i is at risk prior to time t.

Following Lin et al. [47], for group i, we introduce the following notations.

Sr
i (β, t) =n−1

i

ni∑
j=1

Yij(t)e
β′Zij(t)Z

⊗
r

ij (t), s
(r)
i = E [Sr

i (β, t)] , r = 0, 1, 2

Ei(β, t) =
S
(1)
i (β, t)

S
(0)
i (β, t)

, ei(β, t) =
s
(1)
i (β, t)

s
(0)
i (β, t)

,

Vi(β, t) =
S
(2)
i (β, t)

S
(0)
i (β, t)

− Ei(β, t)
⊗

2, vi(β, t) =
s
(2)
i (β, t)

s
(0)
i (β, t)

− ei(β, t)
⊗

2,

where for a column vector a, a
⊗

0 = 1, a
⊗

1 = a and a
⊗

2 = aa′.

Define the counting process Nij(t) = ∆ijI(Xij ≤ t) and martingale

Mij(t) = Nij(t)−
∫ t

0

Yij(u)e
β′Zij(u)dΛi0(u), j = 1, . . . , ni.

In addition, write N̄i(u) =
∑ni

i=1 Nij(u), M̄i(u) =
∑ni

j=1 Mij(u).

Thus, writing in counting processes, (3.1) becomes

Λ̂i0(t; z0) =

∫ t

0

dN̄i(u)

niS
(0)
i (β̂, u).

Theorem 2. The process

W (t; z0) = n1/2[(Λ̂2(t; z0)− Λ̂1(t; z0))− (Λ2(t; z0)− Λ1(t; z0))]

is asymptotically equivalent to

W̃ (t; z0) =
1√
n

1

p2

∫ t

0

eβ
′
0z0(u)dM̄2(u)

S
(0)
2 (β0, u)

− 1√
n

1

p1

∫ t

0

eβ
′
0z0(u)dM̄1(u)

S
(0)
1 (β0, u)

+ (h2(t; z0)− h1(t; z0))
′Σ−1[

1√
n

2∑
i=1

ni∑
j=1

∫ ∞

0

{Zij(u)− Ei(β0, u)}dMij(u)

]
(3.2)
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where pi = limn→∞ ni/n, and

hi(t; z0) =

∫ t

0

eβ
′z0 [z0 − ei(β, u)]dΛi0(u), i = 1, 2.

In addition, its covariance function is given by

ξ(t, v; z0) =
2∑

i=1

1

pi

∫ t∧v

0

e2β
′
0z0(u)dN̄i(u)

ni

[
s
(0)
i (β0, u)

]2
+ (h1(t; z0)− h2(t; z0))

′Σ−1(h1(v; z0)− h2(v; z0)). (3.3)

Since (3.2) does not have independent increment, we follow the method proposed by Lin et al.

[47] in order to conduct simulation studies. By replacing dMij(t) by GijdNij(t), where Gij’s are all

standard normal random variables, we know W̃ (t; z0) can be asymptotically estimated by

Ŵ (t; z0) =
1√
n

1

p̂2

n2∑
j=1

I(X2j ≤ t)∆2je
β̂z0(X2j)G2j

S
(0)
2 (β̂, X1j)

− 1√
n

1

p̂1

n1∑
j=1

I(X1j ≤ t)∆1je
β̂z0(X1j)G1j

S
(0)
1 (β̂, X1j)

+ (ĥ2(t; z0)− ĥ1(t; z0))
′
Σ̂−1[

1√
n

2∑
i=1

ni∑
j=1

∆ij

{
Zij(Xij)− Ei(β̂, Xij)

}
Gij

]
(3.4)

with a consistent estimator of the covariance function written as

σ̂2(t; z0) =
2∑

i=1

1

pi

∫ t∧v

0

e2β
′
0z0(u)dN̄i(u)

ni

[
S
(0)
i (β0, u)

]2
+ (ĥ1(t; z0)− ĥ2(t; z0))

′Σ̂−1(ĥ1(v; z0)− ĥ2(v; z0)),

where,

Σ̂ = n−1

2∑
i=1

ni∑
j=1

∆ij{S(2)
i (β̂, Xij)/S

(0)
i (β̂, Xij)− Ei(β̂, Xij)

⊗
2}, (3.5)
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and for i = 1, 2,

ĥi(t; z0) = n−1
i

ni∑
j=1

I(Xij ≤ t)∆ije
β̂′z0(Xij){z0(Xij)− Ei(β̂, Xij)}/S(0)

i (β̂, Xij). (3.6)

To construct simultaneous confidence bands, we consider the class of transformed process

WR(t; z0) = n
1
2 g(t; z0)

[
ϕ{Λ̂2(t; z0)− Λ̂1(t; z0)} − ϕ{Λ2(t; z0)− Λ1(t; z0)}

]
,

where ϕ and g maintain the same properties as stated in Lin et al. [47]. Thus, by the functional

delta-method, the process WR(t; z0) is equivalent to

W̃R(t; z0) = g(t; z0)ϕ
′{Λ̂2(t; z0)− Λ̂1(t; z0)}W (t; z0),

where ϕ′(x) is the first derivative of ϕ(x).

It is easy to see that the distribution of W̃R(t; z0) can be approximated by that of

ŴR(t; z0) = g(t; z0)ϕ
′{Λ̂2(t; z0)− Λ̂1(t; z0)}Ŵ (t; z0).

Let Cα be the upper α-quantile of the distribution sup
t∈[t1,t2]

|ŴR(t; z0)|, which can be estimated through

simulation. Then an approximate 100(1−α)% confidence band for ϕ{Λ2(t; z0)−Λ1(t; z0)} over time

interval [t1, t2] becomes

ϕ{Λ̂2(t; z0)− Λ̂1(t; z0)} ± n− 1
2Cα/g(t; z0).

Let ϕ(x) = ex. To choose appropriate weight function g(·; z0), we consider

g1(t; z0) = {Λ̂2(t; z0)− Λ̂1(t; z0)}/σ̂(t; z0), g2(t; z0) = {Λ̂2(t; z0)− Λ̂1(t; z0)}/{1 + σ̂2(t; z0)}.



19

The asymptotic 100(1− α)% confidence bands for R(t; z0) over the time interval [t1, t2] are conse-

quently given in the following form,

R̂(t; z0)± n− 1
2C1,αR̂(t; z0)σ̂(t; z0), (3.7)

R̂(t; z0)± n− 1
2C2,αR̂(t; z0)[1 + σ̂2(t; z0)], (3.8)

respectively, where C1,α and C2,α are upper α-quantiles that correspond to g1 and g2.

Note that (3.7) and (3.8) are the so-called equal-precision (Nair [58]) and Hall-Wellner (Hall and

Wellner [31]) type bands, respectively.

3.3 Confidence Band for the Odds Ratio of Two Survival Functions

Although quite analogous mathematically, since OR(t; z0) cannot be rewritten into a function

of {Λ2(t; z0)−Λ1(t; z0)}, we only give the following theorem. The proof is attached in Appendix A.

Theorem 3. The process

WOR(t) = n1/2

[
Ŝ1(t; z0)

1− Ŝ1(t; z0)

/
Ŝ2(t; z0)

1− Ŝ2(t; z0)
− S1(t; z0)

1− S1(t; z0)

/
S2(t; z0)

1− S2(t; z0)

]

is asymptotically equivalent to

W̃OR(t; z0) =

[
S1(t; z0)

1− S1(t; z0)

/
S2(t; z0)

1− S2(t; z0)

]
·{

1√
n

1

p2

1

1− S2(t; z0)

∫ t

0

eβ
′
0z0(u)dM̄2(u)

S
(0)
2 (β0, u)

− 1√
n

1

p1

1

1− S1(t; z0)

∫ t

0

eβ
′
0z0(u)dM̄1(u)

S
(0)
1 (β0, u)

+

(
h2(t; z0)

1− S2(t; z0)
− h1(t; z0)

1− S1(t; z0)

)′

Σ−1[
1√
n

2∑
i=i

ni∑
j=1

∫ ∞

0

{Zij(u)− Ei(β0, u)}dMij(u)

]}
,

(3.9)
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with the covariate function given by

ξOR(t; z0) =

[
S1(t; z0)

1− S1(t; z0)

/
S2(t; z0)

1− S2(t; z0)
· S1(v; z0)

1− S1(v; z0)

/
S2(v; z0)

1− S2(v; z0)

]
·{

2∑
i=1

1

pi

1

1− Si(t; z0)

1

1− Si(v; z0)

∫ t∧v

0

e2β
′
0z0(u)dN̄i(u)

ni

[
s
(0)
i (β0, u)

]2
+

(
h1(t; z0)

1− S1(t; z0)
− h2(t; z0)

1− S2(t; z0)

)′

Σ−1

(
h1(v; z0)

1− S1(v; z0)
− h2(v; z0)

1− S2(v; z0)

)}
. (3.10)

Similarly, based on Lin et al. [47], W̃OR(t; z0) can be asymptotically equivalent to

ŴOR(t; z0) =

[
Ŝ1(t; z0)

1− Ŝ1(t; z0)

/
Ŝ2(t; z0)

1− Ŝ2(t; z0)

]
·{

1√
n

1

p̂2

1

1− Ŝ2(t; z0)

n2∑
j=1

I(X2j ≤ t)∆2je
β̂z0(X2j)G2j

Ŝ
(0)
2 (β̂, X2j)

− 1√
n

1

p̂1

1

1− Ŝ1(t; z0)

n1∑
j=1

I(X1j ≤ t)∆1je
β̂z0(X1j)G1j

S
(0)
1 (β̂, X1j)

+

(
ĥ2(t; z0)

1− Ŝ2(t; z0)
− ĥ1(t; z0)

1− Ŝ1(t; z0)

)′

Σ̂−1

[
1√
n

2∑
i=1

ni∑
j=1

∆ij

{
Zij(Xij)− Ei(β̂, Xij)

}
Gij

]
, (3.11)

with the consistent estimator of ξOR(t; z0) given by

σ̂2
OR(t; z0) =

(
(1− Ŝ2(t; z0))Ŝ1(t; z0)

Ŝ2(t; z0)(1− Ŝ1(t; z0))

)2

·{
2∑

i=1

1

pi

(
1

1− Ŝi(t; z0)

)2 ∫ t

0

e2β
′
0z0(u)dN̄i(u)

ni

[
S
(0)
i (β0, u)

]2
+

(
ĥ1(t; z0)

1− Ŝ1(t; z0)
− ĥ2(t; z0)

1− Ŝ2(t; z0)

)′

Σ̂−1

(
ĥ1(v; z0)

1− Ŝ1(v; z0)
− ĥ2(v; z0)

1− Ŝ2(v; z0)

)}
, (3.12)
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where Σ̂−1 and ĥi(t; z0) are defined in (3.5) and (3.6).

Thus, the 100(1−α)% confidence bands on the time interval [t1, t2] for OR(t; z0) can be written

as,

ÔR(t; z0)± n− 1
2Cασ̂OR(t; z0), (3.13)

where Cα is the upper α-quantile of the distribution sup
t∈[t1,t2]

|ŴOR(t; z0)/σ̂OR(t; z0)|, which can be

generated through Monte Carlo methods.

3.4 Simulation Study

To compare the coverage accuracy of our proposed technique at a nominal level of 95%, we

design the following series of simulation studies. Let Tij, j = 1, ..., ni , i = 1, 2 be the event times,

generated via the transformation

Tij = {− log(Uij)/[αj exp(β0Zij)]}1/γj ,

where Uij ∼ Uniform(0, 1), β0 = 0.3 and Zij are generated from standard normal distribution

truncated at ±5. Thus, {Tij} follows a Weibull distribution with hazard function

λij(t) = αiγit
γi−1 exp{βZij}.

By choosing different values of γi , i = 1, 2, we can ensure that the baseline hazard functions

for the two groups will not be proportional. Let the censoring times Cij ∼ Uniform(2, 4.5), then

designated censoring rates can be achieved by varying the value of αi. For sample sizes n = 50, 100,

the coverage probability is calculated based on 2,000 simulated samples. For each replicate sample

we calculated the 95% simultaneous confidence bands based on (3.7), (3.8) and (3.13).

It is worth to mention that Lin et al. [47] has suggested that, by Nair [58] and Bie et al. [8],

one shall restrict the EP band to time interval [t1, t2] such that ĉ1 = 1− ĉ2 = 0.05, or 0.1, where

ĉk = σ̂2(tk; z0)/{1 + σ̂2(tk; z0)}.
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In our case, to estimate two survival functions simultaneously, we have further adjust ĉ1 to a

moderately larger scale, in order to accommodate both groups. In our simulation studies, we have

set ĉ1 = 0.1 when CR = 25%, ĉ1 = 0.2 when CR = 50% and ĉ1 = 0.3 when CR = 75%. The

consequential results are given in Table 3 for the ratio of survival functions and Table 4 for the odds

ratio of survival functions. We can see in Table 3 that coverage probabilities of the proposed bands,

after appropriate restriction on time interval [t1, t2], becomes quite close to the chosen nominal level.

For the ratio of two survival functions, HW bands in general tend to be having a bit higher coverage

probabilities than those of EP bands. Such finding is further illustrated by real data applications

in the next section.

3.5 Real Applications

3.5.1 The Primary Biliary Cirrhosis Data

The Mayo Clinic developed a database for patients with primary biliary cirrhosis (PBC), a fatal

chronic live disease. The data is tabulated in the Appendix D.1 of Fleming and Harrington [25].

A total of n = 312 patients participated in the randomized clinical trial, where n1 = 158 patients

received the treatment (D-penicillamine) and n2 = 154 were treated with a placebo. Censoring (187

of 312) is heavy in the data.

Following Lin et al. [47], we use the same variable transformations for illustration purpose

only, and corresponding parameter estimates are provide in their chapter. Moreover, we chose z0

as the average level of covariate effects, namely, 51 year old, 3.4 gm/dl serum albumin, 1.8 mg/pl

serum bilirubin, 10.74 seconds of prothrombin time and no oedema. Figure 1 depicts the Equal

Precision and the Hall-Wallner confidence bands for the survival ratio between the case group and

the control group. The estimated ratio of survival functions based on Kaplan-Meier curves is also

displayed. Figure 2 depicts those of the survival oddsr ratio.

As discussed in the previous section, one has to adjust ĉ1 for a more informative output. In our

analysis for the PBC data, since the censoring rate rather high (almost 60%), we have set ĉ1 = 0.2

for survival ratio and ĉ1 = 0.23 for survival odds ratio. Note that on the basis of 10,000 realizations,

for survival odds ratio, Cα is found to be 3.17 for the EP band and 0.59 for the HW band; whereas

for survival ratio, such critical value becomes 3.02.
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Additionally, it is easy to see that HW bands are generally slightly wider than EP bands, which

might be resulted from the mathematical properties of corresponding weight functions. Since both

simultaneous bands contain the horizontal line marked for identical survival rate (reflected by both

ratio and odds ratio in the same sense), no distinctive evidence would imply any difference between

the treatment and the placebo on the basis of our analysis.

3.5.2 The Chronic Myelogenous Leukemia Data

The chronic myelogenous leukemia (CML) data consists of patients receiving conventional

chemotherapy as well as patients treated by allogeneic bone marrow transplantation. Patients

receiving the conventional treatment were from a multicenter trial conducted by the German CML

study. Amongst the 196 patients selected within the cohort, 75 received primary treatment with

interferon and 121 with hydroxyurea. Patients within this cohort are followed until death or the

end of the study.

The transplant cohort contains 548 patients receiving hydroxyurea or interferon pretreatment

and a HLA-identical sibling bone marrow transplant (BMT) (Zhang and Klein [86]). The cohort

study pertains to the International Bone Marrow Transplant Registry (IBMTR). The IBMTR is

a voluntary collaborating group of over 300 transplant centers worldwide that contribute data on

their allogeneic bone marrow transplants to a statistical center at the Medical College of Wisconsin.

Patients in this group were diagnosed between 1983 and 1991, under ages from 15 to 55. For more

details about the cohort study, refer to Gale et al. [26].

Following Zhang and Klein [86], we use the screened cohort consisted by 101 patient with

conventional treatment and 399 receiving BMT, whose year of diagnosis is no later than 1988. As

pointed out by Zhang and Klein [86], the covariate, namely, spleen size, has heavy joint effect with

treatment. Thus, in order to account for such association, the original data is split into a cohort for

patients with large spleen size (≥ 10 cm) and that for patients with small spleen size (otherwise).

Therefore desired comparisons via survival functions have to be completed separately for the two

new cohorts accordingly. Relevant graphical results are shown in Figure 3 to Figure 6.

Carefulness has to be imposed when choosing time interval [t1, t2] for the data set. Zhang

and Klein [86] has suggested [6.4, 72.2] for survival difference, we adopted the same interval for our
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proposed method for survival ratio, but used another interval [7.9, 72.2] to ensure both groups have

death occurred.

It can be seen from Figure 3 and Figure 4 that both confidence bands cover an identical line

until after about 58 months, indicating that the conventional chemotherapy treatment has an early

survival advantage, possibly resulted from toxicity of the BMT. However, the BMT treatment shows

a long term survival advantage due to lower relapse rate. It is, nonetheless, interesting to infer from

Figure 5 and Figure 6 that the survival odds ratio amongst the two treatments is quite likely to

be relatively a constant. Such proportionality hypothesis has also been suggested by a form test

conducted by Zhang and Klein [86], and yet a graphical illustration might seem to be more revealing.

3.6 Discussion

It is known that the simultaneous confidence band for survival curves is more appealing than

pointwise confidence interval, in the sense that it measures and demonstrates the overall trend

of survival rates over a period of time, which will be more likely to reveal a more thorough and

comprehensive clinical reference. For analysis involving the proportional odds regression model,

which is of a great capacity of applications (Yang and Prentice [78, 79]), it is analytically worthwhile

to build visual illustration to form a graphical test, and hence constructing confidence bands for

the survival odds ratio becomes statistically critical.

In addition, The estimated critical value, Cα, depends on the number of realizations, N . Thus,

it is critical to know an appropriate N for applying our proposed method. Parzen et al. [62] has

reported a cut-off value of N for constructing simultaneous confidence interval for the difference of

two survival functions, while Zhang and Klein [86] has suggested thatN = 500 for their simultaneous

confidence band construction for survival difference. In our setting, we need at least 500 iterations

to obtain stable critical values for the survival ratio, however, N has to be at least 1000 for the

survival odds ratio.

Last but not least, it is well-known that in many survival literatures, the Box-Cox transforma-

tion is commonly used for the cumulative hazard function in order to obtain more realistic survival

estimate, which will more likely result in more statistically reasonable results. Note that such trans-

formation becomes mathematically improbable for the odds ratio of survival functions. Similar to
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Lin et al. [47], by letting ϕ(x) = log(x), one can easily derive the log-transformed confidence bands

for the ratio of survival functions. Our simulation studies, nevertheless, show quite similar results

between transformed and untransformed bands. Consequently, for contextual integrity, we decide

to use untransformed bands consistently.
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Chapter 4

CONFIDENCE BANDS FOR THE RATIO AND ODDS RATIO OF SURVIVAL

CURVES UNDER THE ADDITIVE RISK MODEL

In this chapter, we extend the methodologies described in Chapter 3 toward the additive risk

model to construct simultaneous confidence bands for R(·; z0) and OR(·; z0). Similar to what is

discussed in Chapter 3, WR(·; z0) and WOR(·; z0) under the additive risk model still do not have

the independent increment structure, and therefore cannot be transformed into standard Brownian

bridges. Based on Lin and Ying [51], we show an analogous method to construct the simultaneous

confidence bands .

In the Section 4.2, we provide notations and a review of the semiparametric additive risk model.

In Section 4.3, we provide a simulation study for constructing the simultaneous confidence bands

for the ratio and odds ratio of two survival curves. Two clinical trial data sets are studied in Section

4.4 for further illustration. Some discussions are given in Section 4.5.

4.1 Literature Review

For two sample comparison incorporating time-variant adjustments, one possible choice would

be the Cox proportional hazards model (Cox [17]), which specifies the association between the

hazard function and the covariates with an exponential link function. More specifically, the Cox

model specifies the hazard rate to be of the following form,

λ(t;Zi) = λ0(t) exp{β′Zi(t)},

where Zi(t) is the ith possible time-dependent unknown covariate vector and β is the regression

parameter. Because of the multiplicative association between covariate effects and the baseline haz-

ard function, the infinite dimensional nuisance parameter λ0(t) cancels out in the partial likelihood

structure (Cox [18]). In some applications, when the multiplicative effect assumption of regression

covariates on the hazard function is violated, the additive risk model provides a meaningful alter-
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native. The additive risk model, proposed by Lin and Ying [51], assumes linearity between the

covariate and the hazard function,

λ(t;Zi) = λ0(t) + β′Zi(t).

As stated in Chapter 1, both the Cox model and the additive risk models have extensive biological

applications and rigorous statistical foundations. Jointly, the two models provide equally important

reference to modeling the hazard function (Breslow and Day [11, 12]). Lin and Ying [51] provided

a semiparametric solution to the additive risk model with closed form estimation of regression

coefficients, and further derived large-sample properties for this model. Since the additive risk model

might in some cases be more appropriate than the Cox model, it plays a key role as an important

modeling alternative, although model checking and diagnosis theories are not yet completed. Recent

literatures have shown an increasing popularity of applications through the additive risk model

toward a variety of problems, on the basis of counting processes and martingale. For instance, Lin

and Ying [52] and Lin et al. [48] analyzed the interval censored data, Shen and Cheng [72] studied

the cumulative incidence curve in the context of competing risks, Yip et al. [83] designed recapture

experiments and Kulich and Lin [40] proposed methodologies in evaluating measurement errors.

Song et al. [74] and Yin and Hu [81] both studied confidence bands of survival functions under

the additive risk model. Quite recently, Lee and Hyun [42] have proposed confidence bands for the

difference of two survival functions.

Many other researches have also been conducted relevant to the original additive risk model

of Lin and Ying [51], which, among others, include Aalen [1, 2] and Huffer and McKeague [34] for

nonparametric additive risk models, McKeague and Sasieni [54] for a partly additive risk model and

Scheike [68] for the rate function based on both nonparametric and semiparametric additive risks.

These models allow adjustments for time-varying effects which provide more flexibility in model

fitting.

The estimation of parameters based on the additive risk model has an analytic closed form

that is computationally easy to implement. The risk ratio and the risk odds ratio are alternatives

to the risk difference to assess comparison between treatments in epidemiological studies. The ratio
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and odds ratio of survival functions carry out comparisons on the chance of death pertaining to two

sets of characteristics.

Compared to confidence interval, confidence band is more informative and hence has become

more desirable for describing the entire survival experience. In the nonparametric setup without

considering any adjustable covariate, the confidence bands, namely the equal precision band and

Hall-Wellner type band, have been studied extensively and are described in great detail by Fleming

and Harrington [25] and Andersen et al. [5].

4.2 Construction of Confidence Bands for Comparing Two Survival Functions

Adopting the same settings as those in Chapter 3, for a patient j in group i, i = 1, 2, we fit

an additive risk model (Lin and Ying [51]) stratified on treatment. The hazard function has the

following form

λi(t;Zij) = λi0(t) + β′Zij(t), (4.1)

where λi0(t) is the unspecified baseline hazard function for group i, Zij(·) is a p-vector of covari-

ates that influence the hazard rate and hence the survival rate, and β is a p-vector of regression

coefficients.

For group i with ni independent subjects, we consider the counting process {Nij(t); t ≥ 0} for

the jth subject in the group that records the number of observed events up to time t. The intensity

function for Nij(t) is thus given by

Yij(t) dΛ(t;Zij) = Yij(t){dΛi0(t) + β′Zij(t)dt}, (4.2)

where Yij(t) = I(Xij ≥ t), and

Λi0(t) =

∫ t

0

λi0(u)du.

The counting process Nij(·) can be uniquely decomposed such that for every j and t,

Nij(t) = Mij(t) +

∫ t

0

Yij(u) dΛ(u;Zij(u)), (4.3)
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where Mij(·) is a local square integrable martingale (Lin and Ying [51]).

Estimators for baseline cumulative hazard functions are given by

Λ̂i0(t; β̂) =

∫ t

0

∑ni

j=1{dNij(u)− Yij(u)β̂
′Zij(u)du}∑ni

j=1 Yij(u)
. (4.4)

Given a covariate vector z0(t), the survival function can be estimated by

Ŝi(t; z0) = exp

{
−Λ̂i0(t, β̂)− β̂

∫ t

0

z0(u)du

}
, (4.5)

In addition, β can be estimated from the following estimating equation,

U(β) =
2∑

i=1

ni∑
j=1

∫ ∞

0

Zij(t){dNij(t)− Yij(t)dΛ̂i0(β, t)− Yij(t)β
′Zij(t)dt},

which is equivalent to

U(β) =
2∑

i=1

ni∑
j=1

∫ ∞

0

{Zij(t)− Z̄i(t)}{dNij(t)− Yij(t)β
′Zij(t)dt}, (4.6)

where

Z̄i(t) =

ni∑
j=1

Yij(t)∑ni

j=1 Yij(t)
Zij(t).

The resulting estimator takes the explicit form

β̂ =

[
2∑

i=1

ni∑
j=1

∫ ∞

0

Yij(t){Zij(t)− Z̄i(t)}⊗2dt

]−1

[
2∑

i=1

ni∑
j=1

∫ ∞

0

{Zij(t)− Z̄i(t)}dNij(t)

]
. (4.7)
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For notational simplicity and convenience, we write

Ȳi(t) =
1

ni

ni∑
j=1

Yij(t), i = 1, 2

Gi(t; z0) =

∫ t

0

{z0(s)− Z̄i(s)}ds, i = 1, 2

Σ =

[
1

n

2∑
i=1

ni∑
j=1

∫ ∞

0

{Zij(t)− Z̄i(t)}⊗2Yij(t)dt

]′
.

To construct confidences band for the survival ratio R(t; z0) and odds ratio OR(t; z0), we introduce

the following theorems. Proofs are given in Appendix A.

Theorem 4. Under the additive risk model, for the survival ratio, the process

L(t; z0) = n1/2[(Λ̂2(t; z0)− Λ̂1(t; z0))− (Λ2(t; z0)− Λ1(t; z0))]

converges weakly to the Gaussian process

L̃(t; z0) =
1√
n

1

p2

n2∑
j=1

∫ t

0

1

Ȳ2(s)
dM2j(s)−

1√
n

1

p1

n1∑
j=1

∫ t

0

1

Ȳ1(s)
dM1j(s)

+
G′(t; z0)√

n
Σ−1

[
2∑

i=1

ni∑
j=1

∫ ∞

0

{Zij(s)− Z̄i(s)}dMij(s)

]
, (4.8)

with the covariance function estimated by

ξL(t; z0) =
2∑

i=1

[
1

n

1

p2i

ni∑
j=1

∫ t∧s

0

dNij(u)

(Ȳi(u))2
+ (−1)i

G′(s; z0)

pi
Σ−1Di1(t)

+ (−1)i
G′(t; z0)

pi
Σ−1Di1(s)

]
+G′(t; z0)Σ

−1Di2(Σ
−1)′G(s; z0),

where

G(t; z0) = G2(t; z0)−G1(t; z0), (4.9)

Di1(t) =

ni∑
j=1

∫ t

0

{Zij(u)− Z̄i(u)}dNij(u)∑ni

k=1 Yik(u)
, (4.10)
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Di2 =
1

n

ni∑
j=1

∫ ∞

0

{Zij(t)− Z̄i(t)}⊗2dNij(t), (4.11)

and for column vector a, a⊗2 denotes the outer product of a.

Theorem 5. The process of the survival odds ratio,

LOR(t) = n1/2

[
Ŝ1(t; z0)

1− Ŝ1(t; z0)

/
Ŝ2(t; z0)

1− Ŝ2(t; z0)
− S1(t; z0)

1− S1(t; z0)

/
S2(t; z0)

1− S2(t; z0)

]

is asymptotically equivalent to

L̃OR(t; z0) =
(1− S2(t; z0))S1(t; z0)

S2(t; z0)(1− S1(t; z0))
·{

1√
n

1

p2(1− S2(t; z0))

n2∑
j=1

∫ t

0

1

Ȳ2(s)
dM2j(s)

− 1√
n

1

p1(1− S1(t; z0))

n1∑
j=1

∫ t

0

1

Ȳ1(s)
dM1j(s)

+
1√
n
G′

OR(t; z0)Σ
−1[

2∑
i=1

ni∑
j=1

∫ ∞

0

{Zij(s)− Z̄i(s)}dMij(s)

]}
, (4.12)

with covariance function estimated by

ξLOR
(t; z0) =

(1− S2(t; z0))S1(t; z0)

S2(t; z0)(1− S1(t; z0))

(1− S2(s; z0))S1(s; z0)

S2(s; z0)(1− S1(s; z0))
·{

2∑
i=1

[
1

n

1

p2i

1

(1− Si(t; z0))

1

(1− Si(s; z0))

ni∑
j=1

∫ t∧s

0

dNij(u)

(Ȳi(u))2

+ (−1)i
G′

OR(s; z0)

(1− Si(t; z0))pi
Σ−1Di1(t)

+ (−1)i
G′

OR(t; z0)

pi(1− Si(s; z0))
Σ−1Di1(s)

]

+G′
OR(t; z0)Σ

−1Di2(Σ
−1)′GOR(s; z0)

}
,
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where

GOR(t; z0) =
G2(t; z0)

1− S2(t; z0)
− G1(t; z0)

1− S1(t; z0)
.

It is well known that processes L̃(t; z0) and L̃OR(t; z0) do not have independent increments,

even if covariates are time invariant, and thus the limiting distributions cannot be transformed to

the standard Brownian bridge structure for the construction of simultaneous confidence bands. Lin

et al. [47] provides a useful technique by replacing Mij(u) by Nij(u)Gij, where Nij(u)’s are observed

counting processes and Gij’s are i.i.d standard normal random variables. Thereafter, L̃(t; z0) and

L̃OR(t; z0) have the same limit distribution with

L̂(t; z0) =
1√
n

1

p̂2

n2∑
j=1

1

Ȳ2(X2j)
I(X2j ≤ t)∆2jG2j

− 1√
n

1

p̂1

n1∑
j=1

1

Ȳ1(X1j)
I(X1j ≤ t)∆1jG2j

+
G′(s; z0)√

n
Σ−1

[
2∑

i=1

ni∑
j=1

{Zij(Xij)− Z̄i(Xij)}∆ijGij

]
.

and with the consistent estimator of the covariance function being

σ̂2
L(t; z0) =

2∑
i=1

[
1

n

1

p̂2i

ni∑
j=1

I(Xij ≤ t)∆ij

(Ȳi(Xij))2
+ 2(−1)i

G′(t; z0)

p̂i
Σ−1D̂i1(t)

]

+G′(t; z0)Σ
−1D̂i2(Σ

−1)′G(t; z0).
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And

L̂OR(t; z0) =
(1− Ŝ2(t; z0))Ŝ1(t; z0)

Ŝ2(t; z0)(1− Ŝ1(t; z0))
·{

1√
n

1

p̂2(1− Ŝ2(t; z0))

n2∑
j=1

1

Ȳ2(X1j)
I(X2j ≤ t)∆2jG2j

− 1√
n

1

p̂1(1− Ŝ1(t; z0))

n1∑
j=1

1

Ȳ1(X1j)
I(X1j ≤ t)∆1jG1j

+
1√
n
G′

OR(t; z0)Σ
−1[

2∑
i=1

ni∑
j=1

{Zij(Xij)− Z̄i(Xij)}∆ijGij

]}
,

with covariance function

σ̂2
LOR

(t; z0) =

(
(1− Ŝ2(t; z0))Ŝ1(t; z0)

Ŝ2(t; z0)(1− Ŝ1(t; z0))

)2

·{
2∑

i=1

[
1

n

1

p̂2i

1

(1− Ŝi(t; z0))2

ni∑
j=1

I(Xij ≤ t)∆ij

(Ȳi(Xij))2

+ 2(−1)i
G′

OR(t; z0)

(1− Ŝi(t; z0))p̂i
Σ−1D̂i1(t)

]

+G′
OR(t; z0)Σ

−1D̂i2(Σ
−1)′GOR(t; z0)

}
.

respectively,

where Ŝi(t; z0) is given by (4.5), p̂i = ni/n,

D̂i1(t) =

ni∑
j=1

{Zij(Xij)− Z̄i(Xij)}I(Xij ≤ t)∆ij∑ni

k=1 Yik(Xij)
,

and

D̂i2 =
1

n

ni∑
j=1

{Zij(Xij)− Z̄i(Xij)}⊗2∆ij.
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Therefore, the 100(1− α)% EP and HW type confidence bands for R(t; z0) under the additive risk

model over the time interval [t1, t2] can be expressed as,

R̂(t; z0)± n− 1
2C1,αR̂(t; z0)σ̂L(t; z0),

R̂(t; z0)± n− 1
2C2,αR̂(t; z0)[1 + σ̂2

L(t; z0)],

respectively, where C1,α and C2,α are defined similarly as those in (3.7) and (3.8) of Chapter 3,

which can be generated through Monte Carlo methods.

For the survival odds ratio OR(t; z0), the 100(1− α)% confidence band is given by

ÔR(t; z0)± n− 1
2Cασ̂LOR

(t; z0),

where Cα is the upper α-quantile of the distribution sup
t∈[t1,t2]

|L̂OR(t; z0)/σ̂LOR
(t; z0)|, which can be

generated through Monte Carlo methods..

4.3 Simulation Study

To evaluate the properties of our proposed method for finite sample sizes, we carry out the

following simulation studies. More specifically, Let Tij, j = 1, ..., ni , j = 1, 2 be the event times,

generated via the transformation

Tij = − log(Uij)/(1 + β0Zij),

where Uij ∼ Uniform(0, 1), β = 0.3 and Zij are generated from standard normal distribution

truncated at ±5. Thus, {Tij} follows an Exponential distribution with hazard function

λij(t) = 1 + β0Zij(t).

Let the censoring times Cij ∼ Uniform(0, 4) to generate 25% censoring rate, Uniform(0, 2) for 50%

and Uniform(0, 1) for 75%. For sample sizes n = 50, 100, the coverage probability is calculated based

on 1,000 simulated samples. For each replicate sample we construct 95% simultaneous confidence
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bands for both the survival ratio and odds ratio. The study results are summarized in Table 5 for

survival ratio and Table 6 for survival odds ratios.

Note that by Nair [58] and Bie et al. [8], the EP band should be restricted to the time interval

[t1, t2] such that ĉ1 = 1− ĉ2 = 0.05, or 0.1, where

ĉk = σ̂2(tk; z0)/{1 + σ̂2(tk; z0)}.

In our case, to estimate two survival functions simultaneously, we have further adjust ĉ1 to a

moderately larger scale, in order to account for both groups. More specifically, we have set ĉ1 = 0.1

when CR = 25%, ĉ1 = 0.2 when CR = 50% and ĉ1 = 0.3 when CR = 75%. The consequential

results are given in Table 5 for the ratio of survival functions and Table 6 for the odds ratio of

survival functions. We can see in Table 5 that coverage probabilities of the proposed bands, after

appropriate restriction on time interval [t1, t2], becomes quite close to the chosen nominal level. For

the ratio of two survival functions, HW bands in general tend to be having a bit higher coverage

probabilities than those of EP bands. Confidence bands for the odds ratio of survival functions are

generally wider than those for the ratio. Such finding is further illustrated by real data applications

in the next section.

4.4 Real Application

4.4.1 The CML Data

We try the same CML data as that in Chapter 3. The CML data consists of patients receiving

conventional chemotherapy as well as patients treated by allogeneic bone marrow transplantation.

There are 196 patients receiving the conventional chemotherapy treatment and 548 patients receiv-

ing the HLA-identical sibling bone marrow transplant (BMT).

In order to account for the joint effect between treatment and the spleen size, we apply the

same analytical strategy as described in Chapter 3. Relevant graphical results are shown in Figure

7 to Figure 10.

It seems, by comparing Figure 3 and Figure 4 with Figure 7 and Figure 8, that the additive risk

model might be a more appropriate modeling assumption for the CML data in the sense that the
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confidence bands shown are relatively narrower than those in Chapter 3. However, the performance

of our proposed method is relatively poor for the survival odds ratio for patients with small spleen

size.

4.4.2 The Gastric Cancer Data

The Gastrointestinal Tumor Study Group [27] reported the results of a trial that compared

chemotherapy with combined chemotherapy and radiation therapy in the treatment of locally unre-

sectable gastric cancer (Yang and Prentice [80]). There were 45 patients on each treatment group.

Censoring rate was relatively low, 4% in the chemotherapy group and 13.33% in the combination

group. Estimated survival curves of the two groups intersect at around 33 months after diagnosis.

To fit the new model to the data, let the dummy variable Zi be zero for the chemotherapy group

and one for the combination group. The estimated β̂ = −0.0012. We choose z0 = 1. Cα is cal-

culated by 5000 realizations of L̂(t; z0). For the survival ratio, the critical value is estimated to be

4.405 for the EP band and 1.843 the HW band, yet for the survival odds ratio, such value jumps

to 22.410. Graphical results are given in Figure 11 and Figure 12 for the survival ratio and odds

ratio, respectively. It can be seen from Figure 11 that confidence bands are a bit too wide. Such

issue appears even worse for the survival odds ratio shown in Figure 12. It is possible that the

additive risk model is not fitted here. However, since both plots contain the identical line inside the

confidence bands, one might be able to conclude that there is no distinctive difference between the

two treatments investigated.

4.5 Remarks

As they stand, (4.4) and (4.5) may not be always monotone in t. We introduce,

Λ̂∗
i0(t) = max

s≤t
Λ̂i0(β̂, s), Ŝ∗

i (t; z) = min
s≤t

Ŝ(s; z), i = 1, 2.

Similar to the argument of Lin and Ying [51], we can show that Λ̂∗
i0(t) − Λ̂i0(t) = op(n

1
2
i ). Since

limni/n = pi ∈ (0, 1), we know Λ̂∗
i0(t)− Λ̂i0(t) = op(n

1
2 ), and hence n

1
2 (Λ̂∗

i0(t)−Λi0(t)) converges to

the same limiting distribution as n
1
2 (Λ̂i0(t)−Λi0(t)). Then, by substituting Λ̂∗

i0(t) for Λ̂i0(t), we can

show that Theorem 4 and Theorem 5 still hold, while the monotonicity is ensured. This modification
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is particularly useful when analyzing real clinical trial data sets. For the gastric cancer data, the

performance of our proposed method is improved significantly after applying the modification.

Another concern for the proposed model is that β′Z(t) should be not too large because otherwise

(4.4) will be negative, and (4.5) will exceed one. Lin and Ying [51] suggest a solution by substituting

exp{β′Z(t)} for β′Z(t). We apply the suggestion in several data analysis but discover that in doing

so might significantly affect the estimation of the survival rate. In some of the data analysis, the

estimated survival rate is 50% less than its that without taking the exponential. We believe the more

general solution, by introducing the general regression function g(β′Z(t)), should be more realistic

in most situations due to its modeling flexibility. However, the resulting procedures might not

still retain those good properties of the linear form and therefore one might need to use numerical

algorithms in solving β̂ since there might not be a closed form solution to the estimating equation

anymore.
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Chapter 5

ADJUSTED ATTRIBUTABLE FRACTION FUNCTION FOR CENSORED

TIME-TO-EVENT UNDER THE ADDITIVE RISK MODEL

In the present chapter, we study a semiparametric estimation of the population attributable

fraction function with the censored time-to-event under the additive risk model. We adjust the

semiparametric estimator for the attributable fraction function for practical flexibility to take into

account adjusted risk factors that are either discrete or continuous and possibly time-dependent.

The introductory methodology is given in what follows, but the proof will be described in the future

work.

5.1 Motivation and Literature Review

An important task in public health research is to assess the excess risk attributable to an

exposure in a given population (Chen et al. [16]). The population parameter that characterizes

the attributable risk is normally regarded as the population attributable fraction. The preposition

of the population attributable fraction is first given by Levin [43]. The population attributable

fraction, according to Rothman and Greenland [67], is defined as ’the reduction in incidence that

would be achieved if the population had been entirely unexposed, compared with its current (actual)

exposure pattern’. These measures have received considerable attention in recent years (Benichou

[7], Greenland [29], Sliverberg et al. [73], Graubard and Fears [28], Chen et al. [16] and Chen et al.

[15]).

Let D be a binary disease status and B be a binary exposure indicator. The population

attributable fraction is defined as (Levin [43])

A =
P(D = 1)− P(D = 1|B = 0)

P(D = 1)
.

This measure is defined for the binary exposure factor only. In the presence of confounding by

other risk factors, say, Wk, k = 1, 2, 3, . . . , p, it is more appropriate to use the adjusted attributable
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fraction

Aadj =
P(D = 1)−

∑p
k=1 P(Wk = wk)P(D = 1|B = 0, Wk = wk)

P(D = 1)
,

where w1, . . . , wp are the corresponding levels of W1, . . . ,Wp (Bruzzi et al. [13], Whittemore [77]).

The aforementioned measurements are defined for binary outcomes. However, they might not

be adequate enough for cohort or clinical trial studies which commonly record censored time-to-event

and possibly time-dependent risk factors. Chen et al. [16] first extended the population attributable

fraction to a function of the censored time-to-event by replacing the disease incidence rate with the

cumulative distribution function of the censored time-to-event. They proposed an estimator for the

population attributable fraction function under the Cox model. Chen et al. [15] further established

a more comprehensive analysis about both the unadjusted and adjusted population attributive

fraction function based on transformation models. As an important modeling alternative, the

additive risk model is more appropriate to some clinical trial data set, and features a much easier

practical implementation both inferentially and computationally. In order to incorporate time-

dependent risk factors, we propose our method for estimating the adjusted attributable fraction

function under the additive risk model.

5.2 Inference procedures

For subject i, let Ti and Ci be the time-to-event and the censoring time that are independent

conditional on
(
Bi,W

T
i (·)

)T
, where Wi(·) is a p-vector representing possible time-varying covariates

and the binary variable Bi is the exposure indicator. Then, suppose the data is recorded in the

form of independent (Xi,∆i, (Bi,W
T
i (t))

T ), where Xi = min(Ti, Ci), ∆i = I(Ti ≤ Ci) and I(·) is the

indicator function. We fit an additive risk model (Lin and Ying [51]), in which the hazard function

has the following form

λ(t;Bi,Wi) = λ0(t) + βT
(
Bi,W

T
i (t)

)T
,

where λ0(t) is the unspecified baseline hazard function and βp+1 is the vector of regression coeffi-

cients.
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The adjusted population attributable fraction function is defined as

A(t) =
P(T ≤ t)− E [P(T ≤ t|B = 0,W = w)]

P (T ≤ t)
,

Chen et al. [15] expresses A(t) in terms of survival functions,

A(t) =
S0(t)− S(t)

1− S(t)
,

where S(t) = P(T > t) and S0(t) = EW

[
P(T > t|(0,W T ))

]
. We show in the sequel that S0(t)

and S(t) are estimated by semiparametric estimators under the additive risk model, Ŝ0(t) =

n−1
∑n

i=1 Ŝ{t|(0,W T
i )} and Ŝ(t) = n−1

∑n
i=1 Ŝ{t|(Bi,W

T
i ), respectively, where Ŝ(·|(Bi,W

T
i )) is a

semiparametric estimator of S(t|(Bi,W
T
i ) under the additive risk model, and Wi is the observation

of subject i for W . Then A(t) is naturally estimated by

Â(t) =
Ŝ0(t)− Ŝ(t)

1− Ŝ(t)
.

In order to construct confidence interval and confidence band, it is mathematically convenient to

introduce the counting process and martingale framework. Consider for a set of n independent

subjects, the counting process {Ni(t) = I(Xi ≤ t,∆i = 1); t ≥ 0} for the ith subject in the group

records the number of observed events up to time t. The intensity function for Ni(t) is given by

Yi(t) dΛ(t;Zi) = Yi(t){dΛ0(t) + βT
(
Bi,W

T
i (t)

)T
dt},

where Yi(t) = I(Xi ≥ t), and

Λ0(t) =

∫ t

0

λ0(u)du.

The counting process Ni(·) can be uniquely decomposed such that for every i and t,

Ni(t) = Mi(t) +

∫ t

0

Yi(u) dΛ
(
u;Bi,W

T
i (u)

)
,

where Mi(·) is a local square integrable martingale (Lin and Ying [51]).
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By Lin and Ying [51], it is easy to see that the estimators for the baseline cumulative hazard

functions is given by

Λ̂0(t; β̂) =

∫ t

0

∑n
i=1{dNi(u)− Yi(u)β

T
(
Bi,W

T
i (t)

)T
du}∑n

i=1 Yi(u)
. (5.1)

Therefore, based on the prequel, we know

Ŝ(t) = n−1

n∑
i=1

exp

{
−Λ̂0(t, β̂)− β̂T

∫ t

0

(
Bi,W

T
i (u)

)T
du

}
, (5.2)

Note that when E = 0,

Ŝ0(t) = n−1

n∑
i=1

exp

{
−Λ̂0(t, β̂)− β̂T

∫ t

0

(
0,W T

i (u)
)T

du

}
. (5.3)

For notional simplicity, write Zi(t) =
(
Ei,W

T
i (t)

)T
p+1

as the vector for the exposure indicator and

time-varying covariates combined.

β can be estimated with a closed form from the following estimating equation,

U(β) =
n∑

i=1

∫ ∞

0

(
Bi,W

T
i (u)

)T {dNi(t)− Yi(t)dΛ̂0(β, t)− Yi(t)β
T
(
Bi,W

T
i (u)

)T
dt},

which is equivalent to

U(β) =
n∑

i=1

∫ ∞

0

{
(
Bi,W

T
i (u)

)T −
(
B̄, W̄ T (u)

)T}{dNi(t)− Yi(t)β
T
(
Bi,W

T
i (u)

)T
dt}, (5.4)

where

B̄ =
n∑

i=1

Yi(t)∑n
i=1 Yi(t)

Bi,

W̄ (t) =
n∑

i=1

Yi(t)∑n
i=1 Yi(t)

Wi(t).
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Introduce the following notations,

Ȳ (t) =
1

n

n∑
i=1

Yi(t), C(t) =

∫ t

0

e0du = e0t

G(t) =

∫ t

0

{z0(s)− Z̄(s)}ds,

Σ =

[
1

n

n∑
i=1

∫ ∞

0

{Zi(t)− Z̄(t)}⊗2Yi(t)dt

]′
,

where z0(t) =
(
e0, w

T
0 (t)

)T
is a chosen level of covariates.

We propose the confidence interval for Q(t) =
√
n
(
Â(t)− A(t)

)
using theorems for empirical

processes. The limiting distribution is proved in the future.
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Chapter 6

FUTURE WORK

As mentioned above, we have studied the comparison of survival functions using counting pro-

cess procedures as well as asymptotic properties of martingales. Intensive simulation results con-

ducted insofar have produced statistically satisfactory outcomes when the sample size is relatively

large. However, in small sample cases, especially when less than 50, asymptotic approximations

start to exhibit reduced performance. To overcome these limitations of the normal approximation

and improve the coverage accuracy of the corresponding confidence bands, we are trying to employ

the empirical likelihood method to derive simultaneous confidence bands for the ratio and if possi-

ble, difference, allowing covariate-adjusted survival functions for the treatment comparison between

two populations.

Apart from the normal approximation, empirical likelihood based confidence band has excellent

coverage accuracy in small samples, as well as various desirable properties including, but not limited

to, range-preserving, transform-respecting and asymmetric since it relies solely on the features

of the data to determine its shape. It is also worth mentioning that empirical likelihood based

bands are easier to construct without much complication of deriving a variance estimator. This

is particular important in two-sample applications when quite frequently, covariance formulation

becomes problematic.

Moreover, from the normal approximation point of view, due to the modeling limitations of

the proportional hazard model, the transformation model has gained a lot of attentions recently

in the survival literatures. Chen et al. [15] developed a transformation model for the attributable

fraction function, which almost completed any work that might be relevant. We are trying to

develop an alternative approach using the additive risk model. Brief methodological structure is

given in Chapter 5.
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Appendix A

PROOFS OF THEOREMS

Write εn = n−s, where s ∈ (1/3, 1/2), and n = n1 + n2. Note that η0 = S2(t).

Lemma 1. Under the conditions of Theorem 1, if η satisfies |η − η0| ≤ εn, then the Lagrange

multipliers (λ1, λ2) of equation (2.3) and (2.4) satisfy

λj

n
= O(εn), j = 1, 2, a.s. (A.1)

uniformly for t ∈ [τ1, τ2].

Proof. Adopting the notations used in Shen and He [71], write

A1(η, t) = ln

(
η

η + θ0 − θ0η

)
− ln Ŝ1(t),

A2(η, t) = ln(η)− ln Ŝ2(t). (A.2)

Applying the LIL of Ŝ1(t) Csörgö and Horváth [19], we know by Taylor expansion that there exists

a η∗ between η0 and η such that

A1(η, t) = ln(θ0(t) + η)− ln(θ0(t) + η0) + ln(θ0(t), η0)− ln(Ŝ1(t))

=
θ0(t)(η − η0)

η∗(η∗ + θ0(t)− θ0(t)η∗)
+ lnS1(t)− ln Ŝ1(t)

= O(εn) +O((n1/ lnn1)
−1/2) = O(εn), a.s. (A.3)

uniformly for t ∈ [τ1, τ2].

Then, by equation (4.3) of Shen and He [71], we know

λ1A1(η, t) = |λ1|
K1(t)∑
i=1

∣∣∣∣ln(1− d1i
r1i + λ1

)
− ln

(
1− d1i

r1i

)∣∣∣∣
≥ λ2

1

n1 + |λ1|maxi:T1i≤t{|n1/r1i|}
· σ̃2

1(t), (A.4)
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where

σ̃2
1(t) = n1

K1(t)∑
i=1

d1i
r2i

=

∫ t

0

dF1(u)

F̄1(u−)H̄1(u−)
+ o(1) ≥ σ2

1(τ1)/2. a.s. (A.5)

By the strong law of large numbers plus the monotonicity of H̄1(t), we know

max
i:T1i≤t

∣∣∣∣n1

r1i

∣∣∣∣ = 1

H̄1(t)
≤ 2

H̄1(τ2)
(A.6)

Thus, combining (A.4)-(A.6), for t ∈ [τ1, τ2], we get almost surely that for large n,

|A1(η, t)| ≥
|λ1|

n1 + 2|λ1|H̄−1
1 (τ2)

· σ
2
1(τ1)

2
. (A.7)

Plugging (A.7) into (A.3), it is easy to see that

λ1/n1 = O(εn), a.s.

uniformly for t ∈ [τ1, τ2].

Similarly, it can also be proved that

λ2/n2 = O(εn) a.s. uniformly for t ∈ [τ1, τ2].

Hence proves the lemma. �

Lemma 2. Under the conditions of Theorem 1, for large n, there exists almost surely a solution to

equation (2.5), denoted as ηE(t), such that R(θ0, η, t) attains its maximum value at η = ηE(t), and

ηE(t) → η0 = S2(t), a.s. (A.8)

as n → ∞.

Proof. First, for (j, i) such that Xji < τ2, we know almost surely that,

nj

rji
≤ nj∑nj

k=1(Xjk ≥ τ2)
≤ 2

H̄j(τ2)
.



46

From Shen and He [71], we have

ln

(
1− dji

rji + λj

)
= ln

(
1− dji

rji

)
+

dji
rji(rji − dji)

λj +O

(
ε2n
n

)
. (A.9)

Write ηn = η0 + εn. Using equation (2.3) and (2.4), equation (A.9) yields that

ln

(
η

η + θ0 − θ0η

)
= ln Ŝ1(t) +

λ1σ̂
2
1(t)

n1

+O(ε2n) a.s.

ln(η) = ln Ŝ2(t) +
λ2σ̂

2
2(t)

n2

+O(ε2n) a.s.

Thus,

λj(η, t) =
nj

σ̂2
j (t)

Aj(η, t) +O(njε
2
n), a.s., j = 1, 2. (A.10)

By Csörgö and Horváth [19], it is easy to see that almost surely,

Aj(η0, t) = lnSj(t)− ln Ŝj(t) = o(εn) j = 1, 2. (A.11)

Similar to equation (4.12) of Shen and He [71], by Taylor expansion, write

−2 lnR(θ0, ηn, t)

=
n1

σ̂2
1(t)

(
A1(η0, t) +

θ0(t)εn
η1(θ0(t) + η1 − θ0(t)η1)

)2

+
n2

σ̂2
2(t)

(
A2(η0, t) +

εn
η2

)2

+O(nε3n), a.s. (A.12)

where η1 and η2 are all between η0 and ηn.

Therefore, plugging (A.10) and (A.11) into (A.12), for sufficiently large enough n, we can show

that almost surely

−2 lnR(θ0, ηn, t) ≥ ε2n

2∑
j=1

nj

2σ2
1(t)S

2
j (t)

.
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On the other hand, it can be shown in the same sense that

−2 lnR(θ0, η0, t) =
2∑

j=1

nj

σ̂2
j (t)

Aj(η0, t)
2 +O(nε3n)

= o(nε2n) a.s.

Thus, for n large enough,

−2 lnR(θ0, η0 + εn, t) > −2 lnR(θ0, η0, t) a.s.

Similarly,

−2 lnR(θ0, η0 − εn, t) > −2 lnR(θ0, η0, t) a.s.

This means −2 lnR(θ0, η, t) attains its minimum in (η0 − εn, η0 + εn). Hence, there exists

ηE = argmax
η

R(θ0, η, t) in (η0 − εn, η0 + εn) that satisfies equation (A.8). �

Proof of Theorem 1. Let λ1 = niγi, i = 1, 2 and plug-in into the left-hand sides of equation

(2.3)-(2.5). Then, denote the three equations as Ej(η, γ1, γ2, t), j = 1, 2, 3, respectively. We calculate

Ĵ(η, t) =
∂E1, E2, E3

∂(η, γ1, γ2)

∣∣∣∣
(η,γ1,γ2,t)=(η,0,0,t)

=


− θ0(t)

η(η+θ0(t)−θ0(t)η)
σ̂2
1(t) 0

−1/η 0 σ̂2
2(t)

0 p̂1
θ0(t)

η+θ0(t)−θ0(t)η
p̂2

 ,
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where p̂j = nj/n, j = 1, 2.

Denote γjE = γj(ηE, t), j = 1, 2. By the Taylor expansion, we have


0

0

0

 =


E1(ηE, γ1E, γ2E, t)

E2(ηE, γ1E, γ2E, t)

E3(ηE, γ1E, γ2E, t)



=


E1(η0, 0, 0, t)

E2(η0, 0, 0, t)

E3(η0, 0, 0, t)

+ Ĵ(η0, t)


ηE − η0

γ1E

γ2E

+Op(ε
2
n).

Note that Ei(η0, 0, 0, t) = ln Ŝi(t)− lnSi(t), i = 1, 2, E3(η0, 0, 0, t) = 0 and ε2n = o(n−1/2).

Therefore,


ηE − η0

γ1E

γ2E

 = −Ĵ−1(η0, t)


ln Ŝ1(t)− lnS1(t)

ln Ŝ2(t)− lnS2(t)

0

+ op(n
−1/2)

=
ln Ŝ1(t)− lnS1(t)

det(Ĵ(η0, t))


p̂1σ̂

2
2(t)θ0(t)(η0 + θ0(t)− θ0(t)η0)

−1

−p̂2η
−1
0

p̂1θ0(t)η
−1
0 (η0 + θ0(t)− η0θ0(t))

−1



+
ln Ŝ2(t)− lnS2(t)

det(Ĵ(η0, t))


p̂2σ̂

2
1(t)

p̂2θ0(t)η
−1
0 (η0 + θ0(t)− θ0(t)η0)

−1

−p̂1θ
2
0(t)η

−1
0 (η0 + θ0(t)− θ0(t)η0)

−2

+ op(n
−1/2), (A.13)

where

det(Ĵ(η, t)) =
σ̂2
1(t)

η
p̂2 +

σ̂2
2(t)θ

2
0(t)

η(η + θ0(t)− θ0(t)η)2
p̂1.

By equation (2.11), we can show that

Ĵ(η, t)
P→ J(η, t) =


− θ0(t)

η(η+θ0(t)−θ0(t)η)
σ2
1(t) 0

−1/η 0 σ2
2(t)

0 p1
θ0(t)

η+θ0(t)−θ0(t)η
p2

 , (A.14)
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as n → ∞.

By Lemma 1 and Lemma 4.1 of Shen and He [71], we know

λ2
1(ηE, ·)
n1

= (
√
n1γ1(ηE, ·))2

=

(
−
√
n1(ln Ŝ1(·)− lnS1(·))

det(Ĵ(η0, ·))
· p̂2
η20

+

√
n2(ln Ŝ2(·)− lnS2(·))

det(Ĵ(η0, ·))
·

√
n1p̂2θ0√

n2η20(η0 + θ0 − η0θ0)

)2

D→ p1p
2
2

det(J(η0, ·))2η20(1− η0)2

(
−W1(σ

2
1(·))√
p1

+
θ0

η0 + θ0 − θ0η0
· W2(σ

2
2(·))√
p2

)2

D
=

p1p
2
2

det(J(η0, ·))2η20(1− η0)2

(
(1− S2(·))W1(σ

2
1(·))√

p1
+

(1− S1(·))W2(σ
2
2(·))√

p2

)2

. (A.15)

From (2.5), we know

λ1θ0(t)

ηE(ηE + θ0(t)− ηEθ0(t))
+

λ2

ηE
= 0.

It yields from (A.12) that

−2 lnR(θ0(t), ηE, t) =
2∑

j=1

λ2
j(ηE, t)

nj

σ̂2
j (t) + op(1)

=
λ1(ηE, t)

n1

(
σ̂2
1(t) +

p̂1
p̂2

θ20(t)

(ηE + θ0(t)− ηEθ0(t))2
σ̂2
2(t)

)
+ op(1)

=
λ2
1(ηE, t)

n1

det(Ĵ(ηE, t))η
2
E

p̂2
+ op(1).

Hence, from Lemma 1, equation (A.14) and (A.15), it is easy to see that

−2 lnR(θ0, ηE, ·)
D→ p1p2

det(J(η0, ·))η0(1− η0)2
W 2(σ2(·))

=
1

σ2(·)

(
(1− S2(·))W1(σ

2
1(·))√

p1
+

(1− S1(·))W2(σ
2
2(·))√

p2

)2

. �

Proof of Theorem 2. Note that by the Taylor expansion,

n1/2
{
Λ̂i(t; z0)− Λi(t; z0)

}
= n1/2

{
eβ̂

′z0(t)Λ̂i0(t; z0)− eβ
′z0(t)Λi0(t; z0)

}
≈ n1/2

[
eβ

′z0(t)Λ̂i0(t; z0) + eβ
′z0(t)z0(t)(β̂ − β0)Λ̂i0(t; z0)− eβ

′z0(t)Λi0(t; z0)
]

= n1/2
{
eβ

′z0(t)[Λ̂i0(t; z0)− Λi0(t; z0)]
}
+ {eβ′z0(t)z0(t)Λ̂i0(t; z0)}[n1/2(β̂ − β)]. (A.16)
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Corollary 3.5 of Andersen and Gill [4] has shown that by the Taylor expansion

n1/2
(
Λ̂i0(t)− Λi0(t)

)
D
≈
∫ t

0

n1/2dM̄i(u)∑ni

j=1 Yij(u)eβ
′Zij(u)

+

[
−
∫ t

0

S
(1)
i (β, u)

S
(0)
i (β, u)2

dN̄i(u)

]′ {
n1/2(β̂ − β)

}
D
=

∫ t

0

n1/2dM̄i(u)∑ni

j=1 Yij(u)eβ
′Zij(u)

+

[
−
∫ t

0

e(β, u)dΛi0(u)

]′ {
n1/2(β̂ − β)

}
. (A.17)

Moreover, from Theorem 3.2 of Andersen and Gill [4], it is easy to see that

n1/2(β̂ − β) = {n−1(I(β∗,∞))}−1[n−1/2U(β,∞)]

=
2∑

i=1

ni

n

∫ ∞

0

Vi(β
∗, t)

dN̄i(t)

ni

·

[
n−1/2

2∑
i=1

ni∑
j=1

∫ ∞

0

{Zij(u)− Ei(β0, u)}dMij(u)

]
P→ Σ−1

[
n−1/2

2∑
i=1

ni∑
j=1

∫ ∞

0

n−1/2{Zij(u)− Ei(β0, u)}dMij(u)

]
, (A.18)

where Σ =
∑2

i=1

∫∞
0

vi(β, t)s
(0)
i (β, t)dΛi0(t) is the covariance matrix.

Therefore,

W (t; z0) = n1/2[(Λ̂2(t; z0)− Λ̂1(t; z0))− (Λ2(t; z0)− Λ1(t; z0))],

is asymptotically equivalent to

W̃ (t; z0) =
1√
n

1

p2

∫ t

0

eβ
′
0z0(u)dM̄2(u)

S
(0)
2 (β0, u)

− 1√
n

1

p1

∫ t

0

eβ
′
0z0(u)dM̄1(u)

S
(0)
1 (β0, u)

+ (h2(t; z0)− h1(t; z0))
′Σ−1

[
1√
n

2∑
i=1

ni∑
j=1

∫ ∞

0

{Zij(u)− Ei(β0, u)}dMij(u)

]
.

Since W̃ (t; z0) is a martingale, by Rebolledo’s martingale central limit theorem, we can show that

W̃ (t; z0) converges weakly to a zero mean Gaussian martingale on [0, τ ], where τ < inft>0{t :
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E(Yij(t)) = 0}, with covariance function being

ξ(t, v; z0) =
2∑

i=1

1

pi

∫ t∧v

0

e2β
′
0z0(u)dN̄i(u)

ni

[
s
(0)
i (β0, u)

]2
+ (h1(t; z0)− h2(t; z0))

′Σ−1(h1(v; z0)− h2(v; z0)). � (A.19)

Proof of Theorem 3. The limiting distribution of WOR(t; z0) can be derived in a fairly analogous

manner. Thus, we only give a brief explanation.

First, consider taking a logarithm. Using the functional delta method, it is easy to see that

n1/2

[
log

(
Ŝ1(t; z0)

1− Ŝ1(t; z0)

/
Ŝ2(t; z0)

1− Ŝ2(t; z0)

)
− log

(
S1(t; z0)

1− S1(t; z0)

/
S2(t; z0)

1− S2(t; z0)

)]

= n1/2

[
log

(
eΛ̂2(t;z0) − 1

eΛ̂1(t;z0) − 1

)
− log

(
eΛ2(t;z0) − 1

eΛ1(t;z0) − 1

)]
D
= n1/2

{
1

1− S2(t; z0)
[Λ̂2(t; z0)− Λ2(t; z0)]−

1

1− S1(t; z0)
[Λ̂1(t; z0)− Λ1(t; z0)]

}
.

It yields that

WOR(t) =n1/2

[
Ŝ1(t; z0)

1− Ŝ1(t; z0)

/
Ŝ2(t; z0)

1− Ŝ2(t; z0)
− S1(t; z0)

1− S1(t; z0)

/
S2(t; z0)

1− S2(t; z0)

]
D
=
√
n

[
S1(t; z0)

1− S1(t; z0)

/
S2(t; z0)

1− S2(t; z0)

]
·{

1

1− S2(t; z0)
[Λ̂2(t; z0)− Λ2(t; z0)]−

1

1− S1(t; z0)
[Λ̂1(t; z0)− Λ1(t; z0)]

}
. (A.20)



52

By Andersen and Gill [4], (A.20) is asymptotically equivalent to

W̃OR(t; z0) =

[
S1(t; z0)

1− S1(t; z0)

/
S2(t; z0)

1− S2(t; z0)

]
·{

1√
n

1

p2

1

1− S2(t; z0)

∫ t

0

eβ
′
0z0(u)dM̄2(u)

S
(0)
2 (β0, u)

− 1√
n

1

p1

1

1− S1(t; z0)

∫ t

0

eβ
′
0z0(u)dM̄1(u)

S
(0)
1 (β0, u)

+

(
h2(t; z0)

1− S2(t; z0)
− h1(t; z0)

1− S1(t; z0)

)′

Σ−1[
1√
n

2∑
i=i

ni∑
j=1

∫ ∞

0

{Zij(u)− Ei(β0, u)}dMij(u)

]}
.

Similar to (A.19), the covariate function of W̃OR(t; z0) is given by

ξOR(t; z0) =

[
S1(t; z0)

1− S1(t; z0)

/
S2(t; z0)

1− S2(t; z0)
· S1(v; z0)

1− S1(v; z0)

/
S2(v; z0)

1− S2(v; z0)

]
·{

2∑
i=1

1

pi

1

1− Si(t; z0)

1

1− Si(v; z0)

∫ t∧v

0

e2β
′
0z0(u)dN̄i(u)

ni

[
s
(0)
i (β0, u)

]2
+

(
h1(t; z0)

1− S1(t; z0)
− h2(t; z0)

1− S2(t; z0)

)′

Σ−1

(
h1(v; z0)

1− S1(v; z0)
− h2(v; z0)

1− S2(v; z0)

)}
. � (A.21)

Proof of Theorem 4. Note that by (4.4), we have

Λ̂i(t; z0)− Λi(t; z0) =

ni∑
j=1

∫ t

0

1

niȲi(u)
dMij(u) + (β̂ − β)′

∫ t

0

{z0(u)− Z̄i(u)}du. (A.22)

Moreover, by the Taylor expansion of U(β̂) at β, it is easy to see that

(β̂ − β)′ =
Σ−1

n

[
2∑

i=1

ni∑
j=1

∫ ∞

0

{Zij(t)− Z̄i(t)}dMij(t)

]′
. (A.23)
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Taking (A.23) back into (A.22) yields that L(t; z0) is asymptotically equivalent to

L̃(t; z0) =
1√
n

1

p2

n2∑
j=1

∫ t

0

1

Ȳ2(s)
dM2j(s)−

1√
n

1

p1

n1∑
j=1

∫ t

0

1

Ȳ1(s)
dM1j(s)

+
G′

2(t; z0)−G′
1(t; z0)√

n
Σ−1

[
2∑

i=1

ni∑
j=1

∫ ∞

0

{Zij(s)− Z̄i(s)}dMij(s)

]
,

where pi = limni/n.

Write

G(t; z0) = G2(t; z0)−G1(t; z0),

and

τ = inf{t ≥ 0;H1(t) = H2(t) = 1},

where Hi(t) is the distriubtion function of the observed failure time Xij. Notice that by Theorem

2 of Song et al. [74], G(t; z0) and Σ−1 all converges to some nonrandom functions and

1√
n

2∑
i=i

ni∑
j=1

∫ ∞

0

{Zij(s)− Z̄i(s)}dMij(s)

converges in distribution, if limni/n = pi ∈ (0, 1). Therefore, we know L̃(t; z0) is tight. Moreover,

similar to equation (2.2) of Song et al. [74], L̃(t; z0) is indeed a martingale, and thus by the

Linderberg-Feller theorem and the above tightness, we know that the process L̃(t; z0) converges

weakly to a zero mean Gaussian process on [0, τ). The weak convergence of L̃OR(t; z0) can be

proved analogously.

For covariance formulae, note that E[Mij(u)] = 0 and var[Mij(u)] = E[Nij(u)], thus it follows

from Chapter II3.2 of Andersen et al. [5] that the covariance matrix of L̃(t; z0) can be consistently

estimated by

ξL(t; z0) =
2∑

i=1

[
1

n

1

p2i

ni∑
j=1

∫ t∧s

0

dNij(u)

(Ȳi(u))2
+ (−1)i

G′
R(s; z0)

pi
Σ−1Di1(t) + (−1)i

G′
R(t; z0)

pi
Σ−1Di1(s)

]

+G′
R(t; z0)Σ

−1Di2(Σ
−1)′GR(s; z0),
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where

Di1(t) =

ni∑
j=1

∫ t

0

{Zij(u)− Z̄i(u)}dNij(u)∑ni

k=1 Yik(u)
, (A.24)

Di2 =
1

n

ni∑
j=1

∫ ∞

0

{Zij(t)− Z̄i(t)}⊗2dNij(t), (A.25)

and for column vector a, a⊗2 denotes the outer product of a. �

Proof of Theorem 5. Now, we consider the odds ratio of survival functions.

Denote θ(t; z0) =
1−S1(t;z0)
S1(t;z0)

/
1−S2(t;z0)
S2(t;z0)

. We know by simple algebra

θ(t; z0) =
eΛ1(t;z0) − 1

eΛ2(t;z0) − 1
.

From (A.20), we know

LOR(t) = n1/2

[
1− Ŝ1(t; z0)

Ŝ1(t; z0)

/
1− Ŝ2(t; z0)

Ŝ2(t; z0)
− 1− S1(t; z0)

S1(t; z0)

/
1− S2(t; z0)

S2(t; z0)

]
D
=
√
n

(1− S2(t; z0))S1(t; z0)

S2(t; z0)(1− S1(t; z0))
·
{

1

1− S2(t; z0)
[Λ̂2(t; z0)− Λ2(t; z0)]

− 1

1− S1(t; z0)
[Λ̂1(t; z0)− Λ1(t; z0)]

}
. (A.26)

By Andersen and Gill [4], (A.26) is asymptotically equivalent to

L̃OR(t; z0) =
(1− S2(t; z0))S1(t; z0)

S2(t; z0)(1− S1(t; z0))
·{

1√
n

1

p2(1− S2(t; z0))

n2∑
j=1

∫ t

0

1

Ȳ2(s)
dM2j(s)

− 1√
n

1

p1(1− S1(t; z0))

n1∑
j=1

∫ t

0

1

Ȳ1(s)
dM1j(s)

+
1√
n

[
G′

2(t; z0)

1− S2(t; z0)
− G′

1(t; z0)

1− S1(t; z0)

]
Σ−1[

2∑
i=1

ni∑
j=1

∫ ∞

0

{Zij(s)− Z̄i(s)}dMij(s)

]}
. (A.27)



55

Under a similar logic, write

GOR(t; z0) =
G2(t; z0)

1− S2(t; z0)
− G1(t; z0)

1− S1(t; z0)
,

we are able to derive a consistent estimator for the covariance function of L̃OR(t; z0) as

ξLOR
(t; z0) =

(1− S2(t; z0))S1(t; z0)

S2(t; z0)(1− S1(t; z0))

(1− S2(s; z0))S1(s; z0)

S2(s; z0)(1− S1(s; z0))
·{

2∑
i=1

[
1

n

1

p2i

1

(1− Si(t; z0))

1

(1− Si(s; z0))

ni∑
j=1

∫ t∧s

0

dNij(u)

(Ȳi(u))2

+ (−1)i
G′

R(s; z0)

(1− Si(t; z0))pi
Σ−1Di1(t)

+ (−1)i
G′

R(t; z0)

pi(1− Si(s; z0))
Σ−1Di1(s)

]

+G′
R(t; z0)Σ

−1Di2(Σ
−1)′GR(s; z0)

}
,

where Di1(t) and Di2 are specified in (A.24) and (A.25). �

-
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Appendix B

TABLES

Table 1: Coverage probability of simultaneous confidence bands for θ0(t), t ∈ [0.1, 2.5]

α = 0.05 α = 0.10
CR n1

EL NA EL NA

30 0.936 0.886 0.887 0.873

0.10 50 0.949 0.912 0.89 0.889

80 0.950 0.945 0.892 0.904

100 0.965 0.949 0.926 0.890

30 0.871 0.860 0.899 0.833

0.30 50 0.946 0.924 0.900 0.895

80 0.949 0.943 0.901 0.919

100 0.960 0.950 0.912 0.908

Table 2: Coverage probability of confidence intervals for θ0(t), t = 1.1

α = 0.05 α = 0.10
CR n1

EL NA EL NA

30 0.927 0.872 0.877 0.863

0.10 50 0.944 0.902 0.885 0.879

80 0.947 0.946 0.897 0.890

100 0.950 0.949 0.901 0.896

30 0.865 0.863 0.861 0.853

0.30 50 0.936 0.934 0.880 0.875

80 0.945 0.941 0.890 0.889

100 0.952 0.946 0.899 0.897
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Table 3: Coverage probability of simultaneous confidence bands for survival ratio under the Cox

model on [0.1, 4.0]

CR n1 z0 = −1 z0 = 0 z0 = 1

0.25 50 0.952 0.948 0.935

100 0.956 0.950 0.930

0.50 50 0.950 0.946 0.930

100 0.952 0.948 0.932

0.75 50 0.955 0.949 0.937

100 0.951 0.946 0.934

Table 4: Coverage probability of simultaneous confidence bands for survival odds ratio under the

Cox model on [0.1, 4.0]

CR n1 z0 = −1 z0 = 0 z0 = 1

0.25 50 0.962 0.958 0.945

100 0.966 0.960 0.950

0.50 50 0.965 0.966 0.940

100 0.962 0.968 0.952

0.75 50 0.965 0.969 0.947

100 0.961 0.966 0.954
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Table 5: Coverage probability of simultaneous confidence bands for survival ratio under the

additive risk model on [0.2, 3.7]

CR n1 z0 EP HW

0.25 50 0 0.948 0.955

100 1 0.950 0.963

0.50 50 0 0.946 0.953

100 1 0.948 0.952

0.75 50 0 0.949 0.947

100 1 0.946 0.944

Table 6: Coverage probability of simultaneous confidence bands for survival odds ratio the

additive risk model on [0.3, 3.5]

CR n1 z0 = −1 z0 = 0 z0 = 1

0.25 50 0.962 0.945 0.950

100 0.966 0.950 0.946

0.50 50 0.965 0.956 0.940

100 0.962 0.952 0.948

0.75 50 0.965 0.947 0.939

100 0.961 0.946 0.954
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Appendix C

FIGURES
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Figure 1: 95% simultaneous confidence bands for the survival ratio between the treatment group

and the placebo group with the Mayo PBC data under the Cox model
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Figure 2: 95% simultaneous confidence bands for the survival odds ratio between the treatment

group and the placebo group with the Mayo PBC data under the Cox model
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Figure 3: 95% simultaneous confidence bands for the survival ratio for patients with large spleen

size using the CML data under the Cox model
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Figure 4: 95% simultaneous confidence bands for the survival ratio for patients with small spleen

size using the CML data under the Cox model
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Figure 5: 95% simultaneous confidence bands for the survival odds ratio for patients with large

spleen size using the CML data under the Cox model
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Figure 6: 95% simultaneous confidence bands for the survival odds ratio for patients with small

spleen size using the CML data under the Cox model
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Figure 7: 95% simultaneous confidence bands for the survival ratio for patients with large spleen

size using the CML data under the additive risk model
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Figure 8: 95% simultaneous confidence bands for the survival ratio for patients with small spleen

size using the CML data under the additive risk model
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Figure 9: 95% simultaneous confidence bands for the survival odds ratio for patients with large

spleen size using the CML data under the additive risk model
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Figure 10: 95% simultaneous confidence bands for the survival odds ratio for patients with small

spleen size using the CML data under the additive risk model
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Figure 11: 95% simultaneous confidence bands for the survival ratio for patients with gastric

cancer under the additive risk model
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Figure 12: 95% simultaneous confidence bands for the survival odds ratio for patients with gastric

cancer under the additive risk model
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[19] Csörgö, S. and Horváth, P., The rate of strong uniform consistency for the product-limit
estimator. Probability Theory and Related Fields, Vol. 62, pp. 411-426, 1983.

[20] Cummings, P., Early Exposure to Marijuana and Risk of Later Drug Use. Journal of the
American Medical Association, Vol. 290(3), pp. 329, 2003.

[21] Dabrowska, D. M., Doksum, K. A. and Song, J-K., Graphical comparison of cumulative hazards
for two populations. Biometrika, Vol. 76, pp. 763–773, 1989.

[22] Dabrowska, D. M., K. A. Doksum, Feduska, N. J., Husing, R. and Neville, P., Methods for com-
paring cumulative hazard functions in a semi-proportional hazard model. Statistics in Medicine,
Vol. 11, pp. 1465–1476, 1992.

[23] Dauxois, J.Y. and Kirmani, S.N.U.A., Testing the proportional odds model under random
censoring. Biometrika, Vol. 90, pp. 913–922, 2003.

[24] Einmahl, J.H. and McKeague, I.W., Confidence tubes for multiple quantile plots via empirical
likelihood. Annals of Statistics, Vol. 27, pp. 1348–1367, 1999.

[25] Fleming, T.R. and Harrington, D.P., Counting Processes and Survival Analysis. Wiley: New
York, 1991.

[26] Gale, R. B., Helmann, R., Zhang, M. J., Hasford, J., Goldman, J., Heimpel, H., Klein, J. P.,
Kolb, H. J., McGlave, P. B., Passweg, J. R., Rowlings, P. A., Sobocinski, K. A., Horowitz, M.
M. and the German CML Study Group., Survival with bone marrow transplantation versus
hydroxyurea or interferon for chronic myelogenous leukemia (CML) Blood, Vol. 91, pp. 1810–
1819, 1998.

[27] Gastrointestinal Tumor Study Group: Schein, P. D., Bruckner, H. W., Dougluass, H. O.,
Mayer, R. et al., A comparison of combination chemotherapy and combined modality therapy
for locally advanced gastric carcinoma. Cancer, Vol. 49, pp. 1771-1777, 1982.

[28] Graubard, B. I. and Fears, T. R., Standard errors for attibutable risk for simple and complex
sample designs. Biometrics, Vol. 61, pp. 847-855, 2005.

[29] Greenland, S., Estimation of population attributable fractions from fitted incidence ratios and
exposure survey data, with an application to electromagnetic fields and childhood leukemia.
Biometrics, Vol. 57, pp. 182–188, 2001.

[30] Hall, P. and Owen, A.B., Empirical likelihood confidence bands in density estimation. Journal
of Computational and Graphical Statistics, Vol. 18, pp. 121-140, 1993.

[31] Hall, W. J. and Wellner, J. A., Confidence bands for a survival curve from censored data.
Biometrika, Vol. 67, pp. 133–143, 1980.

[32] Hassan, E., Recall bias can be a threat to retrospective and prospective research designs. The
Internet Journal of Epidemiology, Vol. 3 (2), 2006.



73

[33] Hollander, M., McKeague, I.W., and Yang, J., Likelihood ratio-based confidence bands for
survival functions. Journal of the American Statistical Association, Vol. 18, pp. 121-140, 1997.

[34] Huffer, F. W. and McKeague, I. W., Weighted least squares estimation for Aalen??s additive
risk model. Journal of the American Statistical Association, Vol. 86, pp. 38–53, 1991.

[35] Jing, B.Y., Two sample empirical method., Statistics and Probability Letters, Vol. 25, pp.
95-104, 1995.

[36] Kalbfleisch, J.D. and Prentice, R.L., Estimation of the average hazard ratio. Biometrika, Vol.
68, pp. 105–112, 1981.

[37] Kalbfleisch, J. D. and Prentice, R. L., The statistical analysis of failure time data. 2nd ed.
Wiley: New York, 2002.

[38] Kaplan, E. L. and Meier, P., Nonparametric estimation from incomplete observations. Journal
of the American Statistical Association, Vol. 53, pp. 457–481, 1958.

[39] Kim, J. and Lee, S. Y., Two-sample goodness-of-fit tests for additive risk models with censored
observations. Biometrika, Vol. 85, pp. 593–603, 1998.

[40] Kulich, M. and Lin, D. Y., Additive hazard regression with covariate measurement error.
Journal of the American Statistical Association, Vol. 95, pp. 238–248, 2001.

[41] Lai, T. L. and Ying. Z., Estimating a distriubtion function with truncated and censored data.
The Annuals of Statistics, Vol. 19, pp. 417–442, 1991.

[42] Lee, J. and Hyun, S., Confidence bands for the difference of two survival functions under the
additive risk model. Journal of Applied Statistics, Vol. 38, pp. 785–797, 2011.

[43] Levin, M. L., The occurrence of lung cancer in man. Acta Unio Internationalis Contra Can-
crum, Vol. 9, pp. 531–541, 1953.

[44] Li, G., On nonparametric likelihood ratio estimation of survival probabilities for censored data.
Statistics and Probability Letters, Vol. 25, pp. 95-104, 1995.

[45] Li, G., Li, R. and Zhou, M., Empirical Likelihood in Survival Analysis. Contemporary Multi-
variate Analysis and Design of Experiments J. Fan and G. Li (eds).World Scientific: Singapore,
2005.

[46] Li, G. and Van Keilegom, I., Likelihood ratio confidence bands in non-parametric regression
with censored data. Scandinavian Journal of Statistics, Vol. 29, pp. 547–562, 2002.

[47] Lin, D. Y., Fleming, T. R. and Wei, L. J., Confidence bands for survival curves under the
proportional hazards model. Biometrika, Vol. 81, pp. 73–81, 1994.

[48] Lin, D. Y., Oakes, D. and Ying, Z., Additive hazards regression for current status data.
Biometrika, Vol. 85, pp. 289–298, 1998.

[49] Lin, D. Y., Wei, L. J. and Ying, Z., Checking the Cox model with cumulative sum of Martingale-
based residuals. Biometrika, Vol. 80, pp. 557–572, 1993.



74

[50] Lin, D.Y., Wei, L.J., and Ying, Z., Checking the Cox model with cumulative sums of
martingale-based residuals. Biometrika, Vol. 80, pp. 557–572, 1999.

[51] Lin, D. Y. and Ying, Z., Semiparametric analysis of the additive risk model. Biometrika, Vol.
81, pp. 61–71, 1994.

[52] Lin, D. Y. and Ying, Z., Additive hazards regression models for survival data. In: Proceedings
of the First Seattle Symposium in Biostatistics: Survival Analysis. Springer: New York, 1997.

[53] Lo, S.H., Mack, Y.P. and Wang, J.L., Density and Hazard rate estimation for censored data via
strong representation of the Kaplan–Meier estimator. Probability Theory and Related Fields,
Vol. 80, pp. 461–473, 1999.

[54] McKeague, I. W. and Sasieni, P. D., A partly parametric additive risk model. Biometrika, Vol.
81, pp. 501–514, 1994.

[55] McKeague, I.W. and Zhao, Y., Simultaneous confidence bands for ratios of survival functions
via empirical likelihood. Statistics and Probability Letters, Vol. 60, pp. 405-415, 2002.

[56] McKeague, I.W. and Zhao, Y., Comparing distribution functions via empirical likelihood.
International Journal of Biostatistics, article 5, pp. 1-20, 2005.

[57] Murphy, S., Likelihood ratio-based confidences in survival analysis. survival functions. Journal
of the American Statistical Association, Vol. 90, pp. 1399-1405, 1995.

[58] Nair, V. N., Confidence bands for survival functions with censored data: A comparative study.
Technometrics, Vol. 26, pp. 265–275, 1984.

[59] Owen, A. B., Empirical likelihood ratio confidence intervals for a single functional. Biometrika,
Vol. 75, pp.237-249, 1988.

[60] Owen, A. B., Empirical likelihood and confidence regions. Annals of Statistics, Vol. 18, pp.
90-120, 1990.

[61] Owen, A. B., Empirical Likelihood. Chapman and Hall/CRC: Boca Raton, 2001.

[62] Parzen, M. I., Wei, L. J. and Ying, Z., Simultaneous confidence intervals for the difference of
two survival functions. Scandinavian Journal of Statistics, Vol 24, 309–314, 1997.

[63] Qin, J., Semi-empirical likelihood ratio confidence intervals for the difference of two sample
means. Statistics and Probability Letters, Vol. 46, pp. 117-126, 1994.

[64] Qin, Y.S., Semi-empirical likelihood ratio confidence intervals for various differences of two
populations. Annals of the Institute of Statistical Mathematics, Vol. 33, pp. 135-143, 1997.

[65] Qin, Y.S. and Zhao, L.C., Empirical likelihood ratio confidence intervals for various differences
of two populations. Journal of Systems Science and Mathematical Science, Vol. 13, pp. 23-30,
2000 (in Chinese).

[66] Ren, J.J., Weighted empirical likelihood in some two-sample semiparametric models with var-
ious types of censored data. Annals of Statistics, Vol. 36, pp. 145–166, 2008.



75

[67] Rothman, K. J. and Greenland, S., Modern Epidemiology, 2nd ed. Lippincott-Raven: Philadel-
phia, 1998.

[68] Scheike, T. H., The additive nonparametric and semiparametric Aalen model as the rate func-
tion for a counting process. Lifetime Data Analysis, Vol. 8, pp. 247–262, 2002.

[69] Schemper, M., Cox analysis of survival data with nonproportional hazard functions. The Statis-
tician, Vol. 41, pp. 455–465, 1992.

[70] Sen, P. K. and Singer, J. M., Large Sample Methods in Statistics: An Introduction with
Applications. Chapman: New York, 1993.

[71] Shen, J. and He, S., Empirical likelihood for the difference of two survival functions under right
censorship. Statistics and Probability Letters, Vol. 76, pp. 169-181, 2006.

[72] Shen, Y. and Cheng, S. C., Confidence bands for cumulative incidence curves under the additive
risk model. Biometrics, Vol. 55, pp. 1093–1100, 1999.

[73] Silverberg, M. J., Smith, M. W., Chmiel, J. S., Detels, R., Margolick, J. B., Rinaldo, C.
R., O′Brien, S. J. and Muñoz, A. Fraction of cases of acquired immunodeficiency syndrome
prevneted by the interactions of identified restriction gene variations. American Journal of
Epidemiology, Vol. 159, pp. 232–241, 2004.

[74] Song, M.U., Jeong, D.M. and Song, J.K. Confidence bands for survival curve under the additive
risk model. Journal of the Korean Statistical Society, Vol. 26(4), pp. 429–443, 1996.

[75] Thomas, D.R. and Grunkemeier, G.L., Confidence interval estimation for survival probabilities
for censored data. Journal of the American Statistical Association, Vol. 70, pp. 865-871, 1975.

[76] Wei, G. and Schaubel, D. E., Estimating cumulative treatment effects in the presence of non-
proportional hazards. Biometrics, Vol. 64, pp. 724–732, 2008.

[77] Whittemore, A. S., Statistical methods for estimating attributable risk from retrospective data.
Statistics in Medicine, Vol. 1, pp. 229–243, 1982.

[78] Xu, R. and O′Quigley, J., Estimating average regression effect under nonproportional hazards.
Biostatistics, Vol. 1, pp. 423–439, 2000.

[79] Yang, S. and Prentice, R. L., Semiparametric inference in the proportional odds regression
model. Journal of the American Statistical Association, Vol. 94, pp. 125–136, 1999.

[80] Yang, S. and Prentice, R. L., Semiparametric analysis of short-term and long-term hazard
ratios with two-sample survival data. Biometrika, Vol. 92, pp. 1–17, 2005.

[81] Yin, G. and Hu, J., Two Simulation Methods for Constructing Confidence Bands Under the
Additive Risk Model. Journal of Biopharmaceutical Statistics, Vol. 14(2), pp. 389–402, 2004.

[82] Ying, Z., Jung, S. H. and Wei, L. J., Survival analysis with median regression models. Journal
of the American Statistical Association, Vol. 90, pp. 178–184, 1995.

[83] Yip, P. S. F., Zhou, Y., Lin, D. Y. and Fang, X. Z., Estimation of population size based on
additive hazards models for continuous-time recapture experiments. Biometrics, Vol. 55, pp.
904–908, 1999.



76

[84] Yuen, K. C. and Burke, M. D., A test of fit for a semiparametric additive risk model. Biometrika,
Vol. 84, pp. 631–639, 1997.

[85] Zhang, J and Yu, K.F., What’s the Relative Risk?: A Method of Correcting the Odds Ratio
in Cohort Studies of Common Outcomes. Journal of the American Statistical Association, Vol.
280(19), pp. 1690-1691, 1998.

[86] Zhang, M.J. and Klein, J., Confidence bands for the difference of two survival curves under
proportional hazards model. Lifetime Data Analysis, Vol. 7, pp. 234-254, 2001.


	Treatment Comparison in Biomedical Studies Using Survival Function
	Recommended Citation

	tmp.1303945065.pdf.7trNx

