
Georgia State University Georgia State University 

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University 

Mathematics Dissertations Department of Mathematics and Statistics 

Spring 5-6-2012 

Mathematical Methods for Network Analysis, Proteomics and Mathematical Methods for Network Analysis, Proteomics and 

Disease Prevention Disease Prevention 

Kun Zhao 
Georgia State University 

Follow this and additional works at: https://scholarworks.gsu.edu/math_diss 

Recommended Citation Recommended Citation 
Zhao, Kun, "Mathematical Methods for Network Analysis, Proteomics and Disease Prevention." 
Dissertation, Georgia State University, 2012. 
https://scholarworks.gsu.edu/math_diss/6 

This Dissertation is brought to you for free and open access by the Department of Mathematics and Statistics at 
ScholarWorks @ Georgia State University. It has been accepted for inclusion in Mathematics Dissertations by an 
authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact 
scholarworks@gsu.edu. 

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/math_diss
https://scholarworks.gsu.edu/math
https://scholarworks.gsu.edu/math_diss?utm_source=scholarworks.gsu.edu%2Fmath_diss%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu


MATHEMATICAL METHODS FOR NETWORK ANALYSIS, PROTEOMICS AND

DISEASE PREVENTION

by

KUN ZHAO

Under the Direction of Dr. Igor Belykh, Dr. Guantao Chen and Dr. Jenny J. Yang

ABSTRACT

This dissertation aims at analyzing complex problems arising in the context of

dynamical networks, proteomics, and disease prevention. First, a new graph-based method

for proving global stability of synchronization in directed dynamical networks is developed.

This method utilizes stability and graph theories to clarify the interplay between individual

oscillator dynamics and network topology. Secondly, a graph-theoretical algorithm is

proposed to predict Ca2+-binding site in proteins. The new algorithm enables us to identify

previously-unknown Ca2+-binding sites, and deepens our understanding towards disease-

related Ca2+-binding proteins at a molecular level. Finally, an optimization model and

algorithm to solve a disease prevention problem are described at the population level. The

new resource allocation model is designed to assist clinical managers to make decisions on

identifying at-risk population groups, as well as selecting a screening and treatment strategy

for chlamydia and gonorrhea patients under a fixed budget. The resource allocation model

and algorithm can have a significant impact on real treatment strategy issues.
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1

INTRODUCTION

This dissertation aims at analyzing complex problems arising in the context of

dynamical networks, proteomics, and disease prevention. In Chapter 1, building on ob-

servations that synchronization has been observed in many complex networks (i.e. fir-

ing synchronization in neural networks is relevant for neurological disorders, for example,

Parkinson’s disease [1]), we extended the Connection Graph method [2] for proving syn-

chronization in directed networks. Our approach, called the Augmented Graph Stability

method, is based on the transformation of the directed graph into an undirected graph.

This is done by replacing each direct link between node i node j with an undirected edge

whose coupling strength depends on the mean node unbalance between the two nodes. In

addition, we augment the graph by adding an extra edge, connecting node i and node j if

there is no directed link between them and their mean node unbalance is negative. Differ-

ent weights are also associated with each path between any two nodes of the augmented

undirected network, according to the mean node unbalance. Upper bounds on the coupling

strength sufficient for synchronization in this augmented symmetrized network also guar-

antee global stability of synchronization in the original directed network. We show that

the new Augmented Graph Stability method is more effective than the connection graph

method in sparse networks. In Chapter 2, we propose a graph theory algorithm to predict

the Ca2+-binding site in proteins at a molecular level. Predicting the Ca2+-binding site is

important as Ca2+ and Ca2+-binding proteins (CaBP) are relevant to many diseases (i.e.

Alzheimer’s disease [3], heart disease [4], diabetes [4] , leukemia [5, 6], and cancers [7–10]).

In order to understand the mechanism of diseases related to CaBP, it was first necessary

to discover where the proteins bind to Ca2+. We hypothesize that the second, hydrophobic

shell of carbon atoms enclosing a Ca2+-binding site could sufficiently determine the site’s

location in either X-ray or NMR structures. Then we validate the hypothesis with the new

algorithm on various structural datasets. Chapter 3 addresses a real clinical issue and seeks

to find a way to help publicly-funded programs that have only limited resources regarding
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screening and treating Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (GC). In

this chapter, we develop a combinatorial optimization (a.k.a. resource allocation) model

and algorithm for health care management to distribute its funds efficiently at a population

level. The solutions generated by the new model can be used to assist clinical managers

to make decisions on identifying at-risk population groups, as well as selecting a screening

and treatment strategy for CT and GC patients under a fixed budget. We then propose

a two-step branch-and-bound algorithm tailor-made for solving the model. The solutions

calculated by the new algorithm have been compared to those calculated by commercial

software application. The main contributions of this dissertation are summarized in the last

section, “Major Findings and Significance”.
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CHAPTER 1

MATHEMATICS IN NETWORK ANALYSIS

1.1 Introduction

The phenomenon of synchronization in large complex networks of coupled dynamical

systems has attracted a great deal of attention over the past decade. Research on this top-

ic spans various scientific disciplines such as mathematics, physics, engineering, and other

fields of science. The examples include coupled synchronized lasers [11, 12], networks of com-

puter clocks [13], synchronized neuronal firing and calcium signals [14–17]. The utilization

of mathematical methods in studying synchronization not only deepens our understanding

towards the formation of this phenomenon in general, but also can have some practical

implications. For example, the presence of synchronization in the human brain has been

suggested as particularly relevant for neurological disorders, e.g. Parkinson’s disease [1]

and Alzheimer’s disease [18]. The information regarding how the firing dynamics are syn-

chronized in the neural network with a specific topology, can assist neurologists to discover

the causes of incurable diseases such as Parkinson’s and Alzheimer’s diseases and to create

better treatment. Motivated by mathematics and its applications, this Chapter will mainly

focus on methodologies for studying network synchronization [19].

The strongest form of synchrony in oscillator networks is complete synchronization

(when all oscillators do the same thing at the same time) [20–22]. The most important

question in the synchronization studies is: What are the conditions for the stability of the

synchronized state, especially with respect to coupling strengths and coupling configurations

of the network? This problem was intensively studied for networks of limit-cycle oscillators

[23–27] and chaotic dynamical systems [28–40].

Complete synchronization in networks of continuous time identical oscillators typically

becomes stable when the coupling strength between the oscillators exceeds a critical value.
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In light of this, an important problem is to identify the bounds on the coupling strengths so

that the stability of synchronization is guaranteed. Many methods for determining stability

for synchronized chaotic systems have been developed. Most of them are based on the

calculation of two quantities: (i) the eigenvalues of the coupling matrix for different network

topologies and (ii) a term that depends on the dynamics of the individual oscillators [28,

31, 34, 36–40].

One example of the methods mentioned above is the Master Stability function. De-

veloped by Pecora and Carroll [34], it is a general approach to the local synchronization of

chaotic systems for any linear coupling scheme. This approach is based on the calculation of

the maximum Lyapunov exponent for the least stable transversal mode of the synchronous

manifold, in conjunction with the eigenvalues of the connectivity matrix. An analog of the

Master Stability function for global synchronization of chaotic systems was also proposed

[36, 37]. However, the eigenvalues of the coupling matrix can often be calculated only for

simple regular topologies such as local, star-like, and all-to-all networks. In more complex

networks, the calculation of the eigenvalues becomes extremely difficult such that is often

impossible to obtain analytical bounds for the synchronization thresholds. Moreover, for

networks with a time-varying coupling, the application of the eigenvalue-based methods is

difficult and often impossible.

As an alternative approach to calculate the synchronization condition, Belykh et al.

[2, 41] proposed the Connection Graph method, which does not depend on explicit knowledge

of the spectrum of the connectivity matrix. To guarantee complete synchronization with

respect to arbitrary initial conditions, this method utilizes the Lyapunov function approach

together with graph theoretical reasoning. It is also applicable to time-dependent networks.

This method was originally developed for undirected graphs [2], and was later applied to

asymmetrically directed networks [41].

In this Chapter, we present a modification of the Generalized Connection Graph method

that gives tighter bounds on the coupling strength required for the onset of stable synchro-

nization in sparse directed networks. We demonstrate how the directed network can be
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turned into an augmented undirected network with weighted connections. As a result,

the stability conditions for synchronization in this augmented directed network also ensure

stable synchronization in the original directed network.

The layout of this study is the following. First, in Sec. 1.2, we state the problem in

the study. Then, in Sec. 1.3, we present the derivations of the graph-based criterion for

global synchronization in undirected networks. In Sec. 1.4, we introduce the new method

and compare it to the existing Connection Graph method, using specific network examples.

We also discuss computational algorithms for solving Short Path (SP) problems of how to

choose a short path between two nodes of the network; this notion is heavily used in our

graph-based Method. We show that the new Augmented Graph method is more effective

than the original Connection Graph method, for proving synchronization in sparse directed

networks.

1.2 Problem Statement

1.2.1 Complex network model

We consider a network of n interacting nonlinear d-dimensional dynamical systems

(oscillators). We assume that the individual oscillators are all identical, even though our

results can be generalized to slightly non-identical systems. The composed dynamical system

is described by the n× d ordinary differential equations [2]

ẋi = F (xi) +
n∑
j=1

εij(t)P (xj − xi), i = 1, ..., n, (1.1)

where xi = (x1i , ..., x
d
i ) is the d-vector containing the coordinates of the i-th oscillator. The

non-zero elements of the d × d matrix P determine by which variables the oscillators are

coupled. Without loss of generality, we shall consider a vector version of the coupling with

the diagonal matrix P = diag(p1, p2, ..., pd), where ph = 1, h = 1, 2, ..., s and ph = 0 for

h = s+ 1, ..., d.
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G = (εij(t)) is an asymmetric n×n zero-row sum matrix with nonnegative off-diagonal

elements such that εij ≥ 0 for i 6= j, and εii = −
n∑

j=1; j 6=i
εij, i = 1, ..., n. This matrix

represents an arbitrary directed network of asymmetrically connected oscillators. The zero-

row sum condition is a necessary condition for the existence of the synchronous solution.

The connectivity matrix G corresponds to a directed graph with n vertices and m edges.

The number of directed edges m is defined by the number of non-zero non-diagonal elements

of the matrix G. The individual oscillators correspond to the vertices of the connection

graph. To ensure synchronization of all oscillators, there must be at least one oscillator that

directly or indirectly influences all the others. This amounts to the existence of a directed

tree that involves all the vertices (oscillators).

1.2.2 Definition of global complete synchronization

The main goal of this study is to obtain stability conditions of complete synchronization

in the system (1.1). Global complete synchronization in the system (1.1) amounts to global

stability of the linear invariant manifold M = {x1 = x2 = ... = xn}. The manifold M

has the dimension of a single oscillator, and is called the synchronization manifold. This

manifold contains completely synchronous solutions of all types (multi-stable, periodic, and

chaotic oscillations).

Definition 1.1. Complete synchronization occurs in the network (1.1), if

lim
t→∞
||xi(t)− xj(t)|| = 0 for ∀i, j. (1.2)

We want to determine upper bounds for the coupling strength sufficient for complete

synchronization, and to identify the dependence of the threshold values on the network

topology and the properties of the individual oscillator.
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1.3 Connection Graph Method for Undirected Network Synchronization: Re-

view

In this section, we follow the steps of the previous study by Belykh et al. [2, 41] to

review the derivation of the Connection Graph method for undirected networks [2]. We

assume that the connectivity matrix G in (1.1) is symmetric, and therefore the network is

undirected.

1.3.1 Stability system for the difference variables

To prove the stability of complete synchronization, we have to show that the differences

between the oscillators’ corresponding variables become zero. Therefore, we introduce the

notation for the differences

Xij = xj − xi, i, j = 1, ..., n, (1.3)

and derive the stability system for the difference variables [2]

Ẋij = F (xj)− F (xi) +
n∑
k=1

{εjkPXjk − εikPXik}, i, j = 1, ..., n. (1.4)

We use the vector analog of the Mean Value Theorem for the function difference to re-write

the difference F (xj)− F (xi) as follows

F (xj)− F (xi) =

1∫
0

d

dβ
F (βxj + (1− β)xi)dβ =

 1∫
0

DF (βxj + (1− β)xi)dβ

Xij,

where DF is a d× d Jacobi matrix of F .

Consequently, the stability system becomes

Ẋij =

 1∫
0

DF (βxj + (1− β)xi)dβ

Xij +
n∑
k=1

{εjkPXjk − εikPXik}, (1.5)
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where i, j = 1, ..., n. It is worth noticing that one can calculate the Jacobian DF explicitly

via the parameters of the individual oscillator.

Notice that the stability system (1.5) has n2 equations, and n(n − 1) of them define

the stability of synchronization in the corresponding pair of oscillators. Technically, only

n(n− 1)/2 difference variables are required to describe synchronization in the network, and

the stability system (1.5) is redundant. The use of the redundant stability systems is the

key ingredient of the Connection Graph method [2].

Let us study the redundant stability system (1.5).

We add and subtract an additional term AXij from the system (1.5) to obtain the

following system

Ẋij =

[
1∫
0

DF (βxj + (1− β)xi)dβ − A
]
Xij + AXij+

+
n∑
k=1

{εjkPXjk − εikPXik},
(1.6)

where i, j = 1, ..., n and the matrix A = aP, where P is the projection matrix from the

system (1.1) and a is a constant.

The trivial equilibrium of the stability system (1.6) corresponds to the synchronization

manifold of the system (1.1). In the following, we shall obtain conditions under which the

trivial equilibrium is globally stable and therefore prove global asymptotical stability of

complete synchronization.

The addition of the matrix −A helps to damp instabilities caused by the Jacobian DF .

On the other hand, the addition of the matrix +A causes the instability that can be in turn

damped by the coupling terms.

We shall study the stability of system (1.6) in two steps. First, we introduce the

auxiliary system

Ẋij =

 1∫
0

DF (βxj + (1− β)xi) dβ − A

Xij, i, j = 1, ..., n. (1.7)
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This system is identical to the stability system (1.6) where the coupling terms are removed.

The first step is to prove that this auxiliary system can be made stable by increasing

parameter a. To do so, we assume that there exist Lyapunov functions

Wij =
1

2
XT
ij ·H ·Xij, i, j = 1, ..., n, (1.8)

where H = diag(h1, h2, ..., hs, H1), h1 > 0, ..., hs > 0, and the (d− s)× (d− s) matrix H1 is

positive definite.

We require their derivatives with respect to the system (1.7) to be negative

Ẇij = XT
ijH

 1∫
0

DF (βxj + (1− β)xi)dβ − A

Xij < 0, Xij 6= 0. (1.9)

This amounts to requiring global stability of the auxiliary system. This is a crucial compo-

nent of the Connection Graph method. As a result, we require that that all oscillators of

the system (1.1) can be synchronized when the coupling among the oscillators is sufficiently

large. It is important to stress that this property is not always true as some networks such

as x-coupled Rössler systems cannot be globally synchronized even if the coupling is made

infinitely strong [30, 42], and the requirement (1.9) cannot be fulfilled.

The conditions that guarantee the requirement (1.9) are based upon the individual

node’s dynamics and the way the oscillators are coupled (matrix P ). Therefore, the re-

quirement (1.9) has to be proven for each specific network as this condition depends on the

intrinsic dynamics of the individual oscillators and the projection matrix P. The condition

was proved for various limit-cycle and chaotic oscillators, including Lorenz systems [43],

double-scrolls [28, 40], Hodgkin-Huxley-type models and different P matrices [2, 41].

The proof of requirement (1.9) for the coupled chaotic Lorenz oscillators is given in

[2, 43]; however for an illustrative purpose, we present the sketch of the proof and calculation

of parameter a in Appendix A. One can prove the requirement (1.9) for other coupled chaotic

oscillators as long as these oscillators can be synchronized.
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To prove the global stability of the synchronization manifold, we also need to make an

additional assumption on the eventual dissipativeness of the coupled system (1.1).

We need to assume that the individual oscillator ẋi = F (xi) is eventually dissipative,

i.e. there exists a topological ball B which attracts all trajectories from the outside. This

implies that there are no trajectories which escape to infinity. This is a natural assumption

for most known chaotic oscillators.

To prove global stability of the synchronization manifold, we construct the Lyapunov

function for the stability system (1.6)

V =
1

4

n∑
i=1

n∑
j=1

XT
ij ·H ·Xij, . (1.10)

The corresponding time derivative along the trajectories of (1.6) is

V̇ = 1
2

n∑
i=1

n∑
j=1

Ẇij + 1
2

n∑
i=1

n∑
j=1

XT
ijAXij−

−1
2

n∑
i=1

n∑
j=1

n∑
k=1

{εjkXT
jiHPXjk + εikX

T
ikHPXij}.

(1.11)

We have to show the negative definiteness of the quadratic form V̇ . The first sum S1

is negative definite due to the requirement (1.9). Hence, it is sufficient to analyze the last

two sums S2 and S3. Recall that the coupling matrix G is assumed to be symmetric, we

can calculate the sum S2 as follows

S2 =
n−1∑
i=1

n∑
j>i

AX2
ij . (1.12)

The contribution of this sum, which is always positive, must be compensated by the third

sum

S3 = −1

2

n∑
i=1

n∑
j=1

n∑
k=1

{εjkXT
jiHPXjk + εikX

T
ikHPXij}. (1.13)
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Switching the summation index i and index j in the second term, we get

S3 = −
n∑
i=1

n∑
j=1

n∑
k=1

εjkX
T
jiHPXjk . (1.14)

As Xjj = 0, this formula transforms into

S3 = −
n∑
i=1

n−1∑
k=1

n∑
j>k

εjkX
T
jiHPXjk −

n∑
i=1

n−1∑
k=1

n∑
j<k

εjkX
T
jiHPXjk . (1.15)

We use the fact that εij = εji to obtain the following

S3 = −
n∑
i=1

n−1∑
k=1

n∑
j>k

εjkX
T
jiHPXjk −

n∑
i=1

n−1∑
j=1

n∑
k<j

εjkX
T
kiHPXkj =

= −
n∑
i=1

n−1∑
k=1

n∑
j>k

εjk(X
T
ji +XT

ik)HPXjk .
(1.16)

The form S3 can be further simplified using XT
ji +XT

ik =
[
xTi − xTj + xTk − xTi

]
= XT

jk

S3 = −
n∑
i=1

n−1∑
k=1

n∑
j>k

εjkX
T
jkHPXjk = −

n−1∑
k=1

n∑
j>k

nεjkX
T
jkHPXjk . (1.17)

Finally, we can make the claim that the time derivative V̇ of the Lyapunov function V is

negative if

S2 + S3 =
n−1∑
i=1

n∑
j>i

XT
ijH[A− nεijP ]Xij (1.18)

is negative definite. Therefore, V̇ < 0 if

n−1∑
i=1

n∑
j>i

εijX
T
ijHPXij >

1

n

n−1∑
i=1

n∑
j>i

XT
ijHAXij (1.19)

This statement can summarized in the following theorem.

Theorem 1 [2]. Under the above assumptions, synchronization in the network (1.1) with
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a symmetric connectivity matrix G is globally asymptotically stable if the following holds

m∑
k=1

εikjkX
2
ikjk

>
a

n

n−1∑
i=1

n∑
j>i

X2
ij , (1.20)

where Xikjk k = 1, ...,m are defined by m existing links. Note that m is the number of non-

zero above diagonal elements in matrix G. Variables Xikjk correspond to the scalars X
(l)
ikjk

,

l = 1, ..., s.

To derive the bounds for the synchronization thresholds, we have to get rid of the

difference variables in (1.20). This constitutes the second step of the Connection Graph

method. In the simplest case of a complete graph, this calculation is straightforward.

To illustrate this, let us assume that the graph is complete such that εikjk(t) ≥ ε > 0,

k = 1, ..., n(n−1)/2 for all ik, jk ∈ {1, ..., n}. Therefore, by Theorem 1, the synchronization

threshold becomes

ε(t) > ε∗ =
a

n
.

Eliminating the variables Xij and Xikjk in the inequality (1.20) requires re-calculating

Xij via the variables Xikjk that correspond to the edges on the connection graph.

1.3.2 Eliminating the difference variables using the connection graph

Our goal is to find the condition on the coupling strength ε that satisfies inequality

(1.20)
m∑
k=1

εk(t)X̃
2
k >

a

n

n−1∑
i=1

n∑
j>i

X2
ij, (1.21)

where we have relabeled the variables as follows X̃k = Xikjk and εk = εikjk , m ≥ n− 1.

We should recalculate all difference variables Xij, i, j = 1, ..., n through the difference

variables X̃k, k = 1, ...,m corresponding to edges of the connection graph. This will allow

one to eliminate the difference variables Xij and X̃k in the inequality (1.21), and therefore

derive the bound on the coupling strength.
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To do so, for any pair of vertices (i, j), we choose a path Pij from node i to node j.

If edge k belongs to the path Pij, we denote it by k ∈ Pij. The path length Pij is denoted

by z(Pij), representing the number of edges comprising Pij. If the path Pij passes through

vertices i,m1,m2, ...,mν , j then Xij = Xi,m1 +Xm1,m2 + ...+Xmν,j . As a result, we get

X2
ij =

∑
k∈Pij

±X̃k

2

≤ z(Pij)
∑
k∈Pij

X̃2
k , (1.22)

where we have applied the Cauchy-Schwarz inequality.

Therefore, the RHS of (1.21) can be bounded as follows

n−1∑
i=1

n∑
j>i

X2
ij ≤

m∑
k=1

n−1∑
i=1

n∑
j>i; k∈Pij

z(Pij)

 X̃2
k . (1.23)

Plugging the bound (1.23) into the inequality (1.21) and canceling out the difference

variables, we get

εk(t) >
a

n
·

n∑
j>i; k∈Pij

z(Pij) for k = 1, ...,m. (1.24)

This criterion constitutes the Connection Graph method for synchronization in directed

networks [2] which is formulated in the following theorem.

Theorem 2 [2]. Under the assumption (1.9), complete synchronization of system (1.1)

with a symmetrical connectivity matrix G is globally asymptotically stable if the following

holds

εk(t) >
a

n
bk(n,m) for k = 1, ...,m and for all t, (1.25)

where bk(n,m) =
n∑

j>i; k∈Pij
z(Pij) represents the sum of the lengths of all chosen paths Pij

which pass through a given edge k on the connection graph.

More details on the derivation of the Connection Graph method and its application to

specific undirected networks can be found in [2].
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1.4 Graph-based Stability Method for Directed Networks with Examples

In this section, we extend the Connection Graph method to directed graphs and derive

an effective approach to proving synchronization in directed networks. In three subsections,

we will use specific network topologies to illustrate how the methods work in these cases.

In the first subsection, we will start from an introduction of the previously developed Gen-

eralized Connection Graph method [41]. Then, we will calculate a lower bound by using

our new method. To show that our new method is more effective for sparse directed net-

works, we will compare the two methods in three more network configurations in the second

subsection. In the last subsection, we will gave an example of utilizing the new method

for a 30-node network, demonstrating that the computation task of the method could be

laborious and the pseudo-code given in this section can be a solution for calculating the

synchronization bound.

1.4.1 Five-node undirected networks

Let’s consider a simple asymmetric directed graph (Fig. 1.1A). Let d denote the cou-

pling strength in general. Specifically, dij denotes the coupling strength from node i to

node j. Dc
i denotes the node unbalance at the node i, which is the difference between the

sum of the coupling coefficients of all edges directed outward from node i and the sum of

the coupling coefficients of all the edges directed to node i. Dij denotes the mean value of

the node unbalance between node i and j. eij denotes an edge from node i to node j in a

directed graph and between node i to node j in a symmetrized graph. Therefore, we can

calculate the following quantities.

The node balance Dc
i for each node of the graph:

Dc
1 = d− 2d = −d Dc

2 = d− d = 0 Dc
3 = d− d = 0

Dc
4 = d− d = 0 Dc

5 = 2d− d = d.
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The mean node unbalance Dij, which is equal to
Dci+D

c
j

2
for each nodes i and j :

D12 :
Dc1+D

c
2

2
= −d

2
D13 :

Dc1+D
c
3

2
= −d

2
D14 :

Dc1+D
c
4

2
= −d

2
D15 :

Dc1+D
c
5

2
= 0

D23 :
Dc2+D

c
3

2
= 0 D24 :

Dc2+D
c
4

2
= 0 D25 :

Dc2+D
c
5

2
= d

2

D34 :
Dc3+D

c
4

2
= 0 D35 :

Dc3+D
c
5

2
= d

2

D45 :
Dc4+D

c
5

2
= d

2
.

1.4.2 Existing Generalized Connection Graph method

To find an upper bound for the synchronization threshold in concrete networks, one

can use the previously published Generalized Connection Graph method [41] and follow its

steps.

Step 1. Symmetrize the graph by replacing each directed edge by an undirected edge

with half the coupling strength: dij = d
2

(see Fig. 1.1B). The coupling strength is adjusted,

based on the mean node unbalance Dij. If Dij < 0 and there is an edge in the symmetrized

graph linking directly i and j, then we calculate the quantity
∣∣∣Dij5 ∣∣∣ and add this additional

coupling strength to dij. For example in Fig. 1.1B, we only added a weight d
10

to edge e12

because D12 = −d
2
< 0 and there is an edge between node i and j.

Step 2. Choose a path Pij between any pair of nodes i, j of the symmetrized graph (Fig.

1.1B). For convenience, we choose the shortest path. Note that the choice of the shortest

path does not always lead to the lowest synchronization threshold [44].

Our choice of paths is

P12 : e12 P13 : e12, e23 P14 : e15, e45 P15 : e15

P23 : e23 P24 : e23, e34 P25 : e12, e15

P34 : e34 P35 : e34, e45

P45 : e45.

Step 3. For each edge of the graph we determine the following inequality.
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Figure 1.1. A five-node network.
(A) Original directed graph with different weights. (B) Symmetrized graph obtained using
the previously developed method. The synchronization threshold is e45: d > 5a. (C) Sym-
metrized graph obtained via the Augmented Graph method. The synchronization threshold
is e34: d >

10a
3

.
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For e12 (link between nodes 1 and 2):

d1 +D1 =
d

2
+

d

10
>
a

5
bk, where bk =

n∑
j>i; k∈Pij

L(Pij).

The chosen paths that pass through the e12 are P12, P13, P25. Their weighted lengths L(Pij)

are:

L(P12) = |P12| = 1 since Dc
1 +Dc

2 < 0; and there is an edge between nodes 1 and 2

L(P13) = |P13|χ(1 + D13

a
) = |P13|(1 + 0

a
) = 2

L(P25) = |P25|χ(1 + D25

a
) = |P25|(1 + d

2a
) = 2(1 + d

2a
)

Summing up all the lengths, we get

d

2
+

d

10
>
a

5

[
1 + 2 + 2

(
1 +

d

2a

)]
.

Therefore, the synchronization condition for the e12 is d > 5a
2
.

Exactly as for the e12, we can calculate the synchronization bounds for the other edges.

These bounds are

e12 : d > 5a
2

e15 : d > 5a
4

e23 : d > 2a

e34 : d > 10a
3

e45 : d > 5a.

Hence, according to the Generalized Connection Graph method [41], the synchroniza-

tion bottleneck for the entire network is the edge e45 where the maximum coupling strength

is required to synchronize all oscillators of the network.

1.4.3 New Augmented Graph Stability method

In this subsection, we extend the Generalized Connection Graph method for proving

synchronization in directed networks. Our approach, which we called the Augmented Graph

Stability method, is based on the transformation of the directed graph into an undirected

graph. This is done by replacing each direct link between node i node j with an undirected
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edge whose coupling strength depends on the mean node unbalance between the two nodes.

In addition, we augment the graph by adding an extra edge, connecting node i and node j

if there is no directed link between them and their mean node unbalance is negative. Dif-

ferent weights are also associated with each path between any two nodes of the augmented

undirected network, according to the mean node unbalance. Upper bounds on the coupling

strength sufficient for synchronization in this augmented symmetrized network also guar-

antee global stability of synchronization in the original directed network. We show that

the new augmented graph method is more effective than the Generalized Connection Graph

method in sparse networks.

There are three steps in the new method. The differences are in symmetrizing the

graph (Step 1), choosing the path (Step 2) and calculating the bk for the inequality (Step

3).

Step 1. Symmetrize the graph by replacing each directed edge by an undirected edge

with half the coupling strength and add quantity
∣∣∣Dij5 ∣∣∣ to coupling strength, if Dij < 0 and

there is an edge in the symmetrized graph linking directly i and j.

New principal component of the Augmented Graph Stability method: If Dij < 0 and

there is no edge in the symmetrized graph linking directly i and j, then we add an edge in

the graph (dotted red line in Fig. 1.1C). Then the quantity
∣∣∣Dij5 ∣∣∣ assigns as the coupling

strength to this augmented edge.

Step 2. Choose the same shortest path Pij between any pair of nodes i, j of the sym-

metrized graph (Fig. 1.1C). The ingredient of the new method is that, when we add an

edge, we choose it once to replace our previous choice where the node unbalance Dij is

negative. In this example, they are P13 and P14. Our choice of paths is

P12 : e12 P13 : e13 P14 : e14 P15 : e15

P23 : e23 P24 : e23, e34 P25 : e12, e15

P34 : e34 P35 : e34, e45

P45 : e45.
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Step 3. We recalculate the inequality when the edge is added, i.e. the quantity of bk is

re-calculated. The rest of calculations are same as in the previous method.

For e12 (link between nodes 1 and 2):

d1 +D1 =
d

2
+

d

10
>
a

5
bk, where bk =

n∑
j>i; k∈Pij

L(Pij).

The chosen paths that pass through the e12 are P12, P25. Their weighted lengths L(Pij) are:

L(P12) = |P12| = 1 since Dc
1 +Dc

2 < 0;

L(P25) = |P25|χ(1 + D25

a
) = |P25|(1 + d

2a
) = 2(1 + d

2a
)

Summing up all the lengths, we obtain

d

2
+

d

10
>
a

5

[
1 + 2

(
1 +

d

2a

)]
.

Therefore, the synchronization condition for e12 decreases to d > 3a
2
.

For an additional edge e13 where the bk = 1, we have: d
10
> a

5
· 1. So d > 2a.

Exactly as for the e12 and e13, we can calculate the synchronization bounds for the

other edges. These bounds can be summarized as follows

e12 : d > 3a
2

e13 : d > 2a e14 : d > 2a e15 : d > 3a
4

e23 : d > 6a
5

e34 : d > 10a
3

e45 : d > 3a.

Hence, according to the new method, the synchronization bottleneck for this entire

network changes to e34, where the maximum coupling strength reduced to 10a
3

.

1.4.4 Comparisons of the methods for other network configurations

To deepen our understanding of the new method, we apply the Augmented Graph

Method to three other configurations. We find that both the previous Generalized Connec-

tion Graph method and our new method have their advantages when it comes to networks
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Figure 1.2. Three more configurations for methods comparison purpose.
(A) Sparser graph with six edges where the Augmented Graph method performs better:
d > 10

3
. (B) Graph with eight edges where both methods give the same synchronization

threshold: d > 2a. (C) Denser graph with nine edges where the previous method performs
better: d > 6a

5
.
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with different graph densities. Specifically speaking, in Table 1.1, we used both the Gener-

alized Connection Graph method and the new Augmented Graph method to calculate the

synchronization bounds for three networks of Fig. 1.2. This table demonstrates that the

new method does give lower bound when the graph is sparser. For example, in Fig. 1.2A,

adding an edge e24, we can lower the load on edge e12. However, in a denser graph of Fig.

1.2C, the new method can not lower the bound. Indeed, the added edge e35 with the new

method, becomes a new bottleneck which increases the bound of the entire network. In

between the sparse graph (Fig. 1.2A) and dense graph (Fig. 1.2C), there is a case that

both methods yield the same bound (Fig. 1.2B row in Table 1.1). This occurs when the

load of added edge (e14 or e35) in the new method is equal to the bottleneck (e12) of the old

method.

Table 1.1. Comparison of the synchronization thresholds calculated using the Generalized
Connection Graph method and Augmented Graph method in sparse and dense graphs.

GCG1 BN2 AG3 BN2 EA4

Fig. 1.2A d > 14
3
a e12 d > 10

3
a e12 e24

Fig. 1.2B d > 2a e12 d > 2a e14, e35 e14, e35
Fig. 1.2C d > 6

5
a e13 d > 2a e35 e35

1Synchronization threshold calculated by using the Generalized Connection Graph;2

Bottleneck: the edge where the maximum coupling strength is required to synchronize all
oscillators of the network;3 Synchronization threshold calculated by using the Augmented
Graph method;4 Edge Added according to the Augmented Graph method.

1.4.5 Computational algorithm and its application to larger irregular networks

Both of the old and the new methods have advantages on certain topologies. Typically,

the two methods become more effective and give more correct information on the qualita-

tive dependence of the synchronization thresholds on parameters of the network, while the

number of oscillators composing the network increases. Unfortunately, the calculation of

weighted path lengths can be quite a laborious task for larger networks with complicated
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coupling schemes. Therefore, we have to develop pseudo-codes as an implementation of the

algorithm for handling the computation. The algorithm first calculates the node unbalance

and mean node unbalance for each node of the graph. It then augments the graph by adding

an extra edge and connecting node i and node j if their mean node unbalance is negative.

While re-weighing the graph similar to Fig. 1.1C, it chooses a shortest path Pij between

any pair of nodes i and j of the symmetrized graph. Finally, for each edge of the graph the

algorithm determines the main inequality.

In the following implementation of pseudo codes, i and j represent the ith and jth

nodes. k represents the kth edge. wk represents the coupling strength of the kth edge. swk

represents the coupling strength in the symmetrized graph. We require wk to be sorted in

an ascending order, according to the node’s index. This is to guarantee that wk and swk

have the same order if no edge added to the graph and edge will be added, starting from

(m + 1)th element of swk. |Pij| represents the path length. L(Pij) represents the weighted

path length.

Input: Directed graph with various weights. Output: sck.

begin:

1. [initialize]

l = 0; j = 0; swi = 0; k = 0; compute node unbalance Dc
i and mean of node unbalance Dij

between node i and node j;

2. [symmetrize the graph, find the shortest path and compute weighted path

length]

for node i from 1 to n

j = i+ 1;

while j ≤ n

find the shortest path between node i and j (i.e. using Dijkstra algorithm, please

refer next subsection.);

k = k + 1;

if Dij < 0
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if there is an edge between node i and j

[re-assign a coupling strength and compute the weighted path

length]

swk=
wk
2

+wk
2n

; L(Pij) = |Pij|;

else [we augment the graph and change the shortest path between

node i and j to this augmented edge]

l = l + 1;swm+l = wk
2n

; L(Pij) = 1;

end if

else [half the coupling strength and compute the weighted path length

there is an edge between i and j]

swk = wk
2

; L(Pij) = |Pij|(1 +
Dij
n

);

end if

end while

end for

3. [compute the bk and derive the inequality]

In case edge k from 1 to n

[count edge k’s occurrence in the shortest path]

bk =
n∑

j>i; k∈Pij
L(Pij);

In case edge k from n+ 1 to n+ l

bk = 1;

solve the inequality swk >
a
n
bk; record the solution as sck;

end.

Then we use this algorithm to compute the synchronization threshold for a randomly

chosen directed graph. This graph (Fig. 1.3A) has 30 nodes, 37 edges and various coupling

strength chosen from d, 2d and 3d. With this algorithm, we symmetrized the graph and

adding new red dotted edges in the graph (Fig. 1.3B). The synchronization bottleneck for

this network happened to be edge e89. It is approximated to be d > 25a by using the

Augmented Graph method, while the old method yields d > 44a for the same edge. This
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shows that the Augmented Graph method does reduce the synchronization threshold in a

sparse graph.

Figure 1.3. Calculating an upper bound for a sparse directed graph.
(A) A sparse directed graph with 30 nodes and 37 edges the weights are randomly assign
from (d, 2d, 3d). The synchronization threshold using the old method is e89: d > 44a. (B)
Symmetrized graph with additional edges (red dotted line) obtained from the Augmented
Graph method. The synchronization threshold is e89: d > 25a.

1.4.6 Graph-based Stability method is path dependent

The proposed new algorithm is a path dependent method. That means that the choice

of the path can yield different bottlenecks because the different selection of paths can lead

to the load change on each edge. For example, in Fig. 1.4, our choice of paths is

P12 : a P13 : b P14 : b, c

P23 : e P24 : d

P34 : c
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However, one can also change the choice of P14 from {b, c} to {a, d}. In this case, one

chooses to redistribute the load from {b, c} to {a, d}. Thus, the equation 1.25 has to be

re-evaluated regarding these four edges. This implies that the synchronization threshold for

the whole network has to be re-calculated. This observation has been illustrated in previous

publications [44].

Figure 1.4. Augmented Graph Stability method is path dependent.

1.4.7 Augmented Graph Stability method can utilize the method for finding Shortest

Path (SP)

It has been pointed out that choosing the shortest path may not give the minimum

value of bk [44]. However, we suggest that one may use the shortest path (SP) as path

choices for calculating the synchronization threshold for the two following reasons. First,

for a larger network, the derivation of the thresholds by hand is time-consuming as the

size of network increases. One has to use an automated and well-developed method to

handle this derivation. How to find the SP is one of classic combinatorial problems and it

has been extensively studied, many efficient methods have been developed and are public

accessible. Furthermore, in some cases, the rules/methods regarding how to choose the path

(not necessarily the SP) for the bk calculation may not be at hand immediately. The SP

could be a first try.
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The SP problem has a mathematical expression. Given a directed graph G(V,E) where

V and E are vertex set and edge set of G correspondingly. A constant cij represents fixed

costs from the initial (source) vertex i to terminal (target) vertex j. A binary variable vij

is equal to “1” only if there is an edge from vertex i to j; “0” otherwise. Therefore, the

shortest path problem can be formulated as a linear integer programming problem:

Minimize
n∑
i=1

n∑
j=1

cijvij

subject to
n∑

j=1,j 6=i

vij −
n∑

j=1,j 6=i

vji = φi (1.26)

where

φi =


1 if vertex i is initial vertex;

−1 if vertex i is terminal vertex;

0 otherwise.

Different algorithms used for shortest path selection may result in running time differ-

ence. We use the Dijkstra algorithm to select the shortest path for two reasons. First, it

is an efficient algorithm and can be easily found in many textbooks (i.e. [45]). Second, it

is easy to combine the re-weight procedure together with the shortest path algorithm. Of

course, one may prefer other algorithms such as Dynamic Programming [46], A-star [47],

etc. to substitute the Dijkstra. The Dijkstra algorithm runs in O(m log(n)) time where

m and n represents the number of edges and number of nodes in the graph respectively

[45]. Therefore, if the proposed implementation utilizes the shortest path calculated by the

Dijkstra methods will have a running time of O(n · (n− 1) ·m · log(n)) approximately.
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1.4.8 Graph-based Stability method may also utilize kth shortest path (KSP)

If the shortest path is not available for some reasons, the second can be used and

the synchronization threshold have to be recalculated. If the second one is not available

either, the third shortest path will be used, so on and so forth. This case may not lead

us to consider the synchronization problem alone but to consider the KSP problem as an

embedded problem. Therefore, the study of the SP-like problem and even the KSP problem

itself might be helpful to further understand the Graph-based Stability Methods. Please

refer to Appendix B for the details.

1.5 Conclusions

In this Chapter we have addressed an important question, regarding network synchro-

nization: What is the stability criterion for synchronization in networks of identical (or

nearly identical) oscillators stable, especially in regard to network topology and coupling

strengths? This general question had been widely discussed, and powerful stability methods

for network synchronization had been developed. The most popular approaches include the

Master Stability function and the Connection Graph method. Both methods, originally

developed for undirected networks, have been generalized to handle networks with directed

connections. In this Chapter, we have developed a modification of the generalized Con-

nection Graph method that gives tighter bounds on the coupling strength required for the

onset of stable synchronization in sparse directed networks. We showed how the directed

network can be turned into an augmented undirected network with weighted connections.

The stability conditions for synchronization in this augmented directed network also ensure

stable synchronization in the original directed network.

We hope that this method not only inspires research on complex networks, but may have

applications to the synchronization phenomena in biology and engineering. We also hope

this method can contribute to deepening our understanding towards neurological disorders
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S9 
 

 3232 E11, N12, D67, E69, D103 E11, N12, D67, E69, D103 5/5 
 3234 E11, E69, D100, Q101, D103 E11, E69, D100, Q101, D103 5/5 
 3235 E11, D67, E69, D103 E11, D67, E69, D103 4/4 
 3236 E11, N12, D67, E69, D103 E11, N12, D67, E69, D103 5/5 
2EGD 1386 A24, E27, R29, S32, E37 A24, E27, R29, S32, E37 5/5 
 1387 D64, N66, D68, E70, E75 D64, N66, D68, E70, E75 5/5 
 1388 A24, E27, R29, S32, E37 A24, E27, R29, S32, E37 5/5 
 1389 D64, N66, D68, E70, E75 D64, N66, D68, E70, E75 5/5 

a: metal identification number in PDB file. b: the correctly predicted ligands over documented ligands 
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Table E.15. Testing on Mg2+-binding proteins (X-ray structures).

S13 
 

 

PDBa Resb Proteinc Chaind Mg#e Mis-
classifiedf

1CMC 1.8 Met repressor (metj) A,B 1693 No
1721 No

1EBH 2.2 Enolase A,B 6631 No
6633 No

1XLB 2.3 D-xylose isomerase A 6055 No
1CHN 1.6 Chey A 968 No

1EO3 1.9 Restriction enzyme ecoRV A,B 
4229 No
4230 No
4235 No
4236 No

1VSD 1.9 Integrase A 1129 No
1MUS 2.5 Adenine phosphoribosyltransferase A,B 4435 No

4436 No
1QB7 1.9 Xanthine-guanine phosphoribosyltransferase A 1857 No
1EYJ 2.1 Fructose-1,6-bisphosphatase A,B 5011 No

5056 No
2UAG 1.7 D-glutamate ligase A 3247 No

A 3248 No
3PRN 1.9 Porin A 2203 No

1HBN 1.1 Methyl-coenzyme m reductase 
B 19432 No
D 19557 No
E 19570 No

2TCT 2.1 Tetracycline repressor A 1575 No
1LUC 1.5 Bacterial luciferase A 5096 No

B 5106 No
1KQP 1.0 Nh(3)-dependent nad(+) synthetase B 8739 No
1NG1 2.0 Signal sequence recognition protein FFH A 2279 No
1BL3 2.0 Integrase B 3445 No
1NUL 1.8 Xanthine-guanine phosphoribosyltransferase A 2159 No
2UAG 1.7 D-glutamate ligase A 3247 No
1IDE 2.5 Isocitrate dehydrogenase A 3881 No
1JIV 2.0 DNA beta-glucosyltransferase A 2871 No

A 2872 No
1DOZ 1.8 Ferrochelatase A 2490 No
1G8T 1.1 Nuclease sm2 isoform A 3878 No
1A73 1.8 Intron 3 (i-ppo) encoded endonuclease A 3353 No
1FWK 2.1 Homoserine kinase D 9162 No
1JKK 2.4 Death-associated protein kinase A 2247 No
1LDF 2.1 Glycerol uptake facilitator A 1936 No

1OBW 2.1 Inorganic pyrophosphatase A,B,C 

4141 Other
4142 No
4143 No
4144 Other
4145 No
4146 No
4147 Other

1KCZ 1.9 Beta-methylaspartase A,B 6431 Other
6440 Other

1RK2 1.8 Ribokinase A,B,C,D 
8992 Other
9035 Other
9078 Other
9121 Other

a PDB code. b PDB resolution. c Protein name. d Chain number. e metal identification number in PDB file. f mistakenly 

classified Mg2+-binding site as Ca2+-binding site. 
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Table E.16. Testing on Zn2+-binding proteins (X-ray structures).

S14 
 

 

PDBa Resb Proteinc Chaind Zn#e Mis-
classifiedf

1FWZ 2.3 Diphtheria toxin repressor A 1588 No

1CY5 1.3 Apoptotic protease activating factor 1 A 
749 No
750 No
752 No

1WEJ 1.8 E8 antibody A 4170 No

1E67 2.1 Azurin  A,B,C,D
3901 No
3906 No
3907 No
3908 No

1GS8 1.9 Nitrite reductase A 2590 No
2591 No

1F5F 1.7 Sex hormone-binding globulin A 1369 No
1370 No

1GI4 1.3 Beta-trypsin A 3369 No
2CBA 1.5 Carbonic anhydrase A 2081 No
1F3Z 1.9 Glucose-specific phosphocarrier A 1109 No
1C8Y 2.0 Endo-beta-n-acetyl-glucosaminidase H A 2015 No
4ENL 1.9 Enolase  A 3291 No
1I6N 1.8 Loli protein A 2231 No
1IM5 1.6 Pyrazinamidase  A 1439 No

1VSH 1.9 Integrase  A 
1129 No
1130 No
1131 No

1NOY 2.2 DNA polymerase A 5953 No
2CTB 1.5 Carboxypeptidase A A 2452 No
1TOA 1.8 Periplasmic binding protein A,B 4295 No

4302 No

1A2P 1.5 Barnase  A,B,C 
2628 No
2629 No
2630 No

1EU3 1.6 Superantigen Smez-2 A,B 3419 No
3436 No

1EWC 1.9 Enterotoxin H A 1733 No
1EU4 2.5 Superantigen spe-H A 1668 No
1AST 1.8 Astacin A 1593 No
1ZFP 1.8 Growth factor receptor binding protein E 870 No
1K4P 1.0 3,4-dihydroxy-2-butanone 4-phosphate synthase A 1643 No

1K9Z 1.5 Halotolerance protein HAL2 A 
2731 No
2732 No
2735 No
2733 No

1CNQ 2.2 Fructose-1,6-bisphosphatase A 2572 No
1KSP 2.3 Klenow fragment A 4817 No
3IVE 2.0 Immunoglobulin A 893 No
1M5E 1.4 Glutamate receptor 2 A 6150 No
1L7O 2.2 Phosphoserine phosphatase B 3208 No
8RNT 1.8 Ribonuclease T1 A 779 No

1XLL 2.5 D-xylose isomerase A,B 
6057 Other
6058 No
6059 Other
6060 No

a PDB code. b PDB resolution. c Protein name. d Chain number. e metal identification number in PDB file. f mistakenly 

classified Zn2+-binding site as Ca2+-binding site.
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Table E.17. Testing on Pb2+-binding proteins (X-ray structures).

S15 
 

  

PDBa Resb Proteinc Chaind Pb#e Mis-
classifiedf

1E9N 2.20 DNA-lyase A,B 
4339 No
4340 No
4341 No
4342 No

1FJR 2.3 Methuselah ectodomain A,B 
3120 No
3121 No
3169 No
3170 No

1NA0 1.60 Designed protein CTPR3 A,B 

1969 No
1970 No
1975 No
1976 No
1977 No

1QNV 2.5 5-aminolaevulinic acid dehydratase A 2548 No
2549 No

1SN8 2.00 Ribonuclease E  A,B 1330 No
1331 No

1SYY 1.7 Ribonucleoside-diphosphate reductase A 2617 No

1XXA 2.20 Arginine repressor  A~F 
3245 No
3246 No
3259 No
3284 No

1ZHY 1.6 KES1 protein A 3516 No
3517 No

2CH7 2.5 Methyl-accepting chemotaxis protein  A,B 4633 No
4634 No

2FJ9 1.6 Acyl-CoA-Binding protein A 710 No
2FP1 1.55 Chorismate mutase  A,B 2705 No

2706 No
2OQ1 1.9 Tyrosine-protein kinase A,B 2200 No

2QD5 2.3 Ferrochelatase  A,B 
5845 No
5846 No
5965 No
5966 No

2QKL 2.3 Hydrolase  A,B 1772 No
3EC8 2.6 FLJ10324 A 1083 No

1084 No

3FHH 2.6 Outer membrane heme receptor ShuA A 
4778 No
4779 No
4780 No
4781 No

1HD7 1.95 DNA-lyase A 2072 Other

2G0A 2.35 Cytosolic 5’-nucleotidase III A,B 
4655 Other
4671 Other

2O3C 2.30 APEX nuclease 1 A,B 
6648 Other

6649 No
6650 Other

a PDB code. b PDB resolution. c Protein name. d Chain number. e metal identification number in PDB file. f mistakenly 

classified Pb2+-binding site as Ca2+-binding site. 
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Table E.18. Testing on a negative control dataset (X-ray structures).

S16 
 

  

PDBa Proteinb FNc

1DTS Dethiobiotin synthase 0
1L68 Lysozyme 0
1PTX Scorpion toxin II 0
1VCC DNA topoisomerase I 0
1WBA Winged bean albumin 1 0
2ENG Endoglucanase V 0
2YLE Human spir-1 kind fsi domain in complex with 

the fsi peptide 0 
3O5F Fk1 domain of FKBP51 0
3OQ7 Multidrug-Resistant Clinical Isolate 769 HIV-1 

Protease Variants 0 
1IQR DNA photolyase 0
1IUG Aspartate aminotransferase which belongs to 

subgroup IV 0 
1IZ0 Quinone Oxidoreductase 0
1J27 Hypothetical protein, TT1725 0
1J3M Conserved hypothetical protein TT1751 0
1JJF Feruloyl esterase domain of the cellulosomal 

xylanase z of clostridium thermocellum 0 
1TCA Lipase 2
2OLB Oligo-peptide binding protein 4
1TTB Transthyretin 2
1BDM Malate Dehydrogenase 5
1K4N Protein EC4020 3
2AQJ Tryptophan 7-halogenase (PrnA) 5
1ISO Isocitrate dehydrogenase    2
1SGV Trna psi55 pseudouridine synthase (trub) 3
a PDB code. b Protein name. c Number of False Negative predictions. 
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Appendix D: Formula in Resource Allocation Model

1. Three other options calculations:

(1). Single screening and treating for GC only.

Curijkl = Pg(i) · Sng(j) · Eg(l) · Pr (E.8)

Similar to (3.2), we have

Costijkl = Bcg(j) + V c+ [Pg(i) · Sng(j)

+(1− Pg(i)) · (1− Spg(j))] · (Dcg(l) + Tc) · Pr (E.9)

(2). Sequence screening tests that tested for CT and then GC if a positive CT result.

Curijkl = Curijkl in (3.1) + Pt(i) · Snt(j) · Pg|t(i) · Sng(j) · Eg(l) · Pr

+(1− Pt(i)) · (1− Spt(j)) · Pg|t(i) · Sng(j) · Eg(l) · Pr (E.10)

• Pt(i) · Snt(j) gives the rate over the population of group i tested positively by using

the jth CT screening test;

• Pt(i) · Snt(j) · Pg|t(i) · Sng(j) ·Eg(l) · Pr gives the rate of the cured number of the GC

patients infected by both of CT and GC and tested both positively.

• (1−Pt(i)) · (1−Spt(j)) is the rate of those who are not infected with CT but who test

positive. So (1− Pt(i)) · (1− Spt(j)) · Pg|t(i) · Sng(j) gives the percentage of patients

who are in a “stroke of good luck” case. In this case, patients only have GC and were

accidentally diagnosed as having CT with the jth test firstly and were caught with

the second GC test finally, which in turn shows that (1−Pt(i)) · (1− Spt(j)) ·Pg|t(i) ·
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Sng(j) ·Eg(l) ·Pr is the percentage of the cured number of GC patients in the case of

the “stroke of good luck”.

Costijkl = Costijkl in (3.2) + [Pt(i) · Snt(j) + (1− Pt(i)) · (1− Spt(j))]

·Bcg(j) + [Pt(i) · Snt(j) · Pg|t(i) + (1− Pt(i)) · (1− Spt(j))

·Pg|t(i)] · Sng(j) · (Dcg(l) + Tc) · Pr (E.11)

• [Pt(i) ·Snt(j)+(1−Pt(i)) ·(1−Spt(j))] ·Bcg(j) represents the rate over the population

of GC testing costs for the patients testing positive for CT.

• [Pt(i) · Snt(j) · Pg|t(i) + (1− Pt(i)) · (1− Spt(j)) · Pg|t(i)] represents the rate over the

population of those testing positive on CT and then positive on GC.

• [Pt(i) ·Snt(j) ·Pg|t(i)+(1−Pt(i)) · (1−Spt(j)) ·Pg|t(i)] ·Sng(j) · (Dcg(l)+Tc) ·Pr is the

rate over the population of treatment costs for curing these patients with a positive

GC test.

(3). Combo screening test for both CT and GC.

Curijkl = Curijkl in (3.1) + Curijkl in (E.8) (E.12)

Costijkl in (3.2) + Costijkl in (E.9) will give the basic count except the visit costs for

the screening test is counted twice and the treatment costs for those testing positive on both

CT and GC are counted twice. Subtracting them, we obtain the following.

Costijkl = Costijkl in (3.2) + Costijkl in (E.9)

−Vc − Pt(i) · Pg|t(i) · Tc · Pr (E.13)
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Note: For a combo assay, there is an additional cost which is calculated slightly

different from (E.13). Thus, we added the extra costs to the previous formula and it is

Costijkl = Costijkl in (E.13) + [Pt(i) · Snt(j)

+Pg(i) · Sng(j)− Pt(i) · Pg|t(i)] · Ac(j) (E.14)

2. Useful formula:

Let Pg|t(i) be the conditional probability of a CT patient in group i having GC and

Pt|g(i) be the conditional probability of a GC patient in group i having CT. From Bayes’

law, we obtain

Pt|g(i) =
Pt(i) · Pg|t(i)

Pg(i)
. (E.15)

Therefore, if Pg|t(i) is given, Pt|g(i) can be calculated by the above equation.

Let Pg|t(i) be the conditional probability of GC infection in a patient without CT

infection. The following equations are useful while calculating costs.

Pg|t(i) =
Pg(i)− Pt(i) · Pg|t(i)

1− Pt(i)
(E.16)

Because Pg(i) = Pt(i) · Pg|t + (1− Pt(i)) · Pg|t(i).

Similarly, we need Pt|g(i) in the cost estimates. Pt|g(i) can be presented as the following:

Pt|g(i) =
Pt(i)− Pg(i) · Pt|g(i)

1− Pg(i)
(E.17)

3. The Horowitz-Sahni branch-and-bound method.

In general, this algorithm has two moves. The descriptions and pseudocodes are published

[112]: “A forward move consists of inserting the largest possible set of new consecutive

items into the current solutions. A backtracking move consists of removing the last inserted

item from the current solution. Whenever a forward move is exhausted, the upper bound

corresponding to the current solutions is computed and compared with the best solution



127

so far, in order to check whether further forward moves could lead to a better one; if so,

a new forward move is performed, otherwise, a backtracking follows.” (p.30-31). In this

algorithm, items initially are sorted according to decreasing rates of the values per unit

weight. The pseudocodes we used [112] are: (x̂j)=current solution; ẑ=current solution

value (=
∑n

j=1 pjx̂j); ĉ=current residual capacity (= c−
∑n

j=1wjx̂j); (xj)=best solution so

far; z= value of the best solution so far (=
∑n

j=1 pjxj).

input: n, c, pj, wj; output: z, xj;

begin:

1:[initialize]

z=0; ẑ = 0; ĉ = c; pn+1 = 0; wn+1 = +∞; j = 1.

2:[compute upper bound U1]

find r = min{i :
∑i

k=j wk > ĉ}; u =
∑r−1

k=j pk +
⌊
(ĉ−

∑r−1
k=j wk)pr/wr)

⌋
;

if z ≥ ẑ + u then go to 5;

3:[perform a forward step]

while wj ≤ ĉ do ĉ = ĉ− wj; ẑ = ẑ + pj; x̂j = 1; j = j + 1;

if j ≤ n then x̂j = 0; j = j + 1;

if j < n then go to 2; if j = n then go to 3;

4:[update the best solution so far]

if ẑ > z then z = ẑ; for k = 1 to n do xk = x̂k;

j = n;

if x̂n = 1 then ĉ = ĉ+ wn; ẑ = ẑ − pn; x̂n = 0;

5:[backtrack]

find i = max{k < j : x̂k = 1};

if no such i then return;

ĉ = ĉ+ wi; ẑ = ẑ − pi; x̂i = 0; j = i+ 1; go to 2;

end.


