Both the Journal and Handbook of Research on Urban Mathematics Teaching and Learning

David W. Stinson
Georgia State University, dstinson@gsu.edu

Follow this and additional works at: https://scholarworks.gsu.edu/msit_facpub

Part of the Elementary and Middle and Secondary Education Administration Commons, Instructional Media Design Commons, Junior High, Intermediate, Middle School Education and Teaching Commons, Mathematics Commons, and the Secondary Education and Teaching Commons

Recommended Citation

This Editorial is brought to you for free and open access by the Department of Middle-Secondary Education and Instructional Technology (no new uploads as of Jan. 2015) at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Middle-Secondary Education and Instructional Technology Faculty Publications by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact scholarworks@gsu.edu.
EDITORIAL

Both the Journal and Handbook of Research on Urban Mathematics Teaching and Learning

David W. Stinson
Georgia State University

Over the past three decades or so there has been a proliferation of the edited Handbook within the social sciences generally and education social science specifically (peruse your bookshelves). Disregarding the anthropomorphism, we could say that (some of) these handbooks certainly have taken on a life all their own. Rightly or not, the status and prestige awarded to (some of) these handbooks and their editor(s) and contributing authors are unmatched. These researchers and scholars are designated as “The” experts on a particular subject as “The Handbook” often becomes the “go to” resource—or more aptly, the régime of truth (Foucault, 1977/1980)—within its respective field.

The growing influence of The Handbook within the social sciences should not be underestimated; its “power” to produce and re-produce knowledge is substantial. Within the science of mathematics education, a Google Scholar search of the 29 chapters of the Handbook of Research on Mathematics Teaching and Learning (Grows, 1992)—a National Council of Teachers of Mathematics (NCTM) project—returns nearly 12,000 scholarly references and the wider Google web search returns about 114,000 hits. As a single resource, only the NCTM 1989 Curriculum and Evaluation Standards for School Mathematics (about 156,000 hits) and 2000 Principles and Standards for School Mathematics (about 101,000 hits) rival this web presence.1 But for many, the latter two lack “scientific” rigor, leaving the Grows 1992 Handbook as the most referenced (therefore the most influential?) single resource book of research on mathematics teaching and learning. From a Foucauldian (cf. 1969/1972) perspective, The Handbook as a discursive formation is readily apparent; it determines (too often?) what discourses and in turn what discursive practices are both possible and impossible within a particular field of science in a particular moment of time (to subvert the impossible is always possible, however).

1 Google Scholar and Google web searches were conducted in December 2011; clearly, Internet searches are not an exact science, only approximations of web presence.

David W. Stinson is an associate professor of mathematics education in the Department of Middle-Secondary Education and Instructional Technology in the College of Education, at Georgia State University, P.O. Box 3978, Atlanta, GA, 30303; e-mail: dstinson@gsu.edu. His research interests include exploring socio-cultural, -historical, and -political aspects of mathematics and mathematics teaching and learning from a critical postmodern theoretical (and methodological) perspective. He is a co-founder and current editor-in-chief of the Journal of Urban Mathematics Education.
Nevertheless, although dangerous, I like handbooks. Handbooks have had and continue to have a significant influence on my development as a mathematics education researcher and teacher educator. Handbooks in part determine how I conduct my science and what readings I assign to my students. That is to say, as a readily accessible, single resource my published articles and course syllabi nearly always contain references and readings pulled from handbooks. To speak more generally, as previously shown, the Grouws 1992 Handbook has been undeniably influential in producing—and dangerously, re-producing—how the science of mathematics education and the teaching and learning of mathematics might be theorized and practiced. And the more recent Second Handbook of Research on Mathematics Teaching and Learning (Lester, 2007), also a NCTM project, appears to be destined to have a similar long-term impact on the field—taking on a life all its own (e.g., Google web hits about 1,220).

But who breathes life into The Handbook? Who “gives” it power? Well, we do! I was taught several years ago, and have been reminded continuously ever since, that the multiple decisions we make concerning whose research and scholarship we reference and which readings we assign are not neutral, apolitical acts (E. A. St. Pierre, personal communication, June 2001). But rather, acts of power (conscious or not) that hold uncertain possibilities for our own empowerment (or not) as well as the self-empowerment (or not) of our readers and students. Yes, I know, it’s most tempting here to deny our own power, to say that power is actually held in the surveilling gaze of academia, the disciplinary processes of peer review, or the asymmetrical decisions of professional organizations. But to do so, although tempting and perhaps somewhat warranted, leaves us powerless—which, we, indisputably, are not! Our scholarly and pedagogical decisions can be, if we so choose, powerful acts of scholarly activism (G. Ladson-Billings, personal communication, June 2010).

So with the concept of scholarly activism in mind, I purpose a re-envisioning of the research and pedagogical possibilities of the *Journal of Urban Mathematics Education (JUME)*. Might we envision JUME not only as “a peer-reviewed, open-access, academic journal published twice a year” (description found on the *JUME* homepage) but also as a bi-annually updated and revised Handbook of Research on Urban Mathematics Teaching and Learning? This re-

2 “My point is not that everything is bad, but that everything is dangerous, which is not exactly the same as bad. If everything is dangerous, then we always have something to do. So my position leads not to apathy but to hyper- and pessimistic activism” (Foucault, 1983/1997, p. 256).

3 For example, the first two editions of the *Handbook of Qualitative Research* (Denzin & Lincoln, 1994, 2000), the *Handbook of Research on Mathematics Teaching and Learning* (Grouws, 1992), and the *Second International Handbook of Mathematics Education* (Bishop, Clements, Keitel, Kilpatrick, & Leung, 2003).
envisioning certainly is not intended to suggest that the peer-reviewed journal somehow plays a lesser role to the handbook in producing and re-producing knowledge in a particular field. Clearly, The Journal is king. But rather, the intent here is to somehow seize the collective power of both The Journal and The Handbook by envisioning JUME as a both-and rather than an either-or research and pedagogical resource: the Journal of Urban Mathematics Education is both a peer-reviewed journal and a Handbook of Research on Urban Mathematics Teaching and Learning. To use JUME as a peer-reviewed journal, simply search its archives. And to assist you in using JUME as a handbook, below is the Table of Contents of the most current “edition.” Just remember, rather than waiting 5, 10, or even 15 years for an updated, revised edition, this handbook is updated and revised twice a year. Enjoy and use (at no cost to you or your students) this new resource!

NOTE: All “chapters” are hyperlinked.

Handbook of Research on Urban Mathematics Teaching and Learning

Table of Contents

PART I: ISSUES

1. Putting the “Urban” in Mathematics Education Scholarship
 William F. Tate – **Washington University in St. Louis**

 Eric (Rico) Gutstein – **University of Illinois at Chicago**

3. Mathematics as Gatekeeper: Power and Privilege in the Production of Knowledge
 Danny Bernard Martin, Maisie L. Gholson – **University of Illinois at Chicago**
 Jacqueline Leonard – **University of Colorado Denver**

 3.1 “Both And”—Equity and Mathematics: A Response to Martin, Gholson, and Leonard
 Jere Confrey – **North Carolina State University**

 3.2 Engaging Students in Meaningful Mathematics Learning: Different Perspectives, Complementary Goals
 Michael T. Battista – **The Ohio State University**

4. Changing Students’ Lives Through the De-tracking of Urban Mathematics Classrooms
 Jo Boaler – **Stanford University**
5. Positive Possibilities of Rethinking (Urban) Mathematics Education Within a Postmodern Frame
 Margaret Walshaw – Massey University

PART II: THEORETICAL PERSPECTIVES

6. A Metropolitan Perspective on Mathematics Education: Lessons Learned from a “Rural” School District
 Celia Rousseau Anderson, Angiline Powell – University of Memphis

 Clarence L. Terry, Sr. – Occidental College

8. Caring, Race, Culture, and Power: A Research Synthesis Toward Supporting Mathematics Teachers in Caring With Awareness
 Tonya Gau Bartell – University of Delaware

PART III: TEACHERS AND TEACHING

9. Comparing Teachers’ Conceptions of Mathematics Education and Student Diversity at Highly Effective and Typical Elementary Schools
 Richard S. Kitchen – University of New Mexico
 Francine Cabral Roy – University of Rhode Island
 Okhee Lee, Walter G. Secada – University of Miami

10. Preservice Teachers’ Changing Conceptions About Teaching Mathematics in Urban Elementary Classrooms
 Mindy Kalchman – DePaul University

11. Evolution of (Urban) Mathematics Teachers’ Identity
 Mary Q. Foote – Queens College, CUNY
 Beverly S. Smith, Laura M. Gillert – The City College of New York, CUNY

12. When Am I Going to Learn to be a Mathematics Teacher? A Case Study of a Novice New York City Teaching Fellow
 Michael Meagher – Brooklyn College, CUNY
 Andrew Brantlinger – University of Maryland, College Park

PART IV: TEACHER EDUCATION

 Lidia Gonzalez – York College, CUNY

14. Math Links: Building Learning Communities in Urban Settings
 Jacqueline Leonard – Temple University
 Brian R. Evans – Pace University
15. Learning to Teach Mathematics in Urban High Schools: Untangling the Threads of Interwoven Narratives
 Haiwen Chu – Graduate Center of City University of New York
 Laurie H. Rubel – Brooklyn College, CUNY

 Megan E. Staples, Mary P. Truxaw – University of Connecticut

17. Collaborative Evaluative Inquiry: A Model for Improving Mathematics Instruction in Urban Elementary Schools
 Iman C. Chahine – Georgia State University
 Lesa M. Covington Clarkson – University of Minnesota

18. K–2 Teachers’ Attempts to Connect Out-of-School Experiences to In-School Mathematics Learning
 Allison W. McCulloch, Patricia L. Marshal – North Carolina State University

PART V: STUDENT LEARNING AND IDENTITY

19. Social Identities and Opportunities to Learn: Student Perspectives on Group Work in an Urban Mathematics Classroom
 Indigo Esmonde, Kanjana Brodie, Lesley Dookie, Miwa Takeuchi – University of Toronto

20. Exploring the Nexus of African American Students’ Identity and Mathematics Achievement
 Francis M. Nzuki – The Richard Stockton College of New Jersey

21. How Do We Learn? African American Elementary Students Learning Reform Mathematics in Urban Classrooms
 Lanette R. Waddell – Vanderbilt University

22. (In)equitable Schooling and Mathematics of Marginalized Students: Through the Voices of Urban Latinas/os
 Maura Varely Gutierrez – Elsie Whitlow Stokes Community Freedom Public Charter School
 Craig Willey – Indiana University Purdue University-Indianapolis
 Lena L. Khisty – University of Illinois at Chicago

PART VI: POLICY

23. Racism, Assessment, and Instructional Practices: Implications for Mathematics Teachers of African American Students
 Julius Davis – Morgan State University
 Danny Bernard Martin – University of Illinois at Chicago

 Pamela L. Paek – University of Texas at Austin
25. An Examination of Mathematics Achievement and Growth in a Midwestern Urban School District: Implications for Teachers and Administrators
 Robert M. Capraro, Jamaal Rashad Young, Chance W. Lewis, Zeyner Ebrar Yetkiner, Melanie N. Woods – Texas A&M University

 Eduardo Mosqueda – University of California, Santa Cruz

PART VII: INTERNATIONAL PERSPECTIVES

27. Learning Mathematics in a Borderland Position: Students’ Foregrounds and Intentionality in a Brazilian Favela
 Ole Skovsmose – Aalborg University
 Pedro Paulo Scandiuzzi – University Sáo Paulo States
 Paola Valero – Aalborg University
 Helle Alrø – Aalborg University Bergen University College

28. Transforming Mathematical Discourse: A Daunting Task for South Africa’s Townships
 Roland G. Pourdavood – Cleveland State University
 Nicole Carignan – University of Quebec at Montreal
 Lonnie C. King – Nelson Mandela Metropolitan University

29. Forging Mathematical Relationships in Inquiry-Based Classrooms With Pasifika Students
 Roberta Hunter, Glenda Anthony – Massey University

References