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ABSTRACT

Previous studies have shown that tolerance develops to a greater degree in male 

compared to female rats. The midbrain periaqueductal gray (PAG), and its descending 

projections to the rostral ventromedial medulla (RVM), provides an essential neural 

circuit for the antinociceptive effects of opiates and has been implicated in the 

development of tolerance to morphine. We have previously reported that systemic 

morphine administration activates a greater proportion of PAG-RVM neurons in male 

versus female rats; our hypothesis is that if the PAG-RVM pathway is essential for the 

development of morphine tolerance, then (1) morphine activation of the PAG-RVM 

pathway should decline as tolerance develops, and (2) sex differences should be 

reflected as a greater decline in males. These hypotheses were tested using behavioral 

and neuroanatomical techniques to map the activation of the PAG-RVM pathway during 

the development of tolerance to repeated morphine administration (4.5 mg/kg; s.c.). We 

found that as male rats develop tolerance (D50 increased from 3.0 to 6.3 mg/kg), there 

was no significant decline in the overall activation of the PAG, however, there was a 

steady decline in the percentage of PAG-RVM output neurons activated by morphine. 

This reduction occurred in males only; there was no significant decline in the activity of 

PAG-RVM output neurons in females. These data demonstrate that the greater 

development of tolerance to morphine administration in male rats corresponds with a 

significant reduction in the activation of the PAG-RVM circuit. Our results provide 

additional data demonstrating a central role for the PAG in morphine tolerance.
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INTRODUCTION

It is estimated that as many as one in five adults currently experience chronic 

pain.  Of that population, 41% are receiving treatment with opioid-based narcotics 

(Breivik et al., 2006).  While morphine and other opioid-based narcotics are the most 

effective treatment for pain, opiates do not provide adequate pain relief for many 

people. The sex of the patient and the development of tolerance to morphine’s 

analgesic effects are two particularly important factors that limit the effectiveness of 

opiates.  Men tend to experience greater analgesia following opiate administration 

compared to women (Cepeda & Carr, 2003; Miller & Ernst, 2004), a difference that has 

been reported for a wide range of other species using both somatic and visceral pain 

models (Craft, 2003; Ji et al., 2006; Loyd & Murphy, 2006; Wang et al., 2006; Loyd et 

al., 2007).  

Recent findings suggest that the midbrain periaqueductal gray (PAG), and its 

descending projections to the rostral ventromedial medulla (RVM), contribute to the 

sexually dimorphic actions of morphine. Microinjection of morphine directly into the PAG 

produces greater antinociception in male compared to female rats (Krzanowska & 

Bodnar, 1999; Wang et al., submitted), and blocking PAG opioid receptors reduces 

morphine antinociception to a greater extent in female rats (Bernal et al., 2007). 

Furthermore, both the anatomy and physiology of the PAG-RVM pathway is sexually 

dimorphic, with males having a significantly greater percentage of PAG-RVM neurons 

activated by either inflammatory pain (Loyd & Murphy, 2006) or systemic morphine 

(Loyd et al., 2007).
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Tolerance is known to occur with repeated or continuous administration of 

morphine into the ventrolateral PAG of male rats (Jacquet & Lajtha, 1976; Siuciak & 

Advokat, 1987; Tortorici et al., 1999; Tortorici & Morgan, 2002; Lane et al., 2005; 

Morgan et al., 2006). In addition, blocking opioid binding in the ventrolateral PAG 

attenuates tolerance to systemically administered morphine (Lane et al., 2005). 

Tolerance appears to be mediated by a reduction in mu opioid receptor signaling 

efficacy in PAG neurons (Bagley et al., 2005), an effect that is reversed when mu opioid 

receptor coupling is enhanced via upregulated cyclase activity (Hack et al., 2003). 

These findings suggest that the PAG contributes to the decrease in antinociception that 

occurs with the development of tolerance.

Given that morphine activates a greater percentage of PAG-RVM output neurons 

in male compared to female rats (Loyd et al., 2007), our working hypothesis is that if the 

PAG-RVM pathway is essential for the development of morphine tolerance, then (1) 

activation of the PAG-RVM pathway should decline as tolerance to repeated injections 

of systemic morphine develops, and given that males show greater antinociception and 

greater tolerance (Craft et al., 1999; Barrett et al., 2001), (2) sex differences should be 

reflected as a greater decline in the activation of the PAG-RVM pathway in male 

compared to female rats. These hypotheses were tested using behavioral assessment 

of nociception and neuroanatomical techniques to map the activation of the PAG-RVM 

pathway over the time course of the development of tolerance to repeated morphine 

administration. 
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MATERIALS AND METHODS

Experimental Subjects

Thirty-five adult male and thirty-seven weight-matched (250-350g) cycling female 

Sprague-Dawley rats were used in these experiments (behavior subjects from Harlan, 

Indianapolis, IN and anatomy subjects from Zivic-Miller; Pittsburg, PA). Rats were 

housed in same-sex pairs on a 12:12 hour light: dark cycle.  Access to food and water 

was ad libitum throughout the experiment except during surgery and testing. These 

studies were performed in compliance with the Institutional Animal Care and Use 

Committees at Georgia State University and at Washington State University. All efforts 

were made to minimize any possible suffering by the animal, and to reduce the number 

of animals used.

Experiment 1: Behavioral Assessment of Morphine Tolerance

Thirteen male and fourteen female rats were handled daily for five days prior to 

initiation of drug administration. Morphine sulfate (5 mg/kg; provided by the National 

Institute on Drug Abuse, Bethesda, MD; Loyd et al., 2007) was prepared in a saline 

vehicle and administered systemically twice a day for three consecutive days to male 

(n=7) and female (n=7) rats. Control groups consisting of six male and seven female 

rats received daily injections of saline (1 ml/kg, s.c.).  Tolerance was assessed on Day 4 

by injecting cumulative doses of morphine every 20 minutes resulting in quarter log 

doses of 1.8, 3.2, 5.6, 10.0, and 18.0 mg/kg.  Nociception was assessed using the hot-

plate test 15 minutes after each injection.  The hot plate test measures the latency to 

lick the hindpaw when the rat is placed on a 52.5oC plate.  If the animal did not respond 

within 50 seconds, it was removed from the plate and given a score of 50 seconds.  The 
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mean latency at each dose was calculated for male and female rats pretreated with 

morphine or saline. 

Behavioral Data Analysis and Presentation

The half-maximal antinociceptive effect (D50; Tallarida, 2000) and 95% 

confidence intervals (CI) were calculated from dose-response curves generated using 

GraphPad software. The lower limit for calculating D50 values was the mean baseline 

score, and the upper limit was the mean hot plate latency following administration of the 

highest morphine dose. Changes in D50 between groups were assessed using ANOVA 

(GraphPad).

Experiment 2: Anatomical Assessment of Morphine Tolerance

     Retrograde Tracer Injections

Twenty-two male and twenty-three female rats were deeply anesthetized with 

ketamine/xylazine (50 mg/kg / 10mg/kg; s.c.).  When a surgical plane of anesthesia was 

reached each animal was placed in a stereotaxic frame and the skull was adjusted so 

bregma and lambda were at the same dorsal-ventral plane.  Glass micropipettes (10-20 

µM) filled with the retrograde tracer Fluorogold (FG; 2% soln. w/v in saline;

Fluorochrome LLC; Denver, CO) were lowered into the RVM using the following 

coordinates (in mm): AP: -2.0 Lambda; ML: 0.0; DV: -8.5).  FG was iontophoresed 

(50/50 duty cycle, 7.5 µA current) into the RVM for 25 minutes to facilitate neuronal 

uptake.  The current was then turned off and the pipettes remained in place for an 

additional 5 minutes prior to removal to minimize backflow of the tracer along the pipette 

track. Following tracer injections, wounds were sutured closed, the antibiotic Neosporin 

was applied to the wound, and the animals were placed in clean cages to recover under 
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a heat lamp.   Upon complete recovery from the anesthetic, animals were returned to 

their original housing facilities.

     Morphine Administration

Ten days following tracer injection, animals were administered morphine or 

saline for three consecutive days.  Morphine sulfate was prepared fresh in a saline 

vehicle within one hour prior to administration. Animals were divided into two 

experimental groups: (1) eight male and eight female rats received one daily injection of 

morphine sulfate (4.5 mg/kg, s.c.; NIDA; Bethesda, MD) for three consecutive days and 

(2) five male and six female rats received two daily injections of morphine sulfate for 

three consecutive days. Injections were administered between the hours of 10:00A.M. 

and 4:00P.M. with multiple daily injections separated by six hours.  Two control groups 

were used: (3) the morphine naïve group consisted of four male and four female rats 

injected with saline twice daily for three consecutive days and (4) the acute morphine 

group consisted of five male and five female rats injected with saline twice daily for 2.5 

consecutive days followed by a final injection of morphine (see Table 1).

     Perfusion fixation

One hour following the last injection of morphine or saline, all animals were given 

a lethal dose of Nembutal (160 mg/kg; i.p.). The animals were transcardially perfused 

with 200-250 ml of 0.9% sodium chloride containing 2% sodium nitrite as a vasodilator 

to remove blood from the brain. Immediately following removal of blood, 300 ml of 4% 

paraformaldehyde in 0.1M phosphate buffer containing 2.5% acrolein (Polyscience; 

Niles, IL) was perfused through the brain as a fixative. A final rinse with 200-250 ml of 

the sodium chloride/sodium nitrate solution was perfused through the brain to remove 
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any residual acrolein. Immediately following perfusion, the brains were carefully 

removed, placed in a 30% sucrose solution and stored at 40C for at least one week prior 

to sectioning. Sucrose solutions were changed daily to optimize saturation of sucrose 

into the tissue. To section the brain, the dura and pia matter were carefully removed and 

the brains were cut into six series of 25 µm coronal sections with a Leica 2000R 

freezing microtome and stored free-floating in cryoprotectant-antifreeze solution 

(Watson et al., 1986) at –20oC until immunocytochemical processing.

      Immunocytochemistry

A 1:6 series through the rostrocaudal axis of each brain was processed for FG 

and Fos immunoreactivity as previously described (Murphy & Hoffman, 2001). Briefly, 

sections were rinsed extensively in potassium phosphate-buffered saline (KPBS) to 

remove cryoprotectant solution immediately followed by a 20-minute incubation in 1% 

sodium borohydride to remove excess aldehydes.  The tissue was then incubated in 

primary antibody solution rabbit anti-Fos (Oncogene; Cambridge, MA, lot no. 4194; 

1:50,000) in KPBS containing 1.0% Triton-X for one hour at room temperature followed 

by 48 hours at 4°C. After rinsing out the primary antibody with KPBS, the tissue was 

incubated for one hour in biotinylated goat anti-rabbit IgG (Jackson Immunoresearch; 

West Grove, PA, 1:200), rinsed with KPBS, followed by a one hour incubation in avidin-

biotin peroxidase complex (1:10; ABC Elite Kit, Vector Labs). After rinsing in KPBS and 

sodium acetate (0.175 M; pH 6.5), Fos was visualized as a black reaction product using 

nickel sulfate intensified 3,3’-diaminobenzidine solution containing 0.08% hydrogen 

peroxide in sodium acetate buffer. After rinsing, sections were placed in primary 

antibody solution rabbit anti-FG (Chemicon; Billerica, MA, lot no. 25060005; 1:10,000) in 
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KPBS containing 1.0% Triton-X for one hour at room temperature followed by 48 hours 

at 4°C. FG was visualized as a brown reaction product using 3,3’-diaminobenzidine 

containing 0.08% hydrogen peroxide in Trizma buffer (pH 7.2). After 15-30 minutes, 

three rinses in sodium acetate buffer terminated the reaction. Sections were then 

mounted out of saline onto gelatin-subbed slides, air-dried overnight, dehydrated in a 

series of graded alcohols, cleared in xylene, and cover-slipped using Permount.

    Anatomical Data Analysis and Presentation

Data were analyzed across six representative levels through the rostrocaudal

axis of the PAG (Bregma -6.72, -7.04, -7.74, -8.00, -8.30, -8.80). The number of PAG-

RVM output neurons (FG+), the total number of activated PAG neurons (Fos+), and the 

number of activated PAG-RVM output neurons (Fos+FG) were quantified. Cell counts 

were conducted unilaterally as there are no differences in the number of FG+ cells for 

the left versus right side of PAG (Loyd & Murphy, 2006). The tissue was sectioned at 25 

µm so that 125 µm separates each analyzed level of the PAG thus eliminating any 

possible bias from counting the same cell twice.  Additionally, previous data have shown 

that there are no sex differences in total area (mm2) of the PAG between weight-

matched male and female Sprague-Dawley rats (Loyd & Murphy, 2006). 

Data are expressed as the mean + standard error of the mean from which 

percentages were calculated. A three-way analysis of variance (ANOVA) was used to 

test for significant main effects of sex (male, female), PAG level (Bregma –6.72 through 

-8.80) and treatment (two experimental groups of morphine administration and two 

control groups). A one-way ANOVA was used for post-hoc analysis to test for significant 

main effects of treatment and the Fishers PLSD was used to determine significant 
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interactions between treatment groups when there was a significant main effect 

independent of sex. P<0.05 was considered significant for all analyses. 

Photomicrographs were generated using a Synsys digital camera attached to a 

Nikon Eclipse E800 microscope.  Images were captured with IP Spectrum software, 

adjusted to figure format by adjusting brightness and contrast levels using Adobe 

Photoshop 7.0. 

RESULTS 

Experiment 1: Behavioral Assessment of Morphine Tolerance

The objective of the present experiment was to compare the development of 

tolerance to morphine in male and female rats. Animals received daily morphine or 

saline injections for three days. On day 4, all animals received cumulative doses of 

morphine and tolerance was examined in each group using the hot-plate latency test. 

Administration of morphine on the day of testing produced a dose-dependent increase 

in hot-plate latency in all groups tested (Figure 1). The antinociceptive potency of 

morphine was greatest in male rats pretreated with saline on days 1-3 (D50 = 3.0 

mg/kg). In contrast, the D50 for female rats pretreated with saline was 6.1 mg/kg, a 2.0 

fold increase when compared to males. Consistent with the development of tolerance, 

male rats pretreated with morphine showed a significant rightward shift in the morphine 

dose-response curve compared to male rats pretreated with saline ([F(1,74) = 20.04, p

< .001]; Figure 1A).  Specifically, the D50 increased from 3.0 mg/kg (CI = 2.2 – 3.7) to 

6.3 mg/kg (CI = 5.1 – 7.6) in rats pretreated with morphine, a 2.1 fold shift in the D50. 

By contrast, female rats showed significantly less tolerance compared to the male rats. 

Page 10 of 27

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 1(434)817-2040 ext. 167

European Journal of Neuroscience



For Peer Review

LOYD, DR

11

In females, pretreatment with morphine on days 1-3 resulted in a small rightward shift 

[F(1,115) – 5.63; p < .05] in the dose-response curve from 6.1 mg/kg (CI = 5.2 – 7.0) to 

8.0 mg/kg (CI = 6.6 – 9.4; Figure 1B) indicating that females were much less sensitive to 

morphine tolerance.

Experiment 2a: Anatomical Assessment of Morphine Tolerance in the PAG

The next series of experiments were conducted to determine if there is a 

corresponding decrease in the activation of the PAG-RVM pathway during the 

development of tolerance to repeated systemic morphine administration in male and 

female rats. Animals were administered either one daily injection of morphine for three 

consecutive days (three doses total) or two daily injections of morphine for three 

consecutive days (six doses total). Control groups consisted of either two daily 

injections of saline for three consecutive days (saline only) or two daily injections of 

saline for two days and on the third day received one injection of saline followed by one 

injection of morphine (one dose total; See Table 1). All animals were perfused one hour 

following the last dose of morphine or saline and their brains were processed for Fos 

and FG immunoreactivity.

Across all groups, systemic morphine administration induced extensive Fos 

expression throughout the rostrocaudal axis of the PAG. Fos was evident in both 

intrinsic (non-FG+) PAG neurons and in PAG-RVM (FG+) output neurons. No significant 

main effect of sex [F(1,208)= .764, p>0.05] or PAG level [F(5,208)= .0454, p>0.05] was 

noted in the mean number of morphine-induced Fos in PAG neurons. However, there 

was a significant main effect of treatment [F(3,208)= 8.733, p<0.05] and a significant 

sex-by-treatment interaction [F(3,208)= 10.617, p<0.05]. Across all levels of the PAG, 
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male rats treated with saline generally had significantly less Fos expression compared 

to all other treatment groups (Figure 2, p<0.05). In females, administration of one dose 

of morphine resulted in significantly less Fos expression than females treated with 

saline only (Figure 2, p<0.05). Total Fos expression was comparable between the three 

morphine treatment groups.

Experiment 2b: Anatomical Assessment of Morphine Tolerance in the PAG-RVM Circuit

Figure 3 shows an example of a typical iontophoretic injection of FG into the 

RVM of a male (top) and female (bottom) rat.  All injections were located on the midline 

and dorsal to the pyramidal tract, at the level of the caudal pole of the facial nucleus 

(lambda –2.0mm).  Injections outside of the RVM were not included for analysis.  

Injection of FG into the RVM produced dense retrograde labeling throughout the 

rostrocaudal axis of the PAG, with females having a significantly greater amount of 

labeling compared to males [F(1,208)=59.610, p<0.05] (data not shown; Loyd et al, 

2006, Loyd et al., 2007). 

Administration of one dose of morphine resulted in extensive Fos expression in 

PAG-RVM output neurons across all rostrocaudal levels of the PAG in male but not 

female rats (Figure 4).  An analysis of the %Fos in FG+ cells revealed a significant main 

effect of sex [F(1,208)= 41.194, p<0.05], treatment [F(3,208)= 43.607, p<0.05] and a 

significant sex by treatment interaction [F(3,208)= 19.440, p<0.05]. There was no 

significant main effect of PAG level [F(5,208)= .1883, p>0.05] indicating that these 

results were consistent across the rostrocaudal axis of the PAG. The %Fos in FG 

neurons decreased as a function of morphine treatment in males only [F(2,71)= 26.546, 

p<0.05]. Overall, the average %Fos in FG neurons decreased from 44±6% in males 
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receiving one injection of morphine to 8±2% in males following the sixth injection of 

morphine. In females, the %Fos in FG cells was low across all rostrocaudal levels of the 

PAG and no significant effect of treatment was observed [F(2,83)= 1.919, p>0.05]. 

Overall, the average %Fos in FG cells decreased non-significantly from 22±4% in 

females receiving one dose of morphine to 8±2% in females receiving six doses of 

morphine. Together, these results parallel our behavioral data indicating greater 

development of tolerance in male rats.

DISCUSSION

In the present study, behavioral and neuroanatomical techniques were used to 

examine the role of the PAG-RVM circuit in the development of tolerance to systemic 

morphine in male and female rats. The results demonstrate that repeated administration 

of systemic morphine induces tolerance in male to a much greater extent than in female 

rats. In parallel, repeated morphine administration significantly reduces the activation of 

PAG-RVM neurons in males but not females. The effective dose for antinociception in 

saline treated animals was two times greater for female compared to male rats and is 

consistent with previous research (Cicero et al., 1997; Cook & Nickerson, 2005; Ji et al., 

2006; Wang et al., 2006). Sex differences in morphine potency are reflected in the 

greater activation of PAG-RVM output neurons in males following morphine 

administration reported here and previously (Loyd et al., 2007). In addition, the greater 

tolerance to morphine in male compared to female rats is also consistent with previous 

research (Barrett et al., 2001; Bernal et al., 2007). Our data show that two injections of 

morphine per day for three consecutive days was sufficient to reduce morphine potency 
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by 2.1 times in male rats. However, in females, the half maximal effective dose of 

morphine only increased from 6.1 to 8.0 mg/kg. Thus, not only do female rats show less 

antinociception in response to morphine, but they also show much less tolerance to 

morphine.

Our data indicate that the PAG and its projections to the RVM likely contribute to 

the observed behavioral differences between male and female rats. Although there was 

no significant main effect of sex in the number of Fos+ neurons in the PAG observed 

following morphine administration, the number of Fos+ neurons in the PAG that were 

retrogradely labeled from the RVM following a single dose of morphine was greater in 

male compared to female rats. Moreover, a progressive decrease in the number of 

Fos+FG neurons occurred following three or six repeated injections of morphine in male 

rats. This decrease in activation of PAG-RVM output neurons in male rats led to 

Fos+FG expression that was comparable to female rats. Moreover, the limited 

antinociceptive tolerance in females was consistent with a lack of change in the 

percentage of Fos+FG neurons following one, three, or six repeated injections of 

morphine. These data correspond very closely with the behavioral data showing that 

morphine antinociception is greater in male compared to female rats and tolerance 

causes a reduction in morphine potency so that tolerant male rats experience 

comparable analgesia to non-tolerant female rats. These results demonstrate that the 

development of tolerance to morphine is associated with a reduction in the activation of 

the PAG-RVM circuit in male rats and provide additional data demonstrating a central 

role for the PAG in morphine tolerance.  
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It has been shown that tolerance occurs with repeated microinjections of morphine 

directly into the ventrolateral PAG (Morgan et al., 2006; Tortorici et al., 1999) and is 

associated with a reduction in mu opioid receptor signaling in the PAG (Bagley et al., 

2005). Importantly, blocking opioid binding in the PAG attenuates the development of 

tolerance (Lane et al., 2005). While the PAG does not project directly to the spinal cord, 

it projects heavily to the RVM as a relay to the spinal cord (Beitz, 1982; Beitz et al., 

1983).  The activity of RVM on-cells and off-cells that are normally inhibited and 

activated by morphine, respectively, become non-responsive to morphine following the 

induction of tolerance (Lane et al., 2004).  Given that tolerance develops to a greater 

degree when morphine is administered directly into the PAG compared to administration 

into the RVM (Morgan et al., 2005) and there is a corresponding progressive decrease 

in the activity of PAG-RVM neurons, these data together indicate that a key mechanism 

for tolerance resides within the PAG. Although several neural structures contribute to 

tolerance to the antinociceptive effects of morphine, the PAG appears to play a 

prominent role in the development of tolerance to systemic morphine administration.

Previous data have shown that systemic morphine administration induces 

extensive Fos expression in the PAG that is comparable in male and female rats (Loyd

et al., 2007). Similarly, in the present study, total Fos expression in the PAG was not 

sexually dimorphic.  However, unlike our previous study, morphine administration in 

males did not induce significantly greater Fos labeling compared to saline-treated rats. 

This difference between the effects of morphine in these two studies suggests that the 

multiple injections of saline over three days in the present study induces Fos expression 

that is independent of morphine. Given that Fos expression can be induced by a wide 
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range of stimuli including fear and anxiety (Kim et al., 1993), changes in respiration 

(Zhang et al., 1990; Harper et al., 1996), vocalization (Davis et al., 1993; Zhang et al., 

1994), blood pressure (Carrive, 1991; Murphy et al., 1995), and in fight or flight 

responses (Bandler et al., 1985; Bandler & Carrive, 1988; Depaulis et al., 1992), it is not 

surprising that repeated daily injections of saline induced Fos in PAG neurons. In 

contrast, PAG neurons retrogradely labeled with FG from the RVM were more likely to 

express Fos following morphine administration than saline treated rats. Moreover, this 

increase in Fos expression was greater in male compared to female rats. Both the 

increase in Fos+FG cells following morphine administration and the greater Fos labeling 

in male rats is consistent with our previous data (Loyd et al., 2007). The greater Fos 

expression in PAG-RVM neurons correlates with the greater morphine antinociception

produced in male compared to female rats. 

Sex differences in mu opioid receptor (MOR) distribution and function in the PAG 

(Duncan & Murphy, 2005) may provide a mechanism for sex differences in morphine 

tolerance. Furthermore, cells that express both MOR and GABA are common in the 

PAG (Williams & Beitz, 1990; Kalyuzhny & Wessendorf, 1998) suggesting that 

morphine directly modulates the GABAergic neurons that tonically inhibit PAG-RVM 

neurons (Behbehani & Fields, 1979; Chieng & Christie, 1994; Vaughan & Christie, 

1997; Commons et al., 2000; Tortorici & Morgan, 2002). Administration of GABA 

agonists hyperpolarize PAG-RVM neurons (Osborne et al., 1996) and microinjection of 

GABA antagonists into the PAG results in a net increase in membrane depolarization, 

firing frequency, frequency of EPSPs (Behbehani et al., 1990) and antinociception 

(Morgan et al. 2005). In the present study, a potential mechanism of action may be that 
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morphine is acting at mu opioid receptors present on GABA interneurons in the PAG. 

As tolerance develops, these GABAergic cells become unresponsive to morphine 

resulting in a return of tonic inhibition on PAG-RVM neurons and a corresponding 

decrease in the antinociceptive effects of morphine. This hypothesis is supported by the 

finding that repeated kainate-induced activation of PAG neurons is not sufficient to 

produce tolerance (Morgan et al., 2003). 

 The PAG also contains a high density of estrogen (ERα) receptors (Murphy & 

Hoffman, 1999; Murphy & Hoffman, 2001; Marson & Murphy, 2006) and approximately 

25% of PAG-RVM neurons contain ERα (Loyd and Murphy, unpublished observations). 

Estrogen has been shown to uncouple MOR from G protein-gated inwardly rectifying 

potassium channels, thus reducing morphine hyperpolarization of PAG-RVM neurons 

(Kelly et al., 2003).  In the present study, circulating estrogen acting at ERα receptors 

may be rapidly uncoupling MOR in the PAG of female rats, resulting in an overall 

reduction in the activity of these cells, thus preventing the development of tolerance. 

Cycling females were used in these studies and all rats continued to cycle normally 

during the three consecutive days of morphine or saline administration.  The activation 

of PAG neurons in females tended to be more variable compared to males and stage of 

estrous may potentially affect morphine potency and tolerance. Interestingly, it has been 

shown that the excitability of neurons in the PAG is variable across the estrous cycle of 

the rat. During estrus and late diestrus, lower currents are required to stimulate PAG 

output neurons and GABA antagonists greatly increase PAG-RVM neuronal firing rates, 

suggesting a decrease in GABAergic tone (Brack & Lovick, 2007). 

Page 17 of 27

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 1(434)817-2040 ext. 167

European Journal of Neuroscience



For Peer Review

LOYD, DR

18

In summary, the results of the present study indicate that the tolerance to 

repeated systemic morphine injections occurs in male rats, but not female rats.  With 

repeated injections of morphine, the activation of the PAG-RVM pathway steadily 

declines such that males tolerant to the effects of morphine have a significantly reduced 

activation of the PAG-RVM pathway. Together, these data demonstrate that the 

development of tolerance to morphine is associated with a reduction in the activation of 

the PAG-RVM circuit in male rats only and provide additional data demonstrating a 

central role for the PAG in morphine tolerance.
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TITLES AND LEGENDS TO FIGURES 

Table 1. Dosing Schedule for Experimental and Control Groups in Experiment 2  
 
Figure 1. Comparison of tolerance to the antinociceptive effects of morphine in male (A) 

and female (B) rats. Rats were pretreated with morphine or saline twice a day for 
3 days (see figure legend for pretreatment). Morphine dose-response curves for 
antinociception on the hot plate (HP) test were generated on Day 4 using a 
cumulative dosing paradigm. Both antinociceptive potency and tolerance to 
morphine were reduced in female (B) compared to male (A) rats. 

 
Figure 2. A-F: Mean number of Fos-positive cells in male and female rats across the 

four experimental groups.  Rats were injected with either morphine or saline once 
or twice daily for three days. Fos labeling was measured across six rostrocaudal 
levels of the PAG one hour following the last injection. Saline: morphine naïve; 1 
Dose: saline pretreatment followed by one dose of morphine; 3 Doses: one dose 
of morphine per day; 6 Doses: two doses of morphine per day. Fos labeling did 
not vary across conditions or groups. 

 
Figure 3. Photomicrograph of representative examples of FG injection sites at the RVM 

of a male (top) and female (bottom) rat. Injection sites were limited to localization 
within the bottom third of the medulla along the midline between the facial nuclei 
and dorsal to the pyramidal tract. Gi: gigantocellularis; py: pyramidal tract; 4V: 
fourth ventricle; 7: facial nucleus. 

 
Figure 4. A-F: Percentage of Fos-positive neurons that were retrogradely labeled from 

the RVM (%Fos/FG) in male (solid bars) and female (open bars) rats for six 
rostrocaudal levels of the PAG. Saline: morphine naïve; 1 Dose: saline 
pretreatment followed by one dose of morphine; 3 Doses: one dose of morphine 
per day; 6 Doses: two doses of morphine per day. A decrease in labeling is 
evident with an increase in the number of morphine injections for male rats as 
would be expected with the development of tolerance. In contrast, activation of 
output neurons was relatively low in female rats regardless of the number of 
morphine injections. 
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