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ABSTRACT

ESSAYS ON UNINTENDED CONSEQUENCES:

POLICY, INCENTIVES AND BEHAVIOR

By

Chandrayee Chatterjee

August, 2020

Committee Chair: Dr. James C. Cox

Major Department: Economics

The central theme of this research is understanding the underlying incentive struc-

tures of public policies that have behavioral implications, with particular focus on unin-

tended consequences. The three chapters of the dissertation examines three such policies

in the domain of labor, health and public economics with the aim of understanding how

incentives are created or distorted, leading to unintended consequences.

The first chapter uses a laboratory experiment to test affirmative action variants that

differ on the basis of their nature and timing. Using a rank-order tournament, the ex-

periment tests the relative impact of ex-ante (developmental) and ex-post (preferential)

affirmative action policies on performance and diversity.

The second chapter uses secondary data and quasi-experimental empirical techniques

to study the impact of the Medicaid expansion under the 2014 Affordable Care Act on

marital decision making. The Medicaid expansions provided an alternative source of

health insurance other than through spousal dependent coverage, thus changing the rel-

ative benefit and costs associated with marriage.

The third chapter is a field experiment that uses information on Arizona’s state income

tax credit for donations to qualifying charities to understand whether the intention to

give individuals the freedom to donate to their preferred cause leads to an increase in the

overall charitable pie or reallocates funds away from contributions to other causes.
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1 Introduction

“There is only one difference between a bad economist and a good one: the bad

economist confines himself to the visible effect; the good economist takes into

account both the effect that can be seen and those effects that must be

foreseen.”

— Frédéric Bastiat

The erroneous conflation of the terms unintended and unanticipated consequences

has led to the understanding that unintended consequences may well be anticipated and

failure to address it may subvert the understanding of true policy impacts and effective

policy-making (De Zwart, 2015). This dissertation studies the unintended consequences

of three different policies in the fields of labor, health and charitable giving to understand

the underlying economic incentives associated with these policies that drive behavior.

The first chapter examines the impact of variants of affirmative action policies on per-

formance and diversity. The variants are related to the nature and timing at which a

policy is implemented in the life cycle of an individual. Thus, the focus is on whether

a policy is developmental in nature in that it is implemented before the realization of

productivity or it is preferential in nature in that it is implemented at the assignment

margin after productivity has been realized. Using a controlled laboratory experiment,

which replicates skill acquisition and production stages, I compare ex-ante (developmen-

tal) and ex-post (preferential) policies to investigate their impact on performance in a real

effort task. The number of winners in the treatments are kept the same by design, such

that any observed differences in outcomes across treatments will result from different un-

derlying incentives. Results show that ex-ante interventions lead to greater performance

improvement for the disadvantaged category compared to ex-post interventions, without

any significant difference in representation. Thus, while both policies fulfill the aim of im-

proved representation for the disadvantaged, the unintended consequence of the quota

lies in limiting the performance achievement of the disadvantaged category.

1



Moving from a stylized laboratory experiment, my second chapter uses observational

data to study the impact of the 2014 Affordable Care Act (ACA) Medicaid expansion

on marital decision-making. The Medicaid expansions reduced the value of a benefit of

marriage, the possibility of dependent health care coverage, by expanding eligibility for

Medicaid. I use the American Community Survey data to study the causal impact of

the Medicaid expansion on marital decision making. I exploit the variation across time

and state Medicaid expansion status to estimate a difference in differences model. Results

show that in the target population, there is a reduction in the likelihood of a marital union.

Thus, underlying incentives of health insurance reforms can impact seemingly unrelated

outcomes such as marital decision making.

The third chapter addresses a recent trend in the use of state income tax credits to

reduce the cost of giving to qualifying causes. We use an online framed field experiment

with a modified dictator game to test how Arizona’s state income tax credit for donations

to qualifying charities affects donation decisions. Arizona’s tax code offers a suitable

setting to study this question. Residents can claim a 100% tax credit for donations made to

charities that provide services to vulnerable populations in the state. The study addresses

the question whether tax incentives that intend to give individuals the freedom to donate

to their preferred cause, leads to an increase in the overall charitable pie or reallocates

funds away from contributions to other causes. We find that average giving is unaffected

by the information provision and composition of the choice set. The distribution of dollars

between qualifying and non-qualifying charities, however, changes dramatically across

treatments highlighting a potential unintended consequence of such policies.

The dissertation concludes with broad implications of the research on understanding

unintended consequences of policies and accounting for the role of incentives in under-

standing behavior. Future avenues of research are also discussed.

2



2 The “When” and “Why” of Affirmative Action 1

2.1 Introduction

“You do not take a person who, for years, has been hobbled by chains and

liberate him, bring him up to the starting line of a race and then say, ‘You are

free to compete with all the others,’ and still justly believe that you have been

completely fair. Thus, it is not enough just to open the gates of opportunity.

All our citizens must have the ability to walk through those gates.”

— President Lyndon Johnson

The Civil Rights Act of 1964, particularly Title VII, stipulated that only the character-

istics of workers relevant to employment should be considered for personnel decisions.

Thus, workers should have the opportunity to be hired based on merit and not be af-

fected by prejudice. Affirmative action goes beyond the apparent identity-blind nature of

equal opportunity laws. It seeks to end employment discrimination to include remedial

practices for certain protected groups to correct historical discrimination (Epstein, 1995).

Despite the widespread prevalence of affirmative action policies around the world, the

debate surrounding the efficacy and fairness of affirmative action policies is as old as the

policies themselves. The points of contention have ranged from the fairness and efficiency

perspectives of such policies to potential stereotypes and discrimination associated with

them.

An overarching question associated with affirmative action has been whether it should

be aimed at guaranteeing equality of opportunity or equality of outcome. This central

question can be related to the nature of the affirmative action intervention being prac-

ticed. A distinction that is fundamental in this regard is provided by Loury (1997) in

1This paper has benefited from the valuable feedback provided by James Cox, Vjollca Sadiraj, Daniel
Kreisman, Danila Serra and Matthias Sutter at various stages of the project. Feedback from participants
at the Spring School in Behavioral Economics at UC San Diego 2017 and Southern Economic Association
Annual Meetings in 2019 is greatly appreciated. The experiments were funded through the Andrew Young
School Dissertation Fellowship.

3



terms of “developmental” versus “preferential” policies. A preferential policy seeks to

achieve target representation by having different selection criteria for different groups.

On the other hand, a developmental policy addresses the issue of representation directly

by making efforts to improve the skills of the disadvantaged, under-represented category,

while maintaining the same criteria for selection across categories.

This distinction is also inherently related to the timing at which such a policy is in-

troduced in an individual’s life cycle. Are such policies introduced ex-ante to production

at the developmental margin or ex-post to production at the assignment margin by giv-

ing the disadvantaged category preferential access to a limited number of slots (Fryer &

Loury, 2013)? For example, a developmental policy which is ex-ante, operates at the skill

acquisition stage before production has taken place and bridges the gap at the develop-

mental margin. These may be in the form of subsidized tutoring lessons, summer work-

shops and curriculum development, fee waivers for taking ACT/SATs and vocational

training programs particularly for under-represented minorities (URMs). A preferential

ex-post policy is one that bridges the gap at the assignment margin. This could operate as

a quota or a lower cut off for the disadvantaged category. The varying nature and timing

of such policies while targeting representation can also effect performance of its recipients

and non-recipients. Not accounting for the incentive structures inherent in these variants

can have the unintended consequence of limiting performance achievement of recipients.

Fryer and Loury (2013) develop a theoretical model addressing the welfare implica-

tions of the variants under consideration in this study. The model looks at ex-ante and

ex-post policies as those introduced before and after the realization of productivity re-

spectively. The theoretical predictions of their model outline the desirability of one vari-

ant over the other depending on whether the agent’s identity is visible (i.e. blind versus

sighted policy). However, empirical evidence studying the comparative effects of the

variants under consideration have not been explored.

Arcidiacono et al. (2015) study the role of affirmative action in undergraduate edu-

4



cation for both its beneficiaries and non-beneficiaries. They find that while race-based

affirmative action does improve the quality of colleges attended by URMs (i.e. entry to

the competitive arena), bans on affirmative action have no effect on URM completion

rates (i.e achievements in the competition itself). Moreover, the “mismatch hypothesis”

is operative for major choice as there is consistent evidence showing that among URMs

those who persist with selective majors (such as the sciences) have a better academic back-

ground than those who switch out of them. This implies that mere entry into the com-

petitive arena does not guarantee improved performance for URMs, which eventually is

the determinant of economic achievement. 2 The intended objective of affirmative action

was to improve economic opportunities of URMs as laid down by Executive Order 11246

issued by President Johnson. This was to be achieved by correcting under-representation

of minorities by increasing their entry into the competitive arena.3 However, the under-

lying incentives such policies create could eventually affect the performance of URMs,

thereby having unintended consequences on their achievements.

These results raise questions about whether the usual affirmative action policies while

fulfilling representation targets fall short of improving actual economic achievements for

the disadvantaged minorities which eventually affect economic outcomes. The primary

objective of this paper is therefore to investigate the comparative effects of developmen-

tal (ex-ante) and preferential (ex-post) policies on the performance and representation of

its beneficiaries and non-beneficiaries. The central question is whether affirmative action

has the same impact irrespective of when and how such policy is introduced in an in-

dividual’s life cycle. A secondary objective is to understand the impact of varying the

magnitude of the intervention i.e. whether varying the degree of benefit accorded by

2The “mismatch hypothesis” proposes that affirmative action can negatively affect outcomes of URM
students by bringing less-academically-prepared students into more-elite schools, where they have trouble
competing with their peers who come from stronger academic backgrounds. Additionally it implies a
situation where a student is matched to a school that does not optimize her chance of success (Arcidiacono
et al., 2015).

3For example, the Labor Department, under President Nixon, issued Order No.4, authorizing flexible
goals to correct the ”underutilization” of minorities by federal contractors.

5



affirmative action has a differential impact on performance.

I use a laboratory experiment which includes a real effort task of answering sample

ACT (American College Testing) examination questions that induces a competitive envi-

ronment through a rank-order tournament. The treatments used in the experiment make

it salient that the affirmative action variants are operative at different margins. The ex-

ante intervention operates at the developmental margin, prior to production, by giving

the disadvantaged category access to skill acquisition in the form of a practice round. The

ex-post intervention works at the assignment margin, after productivity has been realized

and is preferential in nature through the form of a quota. Thus, the design enables one

to compare and identify the impact of these two variants of affirmative action policies on

performance. Moreover, additional treatments vary the magnitude of the interventions to

study whether the extent of the asymmetry has a differential impact on the performance

of individuals.

The results indicate that the nature and timing of intervention does have a differential

impact on performance. I find higher performance improvement caused by ex-ante inter-

ventions which allow for skill acquisition compared to ex-post quotas, particularly for the

disadvantaged category. The results are consistent with prior literature which find that

quotas do not hurt performance in the laboratory (Balafoutas and Sutter, 2012; Niederle

and Vesterlund 2007, 2010). This study adds to it by showing that they do not improve

performance either. Moreover, the ex-ante intervention in addition to improving repre-

sentation of the disadvantaged category relative to the baseline, also shows no significant

difference in the diversity of the winners’ pool from the ex-post quota intervention. Vary-

ing the magnitude of ex-ante intervention yields a negative impact of over-compensating

or under-compensating the disadvantaged category on performance, relative to an inter-

vention that compensates both categories equally. This is consistent with the literature on

discouragement effects which associates lower aggregate effort with greater heterogene-
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ity between players (Dechenaux et al., 2012).4

2.2 Review of Literature

The effect of affirmative action on the employment outcomes of disadvantaged groups

was the matter of primary interest in the seminal work by Leonard (1990), who reported

affirmative action successfully promotes the representation of minorities and women in

employment. Subsequent studies by Holzer and Neumark (1999), Rodgers and Spriggs

(1996) have confirmed the same conclusion. Understanding the mechanisms through

which affirmative action works is not only important for successful and improved policy

targeting, but also for understanding other important outcomes that may be affected by

such policies directly, or indirectly, through spillover effects. Experimental studies have

often gone beyond impact evaluation of such policies and sought to bridge the gap in the

literature by exploring the behavioral impacts of affirmative action policies for a better

understanding of underlying mechanisms. In the following section I summarize some of

the important outcomes that have been studied in the context of affirmative action in the

laboratory.

2.2.1 Affirmative Action in the Laboratory

Some of the major factors that have been studied in this context are statistical discrimi-

nation and stereotype threats. The Coate and Loury (1993) model predicts that affirmative

action may lead either to erosion or strengthening of negative stereotypes. Empirically,

the benign equilibrium which eradicates the negative stereotype has been found to be

prevalent (Beaman et al., 2009 ; Kidd et al. 2007). While such results can be expected to

reinforce the confidence of recipients of such policies, a valid concern has been whether

4An under-compensating or over-compensating intervention retains the asymmetry between two
groups of heterogeneous players. A discouragement effect is thus operative in both of these cases since
there is a group of players who are stronger than the other group by virtue of the unequal nature of the
intervention.
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efficiency losses arising from rejecting more able employees outweigh the benefits. Addi-

tionally, it has also raised concerns about whether the incentives that such policies create

lead to variations in outcomes across beneficiaries and non-beneficiaries.

A few studies have particularly looked at academic performance of beneficiaries and

non-beneficiaries of affirmative action. Robles and Krishna (2012) find that affirmative

action may have detrimental impact on its beneficiaries by delaying the graduation of the

disadvantaged group. Moreover, they find larger gaps in GPA for selective majors reflect-

ing the challenges faced in coursework and curriculum by the disadvantaged categories

in a premier institution in India. However, Bagde et al. (2014) find different results with

respect to a private engineering college in India where they find that college completion

rates and time to graduation did not vary between beneficiaries and non-beneficiaries.

Arcidiacono et al. (2015) find that while affirmative action increases the likelihood of

graduating by the college quality effect, there is little evidence that affirmative action

bans negatively influence URM collegiate attainment rates. Thus the impact of affirma-

tive action on the performance of its beneficiaries has remained mostly inconclusive.

There have been several experimental studies that aim at overcoming the limitations

of reduced form impact evaluation of affirmative action to identify the underlying mech-

anisms through which the policies change outcomes.

Schotter and Weigelt (1992), address the efficiency implications of affirmative action

policies through a laboratory experiment with rank-order tournaments. They find that

the perceived trade-off between efficiency and equity does not always exist and iden-

tify conditions that explain these behavioral implications. Another important metric that

has been studied is the effect of affirmative action policies on competition. Studies have

shown that affirmative action has a positive impact on encouraging competition and par-

ticipation by women (Gneezy et al., 2003; Niederle and Vesterlund, 2007, 2010; Sutter and

Rützler, 2010; Niederle et al., 2013; Balafoutas and Sutter, 2012). Calsamiglia et al. (2013)

further investigates the impact of affirmative action on incentive effects in real-effort tour-
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naments between pairs of children from two similar schools who systematically differed

in how much training they received ex-ante on the task at hand (which was Sudoku in

this case). They too find no significant performance loss and a more equitable pool of

winners through the affirmative action intervention. Bracha et al. (2019) find that in the

case of gender based affirmative action policies there is heterogeneous effect by ability

for women, with the policy lowering (increasing) the performance of high (low) ability

women.

2.2.2 Affirmative Action and its Timing

While the previous section discusses studies regarding the efficacy of affirmative ac-

tion policies compared to scenarios with no intervention, a rarely asked question is whether

there are variants of affirmative action that are more desirable than the others. It is impor-

tant to note all these studies treat affirmative action in the form of quotas only. However,

affirmative action and diversity enhancing policies in general have moved beyond the

typical quotas. Thus there is need to consider variants of such policies in discussions of

affirmative action. In this context, one variation that can be studied is the timing of such

affirmative action policies which is also inherently tied to the nature of such policies.

One of the motivations for studying the timing of affirmative action interventions

comes from the fact that about half the inequality in the present value of lifetime earnings

is due to factors determined by the age of eighteen (Cunha and Heckman, 2007). Thus,

ability gaps between advantaged and disadvantaged individuals are formed early in the

life cycle of individuals. Moreover, early life interventions for disadvantaged children

have much higher economic returns than later life interventions (Heckman et al., 1999).

Thus, there is reason to study whether affirmative action interventions have the same

impact irrespective of when such policies are introduced in an individual’s life cycle.

Fryer and Loury (2013) develop a theoretical model addressing this question and the

welfare implications of such variants. The model looks at ex-ante and ex-post policies
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as those introduced before and after the realization of productivity respectively. Their

model predicts that when an agent’s identity is visible, the preferred policy operates at the

assignment margin without providing any direct assistance to skill acquisition. However,

when the affirmative action is not identity contingent, the ex-ante policy involves giving

a universal subsidy to the disadvantaged or imposing a tax on skill acquisition for the

advantaged, depending on whether the disadvantaged group is represented better at the

development or assignment margin.

However, empirical explorations of the impact of varying the timing of affirmative

action interventions is nearly absent. An ideal experiment to study such variations of

affirmative action policies would randomly assign the variants across otherwise simi-

lar universities (employers) and study the before and after quality/performance of the

admitted class (hired workforce) across these universities (employers), to determine the

impact of each affirmative action regime. However, this is unlikely to happen and thus

makes analysis with observational data implausible. Moreover, even if the data existed,

there is possibility of selection bias arising as there is no data on those who are rejected

and their counter-factual performance. This makes estimating the true treatment effect of

such policies problematic. Moreover, information that is available to employers and ad-

mission committees are much more detailed than that available to a researcher. (Fryer, et

al., 2008). A recent study by Cassan (2019), exploring affirmative action on the educational

attainment of scheduled castes in India, finds that while affirmative action increases ed-

ucational attainment, the main improvements are concentrated in literacy and secondary

schooling while there is little evidence of increases in higher education. Thus, there is a

possibility that the timing of affirmative action interventions can affect its success in im-

proving representation but may also lead to unintended consequences on performance

and achievements.

Given the lack of empirical findings regarding comparative efficacy of variants of af-

firmative action interventions and the challenges of carrying out estimation with obser-
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vational data, this study circumvents these problems and contributes to the literature

by designing a laboratory experiment. It also contributes to our understanding of how

individuals respond to policies that bridge asymmetries between an advantaged and dis-

advantaged category at two different margins.

2.3 Hypotheses

Theoretically, heterogeneity in subjects, competing in tournaments leads to lower ef-

fort exerted by the disadvantaged category (Bull et al., 1987). Asymmetric tournaments

have been reported to reduce effort and performance in the literature through a discour-

agement effect (Dechenaux et al., 2012). Weaker (disadvantaged) player gets discouraged

in the presence of a stronger (advantaged) player who has a higher probability of winning

and thereby finds it unprofitable to exert effort. In my framework, both variants of pol-

icy work at removing (or reducing) the asymmetry operating in the form of an “uneven”

tournament (O’Keefe et al., 1984), although at different margins.

The ex-ante intervention operates at the skill acquisition stage. It reduces the asymme-

try in opportunity by providing the disadvantaged category the opportunity to acquire

skills. Even if skill acquisition for both categories is not of the same extent (as in this

study and explained in the next section), the ex-ante intervention reduces heterogeneity

between players of two categories. The ex-post intervention operates at the assignment

margin, by ensuring that despite the heterogeneity in skills between the two categories,

the asymmetry is addressed in context of outcomes by a quota. Under a quota, since in-

dividuals are essentially competing with players of the same type (i.e. with same skill

level in this framework) as themselves, the asymmetry is no longer binding. Thus both

variants of affirmative action should be successful in reducing the discouragement effect

that arises out of player heterogeneity.

As a result of this and consistent with several laboratory studies such as Schotter and

Weigelt (1992), Niederle et al. (2010) and Balafoutas and Sutter (2012) which study affir-
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mative action in context of tournaments, I hypothesize the following :

Hypothesis 1: Affirmative action interventions lead to higher aggregate performance in tourna-

ments relative to the baseline of no intervention. This effect is stronger for disadvantaged subjects.

In this framework, the performance score can be conceptualized as a positive function

of both effort and skill. Recall that ex-ante interventions are developmental in nature and

attempts to improve the skill levels in the disadvantaged category. This can be expected

to strictly improve the performance of disadvantaged subjects relative to the baseline

since it leads to skill development as well as reduces discouragement effect. Considering

winning is strictly preferred to losing, advantaged subjects should have no change in per-

formance or may have a performance increase when competing with more competitors

undertaking skill acquisition than before i.e. they will have an improvement in score that

is greater than or equal to zero.

Ex-post interventions in the form of a quota however bridges the asymmetry without

skill development. For advantaged subjects, it can be expected to keep the effort un-

changed or increase it relative to the baseline.5 Additionally, for disadvantaged subjects,

the quota can increase performance relative to the baseline by encouraging effort. How-

ever, given that performance is a function of both effort and skills in this framework, a

quota by itself will not be successful in raising performance as much as an ex-ante skill ac-

quisition intervention which in addition to encouraging effort also develops skills. Thus,

while a quota can improve performance relative to the baseline, it is reasonable to as-

sume that it cannot substitute for skills that additionally improve performance. Thus, I

hypothesize the following:

5Concerns of a ”reverse discouragement” effect whereby advantaged category reduces their perfor-
mance in the presence of quotas are not supported empirically. In fact for the advantaged category too,
competing for fewer spots from within one’s type, in the presence of a representation target may raise per-
formance as in Michelitch (2009) who finds that quota ineligible category increase their performance in the
presence of quota. While this study is cited in Dechenaux et al. (2012), the study itself is unavailable. Thus,
I do not know the exact experiment design employed.
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Hypothesis 2: Skill acquisition, i.e. an ex-ante intervention, leads to a greater performance im-

provement compared to a quota, i.e. ex-post intervention, for disadvantaged subjects. However,

performance improvement of advantaged subjects does not differ across forms of intervention.

By design, the quota or ex-post intervention has equal representation. Assuming that

there is no difference in average ability between the advantaged and disadvantaged sub-

jects, skill acquisition in the form of ex-ante intervention should lead to equal or lower

representation of the disadvantaged category.6 Thus, I hypothesize the following:

Hypothesis 3: Skill acquisition i.e. an ex-ante intervention leads to lesser or equal representation

of the disadvantaged category compared to a quota i.e. ex-post intervention.

Another question of interest is to understand whether the size of the intervention

matters. An intervention can compensate to equalize opportunities between the two

categories i.e. by removing the asymmetry completely. Alternatively, it can compen-

sate to reduce the asymmetry by under-compensating or reverse the asymmetry by over-

compensating the disadvantaged category. Given that the unequal compensation pre-

serves the asymmetry in the tournament, we would expect to see an overall lower per-

formance in the unequal compensation case as compared to the equal compensation

case. Over-compensating the disadvantaged category may dis-incentivize the advan-

taged group to exert maximum effort since the policy favors the previously disadvan-

taged group (positive or reverse discrimination). On the other hand, under-compensation

may cause the discouragement effect to work on the disadvantaged category who despite

being compensated relative to the baseline are still at a disadvantageous position. Thus, I

hypothesize the following:

Hypothesis 4: Equalizing affirmative action interventions leads to higher aggregate performance

in tournaments relative to unequal i.e. over-compensating and under-compensating interventions

6I consider the possibility of an ex-ante intervention that reduces but does not remove the asymmetry,
as will be discussed in the design. This results in the possibility of lower representation compared to the
advantaged category.
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of the same nature.

2.4 Experimental Design

The experiment replicates a skill acquisition and a production stage in order to com-

pare ex-ante and ex-post interventions. Thus, the design has a practice round where

subjects acquire skills as the skill acquisition stage. A tournament stage where subjects

compete in a rank-order tournament replicates the production stage. Subjects take part

in a real effort task which involves answering sample ACT (American College Testing)

math questions. This is done to closely replicate an environment where performance can

be affected by affirmative action policies such as college admissions.

To test for affirmative action, we require one group of subjects to have an advantage

over the other in order to have an advantaged and a disadvantaged category. Subjects

are randomly assigned to one of two types in a group of fixed size, in this case groups of

six members. In the baseline, subjects of one type (Type A) can take the practice round

but those of the other type (Type D) cannot. Thus we will refer to advantaged subjects as

Type A and disadvantaged subjects as Type D subjects henceforth.7

The practice round has questions which come with feedback, i.e. correct answers are

shown to the subjects who take it. Moreover, some questions from the practice round

are repeated in the actual tournament which determines the final winners and payoffs.

Thus, subjects who take the practice round are at an advantage to those who cannot when

participating in the tournament since they have access to the answers for the questions

that are being repeated from the practice round. This is how an advantaged category is

induced in the laboratory. In the tournament stage, subjects take part in the rank-order

tournament where they answer sample ACT questions. The prize spread is $10 ; winners

get a higher reward ($15) than those who lose ($5).

7While the disadvantaged category is referred to as Type D, in the instructions for the experiment they
are referred to as Type B to avoid a possible experimenter demand effect by over-emphasizing the disad-
vantage.
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2.4.1 Timing and Nature of Intervention

Two factors are varied in the experimental design: (1) option to practice for Type D

subjects and (2) existence of a quota. The opportunity to practice is in the ex-ante stage,

operating at the developmental margin, while the preferential quota relates to the ex-post

stage and operates at the assignment margin. Each subject takes part in the baseline with

no intervention and one other treatment only.

In the baseline, Type A takes the practice round while Type D does not. Subjects of

both types compete in the tournament and the top two scorers are chosen as winners.

Thus, the baseline has no affirmative action intervention. In the ex-ante intervention,

Type D subjects are now given an option to take the practice round. In the tournament

stage the top two scorers are again chosen as winners, thus keeping the competition across

types. However, to account for the fact that affirmative action policies do not eliminate

the disadvantage altogether, Type D has a smaller number of questions repeated in the

tournament stage from the practice round, compared to Type A. A parallel can be drawn

with students with college-educated parents who can guide them in the process versus

first-generation URMs applying to college who often work with guidance counselors who

are assigned to numerous students and thus do not receive guidance as effective as stu-

dents with college-educated parents. In the ex-post treatment, the productivity gap is

assumed to exist in that Type D still does not get to practice. However, now there is a

quota such that the top scorer from each type is chosen as a winner, which makes the

competition essentially within type. A third treatment looks at the joint implementation

of both interventions whereby Type D subjects can practice as well as have a quota i.e.

one winner from each type as the winner choice criterion. This treatment enables me to

disentangle the effect of the quota from the opportunity to practice on performance as

well as understand affirmative actions that bridge the asymmetry at both margins.

The number of winners is held constant across all treatments. It is 2 out of a group of 6

in ex-ante intervention and 1 out of 3 of each type in a group with an ex-post quota. This
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enables us to differentiate between the ex-ante and ex-post type of interventions while

holding the number of winners constant across treatments. While the ACT questions

across all three treatments are the same, the questions in the baseline are different from

the treatment since subjects take the baseline before taking the treatment stage. However,

the questions are chosen randomly from a pool of ACT questions of the same level of

difficulty to maintain the same difficulty level for the baseline and treatments. I can thus

compare the difference in the performance score between the treatment and baseline for

each subject across treatments.

Additionally, subjects go through a third stage which is used to measure their ability

and control for it in the econometric analysis. In this stage, subjects are asked to answer

as many questions they can in five minutes. The compensation is piece-rate as they now

earn 50 cents for each correct answer and lose 25 cents for each wrong answer. They can

also choose to skip a question. This is done to get a true measure of ability and discourage

guessing. Subjects complete a questionnaire at the end of the experiment where informa-

tion about their self reported ACT and SAT math scores and GPAs as well as demographic

characteristics.

For each baseline-treatment pair, I reverse the order in keeping with an AB-BA design

to account for decision task order effects, if any. Subjects are paid for one of the two

parts they participate in, either the baseline or a treatment based on a coin toss after their

decisions are entered. Since either part is equally likely to be chosen, subjects have the

incentive to do their best in each part and potential wealth effects are avoided. The third

stage is introduced after the first two stages are played out so as not to interfere with the

main outcomes. Subjects are also paid a show-up fee of $5.

2.4.2 Magnitude of Intervention

To understand whether subjects respond differently to equalizing versus unequal com-

pensation I compare the ex-ante intervention which under compensates individuals with
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an equal compensation and over-compensating variations of the ex-ante treatment. In the

over-compensating variation, I allow the Type D to have more questions repeated from

the practice round than the advantaged category Type A, in the tournament stage. In

the equally-compensating variation of the ex-ante treatment, I allow Type D to see the

same number of questions repeated from the practice round as Type A in the tournament

stage. In all these cases, the number of winners is held constant, so that any treatment

effect arises from the magnitude of the intervention. Everything else remains the same as

earlier with subjects taking a third task for measuring their ability and are paid for one of

the two parts as before.

The experimental treatments are further summarized in Figure 1.

Figure 1: Experimental Design

In a tournament setting, subjects face outcome risk of winning or losing in a tourna-

ment. If subjects are risk neutral, subject behavior should not be affected by outcome

risk. However, the population at large is typically risk averse (Dohmen et al., 2011). This

experiment does not elicit risk preferences of the subjects.
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2.4.3 Experimental Procedures

I use Z-Tree version 4.1.6 (Fischbacher, 2007) to operationalize the experiment. The ses-

sions were conducted in Georgia State University’s Experimental Economics Laboratory

between June to September, 2019. A total of 252 subjects participated over 14 experimen-

tal sessions. The Experimental Economics Center (ExCEN) at Georgia State University

has a database where undergraduates can voluntarily sign up to participate in economic

experiments. These subjects were randomly selected through the ExCEN recruiter system

to participate as subjects in this experiment. There was no selection on demographics for

this experiment since we induce disadvantage in the laboratory. Balancing tests indicates

that the randomization was successful based on key observables as the treatment samples

within each condition are similar across key observables (i.e. no significant difference in

means across treatments) such as gender, race, age and self-reported SAT/ACT scores as

seen in Table 1.

Table 1: Balance of Observables

Ex-Ante Ex-Post Joint

Age 19.98 20.89 20.46
Female 0.61 0.63 0.61
White 0.07 0.06 0.09
Black 0.61 0.69 0.67
Asian 0.19 0.09 0.11
Other 0.09 0.07 0.13
High School GPA 3.67 3.69 3.78
SAT (Quantitative) 565.4 549.3 602.05
ACT(Math) 22.94 21.82 24.68

Subjects read and signed a consent form on reaching the lab. They picked a card

from a set of numbered cards (laid out with the numbered side down). They were as-

signed the computer terminal which matched the number on the card that was drawn.

After all participants were seated, the experimenter handed out printed instructions. The

experimenter also reviewed the instructions publicly after the subjects finished reading
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their instructions and answered any questions that subjects had. Subjects were handed

instructions to each part of the experiment after the preceding part ended. The exper-

imenter reviewed instructions with subjects before the beginning of each part, so that

subjects were clear about the difference between parts. Instructions were also re-iterated

on screen.

At the end of the experiment subjects filled out an un-incentivized questionnaire. Sub-

jects were paid in a separate room and according to their computer number such that no

one other than the subject and the experimenter knew their earnings. Subject instruc-

tions are included in Appendix A. Figure 10 in Appendix A also provides an example of

a question and the interface subjects view.

2.5 Results

To investigate the comparative effect on performance of the variants of affirmative

action policies discussed, I use a competitive tournament using ACT math questions. I

focus on their effect on the performance scores. More specifically I am interested in the

improvement in the performance score in each of the treatments relative to the baseline.

Since the underlying incentives and baseline conditions are different across the two cate-

gories, the results are shown for the two types separately.

2.5.1 Descriptive Statistics

Descriptive statistics on the effects of the variants of affirmative action under study

on performance are provided in Table 2. The means of scores and score improvement are

reported for the three main treatments as well as the baseline.

As expected, I find the advantaged, Type A category has a higher mean baseline score

(4.70) than the disadvantaged, Type D category (3.69) in the absence of any intervention.

A Mann-Whitney test rejects the null hypothesis of no difference in the treatment scores

at 1% level of significance (p < 0.01). Thus, in the absence of an intervention, I can reason-
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Table 2: Summary Statistics of Performance

Full Sample Type A Type D

Baseline Score 4.19 4.70 3.69

Treatments

Ex-ante:
Score 5.06 5.33 4.78
Score improvement 1.02 0.67 1.37

Ex-post:
Score 4.83 5.37 4.30
Score improvement 0.39 0.56 0.22

Joint:
Score 5.17 5.04 5.30
Score improvement 1.07 0.41 1.74

N 162 81 81

ably conclude that the design is successful in inducing disadvantage in the lab as reflected

in the higher performance score of Type A subjects.

In the ex-ante treatments with skill acquisition, there is a significant difference be-

tween the mean scores between the two categories (5.33 vs. 4.78 for Type A and D respec-

tively, p < 0.1). For ex-post intervention the mean scores are again significantly different

across types with Type A mean being 5.37 and Type D mean score being 4.30 (p < 0.01).

The joint treatment which allows for both skill development and a quota, bridges the

gap in performance means as there is no significant difference in the means (p > 0.1).

However, in each treatment, the average scores are higher than the baseline, driven par-

ticularly by the score improvement of disadvantaged subjects. Thus affirmative action

leads to higher mean performance overall relative to the baseline for each treatment as

hypothesized earlier.

Alternatively, looking at the score improvements across treatments I find that the

mean score improvement is higher for the ex-ante and joint treatments compared to the

ex-post quota. Table 2 shows that there is no significant difference in the score improve-
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ment for the ex-post intervention for the two types (p > 0.1). However, for both treat-

ments with skill development i.e. the ex-ante and joint treatments, Type D records a

higher mean score improvement than Type A (p < 0.1 and p < 0.01, respectively).

Comparing score improvement of ex-post quota with the joint treatment shows a sig-

nificantly higher mean in the latter (p < 0.05) implying that bridging the gap in skill ac-

quisition makes a significant contribution to improving performance. The improvement

is particularly substantial for Type D. Comparing the means of score improvement for the

ex-ante intervention and the joint intervention shows no significant difference (p > 0.1)

thus implying that quotas do not have a substantial impact on improving performance.

Thus, the descriptive statistics seem to reflect that the ex-ante intervention does bet-

ter at improving performance for the disadvantaged category as compared to an exoge-

nously imposed quota.

In the following sections, I disentangle the role of quotas versus skill acquisition through

practice to formally measure their respective impact on the performance improvement of

the subjects.

2.5.2 Effect on Performance of Alternate Affirmative Action Policies

I estimate the causal impact of ex-ante practice versus ex-post quota on the perfor-

mance improvement across the different types of subjects.

Linear Regressions

I first estimate the impact of alternative affirmative action policies on performance

improvement using a series of linear regressions.8 Separate regressions are estimated by

types since the underlying incentives and conditions vary by types. Model 1 specifies the

model without any controls. Model 2 controls for ability by using subjects’ scores from

the third stage. Model 3 introduces additional controls such as gender and race.

Note that the treatment variable is a categorical variable with three levels for the three

8Robust standard errors are estimated and normality assumptions are met in the data.
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treatments i.e. ex-post quota only, ex-ante practice only and joint treatment. The joint

treatment is considered the base for comparison in my analysis.9 The estimation model

for each individual is therefore:

Yi = β0 + β1T1i + β2T2i + γXi + εi (1)

where Yi is individual i’s score improvement i.e difference in their performance scores

in the treatment and the no intervention scenario. T1i and T2i are indicator variables for

the ex-post quota only and ex-ante practice only treatments respectively. Xi represents

characteristics specific to individual i such as race, gender, and score in ability measure

round. The regression compares the score improvement across treatments. Specifically,

the joint treatment is set as the baseline for comparison to disentangle the individual

effects of quota and practice on score improvement.

The estimates provide the difference in the predicted score improvement for a treat-

ment (ex-ante only or ex-post only) from the joint treatment which is the baseline. Thus,

β1 gives the difference in the mean score improvements between ex-post quota only treat-

ment and joint treatment capturing the impact of the absence of practice on score im-

provement. Similarly, β2 gives the difference in the mean score improvements between

ex-ante practice only treatment and joint treatment capturing the impact of the absence of

quota on score improvement. 10

Table 3 provides the estimates. Type A subjects show a higher improvement when one

of the interventions is absent. However, the estimates are not significant. Thus, neither

interventions to bridge the asymmetry for Type D subjects have a differential impact on

9This is represented by two indicator variables T1i and T2i which equals 1 for ex-post quota only treat-
ment and ex-ante practice only treatment respectively. We do not need to create an indicator variable for
the joint treatment because when both T1i and T2i equal to zero, we know that the treatment is joint.

10For interpreting Table 3 in terms of the regression equation in (1), T1i and T2i may alternatively be
interpreted as the absence of ex-ante practice and absence of ex-post quota, respectively. The base joint
treatment reflects the situation where both quota and practice are present, that is when both T1i and T2i
equals zero. The coefficient β0, as represented by the constant term in the regression, provides the estimates
of the mean score improvement in the joint treatment.
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the performance of the Type A subjects. Moreover, given that the effects, though positive

are not statistically different from zero, I cannot conclude if this reflects any evidence of

a ”reverse” discouragement effect on Type A that may operate in the presence of either

intervention. This is summarized in Result 1.

Result 1: The joint treatment does not lead to a performance improvement for Type A subjects

relative to the no intervention case. Neither the removal of ex-ante practice nor the removal of

ex-post quota leads to any significant change in performance improvement for Type A compared to

the joint treatment.

Table 3: Linear Regression Estimates: Effects on Performance Improvement

Model 1 Model 2 Model 3

Type A Type D Type A Type D Type A Type D

Absence of Ex-ante 0.1482 -1.5190*** 0.1410 -1.5285*** 0.0549 -1.4934***
Practice (0.3980) (0.3956) (0.3960) (0.3950) (0.3998) (0.3645)

Absence of Ex-post 0.2593 -0.3704 0.2652 -0.3804 0.2103 -0.3887
Quota (0.3630) (0.3365) (0.3633) (0.3301) (0.3888) (0.3646)

Constant 0.4074 1.7407*** 0.4715 2.0304*** -0.4181 0.8960***
(0.2574) (0.2537) (0.3273) (0.3367) (0.4963) (0.4550)

Ability No No Yes Yes Yes Yes
Demographics No No No No Yes Yes

N 81 81 81 81 79 80
Notes: Linear regressions. Dependent variable: difference in score between treatment and no
intervention baseline. Joint treatment is the base (hence excluded) category set for the categorical
treatment variable. Robust standard errors are reported in parentheses. * indicates significance at
the 10% level; ** indicates significance at the 5% level; *** indicates significance at the 1% level.

When we consider Type D subjects, I find differential effects of the interventions. The

difference in the predicted score improvement for the ex-post only treatment from the

joint treatment is negative implying that the score improvement was higher under the

joint treatment. From Table 3, the coefficients thus imply that taking away the ex-ante

opportunity to practice, reduces the mean performance improvement of Type D subjects
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by around 1.5 points. Thus, I can conclude that the opportunity to take the practice round

has a significant impact on the performance improvement of Type D subjects. 97% of Type

D subjects chose to take the practice round when they were provided the opportunity in

the skill acquisition interventions. Results show that subjects who take the practice round

utilize and benefit from this opportunity, even though it does not completely remove the

asymmetry.

However for Type D subjects, the difference in the predicted score improvements for

the ex-ante only treatment from the joint treatment, albeit negative, is not statistically sig-

nificant. Thus, following the similar logic as before, the estimates show that we cannot

conclude that taking away the quota has a significant impact on the mean score improve-

ment of Type D subjects. The results are in line with prior experiments studying affirma-

tive action which have shown that quotas do not hurt performance in the lab, (Balafoutas

and Sutter, 2012; Calsamiglia et al., 2013) but this experiment adds to it showing it does

not improve performance either. These findings are summarized in Result 2.

Result 2: The joint treatment leads to a significant performance improvement for Type D

subjects relative to the no intervention case. While the removal of ex-ante practice leads to a

significant reduction in performance improvement, the removal of the quota has no significant

impact on performance improvement compared to the joint treatment.

The linear regressions give us strong evidence that the affirmative action variants

under consideration have differential impact on the performance of the two categories.

However, it assumes that the treatment and performance improvement have a linear rela-

tionship. I carry out a robustness check with an alternative regression model, the ordered

logit model to allow for non-linearity.

Ordered Logit Regressions

For the Ordered Logit specification, I create three categories from the difference in

scores between the treatments and baseline, 0,1 and 2 which represents negative score

improvement (or score deterioration), no improvement and improvement, respectively.
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The dependent variable can thus be thought of as a categorical, ordered variable where a

higher category represents a higher level of improvement.

Table 4 below gives the estimates from the Ordered Logit Regressions reporting the

coefficients, standard errors and odds ratios. Coefficients represent the effect of absence

of practice and absence of quota as obtained by treatment comparison and explained ear-

lier. The negative coefficients are represented by odds ratios of less than one. This implies

that the odds of having an improvement in scores relative to no or negative improvement

is higher in the joint treatment.11 However, the estimates are not significant for Type A for

either interventions similar to the results from the linear regression. Comparing the ex-

post only treatment to the joint treatment for Type D implies that the absence of practice

leads to lower odds of a performance improvement relative to no or negative improve-

ment. This implies that for Type D, practice has a significant impact in increasing the odds

of a score improvement. Comparing ex-ante only treatment with joint treatment, and in-

terpreting the odds ratio similarly shows that removing quotas do not have a significant

impact on the odds of a performance improvement. 12

These results are similar to what we observe in the linear regression where skill ac-

quisition leads to Type D subjects showing significant score improvement compared to

quotas.

Thus, removal of asymmetry at the developmental margin by providing disadvan-

taged subjects the opportunity to practice, even if to a lesser extent than the advantaged

category, leads to a considerable improvement in performance of the disadvantaged cat-

egory, unlike the effect of quotas. Neither of the interventions impact the performance of

11The odds ratio measures the ratio of the odds of a higher order category (e.g. Y = 2 ) to the combined
categories below it ( Y = 0 to Y = 1 ) due to a unit increase in the covariate. Here, since Y=2 signifies
performance improvement, the odds ratio provides the odds of a performance improvement due to the
treatment, relative to the categories below it (no or negative improvement). The joint treatment remains the
baseline for comparison.

12Interpreted alternatively, this means that Type D subjects in the joint treatments have greater odds
of having a performance improvement compared to the ex-post only treatment with a quota implying
that practice has a significant impact in performance improvement. However, when comparing ex-ante
only treatment to the joint treatment, we find that the odds ratios are not significantly higher for the joint
treatment, implying that the quota by itself does not have a significant impact on performance.
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Table 4: Ordered Logit Regressions: Effects on Performance Improvement

Model 1 Model 2 Model 3

Type A Type D Type A Type D Type A Type D

Absence of Ex-ante Practice -0.2904 -1.9838*** -0.3214 -2.0077*** -0.5740 -2.2792***
(0.5244) (0.6298) (0.5310) (0.6303) (0.6506) (0.7122)

Odds Ratios 0.7480 0.1376 0.7252 0.1343 0.5633 0.1025

Absence of Ex-post Quota -0.2904 -0.4000 -0.2791 -0.4260 -0.5663 -0.5001
(0.5244) (0.6450) (0.5765) (0.6491) (0.5740) (0.7007)

Odds Ratios 0.7480 0.6704 0.7565 0.6531 0.5677 0.6065

Ability No No Yes Yes Yes Yes
Demographics No No No No Yes Yes

N 81 81 81 81 79 80
Notes: Ordered Logit Regressions. Joint treatment is the base (hence excluded) category set for the cate-
gorical treatment variable. Robust standard errors reported in parentheses. * indicates significance at the
10% level; ** indicates significance at the 5% level; *** indicates significance at the 1% level.

Type A thus corroborating Hypothesis 1 and 2 that were laid out earlier.

On analyzing answers to the survey questionnaire, it appears that among those who

believed that the interventions affected their performance success, 37% responded that

the quota helped their performance compared to only 12% who believed that the skill

acquisition helped their performance. This lends itself to concerns that the presence of

a quota (which results in one winner from the disadvantaged category to be chosen for

certain), may be perceived as a direct success enhancer. Quotas may be viewed more as a

substitute for effort than complementing it to meet the selection criteria.

2.5.3 Heterogeneous Effect by Ability

Although I control for ability in the previous specifications, it is worth investigating

heterogeneous effects of ability on performance. Affirmative action has been found to

have heterogeneous effect on performance by ability among women in the case of gender-

based affirmative action. (Bracha et al., 2019).

I use two measures of ability here. First, I use the score from Round 3 of the experiment

as the ability measure within the experiment. Additionally I use self-reported high school
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GPAs. I categorize those above the median ability score or median high school GPAs as

high ability and those under, as low ability. 13

Results are shown in Table 5. Neither the absence of quota nor the absence of prac-

tice has any significant impact on performance improvement by ability type. While the

estimates for absence of quota is negative implying a possible discouragement effect for

high ability types at the assignment margin, they are not significant. The estimates for the

absence of practice is positive implying higher score improvement for high ability types

than low ability types. However, these estimates are also not significant. Thus I do not

find any conclusive evidence of heterogeneous effect by ability for either interventions.

Table 5: Linear Regressions: Heterogeneous Effects by Ability Types

Stage 3 Score High School GPA

Absence of Ex-ante Practice -0.7990** -0.4792
(0.3788)) (0.3821)

Absence of Ex-post Quota 0.1444 0.6450
(0.3325) (0.3230)

High Ability 0.0468 0.4251
(0.4290) (0.3869)

Absence of Ex-ante Practice x High Ability 0.3706 0.3772
(0.6328) (0.5760)

Absence of Ex-post Quota x High Ability -0.3990 -0.1468
(0.5373) (0.4895)

Constant 0.1372 -0.1503
(0.3294) (0.3410)

Demographic Controls Yes Yes

N 159 159

Notes: Linear regressions. Dependent variable: difference in score between treatment and
baseline no intervention. Robust standard errors are reported in parentheses. * indicates

significance at the 10% level; ** indicates significance at the 5% level; *** indicates significance at
the 1% level.

13While the questionnaire at the end of the experiment collected information of subjects’ ACT and SAT
Math scores, very few subjects reported it. This would reduce the sample substantially if considered as
a measure of ability in the analysis shown above. Moreover, subjects who responded generally had high
ACT and SAT scores, which may bias estimates. Thus, I choose to use the above reported measures as the
measure of ability.
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2.5.4 Effect on Representation

A secondary outcome of interest is the eventual representation of each category in

the winner’s pool. Recall, that in the ex-post and joint treatment, which have quotas the

representation is designed to be equal. However, in ex-ante treatment, the representation

of a particular category can be equal , none or all of the winner’s pool. The graph shown

below in Figure 2 shows that the representation of both categories in the ex-ante treatment

is not significantly different from each other (p > 0.1) and from the average representation

ratio with quota (p > 0.1) as laid out in Hypothesis 3. Thus we have the following result:

Result 3: The representation as measured by the distribution of types in the final winners’

pool does not vary significantly across treatments.

Figure 2: Representation of each Category in Winners’ Pool
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2.5.5 Effect of Magnitude of Interventions

Given that we find ex-ante interventions to be more effective in raising performance,

it is worth investigating the optimal magnitude of such an intervention for performance

improvement. Therefore, I consider three types of ex-ante interventions. The original ex-

ante intervention considered for the analysis is one that is under-compensating in that it

bridges the opportunity gap but not completely. Now, I consider interventions that are

equal and over-compensating as explained in the design. Our baseline for comparison

is the equalizing intervention. Table 6 provides the estimates. The equalizing interven-

tion seems to improve performance in the full sample and for Type D while leading to a

marginally significant score deterioration for Type A (as shown by the estimates for the

constant).

Interestingly, an over-compensating variation does not significantly improve perfor-

mance compared to the equal compensation in the sample. The estimates, though in-

significant, are negative. There is a possibility that an over-compensating variation leads

to Type D subjects not exerting as much effort as in the equal case since they perceive

this over-compensation as an advantage in itself. However, in the equal case, since both

categories see the same number of questions, there is no asymmetry in opportunities,

and thus subjects are incentivized to exert maximum effort. For Type A subjects, the

over-compensation for Type D may create an asymmetry which may operate as a ”re-

verse discouragement effect” that results in them reducing effort and having lower score

improvements than equalizing case.

The results show that performance improvement with under-compensating ex-ante

intervention, that we have considered so far, is lower than an equalizing ex-ante interven-

tion in the full sample as well as for Type D subjects. This is consistent with Hypothesis 4

that the complete removal of asymmetry between two groups leads to better performance

overall. An under-compensating intervention preserves the asymmetry and thereby re-

sults in a lower performance improvement for the disadvantaged relative to the equal
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Table 6: Linear Regressions: Effect on Magnitude of Intervention

Full Sample Type A Type D

Over-compensating Intervention -0.5836* -0.3845. -0.7125
(0.3245) (0.3505) (0.4290)

Under-compensating Intervention -0.3517 0.2855 -0.8516**
(0.2735) (0.2898) (0.3669)

Constant 0.4401 -1.1232* 1.5681**
(0.5005) (0.5910) (0.3669)

Ability Yes Yes Yes
Demographic Controls Yes Yes Yes

N 144 72 72
Notes: Linear regressions. Dependent variable: difference in score between treatment and baseline no
intervention. The base category for the categorical treatment variable is the equalizing intervention.

Robust standard errors are reported in parentheses. * indicates significance at the 10% level; ** indicates
significance at the 5% level; *** indicates significance at the 1% level.

compensation which completely removes the asymmetry. The results are significant for

the disadvantaged category. For Type A, the under-compensating intervention (although

insignificant) shows a lower performance deterioration compared to an equalizing inter-

vention. A possible explanation could be that when the initial advantage that Type A

subjects have, by the opportunity to practice, is taken away as in the equalizing interven-

tion, these subjects view this as a reduction in the likelihood of winning (given that the

number of winners remain the same) and exert lower effort. The results are summarized

in Result 4 below.

Result 4: (i) Over-compensating interventions lead to lower performance improvement com-

pared to equalizing intervention overall.

(ii) The equal ex-ante intervention leads to higher score improvement than the under-compensating

ex-ante intervention, particularly for Type D subjects.

(iii) Type A subjects show a marginally significant score deterioration with equalizing interven-

tions that does not vary significantly with either the over-compensating or under-compensating

interventions.
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2.6 Conclusion

This paper investigates the impact of varying the timing and nature of affirmative

action intervention on an important metric that can be affected by such policies, i.e.the

performance of its beneficiaries and non-beneficiaries. The results show that ex-post quo-

tas which are preferential in nature, and aim to achieve equality in outcomes, lead to

lower performance improvement as compared to ex-ante interventions that are develop-

mental in nature and are implemented to bridge any asymmetry in skills. Moreover, the

representation target that is set by the quota is not significantly different from the repre-

sentation achieved by the ex-ante policy. Thus, the opportunity to develop skills in the

practice round leads to an equal representation of both types in the winners pool, even

without a quota.

In this framework, it does matter at which margin the asymmetry is bridged for in-

centivizing performance. A possible explanation is the way benefits of such policies are

perceived. Given these results, it appears that while the ex-ante intervention is seen as an

opportunity to improve performance, the quota in the ex-post case is perceived as more

of a crutch which substitutes for performance. Moreover, among ex-ante interventions,

the one which completely removes the asymmetry by providing equal opportunity has

higher performance improvement associated with it than under-compensating or over-

compensating alternatives. This shows that policies aimed at narrowing the skill acquisi-

tion gap between categories can lead to higher performance improvement for the disad-

vantaged category without hurting representation or the performance of the advantaged

category.

Universal testing, whether in the context of admission to gifted education programs

(Card and Giuliano, 2016) or as standardized tests for college admissions such as ACT/SAT

(Hyman, 2017), has been found to lead to discernible impact in narrowing income, racial

and ethnic gaps in representation (Dynarski, 2017). Given the importance of such ob-

jective measures of performance, the results from this study raise two important points
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worth considering in relation to affirmative action policies. First, affirmative action poli-

cies should consider performance as a key target variable in addition to the objective of

representation. Second, given that performance is a primary target variable, such poli-

cies should aim at understanding the most effective nature and timing of affirmative

action interventions that can be implemented to achieve better outcomes. In doing so,

such policies should extend the narrative of affirmative action beyond their preferen-

tial variants which work in terms of later life compensations and include developmental

variants in terms of early life interventions. Investing in policies that target skill devel-

opment among minorities before selection to higher educational institutions and targeted

vocational training before selection to jobs, can potentially reduce the incidence of “mis-

match”. For affirmative action to have long term effects on the economic outcomes of

minorities, it is important to ensure that minorities can follow through after being se-

lected for a role. Eventually, labor market outcomes would depend on performance and

bridging the skill acquisition gap may help facilitate performance improvement and in

turn representation, without the explicit use of quotas.

Comparative evaluation of variants of affirmative action policies is thus important

for making optimal policy choice. However, it is important to remember that the the

design does not account for the possibility of differential costs of different treatments

in my analysis which can lead to different welfare implications. Moreover, while the

experiment is particularly comparable to college admissions based on an objective scoring

criteria, the experiment cannot address the issue of taste-based discrimination that may

happen in a principal agent framework given that the selection criteria in the tournament

is blind. An additional limitation of the design is the inability to study possible effects on

behavior by risk-attitudes.

Future research should be aimed at understanding the response of employers to the

variants considered here. It is possible that affirmative action which targets skill devel-

opment can alleviate the problem of statistical discrimination or tokenism that is often
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associated with such policies. Moreover, given that the success of such policies depend

on the general perception across the board, it would be worth understanding group in-

teractions and prevalence of cooperation, retaliation or sabotage in the context of these

variants.
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3 ACA Medicaid Expansion and Marital Decisions14

3.1 Introduction

“But marital relationships, parent-child relationships, decisions to marry and

divorce, etc., are also profoundly economic acts. .... Becker blasted through the

Victorian detritus of all that bourgeois romantic ideology to analyze the ways

in which marital and reproductive behaviors are fundamentally rooted in a

utilitarian economic calculus.”

— Kathleen Geier

Gary Becker (1973), famously argued that positive gains from marriage and negative

consequences of getting divorced are what motivates two individuals to stay in a mar-

riage. The legal status of marriage itself bestows a wide range of social, economic and

legal benefits for those who choose to participate in a marital contract. Marriage is thus

often associated with economic stability and security (Gibson-Davis, Edin, & McLanahan,

2005). One of the broad objectives of the Personal Responsibility and Work Opportunity

Reconciliation Act (PRWORA) of 1996 was in fact the promotion of marriage in addition

to promoting work and reducing childbirth out of wedlock. Promotion of marriage and

a two-parent household was considered to be a means to reduce poverty under welfare

reform (Hu, 2003). While policies that affect the costs and benefits of marriage can be rea-

sonably expected to affect an individual’s decision to marry, stay married and to divorce,

a longstanding question of interest to economists is whether economic incentives created

by policies can truly affect marital decision.

One benefit of marriage is access to dependent health insurance coverage through

one’s spouse. In the United States, around 152 million non-elderly people are covered
14I want to thank James Marton for his guidance and valuable feedback at every stage of this project. I

would also like to thank participants at the Southern Economic Association Annual Meetings in 2018, the
American Society of Health Economists Conference 2019 and the Fall 2019 Conference of the Association
of Public Policy Analysis and Management for their valuable feedback. The project also benefited from
discussions and presentations at the Georgia State University Health and Labor Economics Summer brown
bag seminars.
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by employer-provided health insurance according to the Kaiser Family Foundation 2018

Employer Health Benefits Survey and among these a substantial proportion are covered

as dependents. Thus, it is reasonable to consider the prospect of obtaining health insur-

ance coverage to be an important consideration for individuals’ decisions to marry as

well to stay in a marriage. While this may not be important for those who have access

to health insurance coverage on their own (employer or government provided), many

individuals are not eligible for these forms of coverage and thus resort to dependent cov-

erage. Low-income childless adults who did not qualify for state provided coverage such

as Medicaid, did not have ESHI (Employer Sponsored Health Insurance) or could not af-

ford private coverage are people who would especially fit into this vulnerable category.

Moreover, dissolution of marriage makes a person vulnerable to the prospect of losing

coverage, reiterating the link between health insurance and marital status.

Policies that change the eligibility for different sources of health insurance can alter

their relative costs. If such policies provide an alternative source of coverage outside of

marriage, or such policies remove any barriers to marriage that had previously made

marriage costly, one can expect them to impact marital decision making as well. The Af-

fordable Care Act (ACA) aimed to achieve nearly universal health insurance coverage in

the United States through a number of major provisions that took effect in 2014 including

the expansion of Medicaid. The purpose of this paper is to identify the causal impact of

the ACA Medicaid expansion on the propensity to marry and divorce, using data from

the American Community Survey and using a difference-in-differences (DD) identifica-

tion strategy that exploits variation across time and state Medicaid expansion status.

While popular media has reported anecdotal evidence on the association between the

ACA and marital decision making, this paper is the first to my knowledge that causally

estimates the impact of the ACA Medicaid expansion on marriage and divorce decisions.

By considering divorces, I also try to address the possibility of the incidence of “marriage-

lock” whereby individuals decide to stay married to access dependent coverage through
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their spouse’s health insurance. Since women (25%) are still more likely to be covered as

dependents on ESHI policies than men (13%), it is important to stratify the analysis by

gender (Peters et al., 2014). Thus, this analysis provides a basis to examine whether such

economic incentives affect marriage and family structure.

The results indicate that among low educated (defined as those with a high school

degree or lower) non-elderly adults over 26 years of age (i.e. excluding young-adults),

the Medicaid expansion results in a statistically significant decrease in the likelihood of

being newly married. There is a total reduction of 6.92% which is particularly driven by

females who show a reduction of 11.6% in the likelihood of being married. As the theoret-

ical predictions suggest, a plausible explanation is that Medicaid serves as an alternative

source of coverage in place of dependent coverage such that people substitute away from

dependent coverage (which would entail marriage when they can attain Medicaid when

single). The results for divorces also support this explanation although they are more as-

sociational in nature. However, my results broadly support the narrative that incentives

to gain coverage can affect marital decisions and thereby family structure. The results

being larger for women thereby validates the vulnerability of this population in losing

insurance due to marriage dissolution.

3.2 Review of Literature

A substantial body of literature has now accumulated which looks at how health in-

surance within marriage affects labor market decisions. The effects of ESHI on labor sup-

ply of married women has shown the spouse’s coverage affecting the number of hours

women worked negatively (Buchmueller & Valletta, 1999). Wellington & Cobb-Clark

(2000) also finds that even husbands who receive health insurance coverage through their

wife’s employment work fewer hours than husbands who do not, even though the im-

pact is larger for wives covered by their husband’s insurance. Abraham & Royalty (2005)

argue that having a second earner in the household can improve household health insur-
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ance options, access, coverage and generosity, particularly for vulnerable workers (part-

time, self-employed and workers in small firms).

One of the earliest empirical works which attempts to quantify the relation between

marital disruption and loss of health insurance by Zimmer (2007) finds that marital sepa-

ration increases the rate of insurance loss by approximately 20 percentage points among

wives who are dependent on their husbands’ policies and is immediate. Lavelle & Smock

(2012) in their seminal work find that approximately 115,000 American women lose pri-

vate health insurance each year immediately after divorce and that slightly more than

one-half become uninsured as a result. However, baseline factors are found to moderate

loss of coverage after divorce (i.e. factors such as employment status, source of coverage

when married, education, job, poverty status etc.), thus accounting for subgroup hetero-

geneity in evaluating these results. 15

Subsequent work using the Survey of Income and Program Participation (SIPP) data

by Peters et al.(2014) extends the analysis to include both divorced and separated to find

that individual based private coverage increases irrespective of gender, after marriage

dissolution.16 However, the decreases in dependent coverage are much larger and offset

the increase in private coverage. Children and women show an increase in public cov-

erage around the time of separation or divorce. Sohn (2015) applies a hazard model to

married individuals and finds that on average, people who were covered as dependents

through their spouse’s health plans had lower rates of divorce showing some support for

the incidence of “marriage lock”. Moreover, not having an alternative source of health

insurance outside their current plan as dependents, diminished risks of divorce or sepa-

15Their estimates are smaller than those provided by Zimmer (2007), primarily because they control for
selection bias in the data which a lot of the earlier studies including Zimmer (2007) fail to do. Zimmer (2007)
fail to account for the baseline disparity whereby even married women who later divorce, are more likely to
be uninsured than women who remain married. Lavelle and Smock (2012) account for the role of selection
in their study which may arise from the fact that divorced women may be at a more disadvantageous
position relative to married women, to begin with. Thus, they start off by measuring to what extent married
women differ from divorced women on pre-divorce characteristics and rates of health insurance coverage.
They then apply a multivariate fixed effects model that controls for time-invariant characteristics, subgroup
heterogeneities and time heterogeneity.

16They use the 1996, 2001 and 2004 panels of the SIPP.
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ration further.

Health care policies, especially those relating to coverage eligibility can affect marital

decisions. Yelowitz (1998) finds that the expansion of Medicaid eligibility in the 1980s and

1990s to married parent families who were not on Aid to Families with Dependent Chil-

dren (AFDC) program led to an increase in the probability of marriage. A recent paper by

Abramowitz (2016) has looked at the impact of the young adult provisions (YAP) of the

ACA in 2010 on the probability of marriage given that the YAP opens up a new avenue

to access health insurance outside marriage. This paper uses a difference-in-differences

analysis and exploits variation across age groups and over time to identify the impact of

ACA young adult provision on the likelihood of marriage. The results find a decrease in

marriage, cohabitation and spousal health insurance among the treatment group (individ-

uals aged 23-25 years) and an increase in divorces. Heim et al. (2018) use administrative

panel data on taxes to also study the impact of the ACA YAP on childbearing and mar-

riage. In addition to finding a decline in marriage among individuals aged 24-25, they

particularly find reduced childbearing among young women who are unmarried, those

with fewer than two prior children, and those not in post-secondary school.

Barkowski & McLaughlin (2017) studies the influence of U.S. state and federal health

insurance coverage mandates on the marriage of young adults. They find that pre-ACA,

marriage rates of eligible young adults in states with coverage mandates were lower than

ineligible young adults in the same states. This pattern reversed upon the passage of the

ACA, with marriage becoming more likely among eligible young adults than ineligible

ones. In contrast to Abramowitz (2016), they find that the effect of the ACA on marriage

was not uniformly negative, with the complete picture of how the law changed mari-

tal behavior depending on the interaction of both the federal and state mandates. Chen

(2019) also studies marriage and divorce decisions caused by the introduction of the Mas-

sachusetts health care reform of 2006 using the data from ACS and finds a reduction in

divorce rates and increase in marriage rates.
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This literature review shows that there exists a link between health insurance cover-

age and marital decisions and family structure. Some recent studies have looked at the

impact of specific provisions of the ACA such as the young adult provision on marital

decision making. However, these studies do not necessarily generalize to other sections

of the population and other provisions of the ACA, one of the most important one being

Medicaid expansion.

3.3 Theoretical Framework

The goal of the Patient Protection and Affordable Care Act (ACA) of March 2010

was to achieve nearly universal health insurance coverage in the United States through

a “three-legged stool approach” involving a combination of insurance market reforms,

mandates, subsidies, health insurance exchanges, and Medicaid expansions (Gruber, 2011).

The major components of the ACA took effect in 2014 and these provisions were es-

pecially important for low income individuals, women and childless adults. The three

legged stool approach addressed the affordability of individual mandates by subsidies

and Medicaid expansion. In this section, I discuss how the Medicaid expansion may af-

fect decisions to marry or divorce through a stylized model of marital decision making.

Previously, Medicaid eligibility was typically tied to those with low income among

specific groups such as children, pregnant women, elderly and disabled individuals, and

some parents, but excluded other low-income adults. With the ACA Medicaid expan-

sion, Medicaid eligibility was no longer categorical. In Medicaid expansion states, Med-

icaid was made available up to 138 % of FPL. Since the Supreme Court verdict in 2012

allowed states to opt out of the requirement to expand Medicaid, Medicaid eligibility in

non-expansion states still remained limited by category with childless adults remaining

ineligible in most states and only some parents being eligible. For example, the KFF notes

that in 2014, for non-expansion states, the median eligibility limit for parents was 46% of

FPL which was about $9000 for a family of three in 2014. Moreover, in some states, the
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eligibility was less than 20% of FPL.

It is important to understand the possible theoretical channels through which the ACA

Medicaid expansion can impact marital decisions. Two primary impacts of the Medi-

caid expansion with respect to health insurance coverage that is relevant to the research

question would be a reduction of the cost of coverage and improving access to cover-

age (through changes in eligibility). This can alter the relative costs of different sources

of insurance and thereby the relative benefits and cost of marriage initiation as well as

termination. It is important to note here that my question is essentially a cross-sectional

question which aims to study how expanding the generosity of the Medicaid program

impacts transition in and out of marriage.

I model the decision to marry or remain married to understand how having health in-

surance coverage through the Medicaid expansion affects marital decision making among

low income individuals below 138% of FPL. The model is based on the theory of mar-

riage by Becker (1981) and subsequent adaptation by Chen (2018). The central idea of this

model is that people enter into marriages or remain in marriages if the expected utility

derived from being single is lower than that of being in a marital union.

Consider a model of marital decision making with identical agents who seek each

other in the marriage market, with strictly quasi-linear preferences as follows:

Uk = Vk + (Hk − πk), k = M, S (2)

where M denotes the state of being married and S denotes the state of being single (or

divorced). V denotes the utility gain (measured in dollar units) from marriage (such as

having children, income, companionship, love, security etc.) and H is the utility (mea-

sured in dollar units) derived from having health insurance coverage. π is the premium

or cost of health insurance.

I make the following three simplifying assumptions. First, I assume that individuals

40



always have health insurance of some form since having coverage is strictly preferred to

not having coverage. Second, I assume that the utility derived from health insurance is

identical across all plans. Third, that without Medicaid expansion, low income individu-

als had only ESHI (Employer Sponsored Health Insurance) in marriage through spouses

and obtain non-group insurance, when single. ACA Medicaid expansion, expanded eli-

gibility for Medicaid such that single low income individuals now qualified for Medicaid.

Moreover, households with income below 138% of FPL also qualified for Medicaid after

the expansion. Recall, previously Medicaid eligibility was quite limited in that it cov-

ered low-income children, pregnant women, elderly and disabled individuals, and some

parents, but excluded other low-income adults. Thus, we have the following:

HS = HM (3)

πM =


πESHI without Medicaid expansion

(πMedicaid, πESHI) with Medicaid expansion
(4)

πS =


πNon−group without Medicaid expansion

πMedicaid with Medicaid expansion
(5)

πMedicaid < πESHI < πNon−group (6)

An individual decides whether to enter or leave a marriage. In order to do this they

undertake the following optimization :

Max[UM − US, 0] (7)

According to the model, if UM −US ≥ 0 the agent prefers to marry or remain married.

However, if UM − US < 0, the individual prefers to be single.
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Substituting (2) and (3) in (7) we have,

UM − US = VM − VS + πS − πM (8)

Now I assume that the marginal agent is indifferent between marriage and staying

single such that the utility derived from marriage (independent of health insurance) is

equal across the two states i.e. VS = VM. This implies from equation (8) that,

UM − US =


πNon−group − πESHI > 0 , without Medicaid expansion

πMedicaid − (πMedicaid or πESHI) ≤ 0 , with Medicaid expansion
(9)

According to this model, individuals will choose a marital union without Medicaid

expansion since the cost of insurance when single outweighs the cost of insurance when

married, leading to a positive net utility from marital union.

However, with Medicaid expansion, if the household income is more than 138% of FPL

as a result of marriage such that the πM = πESHI and UM − US < 0, an individual will

prefer being single to a marital union. Thus, in this case individuals substitute away from

using spousal coverage when a cheaper alternative is present in the form of Medicaid.

However if the household income is less than 138% of FPL after marriage, πM = πMedicaid

and UM − US = 0. Marriage is then a preferred choice given that it does not increase the

cost of insurance. Thus Medicaid expansion can have varying impacts on an individual’s

incentive to marry post ACA depending on what the post-marriage household income

would be. Thus the combined effect of Medicaid expansion is theoretically ambiguous.

Thus, the main takeaway is that the effect of Medicaid expansion on marriage and di-

vorce decisions remains an empirical question since a new source of coverage can increase

or decrease marriage incentives relative to the pre-expansion phase. From the review of

literature, I find inconclusive evidence about how such coverage expansions affect mar-
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riage with some studies finding an increase while others find a decrease. This suggests

that effects could potentially be contingent on specific policies and the target population.

3.4 Methodology

This section describes the choice of the sample for my analysis and the methodology

implemented for identifying the impact of the ACA Medicaid expansion on marital deci-

sion making.

3.4.1 Data and Sample Selection

The primary data source is the American Community Survey (ACS), a nationwide

survey administered by the Census Bureau asking detailed questions about population

and housing characteristics. The ACS is well suited for this study since it has variables

that allow for the measures of marriage initiation and termination (not just the stock of

marriage or divorces).

The dependent variable for marriage initiation captures all those who are newly mar-

ried. Defined specifically, the dependent variable is “whether an individual got married

in the calendar year prior to the survey year” constructed from the “year last married”

variable from ACS. This is same as the measure used by Abramowitz (2016) in evaluat-

ing the impact of the Young Adult Provision of the ACA on marriage. It does not look

at the stock of married people in the sample since that would reflect both current and

past conditions and instead concentrates on those who initiated marriage recently. For

divorces, there is no similarly defined variable as “year last married”. So instead I use

the variable measuring whether one got divorced in the last 12 months as an indicator for

newly divorced. 17

17A similar variable for marriage asks whether a person was married in the past 12 months for which
data is also available in the ACS. A drawback to using this variable is that, given that the ACS is conducted
throughout the year, it is not possible to clearly identify individuals’ date of marriage precisely enough
to identify whether they married during the pre-treatment or post-treatment period. However, I use this
variable as a robustness check.
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The main sample includes low educated (high school degree or lower) adults between

the ages of 27 and 64, who got married or remained unmarried in a calendar year previous

to the survey year for studying marriage initiation. For divorces, the sample includes low

educated (high school degree or lower) adults between the ages of 27 and 64 who got

divorced in the past 12 months and all those who remained married, for each calendar

year. Recall that the Medicaid expansion is targeted at low-income individuals. Following

Kaestner et al. (2015) I limit the sample to low educated individuals as a proxy for low

income since education and income are strongly correlated and selecting a sample based

on income can lead to biases as Medicaid can affect both marital decisions and income.

Young adults of ages 18-26 are removed from the sample as they may be affected by the

Young Adult Provision of the ACA.

I consider the time period consisting of ACS survey years 2011 to 2017. Since the out-

come variable is lagged, I use the survey years 2011 to 2014 as the pre-treatment period

which captures new marriages between 2010 to 2013. The post treatment period includes

survey years 2015 to 2017 which captures new marriages between 2014 to 2016 calen-

dar years. The categorization of the expansion states is done in accordance to KFF and

Centers for Medicare and Medicaid Services (CMS) which puts the number of states that

expanded Medicaid by December 2017 at 31 states and Washington DC (i.e. AK, AZ, AR,

CA, CO, CT, DE, DC, HI, IL, IN, IA, KY, LA MD, MA, MI, MN, MT, NH, NJ, NY, ND, NM,

NV, OH, OR, PA, RI, VT, WA, and WV). Since the ACA allowed states the option to extend

their eligibility prior to 2014, my results should be interpreted as pertaining only to the

effects from states that expanded Medicaid between January 2014 to December 2017, and

may be underestimating the effect of the total expansion from 2010 to 2017.18

Table 7 presents the summary statistics for the sample of new marriages used in my

analysis i.e. all non-elderly adults above the age of 26, with a high school degree or lower

who got married or remained unmarried in the calendar year prior to the survey year.

18In robustness checks discussed later, I will consider early expanders, and the degree of expansion
among these early expanders to mitigate potential confounds in the results arising from early expanders.
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Expansion states show a slight increase in the proportion of new marriages post expan-

sion, although the difference is not significant. Non-expansion states show an increase in

marriage in post expansion period and the difference is significant at 1% level. There are

some differences in the demographic characteristics of the expansion and non-expansion

states that I control for in the regression analysis.

Table 7: Summary Statistics

Expansion States Non-expansion States

Pre-treatment Post-treatment Pre-treatment Post-treatment

Proportion married in calendar 0.0347 0.0353 0.0369 0.0406
year prior to survey year (0.1827) 0.1845) (0.1885) (0.1971)

Percentage Female 0.4766 0.4651 0.4875 0.4749
(0.4995) (0.4988) (0.4998) (0.4993)

Percentage Black 0.0698 0.1321 0.1196 0.2262
(0.2547) (0.3386) (0.3244) (0.4183)

Percentage Hispanic 0.2111 0.2215 0.1713 0.1851
(0.4081) (0.4152) (0.3768) (0.3884)

Percentage Other Race 0.0346 0.0736 0.0186 0.0421
(0.1828) (0.2611) (0.1349) (0.2007)

Percentage Unemployed 0.0957 0.0640 0.0908 0.0577
(0.2941) (0.2448) (0.2873) (0.2332)

N 572,427 421,781 365,587 268,685

Source: American Community Survey-1-year-estimates. Survey years 2011 to 2017

3.4.2 Identification Strategy

My identification strategy addresses the Medicaid expansion of the ACA and its im-

pact on marital decisions by exploiting the variation in time and state Medicaid expansion

status as in Simon, Soni & Cawley (2017). Thus, I compare changes in outcomes in the

treatment states to the same outcomes in the control states.

The treatment states are the ones that expanded Medicaid to low-income adults, be-

tween January 2014 to December 2017. The control consists of the rest of the states which

had not yet expanded Medicaid to this population. Formally, I estimate the following
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difference in differences(DiD) regression:

Yist = β0 + β1(MEDICAIDs ∗ POSTt) + β3Xist + λs + δt + εist (10)

Yist is the binary marriage outcome for individual i in state s in year t, POSTt is an

indicator for whether period t is in the post-treatment period and MEDICAIDs is an

indicator for whether state s expanded Medicaid. Xist is a vector of control variables

that includes demographic characteristics, family characteristics and household income.

λs and δt are state and time fixed effects respectively. The outcome variable of interest

is binary in whether an individual was newly-married or newly-divorced based on the

definitions given earlier. I estimate a linear probability models for our binary dependent

variable of interest since they are typically known to give reliable estimates of average

effects (Angrist & Pischke, 2008). Standard errors are clustered by states.

The identifying assumption of the DD model is that the outcomes would follow sim-

ilar trends in Medicaid expansion and non-expansion states in the absence of the ACA,

conditional on the covariates. Given that this assumption holds, the coefficient β1 identi-

fies the impact of Medicaid expansion on the outcome.

A state’s Medicaid expansion decision is highly political in nature with predominantly

Republican states less likely to undertake Medicaid expansions. I test this assumption

first informally by graphically comparing the trends. Figures 3, 4 and 5 provides the

trends in the proportion of newly married in our sample across treatment and control

groups separately. This provides a visual test of the parallel trend assumption for the DD

model to be valid for causal interpretation. The trends are predominantly parallel for the

pre-treatment years which implies that in the absence of the intervention (i.e. the Medi-

caid expansion), I would expect to see similar trends in the expansion and non-expansion

states. In addition to this I formally test the parallel trend assumption by carrying out an

event study analysis. The event study is discussed under the robustness checks.
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Figure 3: Trends for Newly Married: Full Sample
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Figure 4: Trends for Newly Married:
Females
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Figure 5: Trends for Newly Married:
Males
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3.5 Results

This section discusses the main results of the two outcomes of interest, new marriages

and new divorces obtained from the DD specification. Additionally, robustness checks

and sensitivity analyses are also reported.

3.5.1 Results for Marriage

This section summarizes the impact of the Medicaid expansion on the decision to

marry as estimated by the DD model. Table 8 presents the results of the baseline DD

model. Column 1 presents results for the entire sample while Columns 2 and 3 presents

the results for females and males respectively.

Table 8: Newly Married Difference-in-Differences Estimates

Full Sample Female Male

Medicaid x Post -0.0024** -0.0035*** -0.0015
(0.0011) (0.0008) (0.0015)

Pre-treatment mean 0.0347 0.0301 0.0389

% Change -6.92% -11.6% -3.85%

N 1,628,480 774,843 853,637

Source: American Community Survey
Notes: The sample is restricted to non-elderly adults above 26 years of age with a high school
degree or lower who got married or stayed unmarried in the calendar year previous to the survey
year. Regression includes demographic and unemployment controls.
*** Significant at 1 per cent level. ** significant at 2 per cent level. * significant at 10 per cent level.

It should be mentioned here that I carry out an event study analysis and the parallel

trend assumption holds. Thus the results for marriages can be interpreted causally. I

discuss the event study analysis in detail later.
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The results show that the expansion of Medicaid eligibility reduced the propensity to

marry significantly. In the full sample, the probability of being newly married reduced by

0.2 percentage points which represents a 6.9% decrease in marriage rates among low ed-

ucated non-elderly adults above 26 years of age compared to before Medicaid expansion.

While there is an overall negative effect of Medicaid expansion on the propensity to

marry, the provision may have differential impact on different subsections of the popu-

lation. For example men and women may have differential access to health insurance or

varying degrees of dependence on spousal coverage. Thus, I first stratify the sample by

sex and find that Medicaid expansion reduces propensity to marry among both men and

women. I find that expansion in Medicaid eligibility leads to a decrease of 0.35 percent-

age points i.e. 11.6% drop in new marriages in the sub-sample of women relative to their

pre-treatment mean. The reduction for men is 0.15 percentage points or 3.9% from their

pre-treatment mean and is not statistically significant. However, the estimates for men

and women are not statistically significantly different from each other. Thus there is no

heterogeneous effect by sex on the propensity of being newly married due to Medicaid

expansion (p=0.14).

To the best of my knowledge, this is the first study which looks at the impact of ACA

Medicaid expansion on the likelihood of new marriages. As a result, I cannot compare my

estimates to similar studies. However, the studies on Young Adult Provision of the ACA

and its impact on marriage do show a similar substitution away from marriage. Both

Abramowitz(2016) and Heim et al. (2018) find a 0.5 percentage point reduction among

23-25 year olds which is a 9.3 and 2.1 percent reduction in the respective samples of these

studies.

Thus, the results support the theoretically plausible explanation that in the presence

of an alternate source of coverage, individuals substitute away from dependent coverage

through marriage, thereby showing a reduction in the propensity to marry. As discussed

in the theoretical section, incentives that can cause individuals to substitute away from
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marriage as a source of health insurance coverage, can also affect other marital outcomes

such as divorce. An alternate source of coverage can also reduce the cost of divorce.

3.5.2 Results for Divorces

Table 9 presents the results of new divorces. The results indicate that the Medicaid

expansion is associated with an increase in the likelihood of having divorced in the past

12 months. Although statistically insignificant, there is an increase in divorces in the

sample by 0.11 percentage points i.e. a 5.95% increase. The sub-sample for women shows

an increase of 0.16 percentage points or a 8.74% increase. Men show an increase in the

likelihood of new divorces by 0.07 percentage points. However, there is no heterogeneous

effect on the likelihood of divorces by sex as the estimates are not statistically significantly

different from each other (p=0.42).

Table 9: Newly Divorced Difference-in-Differences Estimates

Full Sample Female Male

Medicaid x Post 0.0011 0.0016* 0.0007
(0.0007) (0.0010) (0.0010)

Pre-treatment mean 0.0185 0.0182 0.0188

% Change 5.95% 8.74% 3.72%

N 2,280,159 1,106,657 1,173,502

Source: American Community Survey
Notes: The sample is restricted to non-elderly adults above 26 years of age with a high school
degree or lower who got divorced in the past 12 months and all those who remained married, for
each calendar year. Regression includes demographic and unemployment controls.
*** Significant at 1 per cent level. ** significant at 2 per cent level. * significant at 10 per cent level.

However, these results are associational in nature since the parallel trends assumption

does not hold for divorces given our model. In the event study presented in Table 20, I

50



reject the null hypothesis that all pre-2014 interaction coefficients are jointly equal to zero.

Thus, I cannot attribute increase in divorces to change in Medicaid eligibility alone since

the underlying assumption of the DiD model is violated.

3.5.3 Robustness Checks

I test the sensitivity of the results to validity of the model assumptions, modifications

of the sample, definition of the dependent variable and model specification. Robustness

checks are carried out for new marriages since the model is not valid for causal interpre-

tation for divorces. The results are provided in Appendix B.

First, I test for the parallel trend assumption more formally with an event study. The

results are provided in Table 19 for new marriages. I jointly test the null hypothesis that all

pre-2014 interaction terms are equal to zero using an F-test. I cannot reject the hypothesis

that all pre-2014 interaction coefficients are jointly equal to zero for the full sample and the

sample restricted to women. However, I can reject the null for males since one of the pre-

2014 coefficients is significant. These results give us confidence in a causal interpretation

of the regression estimates.

Second, in Table 21, I define the eligibility of non-elderly adults above 26 years of age

using low income (i.e. less than 138% of FPL) instead of low education as I have used

in the baseline model. The estimates are qualitatively similar compared to those from

Table 8, although they are statistically insignificant for the full sample. Women still show

a decrease in new marriages by 8.2% although it is smaller than the estimate in the low

education sample.

Third, I estimate a logit model instead of the baseline linear probability model for the

binary outcome variable. The odds-ratio of an interaction term is problematic for the

interpretation of the size of the treatment effect due to non-linearity of the logit model

(Karaca-Mandic et al.,2012). However, Puhani (2012) has shown that the coefficient of the

interaction term in a non-linear DiD model represents the treatment effect under obser-
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vation as in the linear DiD model. Thus, I report the estimates in Table 22. The statistical

significance and magnitude of the marginal effects are similar to the baseline results using

the linear probability model.

As a fourth sensitivity check, I use an alternate measure of new marriages. I use the

variable which records whether a person got married in the last 12 months from the time

they were surveyed. As discussed before this is a less accurate measure than the one used

in my baseline model, but can be reasonably expected to give qualitatively similar results.

Table 23 shows, the results are qualitatively same with women driving the decrease in

new marriages.

Finally, I check the robustness of the results by dropping states having different de-

grees of early expansion prior to 2014 as per Courtemanche et al. (2017). I first drop five

states (DE, DC, MA, NY, VT) which had a relatively complete expansion prior to 2014 ac-

cording to Kaestner et al. (2015). I then drop states which had partial expansion prior to

2014, 14 in the treatment group and 4 in the control group. I then drop all early expanders

to have only states that expanded in or after 2014. The results are robust to this sample

selection implying that the effects are not differentially driven by states that expanded

Medicaid (partially or more completely) prior to 2014. The estimates are provided in

Table 24.

3.6 Conclusion

This paper examines the spillover effects of Medicaid expansion on marital decision

making. I find that the ACA Medicaid expansion leads to a substitution effect whereby

low educated adults over 26 years of age substitute away from coverage as dependents

through marriage in the presence of an alternative source of coverage. The estimated fig-

ures for the sample is a 6.92% reduction in marriage initiation. This adds to the broader

discussion on whether economic incentives can have an impact on marital decision mak-

ing. Results indicate that economic incentives that change the costs and benefits asso-
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ciated with entering marriage can affect outcomes. This study is the first to look at the

impact of the ACA Medicaid expansion on marital decision making. Moreover, by ex-

tending the discussion to non-elderly adults other than young adults, this study is not

restricted to studying marital behavior for a particular age group only.

Even though I do not find heterogeneous effect by sex, the fact that the effects are

significant for the sub-sample of women (at a 11.6% drop in new marriages) is suggestive

of the dependence that women have on their spouses for coverage. It also underlines

their vulnerability to loss of coverage in an event of marriage dissolution that has been

discussed in earlier studies. While I cannot discern whether the increase in divorces can

be completely attributed to Medicaid expansion, the decrease in new marriages can be

interpreted as an indirect validation of the vulnerability of women to loss of coverage

owing to marriage dissolution.

The Medicaid expansion may also affect same-sex marriages. They can be explored in

conjunction with the state-specific timing of legalization of same-sex marriages to inves-

tigate if states which had legalized same-sex marriages at the time of Medicaid expansion

differed in outcomes from states which did not. The results may also have implications

on fertility which has not been explored as yet. If individuals choose to substitute away

from marriage or defer marriage it may have effects on fertility and childbearing. An-

other area for further research could be aimed at studying the impact of other regulations

of the ACA, such as insurance market reforms and sliding scale subsidies, to get a more

holistic understanding of the impact of the ACA on marital decision making and family

structure. As Abramowitz (2016) points out, the impact of the multiple moving pieces of

ACA may counteract each other making identification challenging. Thus, use of a novel

methodology to disentangle the effects of the various limbs of the ACA may be an area of

future research.
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4 State Tax Credits and Impact on Charitable Giving 19

4.1 Introduction

“To give away money is an easy matter and in any man’s power.

But to decide to whom to give it, and how large, and when, and for what

purpose and how, is neither in every man’s power nor an easy matter”

— Aristotle

Total giving to charitable organizations in the United States in 2017 exceeded $410

billion or approximately 2.1% of GDP. As nearly 80 percent of these dollars come from

individual donors, there has been a substantial amount of research on the primitives of

the economics of charity and the relationship between charities and potential donors (see,

e.g., List, 2011 or List and Price, 2012 for overviews of work in this area). To date, much of

this work has focused on impacts of different fund-raising techniques on both the num-

ber of donors and overall contribution levels to a given cause. While this literature has

advanced our understanding of the interaction among nonprofit organizations and po-

tential donors, there is another important player in the sector – the government. Research

looking at the role of government in the nonprofit sector has focused on two areas: (i)

crowd-out and how government grants impact fund-raising effort (e.g., Kingma, 1989;

Payne, 1998; Andreoni and Payne, 2003, 2011a; Andreoni et al., 2014); and (ii) the effect

of tax policy and the rate of deductibility on individual donations (Feldstein and Clot-

felter, 1976; Clotfelter, 1980; Randolph, 1995; Auten et al., 2002; Fack and Landais, 2010;

Duquette, 2016).

This study merges these two strands of literature to explore how state level tax credits

19This chapter is co-authored with James C. Cox of Georgia State University, Michael K. Price of Uni-
versity of Alabama and Florian Rundhammer of Cornerstone Research. This research was made possible
through grant number SES-1658743 from the National Science Foundation. The statements and opinions
expressed herein are those of the authors’ alone and do not necessarily reflect those of the National Science
Foundation.
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impact overall giving and the allocation of donations across qualifying and non-qualifying

causes. Prior work has successfully documented the effectiveness of various fund-raising

strategies and identified ways for a given nonprofit to increase dollars raised. However,

we know very little about whether and how increased giving to one charity impacts giv-

ing to others in the sector and the size of the overall “charitable pie.” Do tax incentives

that intend to give tax-payers the freedom to determine which organizations receive their

tax revenues generate new dollars thereby increasing the size of the charitable pie? Or do

such incentives result in an unintended consequence that prompts donors to reallocate

funds among the causes they already support?

Such questions are of first-order importance given that the charitable sector is com-

prised of millions of organizations competing for dollars from a finite set of budget con-

strained donors. In such an environment, substantial changes in giving to one organiza-

tion should impact overall patterns of giving. What remains unknown is whether private

dollars attracted via government policies (or other fund-raising mechanisms) increase to-

tal contributions or simply prompt a substitution of funds across charities. It is this gap

in the literature that this study aims to fill. To do so, we implemented a framed field

experiment that embedded information about the nation’s largest state income tax credit

program for donations to charity which is Arizona’s Credit for Contributions to Qualify-

ing Charitable Organizations – within a modified dictator game. The program provides

a Charitable Tax Credit (CTC) which is a dollar-for-dollar tax credit on a tax payer’s state

income tax return for donations to qualifying charities. The program structure implies

that donations up to the specified threshold are free to the donor since they reduce the

individual’s tax liability by the amount claimed.

Participants in the experiment were recruited via Qualtrics to complete an on-line

questionnaire (which included the modified dictator game) and were randomized into

one of six treatments. The participants in the experiment were adults living in the state of

Arizona and were selected to reflect a random sample of this population. In the first-stage
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of the modified dictator game, subjects selected either one or two charities as potential re-

cipients in a second stage dictator game. In the second stage, subjects determined how

to allocate their $80 endowment among themselves and the charities selected in the first-

stage. Subjects could choose to keep all, some or none of the $80 for themselves. Experi-

mental treatments varied along three main dimensions: (i) whether, prior to making the

first stage decision, subjects were provided detailed information about the credit program

and which organizations qualified for the credit; (ii) the number of potential recipients

(one or two) that could be selected in the first-stage of the experiment; and (iii) whether

the lists from which potential recipients were selected were comprised of only qualifying

or non-qualifying charities or a mix of both types. Our experiment was designed to isolate

the effect of the tax credit program on five distinct outcomes of interest: (i) the likelihood

of making a donation; (ii) the aggregate amount shared with the selected recipients; (iii)

the amount of the credit used to increase private good consumption; (iv) the likelihood

and number of qualifying and non-qualifying organizations selected as recipients; and

(v) the allocation of donations across qualifying and non-qualifying organizations.

To the best of our knowledge, ours is the first experiment to separately identify the

effects of tax incentives for giving to a subset of qualifying causes on the choice of charities

included in a donor’s portfolio and the allocation of funds among qualifying and non-

qualifying charities. 20 As more than 30 states currently offer some form of tax credit for

contributions to qualified causes, understanding how incentives designed to encourage

giving to select causes impacts giving to other causes in the sector is important for both

policymakers and practitioners in the charitable sector.

Results from our experiment highlight that information has no effect on either the

likelihood a subject contributes or the aggregate amount shared with charity. However,

20For example, Filiz-Ozbay and Uler (2019) examine how incentives affect giving amongst a fixed set
of charitable recipients (a homeless individual or animal at a shelter) or goods (a toothbrush and a tube of
toothpaste). A related body of literature examines the impact of incentives on the allocation of donations
amongst a fixed set of “projects” in the context of crowd-funding (e.g., Corazzini et al., 2015; Meer, 2015;
Cason and Zubrickas, 2018). Importantly, all of this work holds constant the set of potential recipients and
is thus unable to identify the effect of incentives on the composition of a donor’s portfolio.
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awareness of the charitable tax credit program does affect both the mix of qualifying and

non-qualifying charities selected as potential recipients and the allocation of funds among

a fixed set of qualifying and non-qualifying organizations. For example, in treatments

where subjects are forced to select one qualifying and one non-qualifying charity, infor-

mation on the tax credit program causes an approximately 8 percentage point increase

in the fraction of contributions allocated to the qualifying cause. In treatments where

subjects are free to select any mix of qualifying and non-qualifying charities as poten-

tial recipients, information on the tax credit program has an even greater effect on the

allocation of funds across qualifying and non-qualifying causes due to changes in the

composition of the donors’ portfolios. In such instances, our information treatment leads

to an approximately 22 percentage point increase in the likelihood that a subject selects

two qualifying organizations and an approximately 12 percentage point increase in the

fraction of contributions allocated to qualifying causes.

4.2 Program Description

In this study, we focus on Arizona’s Credit for Contributions to Qualifying Charitable

Organizations which is the most generous of all state tax credit programs. The CTC was

enacted in 1998 and provides a one-to-one (or 100 percent) tax credit for contributions

to qualifying charities. This incentive structure implies that taxpayers can contribute to

charity at no cost because giving reduces their state income tax burden by the amount

given. The program thus allows taxpayers to redirect dollars from the general tax fund to

a charity — or multiple charities — of their choosing.

The CTC offers a tax credit for contributions up to $400 (single or head of household)

or $800 (married filer) to qualifying charities. Charities must fulfill several criteria to qual-

ify, which we summarize in Figure 6. As described by the Arizona Department of Rev-

enue, to be designated an eligible recipient under this program, the charity must be one

that receives community services block grant program monies that spends at least 50%
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of its budget on services to Arizona residents who either receive temporary assistance

for needy families (TANF) benefits, are low income residents whose household income

is less than 150% of the federal poverty level, or are chronically ill or physically disabled

children and shows that the charity plans to continue spending at least 50% of its budget

on services to those described above.21

Figure 6: Criteria for Qualifying Charities

Notes: Overview of the criteria used by the Arizona Department of Revenue to determine
the qualifying status of charities for the CTC. Qualifying charities must meet all criteria
and they must be registered with the Department of Revenue.

Contributions claimed through the CTC have increased dramatically since the incep-

tion of the program in 1998. Figure 7 provides a visual depiction of the trends in the

total value of donations claimed through the CTC and trends in aggregate giving to all

registered 501(c)(3) charities in Arizona over the period 1998-2014. Values in the figure

are normalized relative to the corresponding amount given in 1998. The left hand axis

of the figure corresponds to the normalized value of contributions to all registered non-

profits in the state of Arizona whereas the right hand axis of the figure corresponds to the

normalized value of contributions claimed through the CTC.

Figure 7 highlights divergent trends in total tax credits and total contributions: while

21More details about the requirements can be found at https://azdor.gov/news-notices/news/changes-
tax-credits-contributions-qualifying-charities
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Figure 7: Charitable Giving Trends
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Notes: We plot giving in three categories from 1998 to 2015: (i) all giving to registered
charities in the US; (ii) giving to registered charities in Arizona; and (iii) giving claimed
through the CTC. All annual totals are normalized to giving in 1998 in the respective
category.

the total value of contributions claimed through the CTC has increased by a factor of

45 since the inception of the program, there has been little change in aggregate giving

statewide over this same time horizon. Hence, while the introduction of the CTC appears

to have had a great impact on giving to qualifying organizations, it does not show similar

impact on the overall giving to non-profits in Arizona. This poses an interesting question:

where are the added dollars flowing to qualifying organizations coming from? Are they

additional dollars flowing into qualifying organizations but whose value are too small

to impact aggregate trends in giving statewide? Or do they reflect a redistribution of

funds from non-qualifying organizations and/or an increased propensity for donors to

claim the contributions they would otherwise make to qualifying organizations? Below
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we describe a field experiment designed to address these questions.

4.3 Experimental Design and Procedure

4.3.1 Experimental Design

In this section, we describe details of the field experiment. The main component of the

experiment is an allocation task whereby subjects decide how to split a fixed amount of

money between themselves and charitable organizations selected as recipients. Our allo-

cation task follows Eckel et al. (2005) by implementing a modified dictator game where

the recipient is a charitable organization selected from a predetermined list of causes. The

modified dictator game proceeded in two stages. In the first stage, the subject was pro-

vided a set of charitable organizations and asked to select either one or two organizations

from this set as a recipient in the second stage allocation task.

The second stage was the allocation task. In the allocation task, subjects receive an

endowment of $80 and are provided an opportunity to share any portion of the endow-

ment with the organizations selected as recipients in the first stage. Figure 8 provides

an example of the allocation task as observed by the subject. Importantly, the decision

has consequences. Subjects are paid the amount they elect to keep to themselves and the

chosen charities receive the shared allocation as a donation. By prior arrangement with

the Arizona Department of Revenue, receipts for charitable contributions made through

the experiment can be used for claiming tax credits on Arizona income tax returns.

We vary three dimensions of the modified dictator game across experimental treat-

ments. First, some subjects receive detailed information about the CTC, its history, and

qualification requirements for charities prior to selecting recipients in the first stage.22

Second, we vary whether subjects are asked to select one recipient from a set of ten po-

tential recipients or two recipients – one each from two distinct sets of five potential recip-

ients. In treatments that provide information about the CTC, the lists explicitly indicate

22We show an example of the information in Figure 11 in Appendix C.
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Figure 8: Example Allocation Task with Two Charities

Notes: Example allocation task. Subjects receive an endowment of $80 and can freely
allocate the amount between themselves and one or two charities that they chose on the
previous page of the survey. The survey software indicates whether a charity qualifies for
the CTC only in information treatments.

whether donations to a potential recipient would qualify under the CTC. Importantly,

across all treatments subjects have the opportunity to select among a mix of qualifying

and non-qualifying organizations. Third, in treatments where the subject selects two re-

cipients, we vary the composition of the lists and the corresponding mix of qualifying and

non-qualifying organizations that are selected as recipients. In some treatments, subjects

select recipients from one list that contains five qualifying organizations while the other

list contains five non-qualifying organizations. In such treatments, subjects are “forced”

to select one qualifying and one non-qualifying organization as recipients. In other treat-

ments, both lists contain a mix of qualifying and non-qualifying organizations. In these

treatments, subjects are thus able to select zero, one, or two qualifying organizations as

recipients.23

23Table 33 and 34 in Appendix C present all charities in the experiment. Table 35 shows the charity lists
by treatment.
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In total, the experiment consists of six treatments that we describe in Table 10. The six

treatments are arranged in three pairs, where the only difference between groups within

a pair is the provision of information about the CTC. The first two treatments, B and T1,

have subjects select a single recipient from a list of ten charities before proceeding to the

allocation task. In these treatments, the list from which subjects select the recipient or-

ganization contains five qualifying and five non-qualifying charities that are arranged in

random order. Subjects in treatment B were not provided any information about the CTC

or whether donations to a particular organization qualified under this program. Sub-

jects in T1, in contrast, were provided information about the CTC in the first stage of the

experiment and, prior to selecting the recipient organization, observed whether or not

donations to alternative recipients qualified for a tax credit under the CTC.

Table 10: Description of Treatments in the Experiment

Charity Information about
Treatment Recipient(s) Choice Set Charity Types CTC and Eligibility

Baseline (B) 1 1 list of 10 mixed; 5 qualifying and 5 non-qualifying No
Treatment 1 (T1) 1 1 list of 10 mixed; 5 qualifying and 5 non-qualifying Yes
Treatment 2 (T2) 2 2 lists of 5 list 1: qualifying; list 2: non-qualifying No
Treatment 3 (T3) 2 2 lists of 5 list 1: qualifying; list 2: non-qualifying Yes
Treatment 4 (T4) 2 2 lists of 5 both lists mixed No
Treatment 5 (T5) 2 2 lists of 5 both lists mixed Yes

Notes: The table describes the six treatments of the experiment. Each subject was assigned
to only one of the six treatments. Thus, it is a between subject design.

The remaining four treatments provide two lists of five charities each. In these treat-

ments, subjects select one charity from each list as recipients in the allocation task. In

treatments T2 and T3, subjects are “forced” to select a recipient of both types as one list

contains only qualifying charities, while the second list is made up exclusively of non-

qualifying charities. These treatments do not allow subjects to alter the number of quali-

fying and non-qualifying organizations selected as recipients in response to information

about the CTC. The only channel for response is to adjust the amounts allocated to a qual-
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ifying or non-qualifying organization.24 Finally, both lists in treatments T4 and T5 contain

a mix of qualifying and non-qualifying charities. Subjects in these treatments are thus free

to select zero, one, or two qualifying organizations as recipients and adjust the number of

qualifying organizations selected as recipients in response to information about the CTC.

Hence, subjects in these treatments have two channels for response to information about

the CTC; they can reallocate the amount allocated to a fixed mix of qualifying and qual-

ifying recipients and they can adjust the number and mix of each type of organization

selected as recipients.

This experimental design allows us to study the impact of the CTC on four dimensions

of giving:

i. the likelihood of making a donation;

ii. the overall dollar amount given;

iii. the choice of charity recipient(s); and

iv. the allocation of donations across qualifying and non-qualifying organizations.

A comparison of B and T1 helps us understand whether knowledge of the tax credit

affects the type of organization, qualifying or non-qualifying, selected as the recipient and

the resulting amount donated to the selected recipient. The remaining treatments are de-

signed to explore whether and how information about the CTC impacts the total amount

given and the corresponding allocation of dollars across qualifying and non-qualifying

charities. T2 and T3 are designed to isolate how information about the CTC allocate

money across the two types of charities in the second-stage when the subject is “forced”

to select one recipient of each type in the first-stage. T4 and T5 allow us to assess whether

the CTC affects both the number of qualifying organizations chosen as recipients in the

first-stage along with the subsequent amounts donated to the different charity types in

24The design of these treatments thus shares similarity with past experiments exploring how incentives
for giving to a subset of potential recipients impact the allocation of funds amongst a fixed set of potential
recipients (see, e.g., Null, 2011; Meer, 2015; Cason and Zubrickas, 2018; Filiz-Ozbay and Uler, 2019 ).
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the second-stage.

We chose the charities for this experiment from the published list of all qualifying

charities and the universe of non-qualifying 501(c)(3) charities that operate in Arizona.

The choice of charities for each treatment pair was based on the size of a charity and its

cause. We obtained information about total donations and the official designation of a

charity’s cause from IRS form 990 filings.25 We then constructed lists containing chari-

ties of similar size and causes to avoid corner solutions, where subjects donate (almost)

exclusively to a popular charity irrespective of information about the CTC. As a second

measure to avoid extreme outcomes, we created two different sets of charity lists within

each treatment pair and randomly assigned subjects to one of these lists.26

The final component of the experiment is the provision of a receipt for subjects who

made a positive donation. We designed the receipt in partnership with the Arizona De-

partment of Revenue to ensure that it could be used by subjects to claim the CTC. In doing

so, we reinforce that a subject’s decisions are consequential and impact not only immedi-

ate earnings but also future tax liabilities should they donate to a qualifying cause.27

4.3.2 Procedures

We partnered with the company Qualtrics to implement the experiment. The exper-

iment was conducted as an online survey using the software provided by Qualtrics. In

addition to the allocation task, the survey contains two question blocks that are identical

across all treatments. We show the resulting structure of the survey and experiment in

Figure 9. The main purpose of these questions was to ensure that the sample was repre-

sentative of Arizona’s adults and to ensure balance in factors that could impact response

to our information treatments. We also address the possibility of field price censoring

25Income tax-exempt organizations, such as 501(c)(3) charities, file this form to provide the IRS with
basic information about the organization and its financial situation, including donations received.

26Table 35 in Appendix C that presents the resulting charity lists and their combinations.
27We also provide a receipt for donations to non-qualifying charities because such donations are gen-

erally eligible for federal tax deductions for charitable giving if subjects itemize. Appendix C, Figure 12
provides an example of the receipts provided to subjects in the experiment.
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which arises due to the availability of substitutes to the chosen commodity in the labo-

ratory (Harrison et al., 2003). In this case, a rational subject may allocate the entire en-

dowment of $80 to themself and then allocate those funds outside the experiment to their

preferred qualified charity if it is not in the restricted list. This may be a problem particu-

larly when subjects can choose at most one charity of a particular type from the given list.

Questions on past giving behavior and past donation to charities in current choice list are

thus posed to be used as controls in the analysis to account for this issue.

Figure 9: Overview of Timeline and Procedures in the Experiment

Basic Demographics Giving/Tax Behavior

Information
about CTC

Charity
Choice

Allocation
Task

Receipt

Notes: The experiment consists of three main phases. First, after consenting to participation, sub-
jects answer basic questions about individual characteristics. Second, subjects face the random-
ized decision task, which include information about the CTC in some treatments, the choice of one
or two recipient charities depending on the treatment, the allocation of the endowment between
the subject and the recipient(s), and a receipt in case of a positive donation. Third, we ask subjects
about their past donation behavior, knowledge and use of tax credits, and their tax filing behavior.
The two question blocks are identical across treatments.

We conducted the survey across two deployment waves that followed identical pro-

cedures and contained all six treatments. The first wave took place in December 2017 as

giving typically increases substantially around Christmas and its proximity to the end of

a tax year. The second wave took place in late April and early May of 2018, shortly after

the 2018 Tax Day. Our design thus allows us to study program impacts at different points

of the tax year when the incentives provided by the CTC may be more or less salient.

Based on power calculations following List et al. (2011), our experimental sample of

904 subjects across six treatment cells is designed to detect treatment effects of approxi-

mately one-third of a standard deviation. Table 11 provides an overview of the resulting

sample by experimental treatment and wave. Table 11 further splits the data into com-
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plete and incomplete responses where the subject exited the survey after completing the

allocation task. In total, we observe 904 completed surveys – 454 in the first wave and 450

in the second – and an additional 347 incomplete responses – 205 in the first wave and

142 in the second.

Table 11: Sample Sizes across Treatments in the Experiment

Total B T1 T2 T3 T4 T5

Wave 1:
Complete 454 79 76 80 74 84 61

Incomplete 409
Useful Incomplete 205 40 28 31 37 28 41

Wave 2:
Complete 450 82 69 82 71 75 71

Incomplete 361
Useful Incomplete 142 21 28 23 19 30 21

Total:
Complete 904 161 145 162 145 159 132

Incomplete 770
Useful Incomplete 347 61 56 54 56 58 62

Notes: This table splits the sample by treatment and wave. We also categorize subjects as
”Complete” when they finish the entire online survey. Subjects are categorized as ”Incom-
plete” is they exit the survey without completing it fully. Among the Incomplete subjects,
we categorize those who exit after having made the allocation decision as ”Useful Incom-
plete”. We do not have demographic information for subjects who did not complete the
survey.

Our partner panel pays subjects in “e-Rewards currency”, an online currency that can

be used to purchase goods as well as gift cards from several retailers in an online portal.

While e-Rewards currency in not cash-equivalent, its many uses and familiarity of panel

participants with the currency make it an attractive payment method. We thus relied on

this existing infrastructure to pay subjects at the end of each wave of the experiment.28

All payments to the charities were handled by Georgia State University by tallying the

28We show an example of current options as of April 2018 in Figure 13 in the Appendix C.
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total contributions received by each charity.

4.4 Experimental Results

Table 12 provides summary statistics from our experiment. The upper panel of the

table presents data on aggregate patterns of giving across our various experimental treat-

ments. Specifically, the upper panel of Table 12 provides data on three metrics of interest;

(i) the likelihood that the subject donated to at least one of the selected recipients, (ii) the

average contribution level, and (iii) the fraction of all dollars contributed that were given

to a qualifying organization. In total, 81.4% of the subjects in our experiment donated to

at least one of the selected recipients. The average donation in our experiment was $49.50

with approximately 59.3% of this amount allocated to qualifying causes.

The middle panel of Table 12 restricts attention to donations made to qualifying causes

and summarizes four metrics of interest; (i) the number of qualifying causes selected as

recipients in the first-stage, (ii) the likelihood that the subject donated to a selected quali-

fying cause, (iii) the number of qualifying causes that the subject donated to in treatments

T4 and T5, and (iv) the average contribution to qualifying causes. In total, approximately

82% of our subjects selected at least one qualifying organization as a recipient in the first-

stage of the modified dictator game. Of these, 80.2% (592 out of 738) made a positive

donation to the selected qualifying cause with an average gift of $29.33 to selected quali-

fying causes.

If we restrict attention to the final two treatments, T4 and T5, approximately 81% of

the subjects (236 out of 291) select at least one qualifying cause as a recipient. Of these,

approximately 51.3% (or 121 subjects) select two qualifying causes as recipients in the

first-stage. Amongst the 236 subjects who selected at least one qualifying cause, 80.5%

(or 190) make a positive donation to at least one of the selected causes. Amongst the 121

subjects that select two qualifying causes, 79.3% make a positive allocation to both of the

selected causes.
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Table 12: Summary Statistics for the Pooled Sample

B T1 T2 T3 T4 T5 Total

All Decisions:

Subjects 161 145 162 145 159 132 904
Subjects Donated 137 111 130 119 133 106 736
Pr(Donated) 85.1% 76.6% 80.2% 82.1% 83.6% 80.3% 81.4%

Fraction to Qualifying 60.5% 65.0% 51.4% 58.6% 52.8% 70.5% 59.3%
Fraction to Non-qualifying 39.5% 35.0% 48.6% 41.4% 47.2% 29.5% 40.7%
Mean Donation $49.11 $44.47 $49.73 $50.95 $52.23 $50.30 $49.50
Conditional Mean $57.71 $58.09 $61.98 $62.08 $62.44 $62.64 $60.79

Qualifying Charities:

Can Select 0 or 1 0 or 1 1 1 0, 1 or 2 0, 1 or 2

Subjects Selected Any 103 92 162 145 124 112 738
Subjects Selected One 103 92 162 145 75 40 617
Subjects Selected Two 49 72 121
Subjects Donated 87 70 127 118 102 88 592
Pr(Donated) 84.5% 76.1% 78.4% 81.4% 82.3% 78.6% 80.2%
Subjects Donated to One 64 30
Pr(Donated to One) 51.6% 26.8%
Subjects Donated to Two 38 58
Pr(Donated to Two) 30.6% 51.8%

Mean Donation $29.70 $28.92 $25.57 $29.86 $27.58 $35.45 $29.33
Conditional Mean $54.97 $59.91 $32.62 $36.69 $42.99 $53.18 $44.79

Non-Qualifying Charities:

Can Select 0 or 1 0 or 1 1 1 0,1 or 2 0,1 or 2

Subjects Selected Any 58 53 162 145 110 60 588
Subjects Selected One 58 53 162 145 75 40 533
Subjects Selected Two 35 20 55
Subjects Donated 50 41 122 100 89 45 447
Pr(Donated) 86.2% 77.4% 75.3% 69.0% 80.9% 75.0% 76.0%
Subjects Donated to One 61 29
Pr(Donated to One) 55.5% 48.3%
Subjects Donated to Two 28 16
Pr(Donated to Two) 25.5% 26.7%

Mean Donation $19.40 $15.54 $24.16 $21.10 $24.65 $14.85 $ 20.20
Conditional Mean $62.48 $54.98 $32.08 $30.59 $44.04 $43.56 $40.79

Notes: : Figures in the table represent summary statistics across the different treatments.
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4.4.1 Impact of Information on Aggregate Pattern of Giving

We begin by exploring the effect of our information treatment on aggregate patterns

of giving. Specifically, we explore the effect of information about the CTC program on

two metrics of interest: (i) average contribution levels and (ii) the likelihood of making

a donation. As summarized in the upper panel of Table 12, average contribution levels

range from a low of $44.47 in treatment T1 to a high of $52.23 in treatment T4 and partic-

ipation rates range from a low of 76.6% in treatment T1 to a high of 85.1% in our baseline

treatment. If we restrict attention to a comparison across paired information and no in-

formation treatments, our raw data suggest no significant effect of information on either

average gifts or the likelihood of giving. To formally test the effect of our information

treatment on average contributions we estimate a linear regression model of the form:

Yit = α + β1Ti + β2Mi + β3TiMi + γt + εit (11)

where, Yit is the aggregate amount donated by subject i in wave t, Ti is an indicator that

equals one if subject i participated in an information treatment, Mi is an indicator that

equals one if subject i participated in a treatment with two recipients, and γt are wave

fixed effects. Given prior evidence showing that demographic factors such as age, gender,

and income are correlated with charitable donations, we augment our baseline specifica-

tion to include indicators for: (i) female subjects; (ii) subjects below age 35; (iii) subjects

above age 65; (iv) subjects with reported annual income less than $50,000; and (v) subjects

with reported annual income above $100,000.

The results from these models are presented in Table 13. As noted in the first col-

umn of the table, our information treatments have no discernible impact on the average

amount donated in our experiment. Both the coefficient on the treatment indicator and

the coefficient on the interaction of this indicator with the indicator for multiple-recipient

treatments are statistically insignificant. We observe qualitatively similar effects in col-
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umn 2 which includes demographic controls although the magnitude of the differences

increases.

Table 13: Effect of Information Treatment on Donation

Pooled Pooled with Demographic Controls

1(Information Treatment) -4.8603 -6.7569*
(3.5652) (3.5570)

1(Indicator for Treatment with Multiple Recipients) 1.7312 0.4358
(2.9331) (2.9171)

Information Treatment × Multiple Recipients Indicator 4.6883 6.5963
(4.3992) (4.3751)

1(Female) 6.8362***
(2.1068)

1(Below Age 35) -1.2378
(2.7190)

1(Above Age 65) 5.7966**
(2.5532)

1(Annual Income below $50,000) -9.4282***
(2.4667)

1(Annual Income Above $100,000) -3.4799
(2.5900)

Fixed Effects:
Wave Fixed Effects Yes Yes

R2 0.017 0.044
N 904 904

Notes: The dependent variable is the aggregate amount donated by an individual in each wave,
pooled over treatments. Robust standard errors are reported in parentheses.
*** denotes significance at the 1 percent level
** denotes significance at the 5 percent level
* denotes significance at the 10 percent level

Before proceeding, we should note that the estimates on our demographic controls

are consistent with prior findings in the literature (e.g., List, 2004). Specifically, we find

that (i) women donate approximately $6.84 (or 13.9 percent) more to charity than do male

counterparts, (ii) the elderly donate $5.80 (or 11.8 percent) more to charity than do mid-

dle aged counterparts, and (iii) those with annual household income below $50K donate

approximately $9.43 (or 19.2 percent) less to charity than do counterparts with income

in the $50-100K range. That our estimated demographic effects are consistent with prior

findings suggests that our sample is representative of the broader population – at least
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with regard to the determinants of giving.

We next explore the impact of our information treatments on the likelihood a subject

makes a positive contribution. As noted in Table 12, this probability ranges from 76.6%

in treatment T1 to 85.1% in our baseline condition with little difference across our infor-

mation and no information treatments. To formally test the effect of information about

the CTC on the likelihood of giving to a selected cause, we estimate probit models , with

the dependent variable Yit now being a binary indicator that equals 1 if subject i in wave

t shared a positive amount in the second stage allocation game, and zero otherwise.

Average marginal effects from these models are reported in Table 14 and suggest that

our information treatments had no discernible impact on the likelihood of giving. For

example, as noted in the first column of the table, subjects in treatment T1 were actually

8.7 percentage points less likely to give than were counterparts in the baseline treatment

– a difference that is marginally significant at the p < 0.10 level. Although we are unable

to pinpoint the cause of this extensive margin effect, it drives the difference in average

contributions across our baseline treatment and treatment T1.29 We observe a less pro-

nounced difference in treatments with multiple recipients that is not statistically signifi-

cant. The qualitative nature of our findings are unchanged when we add demographic

controls.

Viewed in its totality, the empirical estimates in Tables 13 and 14 suggest a first result:

Result 1: Information about the CTC has no impact on aggregate behavior. Both the likelihood

of giving and average contributions are unaffected by our information treatment – particularly

when subjects select multiple recipients in the first-stage.

That our information treatment has no impact on average contribution levels in our

experiment is consistent with the data patterns observed in Figure 7 which shows that the

introduction of the CTC has had no discernible impact on aggregate patterns of giving

statewide. In what follows, we set forth to understand what drives this result. Perhaps

29As noted in Table 12, there is no difference in the average conditional donation across our baseline
($57.71) and treatment T1 ($58.09).
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Table 14: Effect of Information Treatment on Participation (Likelihood of being a Donor)

Pooled Pooled with Demographic Controls

1(Information Treatment) -0.0877* -0.1051**
(0.0450) (0.0451)

1(Indicator for Treatment with Multiple Recipients) -0.0349 -0.0449
(0.0373) (0.0365)

Information Treatment × Multiple Recipients Indicator 0.0814 0.0973*
(0.0545) (0.0543)

1(Female) 0.0882***
(0.0258)

1(Below Age 35) 0.0547
(0.0362)

1(Above Age 65) 0.0174
(0.0307)

1(Annual Income below $50,000) -0.0758**
(0.0312)

1(Annual Income Above $100,000) -0.0478
(0.0321)

Fixed Effects:
Wave Fixed Effects Yes Yes

R2 0.010 0.029
N 904 904

Notes: The dependent variable is a binary indicator which takes the value 1 when a positive
amount is allocated for donation, and 0 otherwise. Average marginal effects reported. Robust
standard errors are reported in parentheses.
*** denotes significance at the 1 percent level
** denotes significance at the 5 percent level
* denotes significance at the 10 percent level

information about the CTC program and available tax credits for giving to select causes

has no impact on donor choice. Alternately, the aggregate statistics could be misleading

and the impact of the CTC is that it leads to a reallocation of donations across qualifying

and non-qualifying causes.

4.4.2 The Allocation of Funds across Types of Charites

We next explore whether our information treatment leads subjects to shift donations

from qualifying to non-qualifying charities. To do so, we first discuss summary statistics

from Table 12. As noted in the table, the fraction of donations allocated to qualifying char-

ities is greater in every information treatment than in its paired no information condition.
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To evaluate whether these differences are statistically significant, we estimate a series of

probit models with fractional response to estimate the effect of information on the fraction

of donations to qualifying charities. We calculate the fraction of donations to a qualifying

charity as the amount allocated by subject i to qualifying charities divided by subject i’s

aggregate donation and set this fraction to zero should subject i keep the $80 endowment

for themselves.30 By construction, our dependent variable thus takes a value between 0

and 1.

Estimates for these models are presented in Table 15. As noted in the first column

of the table, there is no difference in the average fraction allocated to qualifying causes

across our baseline treatment and treatment T1 – the estimated coefficient on our indicator

for an information treatment is negative but not statistically significant at any meaning-

ful level. There is, however, a significant increase in the amount allocated to qualifying

causes when subjects receive information about the CTC and select multiple recipients.

The estimated coefficient on this interaction term is 0.153 suggesting that subjects in these

treatments allocate approximately 15.3% more to qualifying causes than do counterparts

in the corresponding no information treatments .

The qualitative nature of these differences are unchanged when we add demographic

controls. As noted in column 2 of Table 15, information has no impact on the fraction

allocated to qualifying charities when subjects select a single recipient. However, infor-

mation about the CTC leads to a significant increase in the fraction allocated to qualifying

causes when subjects select multiple recipients.

Viewed in conjunction with the null effect of information on average giving, the esti-

mates in Table 15 suggest a second result:

Result 2: Providing subjects information about the CTC leads to a reallocation of donations

towards qualifying causes but only when subjects select multiple recipients.

30The qualitative nature of our findings remain unchanged if we instead calculate our dependent vari-
able as the amount allocated to qualifying causes divided by the maximum possible donation – the subject’s
$80 endowment.
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Table 15: Effect of Information Treatment on Fraction of Donation to Qualifying Charities

Pooled Pooled with Demographic Controls

1(Information Treatment) -0.0581 -0.0710
(0.0572) (0.0573)

1(Indicator for Treatment with Multiple Recipients) -0.1142*** -0.1253***
(0.0434) (0.0433)

Information Treatment × Multiple Recipients Indicator 0.1534** 0.1672**
(0.0644) (0.0647)

1(Female) 0.0391
(0.0284)

1(Below Age 35) 0.0121
(0.0359)

1(Above Age 65) 0.0642*
(0.0346)

1(Annual Income below $50,000) -0.0500
(0.0330)

1(Annual Income Above $100,000) -0.0509
(0.0346)

Fixed Effects:
Wave Fixed Effects Yes Yes

R2 0.010 0.012
N 904 904

Notes: The fraction is defined as donation to qualifying charities over the total donation of a sub-
ject.This is closer to a measure of conditional giving to qualifying charities. For subjects who did
not donate at all, we code the fraction as zero, while keeping them in the sample.
Average marginal effects reported. Robust standard errors are reported in parentheses.
*** denotes significance at the 1 percent level
** denotes significance at the 5 percent level
* denotes significance at the 10 percent level.

Result 2 shares similarity with findings in Null (2011) who shows that changes in the

relative price of giving leads to weak substitution between causes and a partial realloca-

tion of donations from higher to lower priced causes. Result 2 also shares similarity with

findings in Filiz-Ozbay and Uler (2019) that increases in the rebate rate for one charity rel-

ative to that of a substitute cause leads to a reallocation of funds among the two causes.

By design, subjects in our experiment should view qualifying and non-qualifying orga-

nizations as substitute causes so we should expect information about the CTC to cause a

reallocation of donations towards qualifying causes.

For policy-makers and practitioners, Result 2 provides a potential explanation for the
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patterns of giving illustrated in Figure 7. The introduction of the CTC likely caused a real-

location of donations towards qualifying causes. Hence, there can be a dramatic increase

in the amounts claimed through the CTC program with no change in aggregate patterns

of giving statewide. For researchers, Result 2 highlights the importance of examining the

effects of incentives not only on giving to the targeted cause but also on giving to other

causes i.e. it highlights the importance of modeling choice and testing behavior in a world

with multiple public goods.

4.4.3 Impact of Information on Charity Selection and Allocation

We next set forth to explore the various channels through which our information treat-

ment impacts the allocation of funds among qualifying and non-qualifying causes. In do-

ing so we examine the effects of information along two distinct margins: (i) the extensive

margin – the selection of recipients in the first stage; and (ii) the intensive margin – the

allocation of funds in the second stage. Throughout, we restrict attention to the subset

of treatments where subjects select multiple recipients as we do not observe significant

differences in the allocation across the different cause types in treatments with a single

recipient.

We begin by exploring the effect of our information treatment on the selection of re-

cipients in the first-stage of the modified dictator game. Recall that by design, subjects in

treatments T2 and T3 were “forced” to select one recipient of each type. We thus focus

our analysis on treatments T4 and T5 where subjects faced mixed lists and could select

a “portfolio” of recipients that includes zero, one, or two qualifying causes. In doing so,

we focus on three metrics of interest: (i) the likelihood of selecting at least one qualifying

cause as a recipient; (ii) the likelihood of selecting at least one non-qualifying cause as a

recipient; and (iii) the number of qualifying causes selected as recipients.

As noted in Table 12, our information treatment impacts the selection of both recipient

types. For example, information about the CTC increases the likelihood of selecting at
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least one qualifying cause by approximately 6.9 percentage points (84.9 percent in T5

versus 78 percent in T4). In contrast, information about the the CTC reduces the likelihood

of selecting at least one non-qualifying cause by 23.7 percentage points (45.5 percent in

T5 versus 69.2 percent in T4).

Taken jointly, these differences lead to changes in the composition in the mix of cause

types within the donors “portfolio” of selected recipients. For example, whereas 47.2

percent of subjects (75 out of 159) in T4 select one cause of each type, this fraction falls

to approximately 30.3 percent (40 out of 132) in the paired information treatment. In

contrast, the number of subjects selecting two qualifying causes as recipients increases

from approximately 30.8 percent (49 out of 159) in the no-information condition to more

than 54 percent (72 out of 132) in the paired information condition.

To evaluate whether these differences are statistically significant, we estimate a series

of probit models of the form:

Yilt = α + βTi + γt + νl + εit (12)

where, Yilt equals one if subject i facing list l in wave t selects at least one qualifying

(non-qualifying) cause as a recipient, Ti is indicator for subjects that in our information

treatment (T5), γt are wave fixed effects, and νl are list fixed effects. We also estimate an

augmented version of this basic model that includes demographic controls.

Estimates for the marginal effects of the information treatment on the probability of

selecting at least one recipient of the given type are presented in Table 16. The first two

columns examine the likelihood of selecting at least one qualifying cause as a recipi-

ent whereas the last two columns examine the likelihood of selecting at least one non-

qualifying cause as a recipient. Empirical results are largely consistent with the aggregate

summary statistics. For example, subjects in an information treatment are approximately

3 percentage points more likely to select at least one qualifying cause as a recipient. How-

ever, this difference is not statistically significant at any meaningful level.
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Table 16: Effect of Information Treatment on Selecting a Qualifying/ Non-Qualifying
Charity for T4 & T5

Qualifying Qualifying Charity Non-qualifying Non-qualifying Charity
Charity with Demographic Controls Charity with Demographic Controls

1(Information Treatment) 0.0274 0.0257 -0.2197*** -0.2222***
(0.0564) (0.0567) (0.1525) (0.0612)

1(Female) 0.0102 -0.0133
(0.0583) (0.0623)

1(Below Age 35) -0.0216 0.1043
(0.0771) (0.0836)

1(Above Age 65) -0.0231 -0.1279*
(0.0656) (0.0710)

1(Annual Income below $50,000) -0.0194 0.0171
(0.0690) (0.0747)

1(Annual Income Above $100,000) 0.0219 0.0224
(0.0715) (0.0747)

Fixed Effects:
List Fixed Effects Yes Yes Yes Yes
Wave Fixed Effects Yes Yes Yes Yes

R2 0.011 0.013 0.056 0.073
N 291 291 291 291

Notes: This table includes T4 and T5 treatments only since these treatments allow the choice of
more than one charity of similar type.
The dependent variable is a binary indicator which takes the value 1 when a qualifying(non-
qualifying) charity is chosen, and 0 otherwise. Average marginal effects reported.
Robust standard errors are reported in parentheses.
*** denotes significance at the 1 percent level
** denotes significance at the 5 percent level
* denotes significance at the 10 percent level

As noted in the last two columns of Table 16, our information treatment does have

a significant impact on the likelihood of selecting at least one non-qualifying cause as

a recipient. Subjects in treatment T5 are approximately 22 percentage points less likely

to select at least one non-qualifying charity as a recipient than counterparts in the no-

information condition (T4).

Viewed in conjunction, the above results suggest that information about the CTC influ-

ences the composition of the “portfolio” of cause types selected by subjects. To formally

evaluate this conjecture, we estimate the effect of our information treatment on the num-

ber of qualifying causes selected as recipients in the first-stage of the modified dictator

game. To do so, we estimate a series of probit models similar to those described above.

However, now the dependent variable is an indicator for whether the subject selects a
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specific number – zero, one, and two – of qualifying causes. Results from this exercise are

presented in Table 17.

Table 17: Effect of Information Treatment on Selecting a Specific Number of Qualifying
Charities

Chose Zero Chose Zero Chose One Chose One Chose Two Chose Two

1(Information Treatment) -0.0628 -0.0587 -0.1695*** -0.1784*** 0.2408*** 0.2463***
(0.0458) (0.0456) (0.0588) (0.0597) (0.0601) (0.0609)

1(Female) 0.0416 -0.1338** 0.0887
(0.0466) (0.0610) (0.0621)

1(Below Age 35) 0.0527 0.0753 -0.1504*
(0.0598) (0.0809) (0.0885)

1(Above Age 65) 0.0152 -0.0913 0.0734
(0.0530) (0.0686) (0.0691)

1(Annual Income below $50,000) 0.0085 0.0295 -0.0422
(0.0553) (0.0725) (0.0738)

1(Annual Income Above $100,000) -0.0606 0.0761 -0.0134
(0.0590) (0.0738) (0.0752)

Fixed Effects:
List Fixed Effects Yes Yes Yes Yes Yes Yes
Wave Fixed Effects Yes Yes Yes Yes Yes Yes

R2 0.023 0.037 0.0400 0.062 0.090 0.108
N 291 291 291 291 291 291

Notes: This table includes T4 and T5 treatments only since these treatments allow the choice of
more than one charity of similar type.
The dependent variable is an indicator which takes values between 0 and 2 indicating the number
of qualifying charity/charities being selected.Average marginal effect reported.
Robust standard errors are reported in parentheses.
*** denotes significance at the 1 percent level
** denotes significance at the 5 percent level
* denotes significance at the 10 percent level

Results from the table are consistent with our raw data summary and suggest a sig-

nificant change in the composition of a subject’s “portfolio”. Specifically, we find that

subjects in our information treatment are more than 17 percentage points less likely to

select a mixed portfolio that includes one qualifying and one non-qualifying charity – a

difference that is statistically significant at the p < 0.01 level and robust to the inclusion

of demographic controls. In contrast, we find that subjects in our information treatment

are approximately 24 percentage points more likely to select a portfolio that contains only

qualifying causes – a difference that is statistically significant at the p < 0.01 level and
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robust to the inclusion of demographic controls.

Estimates from Tables 16 and 17 suggest a third result:

Result 3: Information about the CTC program and whether donations to a given cause qualify

under the program influences the mix of cause types supported.

We believe this result is novel to the literature and suggests a new channel through

which incentives and competition among charities influence donor behavior. This has

implications for the importance of measuring social benefits of donations to a given cause

for researchers. For policy-makers it highlights the importance of understanding that

policies aiming to enhance donations to one cause should be designed keeping in mind

not only who gains from the program but also who loses once the program is enacted.

As a final metric of interest, we revisit the effect of our information treatments on

the allocation of donations across qualifying and non-qualifying causes – the intensive

margin effect. To do so, we restrict attention to the subset of subjects who donated to at

least one cause and estimate a probit model with fractional response, with Yilt now being

the fraction of subject i’s total contribution that is directed to qualifying causes and the

remaining variables are identical to those described above.

We estimate the model for two different pairwise comparisons – T2 vs T3 and T4 vs T5.

The first comparison is akin to that explored in prior work (e.g, Null, 2011; Ek, 2017; Filiz-

Ozbay and Uler, 2019) which report how incentives affect allocation of donations across

a fixed set of cause types. The latter extends this prior work and captures the combined

effect of changes in the composition of the donor’s portfolio of causes and any changes in

the allocation of funds across a fixed portfolio type.

Results for these models are presented in Table 18 which reports the average marginal

effects. The estimates suggest that information about the CTC programs leads subjects

to increase the fraction of donations allocated to qualifying charities. For example, when

subjects cannot adjust the mix of qualifying and non-qualifying charities selected as re-

cipients, information provision causes an approximately 8 percentage point increase in
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the amount allocated to qualified causes. For perspective, the average amount donated

in treatment T2 (the no information benchmark) is approximately $49.73. The estimated

treatment effect thus corresponds to an increase of approximately $3.98 in the amount

allocated to qualifying causes.

Table 18: Effect of Information Treatment on Fraction of Donation to Qualifying Charities

T2 vs. T3 T2 vs. T3 T4 vs. T5 T4 vs. T5

1(Information Treatment) 0.0801** 0.0799** 0.1200** 0.1191**
(0.0319) (0.0314) (0.0509) (0.0509)

1(Female) 0.0444 0.0434
(0.0314) (0.0519)

1(Below Age 35) 0.0825** -0.0578
(0.0371) (0.0661)

1(Above Age 65) 0.1034** 0.0253
(0.0428) (0.0607)

1(Annual Income below $50,000) -0.0672* -0.0445
(0.0367) (0.617)

1(Annual Income Above $100,000) -0.0000 -0.0002
(0.0413) (0.0638)

Fixed Effects:
List Fixed Effects Yes Yes Yes Yes
Wave Fixed Effects Yes Yes Yes Yes

R2 0.008 0.016 0.024 0.029
N 307 307 291 291

Notes: We consider treatments T2 to T5 here since subjects can allocate their endowment across
two types of charities in these treatments.
The fraction is defined as donation to qualifying charities over the total donation of a subject. We
consider only donors in this sample i.e. people who have made a positive donation.
Average marginal effects reported. Robust standard errors are reported in parentheses.
*** denotes significance at the 1 percent level
** denotes significance at the 5 percent level
* denotes significance at the 10 percent level

Such effects are enhanced when donors are allowed to both adjust the composition

of their portfolios and reallocate funds within a fixed portfolio mix. As noted in the fi-

nal two columns of the table, the effect of information provision of the share allocated
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to qualifying causes is an approximately 12 percentage point increase. For perspective,

the average amount donated in treatment T4 (the no information benchmark) is approx-

imately $52.23. The estimated treatment effect thus corresponds to an increase of around

$6.17 in the average amount donated to qualifying causes.

Viewed in its totality, the estimates in Table 18 suggest a fourth result:

Result 4: Information about the CTC program causes a reallocation of funds among qualify-

ing and non-qualifying causes; an effect that is enhanced when donors are allowed to adjust the

composition of cause types supported.

Result 4 highlights the two channels through which the CTC program likely impacts

donor choice. For those donors who support both types of causes, the program leads to a

shift in donations away from non-qualifying causes and towards qualifying causes. How-

ever, there is an additional effect that enhances such reallocation. For a subset of donors,

the CTC leads to a change in the types of causes supported. Importantly, this helps ex-

plain why contributions claimed through the CTC program have grown exponentially

with no discernible impact on overall giving in the state; the program proverbially robs

Peter to pay Paul.

4.4.4 Robustness Checks

As a first robustness check, we estimate the effect of our information treatment on

the likelihood of donating to a given cause type. To do so, we estimate a series of linear

probability models of binary indicators for whether or not the subject donated to a given

cause type on our indicator for subjects assigned to an information condition and both

list (choice set) and wave of survey fixed effects. As in the prior section, we restrict the

analysis to the subset of treatments where subjects select multiple recipients and estimate

the model separately for our two pairwise comparisons of interest (T2 vs T3 and T4 vs

T5).

Results from these models are presented in Tables 25 and 26 of the Appendix C and
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provide further insight into the channels through which information impacts the alloca-

tion of funds across cause types. For example, as noted in Table 25, information provision

had a small, but statistically insignificant, impact on the likelihood of making a donation

to a qualifying cause. Similarly, Table 26 provides evidence that information provision

had a negative, but statistically insignificant impact, on the likelihood of donating to a

non-qualifying cause in those treatments where subjects were “forced” to select one cause

of each type. In contrast, information provision had a negative and statistically significant

effect on the likelihood of donating to non-qualifying cause in situations where subjects

were free to select any mix of qualifying and non-qualifying causes.

Viewed in conjunction with results from Tables 16-18, these results reinforce that in-

formation provision works through different channels across these two treatment types.

In situations where subjects cannot adjust the mix of cause types supported, information

provision works solely along the intensive margin – subjects shift a portion of what they

would have otherwise given to non-qualifying causes to qualifying recipients. However,

when subjects are free to adjust the mix of cause types supported, information provision

works predominantly through selection of causes – the extensive margin.

As a second robustness check, we expand our sample to include incomplete responses

and rerun our various econometric models. These are respondents who completed the

first block of the survey and the donation decision but did not complete the second block

of survey questions. The inclusion of such observations affords a way to check for poten-

tial selection effects and expand the power of our statistical tests. 31 Results from these

models are presented in Appendix C Tables 27-32 and provide qualitative support for

our main findings highlighting the robustness of our main results. While the point esti-

mates are muted when we include incomplete responses, they remain economically and

31Recall that our second block of survey questions focused largely on tax morale and prior charitable
donations. Such questions may have lead subjects to infer that the experiment was designed to measure
altruism or generosity. As such, it is possible that subjects who allocated less to selected causes in the second
stage allocation game would disproportionately drop out of the survey while answering the second block
of questions. If so, this would bias our sample of completed surveys in favor of more altruistic types. Ex
ante, it is unclear whether and how this would impact our estimated treatment effects.
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statistically significant.

4.5 Discussion

Policy makers frequently attempt to encourage donations to charity with special tax

provisions such as income tax deductions and credits. A key feature of many such pro-

grams is that the provisions only apply for donations to select causes rather than any

registered 501(c)(3) organization. We report an online field experiment around the largest

such state program, Arizona’s state income tax credit for donations to qualifying chari-

ties to ascertain how awareness of the program affects overall giving and the allocation

of donations among causes.

Our research questions were motivated by two trends in giving following the intro-

duction of the CTC: (i) claims for contributions to qualifying causes increased nearly 50

fold since the program’s inception; and (ii) aggregate contributions statewide remained

fairly constant over this same time period. We designed our experiment to ascertain

whether targeted tax credits increase aggregate patterns of giving or lead donors to re-

allocate donations among causes. Our design further allows us to separately identify the

effect of targeted tax credits along two margins of interests – the types of causes a donor

elects to support and the allocation of funds among selected causes.

Empirical results from our experiment show that information provision has no im-

pact on either the number of donors or the aggregate amount donated. However, infor-

mation about the program does influence the allocation of funds among qualifying and

non-qualifying causes but only when subjects select multiple recipients. Results from our

experiment thus provide a potential explanation for the observed trends in giving in Ari-

zona that motivated our experiment – the increased contributions to qualifying causes

may be coming at the expense of donations to other, related causes and thus the program

has had limited impact on aggregate giving statewide.

Exploring the mechanisms underlying the reallocation across cause type, we find that
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it reflects changes along both the intensive and extensive margins. When subjects are

unable to adjust the mix of cause types supported, information about the CTC leads them

to reallocate some of the money that they would have given to non-qualifying causes to

increased donations to qualifying causes. When subjects are allowed to adjust the mix

of cause types supported, information about the CTC reduces the likelihood of selecting

non-qualifying causes and increases the likelihood of selecting two qualifying causes.

Our findings should be of interest for both researchers and policymakers alike. For

policymakers, our results provide a cautionary tale and highlight an unintended conse-

quence of policies designed to encourage giving to a subset of targeted causes. Increased

donations to targeted causes may serve to crowd out donations to other causes and thus

have limited impact on overall patterns of giving. It is thus important to consider such ef-

fects when designing targeted policies and to understand not only who would gain from

the program but also would lose if it were enacted. For researchers, our results suggest

the importance of extending our theoretical models and empirical analysis to consider

multiple public goods. Specifically, we should extend our models to explore whether and

how targeted incentives such as tax credits or fund-raising mechanisms used by indi-

vidual charities influence the selection of causes a donor supports and the allocation of

donations across causes. Moreover, our findings suggest the need to develop methods

to measure the social benefit of dollars allocated to different causes because the main ef-

fect of targeted charitable tax credits is re-allocation across causes, not increase in total

donations.
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5 Conclusion

The three chapters of the dissertation highlights an important issue in the discourse of

social sciences : unintended consequences may not necessarily be unanticipated. Thus,

to understand the complete effects of policies, it is important to account for and pre-

empt such unintended effects. Underlying incentives of policies can impact behavior and

decision-making with regard to factors not directly targeted by policies. While such im-

pacts may be unintended, considering these possible spillover effects in designing poli-

cies would result in better policy-making.

The first chapter shows that when designing policies to promote diversity and inclu-

sion we should consider dual objectives of representation and performance, especially

since the latter can impact the former. The laboratory experiment shows that later life

compensations for early life disparities can improve representation but policies that di-

rectly address bridging these disparities can improve both representation and achieve-

ments. The success of diversity enhancing policies depend on the perceptions of such

policies across the board which can impact employer perceptions as well as inter-group

interactions. The variants of the policies studied here thus provide opportunities of fur-

ther research in understanding how such policies affect discrimination as well as interac-

tions such as cooperation, stereotypes and statistical discrimination.

The second chapter shows that access to health insurance coverage can affect demo-

graphic outcomes such as marital decision making. When provided with an alternative

avenue of health insurance through Medicaid, individuals substitute away from obtain-

ing coverage through their spouses, leading to a reduction in marriages. Future research

should aim at studying the effect of other provisions of the ACA such as the premium

subsidies and also extend to other outcomes such as fertility.

The third chapter shows yet another example of unintended consequences. The failure

to consider a model of multiple public goods can lead to policies that fulfill the intention

of giving tax-payers more freedom in choosing which cause they want tax dollars to be
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re-directed to, but leads to an unintended consequence of reallocating funds away from

ineligible charities to eligible ones. Complementing the field experiment with observa-

tional data at the charity level would give us an idea of the extent of the effect of this

policy.

The dissertation establishes a strong case of experimental methods as the first step in

understanding behavioral channels which can inform public policy by clean identification

and measurement, especially where observational data is absent or insufficient. However,

experiments do have limitations of external validity to provide sufficient evidence for de-

signing and evaluating policy. Thus it is important to complement our understanding of

behavioral phenomena from experiments with other quasi-experimental and empirical

studies with observational data for a better understanding of policy-making and evalua-

tion.
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6 Appendices

6.1 Appendix A

Instructions for Baseline Treatment

Thank you for agreeing to take part in this study. Please read the following instructions

carefully. A clear understanding of the instructions will help you make better decisions

and increase your earnings.

Please hold on to your station number. You will need this for payment.

Please do not talk. If you have a question, please raise your hand and someone will come

over to answer you.

Anonymity

The decisions you make in this experiment and your outcome and earnings will remain

anonymous.

Task

You will be answering math problems taken from the ACT math section. Each question

will always have one correct answer. You can use only the paper and pencil provided.

Calculators, cellphones, or any other helping device is not allowed.

There will be three parts in the experiment which will be explained in detail later.

Earnings:

You will be paid for Part 3 and either Part 1 or Part 2 of the experiment. The Part 1 or

Part 2 chosen to be paid will be decided by a coin toss. If the coin toss yields Head, Part

1 will be chosen for payment. If the coin toss yields Tail, Part 2 will be chosen for payment.

Your final earnings will be: Earnings from Part 1 or Part 2 (based on coin toss) + Earnings
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from Part 3 + $5 (show up fees)

For the part chosen:

If you are a winner, your final payoff is: $15 + (Your payoff from Part 3) + $5 (show up

fee) If you lose, your final payoff is: $5 + (Your payoff from Part 3) + $5 (show up fee)

PART 1

Groups & Types

You will be randomly put into groups of 6.

Within these groups, you will be randomly assigned to one of two types, Type A or Type

D by the computer. You will retain your type assignment and group through all parts

(parts 1,2 & 3) of the experiment. There will be 3 members of each type in a group.

Type A has an advantage over Type D in this part which will be explained below.

Stages

This part consists of two stages, a practice round and a tournament.

Stage 1: Practice Round

In this stage, if you are in Type A, you will take a practice round. This round will have

questions that Type A subjects will take as practice for the next round. The questions will

come with feedback i.e. the correct answers will also be shown to subjects in Type A on

answering the questions.

If you are in Type D you are will not have the opportunity to take the practice round.

Note that some of the questions from the practice questions will be repeated in the

next round.
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Stage 2: Tournament

Once the practice round is over, your computer will start the tournament. You will be

asked to answer the questions on your screen correctly. You get 1 point for each correct

answer. There is no penalty for incorrect answers. You have 1 minute to answer each

question. If you do not select an answer within 1 minute, it will be recorded as “No An-

swer” and earn you 0 points. Once the tournament is over, subjects with the top 2 scores

in a group will be the winners, independent of what type they are. Thus, you are com-

peting with ALL TYPES of subjects in your group of 6. In case of a tie, the computer will

randomly break the tie.

Payoff from Part 1: The 2 winners i.e. the top 2 scorers will get a payoff of $15.

The other 4 members in a group will get a payoff of $5.

Following completion of Part 1, there will be two more parts in this experiment that will

be explained in detail after the completion of Part 1. Instructions to these parts will be

provided later.
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Instructions for Ex-Ante Treatment

PART 2

You will retain your type assignment from the previous part. Thus, if you were Type A

in the previous part 1, you will be Type A in part 2 as well. You will also have the same

group as before.

NOTE: The difference in the conditions between the two types is not the same as earlier

and will be explained here.

Stages

The experiment consists of two stages as before, a practice round and a tournament.

Stage 1: Practice Round

In this stage, if you are in Type A, you will take a practice round. Now, if you are in Type

D you will be given an option to take the practice round. Thus, if you are in Type D,

you will decide whether to take the practice round. However, the number of questions

from the practice round that will be repeated in the next round will be LESS for Type

D than for Type A. Thus if you are in Type D you will have LESS repeat questions in the

tournament stage than Type A. As before, the questions will come with feedback.

Stage 2: Tournament

Once the practice round is over, the tournament will be played out exactly as in Part 1.

Once the tournament is over, subjects with the top 2 scores in a group will be the win-

ners, independent of what type they are. Thus, you are competing with ALL TYPES of

subjects in your group of 6. In case of a tie, the computer will randomly break the tie.

Payoff from Part 2:

The 2 winners i.e. the top 2 scorers in a group will get a payoff of $15.

The other 4 members in a group will get a payoff of $5.
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Instructions for Ex-Post Treatment

PART 2

You will retain your type assignment from the previous part. Thus, if you were Type A

in the previous part 1, you will be Type A in part 2 as well. You will also have the same

group as before.

Type A will have an advantage over Type D in this part as earlier. However, the way

winners are chosen will vary in this part. This will be explained later in detail.

Stages

The experiment consists of two stages as before, a practice round and a tournament.

Stage 1: Practice Round

In this stage, if you are in Type A, you will take a practice round. As before, the prac-

tice round will have questions, some of which will be repeated in the next round and the

questions will come with feedback, visible only to Type A subjects.

If you are in Type D you will not have the opportunity to take the practice round.

Stage 2: Tournament

Once the practice round is over, proceed as earlier, with 1 point per correct answer. How-

ever, now subjects with the top score from each type, will be winners. Thus, there will

be 1 winner of each type, and 2 winners in total. Note, you are therefore competing only

with subjects of the SAME TYPE as you. In case of a tie, the computer will randomly

break the tie.

Payoff from Part 2:

The winners i.e. . the top scorer of each type in a group will get a payoff of $15.

The other 4 members in a group will get a payoff of $5.
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Instructions for Ability Round

PART 3

In this part, your task is to correctly answer as many questions as you can in 5 minutes.

Please note, each correct answer earns you $0.50.

You lose $0.25 per incorrect answer.

You neither gain nor lose anything if you choose to skip a question.

Payoff from Part 3 = (No. of correct answers) *$0.50 – (No. of incorrect answers) *$0.25

Final Earnings:

You will be paid for Part 3 and either Part 1 or Part 2 of the experiment. The Part 1 or Part

2 chosen to be paid will be decided by a coin toss. If the coin toss yields Head, Part 1 will

be chosen for payment. If the coin toss yields Tail, Part 2 will be chosen for payment.

For the part chosen:

If you are a winner, your final payoff is: $15 + (Your payoff from Part 3) + $5 (show up

fee) If you lose, your final payoff is: $5 + (Your payoff from Part 3) + $5 (show up fee)
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Figure 10: Screenshot from Experiment
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6.2 Appendix B

Table 19: Newly Married Event Study Estimates

Full Sample Female Male

Medicaid x 0.0001 -0.0012 0.0013
Year 2011 (0.0016) (0.0015) (0.0023)
Medicaid x 0.0028 0.0001 0.0054**
Year 2012 (0.0018) (0.0022) (0.0022)
Medicaid x 0.0009 -0.0010 0.0029
Year 2013 (0.0016) (0.0018) (0.0021 )
Medicaid x -0.0015 -0.0043*** 0.0013
Year 2015 (0.0013) (0.0014) (0.0018)
Medicaid x 0.0015 0.0043** 0.0009
Year 2016 (0.0010) (0.0015) (0.0013)
Medicaid x -0.0019 -0.0031** -0.0006
Year 2017 (0.0015) (0.0016) (0.0020)

p-values for 0.24 0.66 0.06
joint significance

Source: American Community Survey
Notes: The sample is restricted to non-elderly adults above 26 years of age with a high school
degree or lower who got married or stayed unmarried in the calendar year previous to the survey
year. The base year for the event study is 2014 survey year i.e. 2013 calendar year.
*** Significant at 1 per cent level. ** significant at 2 per cent level. * significant at 10 per cent level.
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Table 20: Newly Divorced Event Study Estimates

Full Sample Female Male

Medicaid x -0.0005 -0.0001 -0.0009
Year 2011 (0.0008) (0.0015) (0.0014)
Medicaid x 0.0012 0.0019 0.0005
Year 2012 (0.0011) (0.0017) (0.0013)
Medicaid x -0.0015 -0.0018 -0.0012
Year 2013 (0.0010) (0.0013) (0.0012 )
Medicaid x 0.0013 0.0019 0.0007
Year 2015 (0.0010) (0.0016) (0.0014)
Medicaid x 0.0005 0.0006 0.0004
Year 2016 (0.0010) (0.0015) (0.0013)
Medicaid x 0.0011 0.0026 -0.0001
Year 2017 (0.0011) (0.0012) (0.0016)

p-values for 0.04 0.07 0.40
joint significance

Source: American Community Survey
Notes: The sample is restricted to non-elderly adults above 26 years of age with a high school
degree or lower who got divorced in the past 12 months and all those who remained married, for
each calendar year.
*** Significant at 1 per cent level. ** significant at 2 per cent level. * significant at 10 per cent level.
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Table 21: Newly Married Difference-in-Differences Estimates for Low Income Sample

Full Sample Female Male

Medicaid x Post -0.0014 -0.0015* -0.0016
(0.0012) (0.0008) (0.0020)

Pre-treatment mean 0.0217 0.0183 0.0267
% Change -6.45% -8.19% -5.99%

N 1,093,923 660,884 433,039

Source: American Community Survey
Notes: The sample is restricted to non-elderly adults above 26 years of age with income below
138% of FPL who got married or stayed unmarried in the calendar year previous to the survey
year.
*** Significant at 1 per cent level. ** significant at 2 per cent level. * significant at 10 per cent level.

Table 22: Logit Model Estimates for Newly Married

Full Sample Female Male

Medicaid x Post -0.0022** -0.0032*** -0.0013
(0.0011) (0.0008) (0.0015)

N 1,628,480 774,843 853,637

Source: American Community Survey
Notes: The sample is restricted to non-elderly adults above 26 years of age with a high school
degree or lower who got married or stayed unmarried in the calendar year previous to the survey
year.
Regression includes demographic and unemployment controls.
*** Significant at 1 per cent level. ** significant at 2 per cent level. * significant at 10 per cent level.
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Table 23: Difference-in-Differences Estimates with Alternate Definition of Newly Married

Full Sample Female Male

Medicaid x Post -0.0019* -0.0018** -0.0018
(0.0010) (0.0008) (0.0013)

Pre-treatment mean 0.0196 0.0168 0.0222
% Change -9.69% -10.71% -8.11%

N 1,630,366 775,539 854,827

Source: American Community Survey
Notes: The sample is restricted to non-elderly adults above 26 years of age with income below
138% of FPL who got married in the last 12 months or stayed unmarried in the survey year.
Regression includes demographic and unemployment controls.
*** Significant at 1 per cent level. ** significant at 2 per cent level. * significant at 10 per cent level.
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6.3 Appendix C

Table 25: Effect of Information Treatment on Making a Donation to a Qualifying Charity

T2 vs. T3 T2 vs. T3 T4 vs. T5 T4 vs. T5

1(Information Treatment) 0.0358 0.0362 0.0273 0.0257
(0.0457) (0.0451) (0.0564) (0.0567)

1(Female) 0.0984** 0.0100
(0.0448) (0.0583)

1(Below Age 35) 0.1458** -0.0216
(0.0650) (0.0771)

1(Above Age 65) 0.0815 -0.0231
(0.0554) (0.0656)

1(Annual Income below $50,000) -0.0194 -0.0193
(0.0527) (0.0690)

1(Annual Income Above $100,000) -0.0131 0.0219
(0.0580) (0.0715)

Fixed Effects:
List Fixed Effects Yes Yes Yes Yes
Wave Fixed Effects Yes Yes Yes Yes

R2 0.008 0.042 0.011 0.013
N 307 307 291 291

Notes: The dependent variable is the aggregate donation (in $) to a qualifying charity.
Probit models. Average marginal effects reported. Robust standard errors are reported in paren-
theses.
*** denotes significance at the 1 percent level
** denotes significance at the 5 percent level
* denotes significance at the 10 percent level
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Table 26: Effect of Information Treatment on Making a Donation to a Non-Qualifying
Charity

T2 vs. T3 T2 vs. T3 T4 vs. T5 T4 vs. T5

1(Information Treatment) -0.0659 -0.0727 -0.2196*** -0.2222***
(0.0513) (0.0509) (0.0605) (0.0612)

1(Female) 0.1260** -0.0133
(0.0519) (0.0623)

1(Below Age 35) 0.0777 0.1043
(0.0712) (0.0836)

1(Above Age 65) -0.0598 -0.1279*
(0.0616) (0.0710)

1(Annual Income below $50,000) -0.0559 0.0171
(0.0613) (0.0747)

1(Annual Income Above $100,000) -0.0533 0.0224
(0.0648) (0.0747)

Fixed Effects:
List Fixed Effects Yes Yes Yes Yes
Wave Fixed Effects Yes Yes Yes Yes

R2 0.013 0.043 0.056 0.073
N 307 307 291 291

Notes: The dependent variable is the aggregate donation (in $) to a non-qualifying charity.
Probit models. Average marginal effects reported. Robust standard errors are reported in paren-
theses.
*** denotes significance at the 1 percent level
** denotes significance at the 5 percent level
* denotes significance at the 10 percent level
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Note : The number of ”useful incompletes” in our sample that we include for this

analysis is 347. Thus the total sample size is 1251 (904+347). These are people who made

the donation decision but dropped out before completing the experiment. We do not

have demographic information for these people. Thus in column 2 with demographic

controls we merely see the number of completes that is the sample for our regressions

earlier. This serves as a quick check to see whether including the incompletes in column

1 leads to results different from Column 2 which comprises of completes only. Estimates

from linear regressions are reported.

Tables 27-32 includes estimates including incompletes.

Table 27: Effect of Information Treatment on Donation

Pooled Pooled with Demographic Controls

1(Information Treatment) -3.5697 -6.7569*
(2.9481) (3.5570)

1(Indicator for Treatment with Multiple Recipients) 3.4374 0.4358
(2.4201) (2.9171)

Information Treatment × Multiple Recipients Indicator 3.6869 6.5963
(3.5960) (4.3751)

1(Female) 6.8362***
(2.1068)

1(Below Age 35) -1.2378
(2.7190)

1(Above Age 65) 5.7966**
(2.5532)

1(Annual Income below $50,000) -9.4282***
(2.4667)

1(Annual Income Above $100,000) -3.4799
(2.5900)

Fixed Effects:
Wave Fixed Effects Yes Yes

R2 0.015 0.044
N 1,251 904

Notes: The dependent variable is the aggregate amount donated by an individual in each wave,
pooled over treatments. Robust standard errors are reported in parentheses.
*** denotes significance at the 1 percent level
** denotes significance at the 5 percent level
* denotes significance at the 10 percent level
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Table 28: Effect of Information Treatment on Participation (Likelihood of being a Donor)

Pooled Pooled with Demographic Controls

1(Information Treatment) -0.0659* -0.1031**
(0.0348) (0.0450)

1(Indicator for Treatment with Multiple Recipients) -0.0179 -0.0428
(0.0271) (0.0351)

Information Treatment × Multiple Recipients Indicator 0.0640 0.0968*
(0.0422) (0.0549)

1(Female) 0.0889***
(0.0261)

1(Below Age 35) 0.0514
(0.0323)

1(Above Age 65) 0.0178
(0.0319)

1(Annual Income below $50,000) -0.0748**
(0.0307)

1(Annual Income Above $100,000) -0.0468
(0.0322)

Fixed Effects:
Wave Fixed Effects Yes Yes

R2 0.011 0.029
N 1,251 904

Notes: The dependent variable is a binary indicator which takes the value 1 when a positive
amount is allocated for donation, and 0 otherwise. Robust standard errors are reported in paren-
theses.
*** denotes significance at the 1 percent level
** denotes significance at the 5 percent level
* denotes significance at the 10 percent level
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Table 29: Effect of Information Treatment on Fraction of Donation to Qualifying Charities

Pooled Pooled with Demographic Controls

1(Information Treatment) -0.0326 -0.0707
(0.0487) (0.0574)

1(Indicator for Treatment with Multiple Recipients) -0.1018*** -0.1246***
(0.0370) (0.0435)

Information Treatment × Multiple Recipients Indicator 0.1200** 0.1660**
(0.0544) (0.0645)

1(Female) 0.0388
(0.0281)

1(Below Age 35) 0.0119
(0.0357)

1(Above Age 65) 0.0635*
(0.0343)

1(Annual Income below $50,000) -0.0494
(0.0327)

1(Annual Income Above $100,000) -0.0504
(0.0344)

Fixed Effects:
Wave Fixed Effects Yes Yes

R2 0.011 0.021
N 1,251 904

Notes: The fraction is defined as donation to qualifying charities over the total donation of a sub-
ject.This is closer to a measure of conditional giving to qualifying charities. For subjects who did
not donate at all, we code the fraction as zero, while keeping them in the sample.
Robust standard errors are reported in parentheses.
*** denotes significance at the 1 percent level
** denotes significance at the 5 percent level
* denotes significance at the 10 percent level.
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Table 30: Effect of Information Treatment on Selecting a Qualifying/ Non-Qualifying
Charity

Qualifying Qualifying Charity Non-qualifying Non-qualifying Charity
Charity with Demographic Controls Charity with Demographic Controls

1(Information Treatment) 0.0474 0.0596 -0.2030*** -0.2279***
(0.0400) (0.0450) (0.0464) (0.0561)

1(Female) -0.0439 -0.0808
(0.0467) (0.0563)

1(Below Age 35) -0.0611 0.1337*
(0.0673) (0.0741)

1(Above Age 65) -0.0180 -0.0639
(0.0524) (0.0638)

1(Annual Income below $50,000) -0.0090 0.0350
(0.0596) (0.0664)

1(Annual Income Above $100,000) 0.0567 0.0127
(0.0547) (0.0689)

Fixed Effects:
List Fixed Effects Yes Yes Yes Yes
Wave Fixed Effects Yes Yes Yes Yes

R2 0.014 0.037 0.098 0.139
N 411 291 411 291

Notes: This table includes T4 and T5 treatments only since these treatments allow the choice of
more than one charity of similar type.
The dependent variable is a binary indicator which takes the value 1 when a qualifying(non-
qualifying) charity is chosen, and 0 otherwise.
Robust standard errors are reported in parentheses.
*** denotes significance at the 1 percent level
** denotes significance at the 5 percent level
* denotes significance at the 10 percent level
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Table 31: Effect of Information Treatment on Selecting a Specific Number of Qualifying
Charities

Chose Zero Chose Zero Chose One Chose One Chose Two Chose Two

1(Information Treatment) -0.0474 -0.0596 -0.1555*** -0.1683*** 0.2030*** 0.2279***
(0.0400) (0.0450) (0.0472) (0.0562) (0.0464) (0.0561)

1(Female) 0.0439 -0.1246** 0.0808
(0.0467) (0.0584) (0.0563)

1(Below Age 35) 0.0611 0.0726 -0.1337*
(0.0673) (0.0797) (0.0741)

1(Above Age 65) 0.0180 -0.0819 0.0639
(0.0524) (0.0634) (0.0638)

1(Annual Income below $50,000) 0.0090 0.0260 -0.0350
(0.0596) (0.0683) (0.0664)

1(Annual Income Above $100,000) -0.0567 0.0694 -0.0127
(0.0547) (0.0710) (0.0689)

Fixed Effects:
List Fixed Effects Yes Yes Yes Yes Yes Yes
Wave Fixed Effects Yes Yes Yes Yes Yes Yes

R2 0.014 0.037 0.050 0.079 0.098 0.139
N 411 291 411 291 411 291

Notes: This table includes T4 and T5 treatments only since these treatments allow the choice of
more than one charity of similar type.
The dependent variable is an indicator which takes values between 0 and 2 indicating the number
of qualifying charity/charities being selected.
Robust standard errors are reported in parentheses.
*** denotes significance at the 1 percent level
** denotes significance at the 5 percent level
* denotes significance at the 10 percent level
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Table 32: Effect of Information Treatment on Fraction of Donation to Qualifying Charities

T2 vs. T3 T2 vs. T3 T4 vs. T5 T4 vs. T5

1(Information Treatment) 0.0657** 0.0793** 0.1082*** 0.1164**
(0.0255) (0.0313) (0.0410) (0.0501)

1(Female) 0.0437 0.0422
(0.0312) (0.0510)

1(Below Age 35) 0.0815** -0.0560
(0.0369) (0.0645)

1(Above Age 65) 0.1022** 0.0242
(0.0432) (0.0597)

1(Annual Income below $50,000) -0.0656* -0.0431
(0.0362) (0.0604)

1(Annual Income Above $100,000) 0.0002 0.0003
(0.0413) (0.0630)

Fixed Effects:
List Fixed Effects Yes Yes Yes Yes
Wave Fixed Effects Yes Yes Yes Yes

R2 0.027 0.071 0.038 0.054
N 417 307 411 291

Notes: This table includes T4 and T5 treatments only since these treatments allow the choice of
more than one charity of similar type.
The dependent variable is an indicator which takes values between 0 and 2 indicating the number
of qualifying charity/charities being selected.
Robust standard errors are reported in parentheses.
*** denotes significance at the 1 percent level
** denotes significance at the 5 percent level
* denotes significance at the 10 percent level
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Figure 11: Information about the CTC

Notes: Subjects in treatments with information about the CTC see this information page
before choosing a charity for the allocation task.
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Figure 12: Example Receipt for Donation made to a Qualifying Charity

Notes: Example receipt for donations made to a qualifying charity. The text box at the bot-
tom of the page allows subjects to enter their personal information. Before proceeding to
the next page of the survey, subjects are forced to delete any personally identifiable data.
A click on the button opens a standard print window that provides functionalities for
saving a PDF locally or printing the receipt directly. The receipt summarizes the donation
amount, the recipient charity or charities, information about the donor, and information
about the research team.
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Figure 13: e-Rewards Currency Portal

Notes: Subjects received all show-up fees and payments based on their allocation decision
in e-Rewards currency. e-Rewards can be used to purchase goods from online vendors.
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Table 33: Charities in the Experiment, Part 1

Charity Qualifies Mission Statement
for the CTC

Arizona Community Foundation No Lead, serve and collaborate to mobilize enduring
philanthropy for a better Arizona.

Arizona Youth Partnership No Arizona Youth Partnership’s mission is to partner
with communities to cultivate healthy foundations
for youth and promote strong families.

Arizona’s Children Association Yes The mission of Arizona’s Children Association
is protecting children, empowering youth, and
strengthening families.

Association for Supportive Child Care No Our mission is to enhance the quality of care for
children in Arizona.

Childhelp No Childhelp exists to meet the physical, emotional, ed-
ucational, and spiritual needs of abused, neglected
and at-risk children. We focus our efforts on advo-
cacy, prevention, intervention, treatment and com-
munity outreach.

Community Food Bank Yes We change lives in the communities we serve by
feeding the hungry today, and building a healthy,
hunger-free tomorrow.

Feed My Hungry Children No Feed My Hungry Children helps stand in the gap to
provide the things that needy, hurting people may
need to survive and become self-sufficient. Feed My
Hungry Children’s humanitarian projects are com-
mitted to helping children and their families around
the world.

Food for the Hungry No Together we follow God’s call responding to hu-
man suffering and graduating communities from
extreme poverty.

Hospice of the Valley No Comfort and dignity as life nears its end.
Make-A-Wish Foundation No We grant the wishes of children with life-

threatening medical conditions to enrich the human
experience with hope, strength, and joy.

NARBHA No Managing integrated health care with a conscience.
To be recognized as the innovative leader in manag-
ing superior behavioral health care.

Phoenix Rescue Mission Yes Providing Christ-centered, life-transforming solu-
tions to persons facing hunger and homelessness.
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Table 34: Charities in the Experiment, Part 2

Charity Qualifies Mission Statement
for the CTC

Pima Council on Aging Yes Our mission is to provide dignity and respect for ag-
ing, and to advocate for independence in the lives of
Pima County’s older adults and their families, now
and for generations to come.

Pima Prevention Partnership No Building partnerships with young people, families,
and communities to improve their quality of life.

Southwest Behavioral Health Services Yes We inspire people to feel better and reach their
potential. Through helping people discover their
strengths, we improve our communities.

Southwest Human Development Yes Southwest Human Development strengthens the
foundation Arizona’s children need for a great start
in life.

St. Mary’s Food Bank Yes St. Mary’s Food Bank serves to alleviate hunger
through the gathering and distribution of food
while encouraging self-sufficiency, collaboration,
advocacy and education.

Teen Lifeline Yes To provide a safe, confidential, and crucial crisis ser-
vice where teens help teens make healthy decisions
together.

Tucson Urban League Yes The mission of the Tucson Urban League is to ad-
vance economic and social prosperity for African
Americans and other underserved Tucson area res-
idents by creating access to opportunity through
advocacy, community partnerships, and programs
and services.

United Food Bank Yes The mission of United Food Bank is to provide ac-
cess to nutritious food for those who are without -
by servicing as a community bridge between those
who want to help and those who are in need.
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Table 35: Charity Lists by Treatment

Subgroup 1 Subgroup 2

Pair 1: Baseline and Treatment 1
Arizona Community Foundation Arizona’s Children Association
Hospice of the Valley Arizona Youth Partnership
Make-A-Wish Foundation Association for Supportive Child Care
NARBHA Childhelp
Phoenix Rescue Mission Community Food Bank
Pima Council on Aging Feed My Hungry Children
Pima Prevention Partnership Food for the Hungry
Southwest Behavioral Health Services Teen Lifeline
Southwest Human Development Tucson Urban League
St. Mary’s Food Bank United Food Bank

Pair 2: Treatment 2 and Treatment 3
List 1
Phoenix Rescue Mission Arizona Youth Partnership
Pima Council on Aging Association for Supportive Child Care
Southwest Behavioral Health Services Childhelp
Southwest Human Development Feed My Hungry Children
St. Mary’s Food Bank Food for the Hungry
List 2
Arizona Community Foundation Arizona’s Children Association
Hospice of the Valley Community Food Bank
Make-A-Wish Foundation Teen Lifeline
NARBHA Tucson Urban League
Pima Prevention Partnership United Food Bank

Pair 3: Treatment 4 and Treatment 5
List 1
Hospice of the Valley Arizona’s Children Association
Pima Prevention Partnership Arizona Youth Partnership
Southwest Behavioral Health Services Childhelp
Southwest Human Development Community Food Bank
St. Mary’s Food Bank Feed My Hungry Children
List 2
Arizona Community Foundation Association for Supportive Child Care
Make-A-Wish Foundation Food for the Hungry
NARBHA Teen Lifeline
Phoenix Rescue Mission Tucson Urban League
Pima Council on Aging United Food Bank

Notes: Within each treatment, subjects were subsequently assigned to one of two sub-
groups that differed in terms of the charity list(s) from which subjects could choose the
recipient(s) in the allocation task. Each treatment pair contained the same lists of charities.
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