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Conformational Plasticity of an Enzyme during Catalysis: Intricate
Coupling between Cyclophilin A Dynamics and Substrate Turnover

Lauren C. McGowan and Donald Hamelberg*
Department of Chemistry and the Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia

ABSTRACT Enzyme catalysis is central to almost all biochemical processes, speeding up rates of reactions to biological rele-
vant timescales. Enzymes make use of a large ensemble of conformations in recognizing their substrates and stabilizing the
transition states, due to the inherent dynamical nature of biomolecules. The exact role of these diverse enzyme conformations
and the interplay between enzyme conformational dynamics and catalysis is, according to the literature, not well understood.
Here, we use molecular dynamics simulations to study human cyclophilin A (CypA), in order to understand the role of enzyme
motions in the catalytic mechanism and recognition. Cyclophilin A is a tractable model system to study using classical simulation
methods, because catalysis does not involve bond formation or breakage. We show that the conformational dynamics of active
site residues of substrate-bound CypA is inherent in the substrate-free enzyme. CypA interacts with its substrate via con-
formational selection as the configurations of the substrate changes during catalysis. We also show that, in addition to tight
intermolecular hydrophobic interactions between CypA and the substrate, an intricate enzyme-substrate intermolecular
hydrogen-bonding network is extremely sensitive to the configuration of the substrate. These enzyme-substrate intermolecular
interactions are loosely formed when the substrate is in the reactant and product states and become well formed and reluctant to
break when the substrate is in the transition state. Our results clearly suggest coupling among enzyme-substrate intermolecular
interactions, the dynamics of the enzyme, and the chemical step. This study provides further insights into the mechanism of
peptidyl-prolyl cis/trans isomerases and the general interplay between enzyme conformational dynamics and catalysis.

INTRODUCTION

The importance of enzymes in biology cannot be overstated.
Enzymes are critical to a broad range of functions, including
metabolism (1), gene regulation (2), cell survival (3), intra-
cellular communication (4), and hormone regulation (5).
They catalyze specific biochemical reactions, increasing
reaction rates by many orders of magnitude to more biolog-
ically relevant timescales. Enzymes can act to form or break
covalent bonds, perform acid-base chemistry, transfer func-
tional groups, and switch configurations around bonds to
yield isomers (6–8). Certain enzymes can perform these
functions alone, while others need cofactors or prosthetic
groups to assist in the catalytic function. Fully under-
standing the mechanism of action of enzymes could provide
valuable insights into engineering proteins and designing
new drugs.

In vitro experiments have provided valuable insights into
the mechanisms of enzymes (9). However, detailed atom-
istic understanding of the mechanism along the catalytic
pathway is not always possible with current experi-
mental techniques. Therefore, computational simulations
are routinely used to complement experiments (10), usually

starting from well-characterized atomic x-ray crystal struc-
tures. Nonetheless, classical molecular dynamics (MD)
presents several challenges in studying enzyme mechanisms
with catalytic turnover times in the millisecond timescale. In
addition to the submicrosecond timescale limitation, molec-
ular dynamics cannot be used to study chemical reactions
involving bond formation and breakage without the use of
more demanding hybrid quantum-mechanical methods. As
of this writing, it is not believed possible to directly simulate
most enzymatic reactions without using some form of
coarse-graining or advanced sampling techniques.

Peptidyl-prolyl cis-trans isomerases (PPIases) are a class
of enzymes that take part in many cellular processes and
catalyze their reactions without any bond formation or
breakage. This characteristic makes them tractable and ideal
to study using classical molecular dynamics. PPIases cata-
lyze cis-trans isomerization of backbone peptidyl-prolyl
u-bonds of their various protein substrates. The reaction
coordinate of the chemical step is defined by the backbone
peptide u-bond angle. The cis, trans, and transition-state
configurations of the substrate along the reaction coordinate
are well defined at ~0�, 5180�, and 90�, respectively. Also,
the cis-trans interconversion can be simulated directly using
accelerated molecular dynamics, without any conforma-
tional bias, as was previously shown (11,12). PPIases
consist of cyclophilins, FK-506-binding proteins, and par-
vulins (13). The tertiary structure of the catalytic domain
of cyclophilins is structurally conserved among all of the
familial isoforms (14). Human cyclophilin A (CypA), the
smallest prototypic cyclophilin of ~18 human isoforms, is
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the most studied and characterized isoform (15). Uncata-
lyzed prolyl cis-trans isomerization has an activation free-
energy barrier of ~20 kcal/mol (~84 kJ/mol) (16) and
a half-life on the second timescale (17,18). Human CypA
speeds up the reaction rate from seconds to milliseconds
(19). CypA catalyzes the peptide bond of a -X-Pro- motif
(where X is any amino acid), and differences in catalytic
turnover rates are mainly due to the identity of the amino
acid in the X position (19,20).

Human CypA has a range of specific functions in vivo.
The immunosuppressive drug cyclosporine A (CsA) binds
to CypA, and the CypA-CsA complex inhibits calcineurin,
suppressing the transcription of cytokine genes by inhibiting
calcineurin’s native phosphatase function (13). CypA is the
first human protein that has been found to be both enclosed
within the HIV-1 virion and crucial for viral replication
(21,22). An interaction between CypA and the HIV-1 capsid
core protein, CAN, facilitates viral replication by acceler-
ating destruction of the capsid (22,23). Hepatitis C virus
also uses CypA to replicate by forming a critical contact
with the HCV NS5B RNA polymerase (24). A role of
CypA in signal transduction involves regulating the function
of the prolactin receptor in mammary cells, impacting the
interaction of the prolactin receptor with Janus-activated
tyrosine kinase (25). Also, CypA can form a complex with
Interleukin-2-tyrosine kinase inside of Jurkat T-cells, which
is disrupted upon addition of CsA (26). Cyclophilins are
also involved in protein folding (13) and oncogenesis
(25,27).

The exact catalytic mechanism of CypA is not fully
understood. Several hypotheses have been presented to
explain the greater than five orders-of-magnitude speedup
in prolyl isomerization by the enzyme (25,28–33). It has
been suggested that conformational heterogeneity that
occurs during enzyme catalysis provides the means by
which an enzyme complements its substrate (34). Therefore,
in order to fully understand the mechanism of CypA, there is
a need to fully understand how enzymes make use of a large
ensemble of conformations in recognition and catalysis at
different points along the chemical step. We have therefore
simulated the substrate-free enzyme and enzyme-substrate
complexes of the cis, trans, and transition-state configura-
tions of the substrate—three important segments along the
catalytic pathway. We have also carried out accelerated
MD simulations on the enzyme-substrate complex in order
to freely sample cis-trans isomerization during catalysis
and investigate the coupling between the conformational
dynamics of CypA and the chemical step. Altogether, we
carried out>2 ms of MD simulations in full atomistic detail,
sampling conformational changes beyond the nanosecond
timescale. Moreover, these computational approaches
provide a way to study the short-lived ensemble of confor-
mations of the enzyme-substrate transition-state complex.
These studies provide further insight into the importance
of enzyme flexibility in catalysis, as well as the coupling

between the chemical step and the stabilizing polar and
nonpolar intermolecular interactions.

METHODS

All simulations were carried out using the AMBER 10 suite of programs

(35) in explicit TIP3P water (36) using the PARM99SB (37) modified

version of the force-field parameters from Cornell et al. (38). Additional

modifications to the dihedral parameters for the peptide u-bond angle

were also employed (39). A 1.58 Å resolution x-ray crystal structure with

PDB:1AWR was used for the simulations (23). An experimentally well-

studied substrate analog, Ace-Ala-Ala-Pro-Phe-Nme (AAPF), was used

in these studies (19,20,31,32,40–43). The Ace-AAPF-Nme substrate analog

was introduced by keeping common backbone and side-chain atoms of the

substrate analog (HAGPIA) in the PDB file and adding the missing atoms

using the Xleap module in AMBER. The complex was then solvated with

~5500 TIP3P water molecules and was neutralized with four chloride ions.

The potential energy of the system was initially minimized for 1000 steps

with a harmonic constraint of 100 kcal/mol/Å2 applied to the atoms of the

protein, followed by two short (400-ps) MD simulations with harmonic

constraints of 50 kcal/mol/Å2 and 25 kcal/mol/Å2, respectively, applied

to all of the atoms of the protein. The system was then equilibrated for

an additional 200 ps without any constraints using the isothermal-isobaric

ensemble at 300 K and 1 bar. The Pmemd module in AMBER 10 was

used to carry out all of the conventional MD simulations. An integration

time step of 0.002 ps was used to integrate Newton’s equation of motion.

The SHAKE algorithm (44) was used to restrain all bonds involving

a hydrogen atom during the simulations. Langevin dynamics was used to

maintain the temperature at 300 K with a collision frequency of 1 ps�1.

This temperature and a constant pressure of 1 bar were used throughout

all simulations. The nonbonded cutoff distance was set to 9 Å during

all simulations. The long-range electrostatic interactions were treated

using particle-mesh Ewald summation (45–47). The u-bond angle of

the substrate in the transition-state complex was maintained at ~90�

using a flat bottom-well torsional restraint with a force constant of

1000 kcal/mol/rad2 between 89� and 91�. Restraints were not required to

maintain the substrate in the trans and cis configurations in their enzyme-

substrate complexes, because a high barrier separates the two low-energy

states. The substrate in the crystal structure was in the trans configuration.

Thus, the cis configuration of the substrate was equilibrated with the same

torsional restraint in order to shift the substrate from the trans configuration

to the cis, and subsequently simulated with no restraint.

The aggregate simulation time for all of the conventional MD simula-

tions of substrate-free CypA and the enzyme-substrate complexes exceeded

1.5 ms. Four independent simulations were carried out for each enzyme-

substrate complex. Each simulation was carried out for at least 110 ns.

The first 10 nanoseconds were discarded as part of the equilibration phase.

One long 350-ns simulation was carried out on substrate-free CypA, using

a similar setup and equilibration procedure as was done for the substrate-

bound complexes.

All accelerated MD simulations (48) were carried out using a modified

version of the Pmemd module in AMBER 10, in order to accelerate the

rate of cis-trans isomerization of the substrate while in complex with the

enzyme. Eight independent accelerated MD simulations were carried out

for a total of ~1 ms of simulation time. The total torsional potential of

the substrate was selectively boosted (11), using a boost energy, E,

of 60 kcal/mol above the average total dihedral energy calculated after

equilibration and a tuning parameter, a, of 10 kcal/mol. Each configuration

was reweighted using the strength of the Boltzmann factor of the bias

potential energy, ebDV(r), calculated on-the-fly during the simulation to

calculate the probability distributions (49).

Principal component analysis (PCA) was carried out using the Ptraj

module in AMBER (35). The implementation of this method has been

extensively discussed (50–54), and Ptraj was used to calculate and diago-

nalize the covariance matrix. The Ptraj module was also used to calculate
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the torsional angles, root-mean-square fluctuations, and hydrogen-bonding

distances. For residues containing equivalent d-carbons (such as Leu or

Phe), the Cd1 atom was selected when measuring the torsional angle.

The binding free energies were estimated using the molecular mechanics/

Poisson-Boltzmann surface-area approach (55,56). The relative changes

in translational, rotational, and conformational entropies were assumed to

be negligible in estimating the relative binding free energies.

RESULTS AND DISCUSSION

Conformational selection in CypA recognition
during catalysis

In general, conformational selection (57–60) and induced fit
(61) can be used to describe the mechanism of enzyme-
substrate recognition. Conformational selection implies
that equilibria between weak- and tight-binding conforma-
tions of the substrate-free enzyme exist before substrate
binding, whereas substrate binding is a prerequisite for the
formation of a tightly bound enzyme-substrate complex in
the induced-fit mechanism (62). However, these two mech-
anisms are limiting extremes for dynamical systems, and it
is difficult to ascribe either one as the sole contributor to
biomolecular recognition (59,63). Also, these two mecha-
nisms characterize conformational changes in enzymes
with little regard given to conformational changes in the
substrate. It has been previously noted that the free-energy
landscape of the enzyme and substrate are transformed
upon complex formation (59). Thus, variation in the confor-
mation of the substrate should also be considered when
describing the conformational heterogeneity of the complex
because the conformations of the enzyme can affect those of
the substrate, and vice versa.

We have used principal component analysis (PCA) to
characterize the mechanism of recognition of CypA upon
binding the cis, trans, and transition-state configurations
of the substrate. PCA allows us to project the conforma-
tional phase space sampled by the active site residues of
the substrate-free and substrate-bound enzyme using a
reduced set of degrees of freedom. It helps us to determine
if the conformations of the active site residues of the
substrate-free enzyme can effectively bind the sub-
strate by revealing similarities between substrate-free and
substrate-bound ensembles of the enzyme conformations
(Fig. 1). Active site residues of CypA consist of Arg55,
Phe60, Met61, Gln63, Ala101, Asn102, Ala103, Phe113,
Leu122, and His126. These residues were selected because
they are no more than 4 Å away from the peptide u-bond
angle and form the binding cavity for the substrate. Also,
most of these residues are fully conserved across species
and have been identified as participating in substrate turn-
over (64).

Fig. 1 shows that the active site residues of substrate-
free CypA sample a large conformational space involving
several rotameric states (Fig. 2 and see Fig. S1 in the
Supporting Material). Upon binding the substrate, the active

site residues of CypA lose a tremendous amount of con-
formational freedom that was present in the substrate-free
enzyme. The phase space sampled by the active site resi-
dues of the enzyme-substrate complexes in the cis and trans
configurations (ground states) of the substrate is slightly
broader than that of the transition-state complex. The
conformational-space of the transition-state ensemble is
compact, with few differences in the enzyme-substrate
intermolecular interactions from one conformation to the
other. These enzyme-substrate intermolecular interactions
involve several key hydrogen bonds, as shown in Fig. 1 D.
These well-optimized hydrogen bonds localize the tran-
sition-state ensemble of the enzyme conformations to
a single region of phase space, as we show later. It can be
seen that the active site of the substrate-free enzyme also
samples the majority of the transition-state conformations
(Fig. 1).

The active site of the enzyme does not necessarily
have to be induced to some exclusive conformations for
catalysis to occur. The active site conformations of the
ground-state complexes overlap quite well with each other,
while the transition state shares a smaller subset of confor-
mations with the ground states. The substrate-bound active
site conformations of the enzyme are subsets of that of the

FIGURE 1 Principal component analysis (PCA) of substrate-free CypA

and substrate-bound CypA complexes. The top three principal components’

dominant motions are shown, with each data point representing a conforma-

tion of the active site residues. Depicted are the substrate-free enzyme

(black), the trans-CypA complex (red), the transition-state-CypA complex

(green), the cis-CypA complex (blue), and the substrate-bound CypA

complex with hydrophobic active-site residues (on white surface). Also

depicted are the active site residues (Arg55, Gln63, and Asn102) and

Trp121 that form hydrogen bonds with the substrate (sticks), and the

substrate in the transition state configuration (yellow).
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substrate-free enzyme conformations based on the top three
principal components (Fig. 1 and see Fig. S2) that represent
~70% of the motions of the top 10 principal components of
the active site residues (see Fig. S3). The connection
between the substrate-free and substrate-bound active site
conformations is indicative of an existing equilibrium
between weak- and tight-binding conformations of the
enzyme. Localization of the active-site residues of the
bound ensembles is characteristic of a population shift
toward a subset of the substrate-free enzyme conformations.
The results suggest that CypA has evolved to complementa-
rily shift its active-site conformation alongside the configu-
ration of the substrate with only slight changes to the
rotameric state of the active site residues as the reac-
tion progresses. Whether CypA binds the substrate in the
trans, transition-state, or cis configuration, the needed
enzyme conformations already exist in the ensemble of
the substrate-free enzyme. Thus, the binding mechanism
of CypA is predominantly conformational selection, as
was previously suggested by NMR studies (40,65).

Examining the rotameric states of the active site residues
in the substrate-free and the different substrate configura-
tions of the substrate-bound CypA suggests similar conclu-
sions (Fig. 2). In general, each ensemble of the bound
complexes has its own unique distribution of rotamers for
the active site residues. Various intramolecular and intermo-
lecular interactions in the enzyme affect the conformational
preference of the active site residues, which are also depen-
dent on the state of the substrate. The rotamers sampled by

the active site residues of the substrate-free enzyme overlap
with the rotamers sampled by the substrate-bound enzyme
complexes, also demonstrating that the bound conforma-
tions of the enzyme are a subset of the free enzyme confor-
mations. Active site residues that form hydrogen-bonding
interactions with the substrate tend to sample more rota-
meric states than hydrophobic residues. Unlike the hydro-
philic residues, the hydrophobic residues in the bound
states of the enzyme predominantly sample a single rota-
meric state and are less sensitive to the configuration of
the substrate.

The most flexible active site residues are Arg55, Gln63,
and Asn102—three residues that form key hydrogen-
bonding interactions with the substrate (Fig. 1 D). Arg55

has been shown to be important for substrate recognition
and catalysis by forming a bifurcated hydrogen bond with
the carbonyl oxygen of proline of the substrate (11,31,33).
Gln63 and Asn102 also participate in hydrogen-bonding in-
teractions with the substrate. However, only the hydrogen-
bonding interactions between residues Arg55 and Asn102

and the substrate have been identified as being important
in stabilizing the transition state (31). The backbone amine
group of Asn102 forms a hydrogen bond with the carbonyl
oxygen of Ala in the -Ala-Pro- motif only in the transi-
tion-state and cis enzyme-substrate complexes. The side-
chain amide group of Gln63 forms a hydrogen bond with the
carbonyl oxygen of the Ala residue preceding the -Ala-Pro-
motif of the Ace-Ala-Ala-Pro-Phe-Nme substrate analog
used in this study.

FIGURE 2 Probability distributions of side-

chain torsional angles of active site residues,

Arg55, Met61, Gln63, Asn102, Phe113, and Leu122

in substrate-free (black) and substrate-bound

CypA: trans (red), transition state (green), and

cis (blue). The c1-angle corresponds to the atoms

N-Ca-Cb-Cg, and the c2-angle corresponds to the

atoms Ca-Cb-Cg-Cd.
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Phe113 sits at the base of the proline-binding pocket and
has been suggested to play a key role in catalyzing cis-trans
isomerization (40). Phe113 can rotate in the free enzyme, and
rotation to the minor rotameric state was suggested to be
coupled to the catalytic step (40). Our studies suggest that,
once the substrate binds to the enzyme, the side chain of
Pro in the substrate pushes directly against the phenyl group
of Phe113. This keeps Phe113 localized to the same rotameric
state regardless of the conformation of the substrate (Fig. 2
and see Fig. S1). The minor rotameric state of Phe113 seems
to obstruct the proline-binding pocket. Interestingly, the
less-active Ser99Thr mutation of CypA was shown to
increase the population of the minor rotameric state of
Phe113, which sits on top of Ser99 (40). Another hydrophobic
residue, Leu122, in the active site forms intermolecular
contact with the substrate in the proline-binding pocket
and predominantly samples only one rotameric state in all
of the substrate-bound enzyme complexes (Fig. 2). In the
substrate-free enzyme, Leu122 participates in loose hydro-
phobic contacts with other active site residues in the
proline-binding pocket, visiting more than one rotameric
state.

Substrate binding alters the conformational
dynamics of CypA beyond the active site

In addition to the conformational changes observed in the
active site of CypA upon substrate binding, the dynamics
and fluctuations of the enzyme beyond the active site are
also altered, as shown in Fig. 3. Here, Fig. 3 shows the
average percent-change in the root-mean-square fluctua-
tions of the enzyme backbone atoms upon binding the
substrate. Enzyme residues that become more localized
upon binding have positive change; conversely, residues
that become more flexible upon binding have negative
change. The loop region containing residues 75–85 becomes
overall less flexible upon binding the substrate in the cis and
trans ground states (orange; Fig. 3). This region is part of
a larger loop (residues 66–96) that has been reported to

undergo fast conformational exchange in the substrate-free
enzyme (40). It appears that Lys82 acts as a hinge for this
loop, becoming more flexible upon binding the substrate
in the transition-state configuration. This residue has also
been found to undergo significant deviation upon binding
in other studies (29,66). These results suggest that the
motions of this loop have significant impact on complex
formation. Several residues of CypAwithin the loop region
75–85 are well conserved across species, with the exception
of residues Lys76, Glu81, and Glu84 (64). Another loop
region (residues 147–155) exhibits smaller fluctuations
upon substrate binding (violet; Fig. 3). This region, in
combination with the a-helix from residues 136–146, acts
as a hinge region to the two b-sheets contributing to the
closed b-barrel fold. The stability of this loop region upon
substrate binding suggests that the two b-sheets become
more compact in the enzyme-substrate complex and less
likely to separate as much as would be expected in the
breathing motions of the substrate-free enzyme.

Of particular interest is the loop region consisting of resi-
dues 101–110 (cyan; Fig. 3). This region becomes more
flexible upon substrate binding and most flexible in the tran-
sition-state enzyme-substrate complex. Moreover, these
residues are well conserved across different species (64)
and have been shown to contribute to the dominant motions
of CypA (67). The motion of this loop may be critical to
catalytic turnover, and this motion may be required to intro-
duce enough deviation to allow Asn102 to form hydrogen
bonds with the substrate. This hypothesis may be tested
experimentally by modifying the dynamics and flexibility
of that loop to determine how the catalytic turnover rate is
impacted. Very few deviations are apparent in the backbone
of the active site residues upon binding the substrate in the
different configurations, as opposed to the relatively large
side-chain rearrangements that are observed. The results
therefore suggest that the backbone of the active site in
the substrate-free enzyme is preorganized to bind the sub-
strate in its different configurations that requires rearrange-
ments of several key side chains during catalysis. Also,

FIGURE 3 Average percent-change in root-

mean-square fluctuations (left) of all the backbone

atoms of CypA (right) upon substrate binding

(relative to the substrate-free enzyme). A negative

change signifies enhanced fluctuation upon

substrate binding and a positive change signifies

reduced fluctuation upon substrate binding. (Left)

The trans complex (red), the transition-state com-

plex (green), and the cis complex (blue). (Right)

Enzyme regions with significant changes, depicted

on the model structure, are (a) residues 75–85

(orange), (b) residues 101–110 (cyan), and (c) resi-

dues 147–155 (violet). The active site residues of

CypA are also shown (transparent surface and

stick representations).
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many of these loop residues have been shown to contribute
to the top three vibrational modes of CypA (64,66).

Enzyme-substrate intermolecular interactions are
tightly coupled to the chemical step

It is well established that enzymes lower the free energy
barrier of a reaction by stabilizing the transition state during
catalysis (8). However, it is not always clear as to how
exactly this barrier reduction is achieved. In the active site
of CypA, the conformations that complement the transition
state are very ordered, resulting in a low entropy, yet high
affinity complex. This order is achieved due to key
enzyme-substrate intermolecular interactions. The key inter-
molecular interactions of CypA include the hydrophobic
contacts between the substrate and the active site cavity
and the formation of several specific enzyme-substrate
hydrogen bonds (Fig. 1 D). The smaller conformational
space sampled by active site residues of the substrate-bound
complexes (as compared to the substrate-free enzyme) is
a result of the formation of these intermolecular interactions.

Initially, two main hydrogen bonds involving Arg55 and
Asn102 of CypA were identified as being responsible for
stabilizing the transition state relative to the ground state
(11). These two hydrogen bonds flank the proline residue
of the -Ala-Pro- motif of the substrate analog. In this
work, we have identified at least four intermolecular
hydrogen bonds between the enzyme and substrate that
are deemed to be important in stabilizing the transition state
(Figs. 1 D and 4). The bifurcated hydrogen bond between
the guanidinium group of Arg55 and the carbonyl oxygen
of proline in the -Ala-Pro- motif of the substrate continually
forms and breaks in the ground (cis and trans) states.
However, this hydrogen bond is always well formed in the
transition-state complex and is almost never broken
(Fig. 4 and see Fig. S4). While Arg55 can undergo fast
conformational changes in the free enzyme (29), it becomes
less mobile in the enzyme-substrate complexes, especially
upon binding the transition state.

Similarly, Gln63 and Asn102 are involved in several
hydrogen-bonding interactions with the substrate that are
loosely formed in the cis and trans states, but well formed
in the transition state. The side-chain amide proton of
Gln63 forms a hydrogen bond with the carbonyl oxygen of
the Ala residue preceding the -Ala-Pro- motif of the
substrate (Fig. 1 D). This hydrogen-bonding interaction is
difficult to form in the trans and cis states. However, in
the transition state, it is difficult to break (Fig. 4 and see
Fig. S4). The backbone amine group of Asn102 forms a tight
hydrogen-bonding interaction with the carbonyl oxygen of
alanine in the -Ala-Pro- motif of the substrate in the cis
and transition states, but not in the trans state. We believe
this tightly formed hydrogen-bond interaction between
Asn102 and the cis configuration is partly responsible for
the higher binding affinity of the cis configuration over

the trans configuration to the enzyme, as shown below
and previously observed computationally (11) and experi-
mentally (29,65).

In the substrate-free enzyme, Arg55 can move freely. In
the enzyme-substrate complexes of the cis and trans states,
Arg55 can either orient downward, interacting with the
substrate; or upward (away from the active site), interacting
mainly with residue Asn149 in a loop (violet; Fig. 3). In one
out of the four independent normal MD simulations carried
out on the enzyme-substrate complex when the substrate is
in the trans state, Arg55 is consistently in the downward
position, interacting with the substrate. In the other three
simulations, Arg55 spends most of the time upward, away
from the active site and substrate. In all of the independent
normal MD simulations of the enzyme-substrate complex
when the substrate is in the cis state, Arg55 sampled both
downward and upward conformations. The interaction
between Arg55 and the substrate in the transition state
complex was hardly ever broken in all four independent
normal MD simulations. The results suggest that the
behavior of Arg55 is sensitive to the state of the substrate
and changes along the catalytic pathway. To fully under-
stand the conformational preference of Arg55, and
other key residues, and determine how the intermolecular
interactions are coupled to the state of substrate during
catalysis, we carried out accelerated MD simulations on
the enzyme-substrate complex. Accelerated molecular

FIGURE 4 Enzyme-substrate intermolecular hydrogen bonds between

CypA and the substrate in the (A) trans, (B) transition-state, and (C) cis

configurations. Hydrogen bonds are measured from heavy atom to heavy

atom. (Magenta curve) Contact between the Arg55 guanidinium carbon

and the carbonyl oxygen of the substrate Pro. (Royal-blue curve) Contact

between the backbone nitrogen of Asn102 and the carbonyl oxygen of Ala

of the -Ala-Pro- motif. (Cyan curve) Contact between the backbone oxygen

of Asn102 and nitrogen of Ala of the -Ala-Pro- motif. (Orange curve)

Contact between the side-chain amino nitrogen of Gln63 and the carbonyl

oxygen of Ala, preceding the -Ala-Pro- motif.
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dynamics allowed us to observe the back-and-forth cis-trans
isomerization of the catalytic process while sampling the
conformational space of the enzyme.

The hydrogen-bonding interaction between Arg55 and the
substrate is coupled to the chemical step along the reaction
coordinate, u, as can be seen in Fig. 5. Also, it is clear
from Fig. 5 that, in the trans state, Arg55 has to overcome
an energetic barrier of ~5 kcal/mol in order to switch
between the upward and downward conformers, unlike the
cis configuration. This barrier is small in the cis enzyme-
substrate complex, and Arg55 in the transition-state complex
consistently stays in the downward position due to optimized
contact with the substrate. These results are consistent in all
eight, independent, accelerated MD simulations that were
carried out. Fig. 5 is an average of the eight independent
runs. The barrier observed in the trans state also explains
why the hydrogen-bonding interaction between Arg55 and
the substrate in one of the four independent normal MD
simulations of the trans complex stayed formed during the
entire simulation. Our results suggest that the barrier sepa-
rating the formed and unformed state of the Arg55 with the
substrate in the enzyme-substrate complex of the trans state
exists because Arg55 can equally form long-lasting interac-
tions downward (with the substrate) and upward (with
Asn149), corresponding to the two observed wells in Fig. 5.
Because there is a barrier separating the formed and the
unformed states of the intermolecular interaction between
Arg55 and the trans substrate, these simulations can get
trapped in the formed or unformed well for a long period
of time. It is interesting to see that the configuration of the
substrate can directly affect the enzyme dynamics. Fig. 5
also confirms that the hydrogen-bonding interaction between
the guanidinium group of Arg55 and the carbonyl of proline
in the -Ala-Pro- motif of the substrate can form and break in
the trans and cis states and is well formed as the substrate
goes through the transition state.

The hydrogen-bonding interaction between Gln63 and the
substrate is also coupled to the chemical step, as shown in
Fig. 6. The hydrogen bond between Gln63 and the substrate
readily forms and breaks when the substrate is in the trans
or cis states, and stays consistently formed in the enzyme-

substrate complex of the transition state (Fig. 6). Gln63 is
completely conserved across the human cyclophilin iso-
forms (15) and across species (31,68), and our results suggest
that it is primarily important for stabilizing the transition
state of the substrate, along with Arg55 and Asn102, two other
well-conserved amino acids of CypA (15,69,70). The sug-
gested role of Gln63 in stabilizing the transition state can
be tested by mutagenesis experiments or chemical modifica-
tion of the side chain in order to abolish the hydrogen-
bonding interaction with the substrate and measurements
of the effect on the catalytic turnover rate.

CypA preferentially binds the substrate in the
transition state

We have estimated the binding free energies of the
enzyme-substrate complexes with different configurations
of the substrate using the molecular mechanics/Poisson-
Boltzmann surface area approach (55,56), in order to further
understand how CypA speeds-up the rate of cis-trans isom-
erization (Fig. 7). The relative changes in conformational,
translational, and rotational entropies are not included
in these estimates and are assumed to be negligible. The
average free energies of binding the substrate in the trans
configuration are ~�13.1 kcal/mol (~�54.8 kJ/mol) in the
simulation where Arg55 does not interact with the substrate
and ~�22.1 kcal/mol (~�92.5 kJ/mol) in the simulation
where Arg55 continuously interacts with the substrate, as
shown in Fig. 7 A. The average free energies of binding
the substrate in the cis and transition-state configurations
are estimated to be ~�24.1 kcal/mol (~�100.8 kJ/mol)
and ~�31.4 kcal/mol (~�131.4 kJ/mol), respectively. The
enzyme binds the transition state better than the cis and
trans states, as was previously shown (11,71). These results
suggest that CypA is designed to preferentially bind and
stabilize the transition state of the substrate. CypA lowers
the free-energy barrier by ~10 kcal/mol (~42 kJ/mol),
similar to estimates from Figs. 5 and 6 and in line with
previous simulations and experiments (11,32,65), which is
achieved by binding the transition-state configuration of
the substrate better than the cis and trans states by this

FIGURE 5 Coupling between the enzyme-

substrate intermolecular hydrogen-bonding inter-

action with Arg55 and the chemical step. Contour

plot (right) is in kcal/mol. Measured interaction

(left) is depicted (dashed line). The -Ala-Pro- motif

of the substrate is shown in the transition-state

configuration, and the remaining residues of the

substrate are also shown (white stick representa-

tion), as well as the active site residues (white

surface representation).
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amount. Also, our results provide a quantitative estimate of
the critical role of the interaction of Arg55 with the substrate
in forming a stable enzyme-substrate complex.

A breakdown of the energetic components (Fig. 7, B–E)
reveals that the enzyme stabilizes the transition-state config-
uration using optimized van der Waals and electrostatic
interactions. The trans substrate forms slightly better van
der Waals contact with the enzyme than the cis substrate,
but the trans substrate forms the worst electrostatic contacts
with the enzyme out of the three configurations. Interest-
ingly, when Arg55 forms its hydrogen bond with the
substrate, the electrostatic contacts significantly improve
(Fig. 7 C). The cis complex forms significantly better elec-
trostatic contact with the enzyme than the trans complex,
yet the cis complex forms the weakest van der Waals inter-

actions. This implies that the cis complex formation is char-
acterized by better hydrogen-bond formation, while the
trans complex formation is characterized by a better grip
on the proline ring. The difference in electrostatic contacts
between the ground states is much greater than the differ-
ence in nonpolar contacts. This indicates that electrostatic
contributions have the biggest impact on complex forma-
tion. The importance of electrostatic contacts in complex
formation and catalytic turnover has been previously high-
lighted (72). Interestingly, and somewhat expected, the
tighter the electrostatic interaction between the enzyme
and the substrate (Fig. 7 C), the less favorable the change
in the polar free energy of solvation (Fig. 7 E). However,
the electrostatic and van der Waals interactions overcom-
pensate for the unfavorable change in the polar solvation
free energy. The change in nonpolar solvation free energy
is relatively small (Fig. 7 D).

On the role of Trp121

Tryptophan 121 forms a hydrogen bond with the substrate,
but does not help to carve out the hydrophobic proline-
binding pocket. Therefore, it had not always been consid-
ered an active site residue, but mutating Trp121 has been
shown to adversely affect the catalytic activity of CypA
(42,73,74). The amine group of the indole ring can form
a hydrogen bond with the backbone carbonyl oxygen of
the residue (Phe) after proline of the -Ala-Pro- motif of
the substrate (Fig. 8 C). The side chain of Trp121 predomi-
nantly populates a single rotameric state, mainly forming
hydrophobic contact with the outside of the proline-binding
pocket, and the hydrogen of the indole ring points toward

FIGURE 7 Probability distributions of free energies of binding the substrate in different configurations by CypA, when the substrate is in the trans (orange

and red), transition-state (green), and cis (blue) configurations. Two sets of results are shown for the enzyme-substrate complex with the substrate in the trans

configuration: one in which Arg55 maintains a hydrogen bond with the substrate (orange) and the other when Arg55 does not maintain a hydrogen bond with

the substrate (red). The total free-energy change upon binding the different states of the substrate (A) and the individual components of the binding free

energy change (B–E) are shown.

FIGURE 6 Coupling between the enzyme-substrate intermolecular

hydrogen-bonding interaction with Gln63 and the chemical step. Contour

plot (right) is in kcal/mol. Measured interaction (left) is shown (dashed

line). The -Ala-Ala-Pro- motif of the substrate is shown with the -Ala-

Pro- motif shown in the transition-state configuration, and the remaining

residues of the substrate are also shown (white stick representation), as

well as the active site residues (white surface representation).
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the substrate (Fig. 8, A–C). Unlike the other residues that
form hydrogen bonds with the substrate, the hydrogen-
bonding interaction between Trp121 and the substrate is
well formed in the trans enzyme-substrate complex and
mostly formed in that of the transition state, but completely
unformed in the complex of the cis state (Fig. 8, D and E).
The variation in the hydrogen-bonding interaction of Trp121

is mainly dependent on the configuration of the substrate
and not on the dynamics of the residue. A fluorescence study
of substrate-free CypA and CypA-CsA complex resulted in
a twofold increase in Trp121 fluorescence upon binding CsA,
suggesting that Trp becomes more localized upon substrate
binding (75). Therefore, our results suggest that Trp121 may
be critical for recognizing the substrate in the trans config-
uration and help stabilize the transition state.

Trp121 is moderately conserved across human cyclophilin
isoforms; however, it is well conserved across orthologous
CypA species (15,68,69). Interestingly, human cyclophilin
isoforms without tryptophan at this position are normally
substituted with a histidine or a tyrosine, residues that can
also form hydrogen bonds with their side chains (15). A
Trp121Phe mutation, which abolishes this hydrogen-bonding
interaction, causes CypA to bind cyclosporine with much
lower affinity, resulting in CsA-resistant strains of Saccha-
romyces cerevisiae (73). The Trp121Ala (42) and Trp121Tyr
(74) mutations retain 9% and 19% of wild-type catalytic
activity, respectively; to the best of our knowledge, there
is no experimental data for the catalytic activity of the
human Trp121His mutant.

CONCLUSIONS

Molecular dynamics simulations of substrate-free CypA and
the enzyme-substrate complexes when the substrate is in the
trans, transition-state, and cis configurations are carried out
to determine the relevant conformational changes and inter-

molecular interactions that impact catalysis. Our results
suggest that CypA binds its substrates via conformational
selection. The dynamics of active site residues of the
substrate-bound CypA complexes are inherent in the
substrate-free enzyme. Variations in the electrostatic and
hydrophobic contacts are observed as the configuration of
the substrate changes in the active site during catalysis.
Presence of the substrate in the active site impacts the
dynamics of certain key active site residues and loop regions
of the enzyme. CypA stabilizes the transition state by form-
ing optimized hydrophobic and electrostatic interactions
with the substrate, making use of a preorganized network
of hydrogen bonds. These hydrogen bonds form and break
with ease in the ground states, but remain tightly formed
in the transition state, localizing the enzyme conformations
of the transition state to a relatively small conformational
space. The enzyme therefore binds the substrate in the tran-
sition-state configuration more tightly than the substrate in
the cis state, followed by the substrate in the trans state.
The hydrogen-bonding interaction that is formed between
Arg55 and the substrate is responsible for a large portion
of the electrostatic interaction. This study provides a general
atomistic insight into the interplay among enzyme confor-
mational dynamics, recognition, and catalysis.
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Rotameric states of side chain torsional angles for additional active site
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