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DNA sequence data are now being used to study the ancestral history of human population. The existing methods for such
coalescence inference use recursion formula to compute the data probabilities. These methods are useful in practical applications,
but computationally complicated. Here we first investigate the asymptotic behavior of such inference; results indicate that, broadly,
the estimated coalescent time will be consistent to a finite limit. Then we study a relatively simple computation method for this
analysis and illustrate how to use it.

1. Introduction

In the past decades, considerable progress has been made in
the field of population genetics. One of the main goals is to
infer the coalescence time of the population under study, that
is, to infer the time since their most recent common ancestor
(MRCA) and its distribution based on the observed data.

In genetics, coalescent theory is a retrospective of popu-
lation genetics that traces all genes in a sample from a pop-
ulation to a single ancestral copy shared by all the members
of the population. The coalescent time of a population is the
time of their most recent common ancestor. The inheritance
relationship among the genes is typically represented as a
gene genealogy, similar to a phylogenetic tree. The goal of
coalescent analysis is to infer the coalescent time of a sample
of 𝑛 individuals independently sampled from a population
of size 𝑁, based on their observed DNA sequence diversity.
Unlike parameter inference for independent and identically
distributed (iid) data, for which asymptotic limit can be used
conveniently to characterize the estimator when the data size
is large, various existing studies indicate that the estimated
MRCA, in unit of 𝑁 generations, is unclear as whether it
will concentrate as the data sample size increases without
bound. In contrast, in the estimation of mutation rate in the

same setting, the estimate is consistent and asymptotically
normal [1], although at a much slower rate of log1/2(𝑛),
compared to the rate of 𝑛1/2 for i.i.d. data. Also, different from
usual parameters, the MRCA changes with 𝑛, the number of
sequences. This prompts us to the investigate the asymptotic
behavior of the estimated coalescent time. We want to know
whether such estimator will be asymptotically consistent and
in what sense if it does. Conditioning on the total number
of segregating sites, we find that such estimators converge
or not to some nonnegative finite limits in posterior mean,
depending on the behavior of the number of mutations on
all the branches of the rooted trees constructed from the
observed data. Also, analysis of this problem with this type of
data is often computationally extensive and complicated; we
study a relatively simple simulation method for this problem.
We first study the asymptotic behavior of this method in
Section 3, and then describe and illustrate ourmethod for this
problem in Section 4.

In coalescence inference, mitochondrial DNA (mtDNA)
data plays an important role. Mitochondria is one of the few
genes existing outside the cell nucleus, and for mammalian
it is only maternally inherited. Human mtDNA is a double-
strandedmolecule sequence about 16,500 base pairs in length.
It is outside the cell nuclear, and it is known that themutation
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Figure 1: Coalescent tree for a sample of seven individuals.

rate in mtDNA is about 10 times that of the nuclear genes,
and that on one section of the mitochondria, its control
region, themutation rate is even one order higher.The simple
inheritance pattern and high variability make mtDNA an
important source in the study of human evolutionary history.
Each site on the DNA strand has one of the four bases A,
C, G, or T. As the molecule evolves, mutations occur in
the form of base substitutions. The change between purines
(A,G) or pyrimidines (C,T) is called transition; that between
a purine and pyrimidine is transversion. The former type of
substitution is much more common than the latter.

We focus on the control region of the mitochondrial data
in Griffiths and Tavaré [2], which is part of the data in Ward
et al. [3]. They are from a segment of the control region,
with 352 base pairs (sites), out of which 159 are purine sites
and 193 are pyrimidine sites. This data contains 63 sequences
sampled fromaNorthAmerican Indian tribe, theNuu-Chah-
Nulth, from Vancouver Island. After eliminating sequences
with multiple mutations on some single sites, so that the
assumption of at most one mutation each site is met, the
remaining data has 55 sequences, with 14 distinct sequences
(called lineages) in the data. Site at which not all the observed
sequences have the same base is a segregating site. The
whole sequences are long, but only the segregating sites are
informative for the analysis; the other sites are ignored. The
mentioned data has 18 segregating sites and is presented in
Table 1, with the frequency (or multiplicity) of each lineage.

2. Brief Review of Background and
Related Methods

The coalescent is a model for the genealogical tree of a
random sample of 𝑛DNA sequences from a large population.
An example of such a tree of sample size 𝑛 = 7 is given in
Figure 1.

For more detailed reviews of this topic, see Hudson [4]
and Donnelly and Tavaré [5].

In coalescence inference one has the following.

Basic Assumptions. The population size 𝑁 is large, remains
unchanged for many generations into the past, and is known,
or can be estimated from other sources; the data is a
random sample from the population; the number of births
in each generation follows the Wright-Fisher model (since
the population is of constant size, the number of deaths also
follows the similar model); mutation (substitution) at any
nucleotide site can occur only once in the ancestry and is
irreversible; mutations that occur in different time intervals
are independent; the time point at which mutation occurs
follows a Poison distributionwith rate 𝜃/2 to be defined latter,
independently in each branch of the genealogy tree, where 𝜃
is known, or can be estimated fromothermethods or sources.

The inference of coalescence time 𝑡
𝑛
of a sample popu-

lation of size 𝑛 has two steps. The first step is modeling the
distribution of 𝑡

𝑛
without any data, the predata distribution;

then in the second step, update the predata distribution,
using the observed data, to the postdata distribution, based
on which the formal inference is conducted. The predata
distribution is pioneered by Kingman [6, 7]; he showed that,
in time units of𝑁 generations,

𝑡
𝑛
=

𝑛

∑

𝑗=2

𝑤
𝑗
, (1)

where the 𝑤
𝑗
’s are independent waiting times. 𝑤

𝑗
is the time

from 𝑗 − 1 common ancestors of the sample to 𝑗 common
ancestors. A quick reference on this can be found in Tavaré
[8]. Here𝑤

𝑗
is distributed as exponential Exp(𝑗(𝑗−1)/2), with

𝐸(𝑤
𝑗
) = 2/(𝑗(𝑗 − 1)). The 𝑤

𝑗
s can be represented graphically

as a coalescent tree as in Figure 1; then 𝑡
𝑛
is the height of the

tree. Define the tree length as

𝑙
𝑛
=

𝑛

∑

𝑗=2

𝑗𝑤
𝑗
; (2)

then (Kingman)

𝐸 (𝑡
𝑛
) = 2 (1 −

1

𝑛

) ,

Var (𝑡
𝑛
) = 8

𝑛

∑

𝑗=2

1

𝑗
2
− 4(1 −

1

𝑛

)

2

;

𝐸 (𝑙
𝑛
) = 2

𝑛−1

∑

𝑗=1

1

𝑗

,

Var (𝑙
𝑛
) = 4

𝑛−1

∑

𝑗=1

1

𝑗
2
.

(3)

The time unit is transformed to years by the relationship
𝑡
𝑛
𝑁𝑌, where 𝑌 is the average years of each generation, which

is usually taken as 20–25. Here we see that, as an initial
analysis without the observed data, the coalescent time of
a random sample of size 𝑛 from a population of size 𝑁 is
roughly 2𝑁 generations, as long as 𝑛(≤𝑁) ismoderately large.
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Table 1: Nucleotide position in control region.

Site 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Lineage
Purines Pyrimidines Freqs.

Lineage
a A G G A A T C C T C T T C T C T T C 2
b A G G A A T C C T T T T C T C T T C 2
c G A G G A C C C T C T T C C C T T T 1
d G G A G A C C C C C T T C C C T T C 3
e G G G A A T C C T C T T C T C T T C 19
f G G G A G T C C T C T T C T C T T C 1
g G G G G A C C C T C C C C C C T T T 1
h G G G G A C C C T C C C T C C T T T 1
i G G G G A C C C T C T T C C C C C T 4
j G G G G A C C C T C T T C C C C T T 8
k G G G G A C C C T C T T C C C T T C 5
l G G G G A C C C T C T T C C C T T T 4
m G G G G A C C T T C T T C C C T T C 3
n G G G G A C T C T C T T C C T T T C 1

Each row of the table represents a DNA sequence lineage. In this data, there are transitions but no transversion observed.

Thus, the coalescent time of a sample from a subpopulation
is roughly the same as that of the population (as long as the
sample size is moderately large). This phenomenon is further
investigated by Watterson [9], who showed that

𝑃 (𝐴
𝑁
(𝑡
𝑛
) = 1) =

(𝑛 − 1) (𝑁 + 1)

(𝑛 + 1) (𝑁 − 1)

, (4)

where 𝐴
𝑁
(𝑡
𝑛
) is the number of ancestors, at 𝑡

𝑛
generations

ago, of the population with size 𝑁 from which the data
sample of size 𝑛 is drawn. Here the sample must be a random
draw from the population; otherwise the result may not be
reliable. For example, the sample of size 𝑛 is drawn from a
subpopulation of size 𝑁

1
< 𝑁 from a population of size

𝑁; then by (3), the predata estimated of the coalescent time
𝑡
𝑛
of this sample is roughly 2𝑁

1
generations, but also it is

roughly 2𝑁 generations since the sample is also from the
whole population. The paradox arises from the sampling
scheme. If the sample is drawn from the subpopulation of size
𝑁
1
, one can only use 2𝑁

1
as the time scale, not 2𝑁, since the

samples drawn from the subpopulation are expected to have
smaller genetic variation than from the whole population.

Formutation, the common assumption is that the times at
which mutation occurs follow a Poison process with constant
rate 𝜃/2, so that, in any branch of length 𝑙 from the tree, the
number ofmutations on that branch has a Poison distribution
with mean 𝑙𝜃/2, independently of the mutations on the other
branches. For the time scale mentioned before, usually 𝜃 =
2𝑁𝜇, where 𝜇 is the probability of a mutation that occurs
per sequence per generation. For DNA sequences, 𝜇 is the
sequence length (number of bases) times the mutation rate
per site per generation and is often available from other
sources. Since the coalescent time of a sample with moderate
size is approximately 2𝑁 generations, 𝜃 can be approximately
interpreted as the cumulative (since the time of MRCA)
mutation rate (number of mutations) per sequence. Also,

since the population size is𝑁, 𝜃/2 can also be interpreted as
the mutation rate of the whole population per generation.

Thus, given the mutation rate 𝜃 and the tree length 𝑙
𝑛
, the

number of mutations 𝑠
𝑛
in a sample of 𝑛 individuals from the

given population follows the Poison distribution Po(𝜃𝑙
𝑛
/2)

[10]

𝑃 (𝑠
𝑛
= 𝑘 | 𝑙

𝑛
= 𝑙) = 𝑒

−𝜃𝑙/2 (𝜃𝑙/2)
𝑘

𝑘!

:= Po(𝑘, 𝜃𝑙
2

) 𝑘 = 0, 1, 2, . . .

(5)

Note that this probability does not depend on 𝑛, but on 𝑘,
𝑙, and 𝜃. Why 𝜃𝑙

𝑛
/2?. Take 𝑛 = 2; then 𝜃𝑙

𝑛
/2 = 𝜃𝑡

𝑛
≈ 𝜃,

which is the expected number of cumulative mutations since
𝑡
𝑛
generations ago in a sequence. So 𝜃𝑙

𝑛
/2 is a reasonable

choice of the parameter in the Poison distribution. But if we
model the number 𝑘 of cumulative mutations per sequence
since 𝑡

𝑛
generations ago, for moderately large 𝑛, we should

use Po(𝑘, 𝑡
𝑛
𝑁𝜇) ≈ Po(𝑘, 2𝑁𝜇) = Po(𝑘, 𝜃).

The key in the coalescence inference is to evaluate the
postdata distribution of 𝑡

𝑛
, which ismuchmore involved than

its predata distribution, it depends heavily on the mutation
distribution in the data. For example, ifmoremutations occur
in the earlier stage of the genealogy tree, then the estimated 𝑡

𝑛

will be bigger. Although under the assumption that mutation
can only occur at most once at each site and mutation is
irreversible, the total number of mutations in the observed
data is just the number of segregating sites. But how the
mutations distribute in the branches of the genealogy tree is
unknown. Such distribution is crucial in the inference of 𝑡

𝑛
,

which depends on how much data information being used
and on the actual methods. This is our focus from now on.
Denoting by 𝐷

𝑛
the observed data, the estimated coalescent
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time �̂�
𝑛
of the sample is given by the postdata distribution

mean of 𝑡
𝑛
as

�̂�
𝑛
= 𝐸 (𝑡

𝑛
| 𝐷
𝑛
) . (6)

The inference can be viewed as a Bayesian procedure, with
the predata and postdata distributions that correspond to the
prior and posterior distributions in a Bayesian framework.
But unlike the common Bayes setting, here the parameter
𝑡
𝑛
varies with the sample size 𝑛, and the data cannot be

modeled i.i.d. with this parameter. That is the reason the
inference of 𝑡

𝑛
cannot be made arbitrarily accurate, in the

sense that the variance of the postdata distribution cannot
be arbitrarily small, as the sample size increases without
bound. Also, generally the postdata distribution is not in
closed form and has to be evaluated by sampling methods.
Tavaré et al. [10] derived the postdata distribution based
on only the number of segregating sites in the sample. This
method is very convenient to use, but does not use the DNA
sequences structural information.Thewell knownmethod in
Griffiths and Tavaré [2], hereafter GT, is based on the full data
information represented by a set of rooted trees.This method
is one of the basic tools in coalescent inference using full data
information, but is computationally complicated.

To evaluate the postdata coalescent distribution, GT used
the probabilities recursion formula, derived in Ethier and
Griffiths [11]. The method is not easy to fully understand and
correctly use formany geneticists. Also these probabilities are
computationally prohibitive; the postdata distribution of 𝑡

𝑛
is

computed by a Markov chain Monte Carlo sampling and is
quite involved.

Here we study a relatively simple approximate method
using the full data information; in this method, instead of
computing the tree probabilities as in GT, we just set the post-
data tree probabilities as uniform for the 𝑠+1 rooted trees and
use a simulation method to compute the coalescent distribu-
tion; thus, getting round of the complicated evaluations of the
tree probabilities, it is easy to understand and much simpler
in computation.

The rooted tree plays an important role in the analysis,
which is not uniquely determined from the data. The data is
equivalent to an unrooted tree, which is equivalent to a set
of unrooted trees. Each rooted tree has a 0-1 valued matrix
representation which is convenient for some computations,
but not any 0-1 valued matrix corresponds to a rooted tree.
In the following, we give more details about them and their
relationships.

Rooted Tree. A rooted tree consists of a system of branches,
subbranches, and so forth. The tip of each branch or sub-
branch represents a known lineage. The observed mutations
in the sample are represented as dots in the branches,
subbranches, and so forth at specified positions.Theobserved
multiplicity of each lineage is represented as leaves at the tip
of each branch or subbranch, and so forth.

The presentation of a rooted tree is unique up to the
relative positions of its branches, subbranches, and so forth. A
rooted tree has several levels of randomness. If we only know
the sample size 𝑛, then the rooted tree has a total of 𝑛 leaves;
apart from that, the shape of the tree, how to split, how to

allocate the leaves, howmanymutations, and the distribution
of themutations are all random. If the data and the number of
mutations are given, then the tree can only take a few shapes.
Different from GT and other related literatures, here we put
the observed lineage frequencies (multiplicities) as leaves in
the corresponding tips of branches, subbranches, and so forth
of the rooted tree.

Different from a coalescent tree which has a complete
time ordering of the splitting points of branches, a rooted tree
has only partial time orderings of these splits and mutations.
We only know that splits of branch(es) occurred before those
of its subbranches, but do not know the ordering of splits of
different branches. We know that mutation(s) on the branch
occurred before those on its subbranch(es), but do not know
the order of ones on the same branch, same subbranch(es), or
on different subbranches. For a given sequence data, it may
correspond to more than one different rooted tree. For the
observed data in Table 1, all the columns are for segregating
sites, and there is no transversion. Under the assumption
that mutation can only occur at most once at each site and
mutation is irreversible, at each segregating site, one and only
one of the base types is mutant; the other type is ancestral.
So if we know the mutation status at each segregating site,
the mutation statuses are said to be labelled, and we can use
a 0-1 valued matrix X = (𝑥

𝑖𝑗
) to denote the observed data,

where 𝑥
𝑖𝑗
= 1, if the base type of lineage 𝑖 at site 𝑗 is mutant,

and 𝑥
𝑖𝑗
= 0 otherwise. Such 0-1 matrix representation of the

data is convenient in the analysis. It is easy to see that each
rooted tree uniquely determines a 0-1 valued matrix X, but
an arbitrary 0-1 valuedmatrixmay not correspond to a rooted
tree. It must satisfy some conditions to corresponds a rooted
tree. There are abundant methods and algorithms on how to
judge if a given 0-1 values matrix is a valid representation of
a rooted tree, and if so how to build the rooted tree (e.g.,
[12–16]). We find the method that appeared in a number of
articles and is stated as Lemma 1 in Gusfiled [16] is easy to
use. Given a valid 0-1 valued matrix X (means it satisfies the
condition for representing a tree), one can uniquely draw a
rooted tree corresponding to it. Here, uniqueness means the
genealogy relationships, including which lineages are in the
same branch or subbranch, and so forth and which mutation
sites are on which section of which branch or subbranch and
so forth, are determined, but the particular shape of the tree,
such as some branch put on the left or right side, the angle
of branches, their lengths, and so forth, are irrelevant. Thus,
there is a 1-1 correspondence between a rooted tree and a valid
0-1 valued matrix. Given the observed data, the mutation
statuses at the sites are usually unknown. For data with 𝑠
segregating sites, there are 2𝑠 different ways to labelling the
mutation statues, but most of the labeling matrices do not
qualify to be representations of a rooted tree; it is known
that there are only 𝑠 + 1 different rooted trees, and hence
𝑠 + 1 different labellings (matrices) correspond to the data,
and there are existing algorithms to construct the rooted trees
and their corresponding matrices (e.g., [16, 17]). However, we
find that the method in GT is convenient. By this method,
one first needs to construct one rooted tree from the data
or its valid 0-1 valued matrix. For example, start from the
least shared mutations labeling that, on each column (site)
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of the data, label the less common base type as mutant (the
other as ancestral). It is easy to check the conditions for
its validity using Lemma 1 mentioned above. Construct the
rooted tree corresponding to this matrix and convert it to
an unrooted tree as in GT; that is, absorb those subbranches
without mutations into their branch(es), and then straighten
the branches, subbranches, and so forth.The unrooted tree is
uniquely determined from any of the 𝑠 + 1 rooted trees.

Then, based on this unrooted tree, one can get all the
other rooted trees as in Griffiths and Tavaré [18]; that is,
alternatively put the tree root point near each of the vertexes
that stretch out that vertex, then arrange the branches,
subbranches, and so forth into the desired shapes; if there
are more than one mutation between two adjacent vertexes,
put the tree root point in the middle of two such adjacent
mutations, alternatively for all such pairs of mutations, and
shape the tree as above. This way we get all the rooted trees
from the unrooted tree. In fact, given any rooted tree, all the
other 𝑠 rooted trees can be constructed in the sameway above,
without using the unrooted tree. Once the rooted trees are
constructed, the corresponding matrix representations are at
hand.

3. Asymptotic Behavior of MRCA Estimate

For parameter inference with independent and identically
distributed data and sample size 𝑛, it is known that the
estimator is asymptotically consistent and asymptotically
normal with rate√𝑛. But for inference ofMRCA, the data𝐷

𝑛

are not independent and identically distributed, and existing
studies indicated that the distribution of the estimatedMRCA
𝑡
𝑛
| 𝐷
𝑛
will not concentrate, even if 𝑛 → ∞. In the

case of estimating the mutation rate with the same data, the
estimator is found to be consistent and asymptotically normal
with rate log1/2(𝑛) [1]. This motivates us to investigate the
asymptotic behavior of 𝑡

𝑛
= 𝐸(𝑡

𝑛
| 𝐷
𝑛
) as a commonly

used point estimator of the coalescent time.Wewant to know
whether this estimator has similar asymptotic behavior as the
mutation rate estimator. We find that such estimators are not
consistent almost surely. To describe the result, we consider
the data set in three different commonly used forms.The first
type of data we consider is in the form of a coalescent tree
as in Figure 1. This type of data is often not practical, as for
most real data we do not have the information to construct
such tree. But as a starting point it will provide us some guide
on the result. There are 𝑛 − 1 nodes (splitting points) in the
tree numbered 2 to 𝑛 in their time order. Recall the definition
of the 𝑖th coalescent time 𝑤

𝑖
. Between the (𝑖 − 1)th and 𝑖th

node there are exactly 𝑖 segments, denote them as𝑤
𝑖1
, . . . , 𝑤

𝑖𝑖

from left to right, each has length 𝑤
𝑖
. Assume the number of

mutations 𝑘
𝑖𝑗
on segment 𝑤

𝑖𝑗
is known. Let w = {𝑤

𝑖𝑗
: 𝑖 =

2, . . . , 𝑛; 𝑗 = 1, . . . , 𝑖.}, k = {𝑘
𝑖𝑗
: 𝑖 = 2, . . . , 𝑛; 𝑗 = 1, . . . , 𝑖.}

be the mutation distribution corresponding to w and 𝑘
𝑖
=

∑
𝑖

𝑗=1
𝑘
𝑖𝑗
. Here this type of data is fully represented by k.When

we do not have w, k is not uniquely determined. But given
each rooted tree T

𝑟
, w and the location information of the

mutations, a mutation vector 𝑘
𝑟
= {𝑘
𝑟,𝑖
: 𝑖 = 2, . . . , 𝑛; 𝑘

𝑟,𝑖
=

∑
𝑖

𝑗=1
𝑘
𝑟,𝑖𝑗
} can be constructed by a random manner (to be

detailed in Section 4) corresponding to T
𝑟
. Denote 𝜋(T

𝑟
) =

𝜋(T
𝑟
| 𝐷
𝑛
) = 1/(𝑠 + 1) (𝑟 = 1, . . . , 𝑠 + 1) be our prior on the

rooted treeT
𝑟
’s, that is, without additional knowledgewe treat

each rooted tree as equally likely from the observed data.Here
our 𝜋(T

𝑟
)’s have different meaning from the probabilities

𝑝
0
(T
𝑟
,n)’s as inGT (the latter do not sumup to one, but to the

probability of obtaining the unrooted tree from the observed
data). We have (Appendix)

𝐸 (𝑡
𝑛
| 𝐷
𝑛
, 𝜃) =

𝑠+1

∑

𝑟=1

𝐸 [𝐸 (𝑡
𝑛
| k
𝑟
, 𝐷
𝑛
, 𝜃)] 𝜋 (T

𝑟
| 𝐷
𝑛
)

=

1

𝑠 + 1

𝑠+1

∑

𝑟=1

𝑛

∑

𝑖=2

𝐸 [𝑘
𝑟,𝑖
] + 1

𝑖 (𝑖 + 𝜃 − 1)

.

(7)

The commonly available data is in the form of Table 1,
which is equivalent to 𝑠 + 1 rooted trees; here 𝑠 = |k| :=
∑
𝑖,𝑗
𝑘
𝑖𝑗
= |k
𝑟
| (𝑟 = 1, . . . , 𝑠 + 1).

The last method is to estimate 𝑡
𝑛
only by the number

of mutations 𝑠, without using the information in the rooted
trees.

We have the following result (proof in Appendix).

Proposition 1. (i) One has

𝐸 (𝑡
𝑛
| k, 𝑠, 𝜃) = 2

𝑛

∑

𝑖=2

𝑘
𝑖
+ 1

𝑖 (𝑖 + 𝜃 − 1)

; (8)

consequently, the above estimator will diverge almost surely, if
k is treated as random.

(ii) One has

𝐸 (𝑡
𝑛
| 𝐷
𝑛
, 𝑠, 𝜃) =

2

𝑠 + 1

𝑠+1

∑

𝑟=1

𝑛

∑

𝑖=2

𝐸 [𝑘
𝑟,𝑖
] + 1

𝑖 (𝑖 + 𝜃 − 1)

, (9)

and �̂�
𝑛
will converge or not depending on that of the series

above.
(iii) One has

𝐸 (𝑡
𝑛
| 𝑠, 𝜃) =

2

𝑠 + 1

∑

|k|=𝑠

𝑛

∑

𝑖=2

𝐸 [𝑘
𝑖
] + 1

𝑖 (𝑖 + 𝜃 − 1)

, (10)

and the asymptotic behavior of the above estimator depends on
the series above.

Remark 2. The above result tells us that �̂�
𝑛
cannot be char-

acterized by an asymptotic deterministic quantity, even for
large data size. The estimator is dominated by the number of
mutations in the first few coalescent times. Hence, the only
practical way to infer the coalescent time is via numerical
methods, as the postdata coalescent distribution has no
closed form even asymptotically. In contrast, the predata
mean 𝐸(𝑡

𝑛
) = 2(1 − 1/𝑛) → 2 is convergent but is inaccurate

as an estimator of the coalescence time for the population
under study.

4. The Proposed Method

The method is to construct the mutation vector 𝑘
𝑟
=

(𝑘
𝑟,2
, . . . , 𝑘

𝑟,𝑛
) and compute the data probability directly from
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the genealogy rooted tree T
𝑟
’s. Suppose that there are 𝑠

segregating sites in the sequence data, which is exactly the
total number of mutations occurred in the history of the 𝑛
sampled individuals, then there are 𝑠 + 1 different rooted
trees T

𝑟
’s compatible with the data. Each of the rooted trees

is a fixed genealogy structure, with the multiplicities as the
leaves, but the number of mutations among the tree segments
is random, subject to the total number of mutations being
𝑠. The structure consists of the tree branches, subbranches
within each branches, sub-subbranches, and so on,, and the
leaves. These are the fixed features of a rooted tree. Given
the data, the rooted tree is a display of how the 𝑠 mutations
are distributed along the lineages, but there is no time scale
in the tree, so (5) cannot be used to compute the mutation
probabilities. Each rooted tree tells us a partial ordering of
the mutations. For example, in the rooted tree, we know
mutations at sites 4, 6, and 14 occurred before the split of
lineages 𝑎, 𝑏, 𝑒, and 𝑓, thus occurred before the mutations
at sites 1, 5, and 10. But we do not know which of 4, 6, and 14
occurred first. We know mutation 1 occurred before 10, but
we do not know the order of 1 and 5, and so forth. If we have
the full data (k

𝑟
,w) corresponding to all the rooted trees,T

𝑟
’s,

we can compute �̂�
𝑛
= 𝐸(𝑡

𝑛
| 𝐷
𝑛
, 𝜃) as in Proposition 1(ii).

But w and the k
𝑟
s are not directly available; however, w can

be easily simulated by the prior exponential distribution, and
each rooted tree T

𝑟
has an initial mutation distribution on its

branch segments. Denote by 𝑠
𝑖𝑗...

the (𝑖, 𝑗, . . .)th segment (the
order is arbitrary, e.g., we can lable them from upper to lower
and left to right locations), and let |𝑠

𝑖𝑗...
| be the number of

mutations on it (many of them are zeros; we can concentrate
on the segments with nonzero mutations). Denote s = {𝑠

𝑖𝑗...
}.

Given (w, s), 𝑘
𝑟
can be sampled fromT

𝑟
(to be detailed latter).

Let 𝐸
(w,k
𝑟
)
be the expectation with respect to (w, k

𝑟
). The

above motivates us to estimate 𝑡
𝑛
by

�̂�
𝑛
= 𝐸 (𝑡

𝑛
| 𝐷
𝑛
, 𝜃) =

2

𝑠 + 1

𝑠+1

∑

𝑟=1

𝑛

∑

𝑖=2

𝐸
(w,k
𝑟
)
[

𝑘
𝑟,𝑖
+ 1

𝑖 (𝑖 + 𝜃 − 1)

] . (11)

The above expectation is not easy to compute directly
since we do not know the joint distribution of (w, k

𝑟
). Instead

we use simulation method. For this, we sample w(1) ⋅ ⋅ ⋅w(𝑀)

independently and generate 𝑘(𝑚)
𝑟

= {𝑘
(𝑚)

𝑟,𝑖
} (see below)

corresponding to w(𝑚) and T
𝑟
for each 𝑟 then approximate

�̂�
𝑛
as

�̂�
𝑛
≈

2

𝑀

𝑀

∑

𝑚=1

1

𝑠 + 1

𝑠+1

∑

𝑟=1

𝑛

∑

𝑖=2

𝑘
(𝑚)

𝑟,𝑖
+ 1

𝑖 (𝑖 + 𝜃 − 1)

. (12)

Now we consider generating 𝑘(𝑚)
𝑟

. After 𝑤(𝑚) =

(𝑤
(𝑚)

2
, . . . , 𝑤

(𝑚)

𝑛
) is allocated among the branches of T

𝑟
, we

only need to consider each segment 𝑠
𝑖𝑗...

with nonzero number
𝑡
𝑟
of mutations in them. Each length of 𝑠

𝑖𝑗...
0 in T

𝑟
is the

summation of some 𝑑 = 𝑑
𝑖𝑗...

of the 𝑤(𝑚)
𝑗

’s. For simplicity of
exposition andnotation, suppose that they are𝑤(𝑚)

2
, . . . , 𝑤

(𝑚)

𝑑+1
;

then given the 𝑡
𝑟
mutations in [0, 𝑤(𝑚)

2
+ ⋅ ⋅ ⋅ + 𝑤

(𝑚)

𝑑+1
] and

using (5), it is easy to see that the number of mutations ̃𝑘
𝑟
=

(
̃
𝑘
𝑟,1
, . . . ,
̃
𝑘
𝑟,𝑑
) in each of the𝑑 intervals [0, 𝑤(𝑚)

2
], [𝑤(𝑚)
2
, 𝑤
(𝑚)

2
+

𝑤
(𝑚)

3
],. . ., [𝑤(𝑚)

2
+ ⋅ ⋅ ⋅ + 𝑤

(𝑚)

𝑑−1
, 𝑤
(𝑚)

2
+ ⋅ ⋅ ⋅ + 𝑤

(𝑚)

𝑑
] follows the

multinomial distribution

𝑃 (
̃
𝑘
𝑟
= (𝑘
𝑟,1
, . . . , 𝑘

𝑟,𝑑
) | 𝑡
𝑟
)

= 𝑀(𝑘
𝑟,1
, . . . , 𝑘

𝑟,𝑑
; 𝑡
𝑟
, 𝑞
1
, . . . , 𝑞

𝑑
)

=

𝑡
𝑟
!

𝑘
𝑟,1
! ⋅ ⋅ ⋅ 𝑘
𝑟,𝑑
!

𝑞
𝑘
1

1
⋅ ⋅ ⋅ 𝑞
𝑘
𝑑

𝑑
,

(13)

where 𝑞
𝑗
= 𝑤
𝑗+1
/(𝑤
2
+ ⋅ ⋅ ⋅ + 𝑤

𝑑+1
) (𝑗 = 1, . . . , 𝑑). After all

the nonzero 𝑡
𝑟
= |𝑠
𝑖𝑗...
|’s are allocated in the corresponding

intervals, we have

𝑘
(𝑚)

𝑟,𝑖
= ∑

(𝑖)

̃
𝑘
𝑟,𝑙
, (𝑖 = 2, . . . , 𝑛) , (14)

where the summation is for all ̃𝑘
𝑟,𝑙
’s that fall in [𝑤(𝑚)

2
+ ⋅ ⋅ ⋅ +

𝑤
(𝑚)

𝑖
, 𝑤
(𝑚)

2
+ ⋅ ⋅ ⋅ + 𝑤

(𝑚)

𝑖+1
].

Specifically, the simulation method is as below. For 𝑚 =
1, . . . ,𝑀, do the following steps.

(i) Sample 𝑤(𝑚) = (𝑤(𝑚)
2
, . . . , 𝑤

(𝑚)

𝑛
) from the coalescent

distribution as in (1); that is, the 𝑤(𝑚)
𝑖

’s are indepen-
dent, with 𝑤(𝑚)

𝑖
∼ exp(𝑖(𝑖 − 1)/2). Or equivalently,

sample 𝑢 ∼ 𝑈(0, 1) and set 𝑤(𝑚)
𝑖
= −2/(𝑖(𝑖 − 1)) ln(1 −

𝑢).
(ii) For each fixed 1 ≤ 𝑟 ≤ 𝑠 + 1, allocate 𝑤(𝑚) to the
𝑛 − 1 coalescent events of the 𝑛 sequences based on
each rooted tree T

𝑟
. See illustration below for details.

(iii) Allocate the ̃𝑘(𝑚)
𝑟

mutations in the corresponding
segments according to (13). Then get the 𝑘(𝑚)

𝑟,𝑖
’s as in

(14).

After all the𝑀 iterations, evaluate (12) until convergence,
which can be assessed by relative error, for example.

Illustration: Allocatew(𝑚) to the 𝑛−1 coalescent events of the 𝑛
sequences based on rooted tree. We use the backward method;
that is, first allocate 𝑤(𝑚)

𝑛
, then 𝑤(𝑚)

𝑛−1
, . . ., and last 𝑤(𝑚)

2
. Con-

sider the rooted tree, for example.There are 𝑛 = 55 sequences,
with frequencies (3, 1, 19, 2, 2, 1, 5, 1, 1, 1, 4, 8, 8, 3) for lin-
eages (𝑚, 𝑛, 𝑒, 𝑏, 𝑎, 𝑓, 𝑘, 𝑐, ℎ, 𝑔, 𝑖, 𝑗, 𝑙, 𝑑). Note that sequences
(leaves) in each lineage (branch) only coalescencewithin each
branch (if the branch has more than one leaves), and branch
with a single leaf coalescences only at MRCA 𝑤(𝑚)

2
. We first

decide𝑤(𝑚)
55

goes to which branch or pairs of single branches.
Since it is the latest coalescent time, it can only go to a pair
of leaves in some branch with multiple leaves. Since branch
𝑛 has only 1 leaf; it is excluded at this step. The remaining
branches (𝑚, ⟨𝑒, 𝑏, 𝑎, 𝑓⟩, 𝑘, ⟨𝑐, ℎ, 𝑔, 𝑖, 𝑗, 𝑙⟩, 𝑑) all have multiple
leaves with a total of 54. We assign 𝑤(𝑚)

55
to one of these

branches withweights proportional to their number of leaves,
that is, with probabilities (3, 24, 5, 19, 3)/54. Suppose that
𝑤
(𝑚)

55
is assigned to ⟨𝑒, 𝑏, 𝑎, 𝑓⟩; we need to decide which

subbranch it goes to. We have three candidate subbranches
(𝑒, 𝑏, 𝑎) with number of leaves (19, 2, 2). We randomly assign
𝑤
(𝑚)

55
to themwith weights (19, 2, 2)/23. Suppose it is assigned
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to branch 𝑒; then𝑤(𝑚)
55

will go to a pair within this branch, and
which pair is irrelevant. But the pair will be treated as a single
leaf in assigning the rest 𝑤(𝑚)

𝑗
’s. So after this step, we reassign

the number of leaves in 𝑒 as 18.
Now we assign 𝑤(𝑚)

54
. The procedure is the same as

above; the only difference is now 𝑒 has 18 leaves. The candi-
date branches are still (𝑚, ⟨𝑒, 𝑏, 𝑎, 𝑓⟩, 𝑘, ⟨𝑐, ℎ, 𝑔, 𝑖, 𝑗, 𝑙⟩, 𝑑)with
weights (3, 23, 5, 19, 3)/53. Suppose that𝑤(𝑚)

54
is also allocated

to 𝑒 of branch ⟨𝑒, 𝑏, 𝑎, 𝑓⟩; then 𝑒 has 17 leaves now.
We now allocate 𝑤(𝑚)

53
to candidates (𝑚, ⟨𝑒, 𝑏, 𝑎, 𝑓⟩,

𝑘, ⟨𝑐, ℎ, 𝑔, 𝑖, 𝑗, 𝑙⟩, 𝑑) with weights (3, 22, 5, 19, 3)/52. Suppose
that 𝑤(𝑚)

53
is allocated to ⟨𝑐, ℎ, 𝑔, 𝑖, 𝑗, 𝑙⟩; we need to decide

which of the 4 subbranches it will go to. 𝑐 has only 1 leaf and
is excluded. So we allocate subbranches (⟨ℎ, 𝑔⟩, ⟨𝑖, 𝑗⟩, 𝑙) with
weights (2, 12, 4)/18. Supposing it goes to ⟨ℎ, 𝑔⟩, since it has
only one pair of leaves, then ℎ and 𝑔 are merged as one leaf
after this assignment.

Continue this way, until 𝑤(𝑚)
2

is allocated. Then all the
branches in this rooted tree have lengths as the 𝑤(𝑚)

𝑖
’s

allocated to them. After this step, the length of each segment
𝑠
𝑖𝑗...

of T
𝑟
is a summation of some𝑤(𝑚)

𝑖
’s. Since |𝑠

𝑖𝑗...
| is known

from each T
𝑟
, we can allocate each of the ̃𝑘(𝑚)’s by (13), then

get the 𝑘(𝑚)
𝑖

’s by the formula that follows it.Then compute (12).
The assumption that the population size𝑁 is constant can

be relaxed the same way as in GS and Tavaré et al. [10].

Appendix

Proof of the Proposition

(i) Recall that the 𝑘
𝑖𝑗
’s are independent, the 𝑘

𝑖
’s are indepen-

dent, and the 𝑤
𝑖
’s are independent with 𝑤

𝑖
∼ exp(𝑖(𝑖 − 1)/2),

𝐸(𝑤
𝑖
) = 2/(𝑖(𝑖 − 1)/2), 𝑘

𝑖𝑗
| 𝑤
𝑖
∼ Po(⋅, 𝑤

𝑖
𝜃/2), 𝑘

𝑖
|𝑤
𝑖
∼

Po(⋅, 𝑖𝑤
𝑖
𝜃/2), and so 𝐸(𝑘

𝑖
) = 𝐸(𝐸(𝑘

𝑖
| 𝑤
𝑖
)) = 𝜃/(𝑖 − 1).

Observe

𝑃 (𝑤
𝑖
| 𝐷
𝑛
, 𝜃) = 𝑃 (𝑤

𝑖
| k, 𝜃) = 𝑃 (𝑤

𝑖
| 𝑘
𝑖
, 𝜃)

∝ 𝑃 (𝑤
𝑖
) 𝑃 (𝑘
𝑖
| 𝑤
𝑖
, 𝜃)

=

𝑖 (𝑖 − 1)

2

exp(−
𝑖 (𝑖 − 1)𝑤

𝑖

2

)

× Po(𝑘
𝑖
,

𝑖𝑤
𝑖
𝜃

2

)

∝ (𝑤
𝑖
𝜃)
𝑘
𝑖 exp(−

𝑖 (𝑖 + 𝜃 − 1)𝑤
𝑖

2

) .

(A.1)

The right-hand side above is the density of Γ(𝑘
𝑖
+1, 2/(𝑖(𝑖+𝜃−

1)) distribution, up to an normalizing constant. It has mean

𝐸(𝑤
𝑖
| k, 𝜃) = 2(𝑘

𝑖
+ 1)/(𝑖(𝑖 + 𝜃 − 1)) and variance Var(𝑤

𝑖
|

k, 𝜃) = 4(𝑘
𝑖
+ 1)/(𝑖

2
(𝑖 + 𝜃 − 1)

2
). Since 𝑡

𝑛
= ∑
𝑛

𝑖=2
𝑤
𝑖
, we have

𝐸 (𝑡
𝑛
| k, 𝜃) =

𝑛

∑

𝑖=1

𝐸 (𝑤
𝑖
| k, 𝜃)

= 2

𝑛

∑

𝑖=2

𝑘
𝑖
+ 1

𝑖 (𝑖 + 𝜃 − 1)

= 𝑆
𝑛

𝑛

∑

𝑖=2

𝑎
𝑛,𝑖
𝑥
𝑖
+ 𝑏
𝑛
,

(A.2)

where 𝑥
𝑖
= (𝑖 − 1)𝑘

𝑖
, the 𝑥

𝑖
’s are i.i.d with 𝐸(𝑥

𝑖
) = 𝜃, 𝑎

𝑛,𝑖
=

𝑎
𝑛,𝑖
(𝜃) = 𝑆

−1

𝑛
(𝜃)2/[𝑖(𝑖−1)(𝑖+𝜃−1)], 𝑆

𝑛
= 𝑆
𝑛
(𝜃) = 2∑

𝑛

𝑖=2
1/[𝑖(𝑖−

1)(𝑖+𝜃−1)], and 𝑏
𝑛
(𝜃) = 2∑

𝑛

𝑖=2
1/[𝑖(𝑖+𝜃−1)]. Note that {𝑆

𝑛
(𝜃)}

and {𝑏
𝑛
(𝜃)} are convergent sequences with

𝑆
𝑛
(𝜃) → 𝑆 (𝜃) :=

∞

∑

𝑖=2

2

𝑖 (𝑖 − 1) (𝑖 + 𝜃 − 1)

< ∞,

𝑏
𝑛
(𝜃) → 𝑏 (𝜃) :=

∞

∑

𝑖=2

2

𝑖 (𝑖 + 𝜃 − 1)

< ∞.

(A.3)

Note also that∑𝑛
𝑖=2
𝑎
𝑛,𝑖
= 1, that is, {𝑎

𝑛,𝑖
} is a weight sequence

for each fixed 𝑛. Since lim
𝑛
𝑎
𝑛,𝑖
> 0 for fixed 𝑖, by the results

for weighted sum of i.i.d. random variables (see [19], for a
review of such results), a necessary condition for∑𝑛

𝑖=2
𝑎
𝑛,𝑖
𝑥
𝑖
to

converge (a.s.) is that lim
𝑛
𝑎
𝑛,𝑖
= 0 for all fixed 𝑖, or no termwill

be dominant as 𝑛 → ∞. Since this condition is not satisfied,
the first few terms are dominant and we have

𝑛

∑

𝑖=2

𝑎
𝑛,𝑖
𝑥
𝑖
diverges (a.s.) ,

or equivalently 𝐸 (𝑡
𝑛
| k, 𝜃) diverges (a.s.) .

(A.4)

The proofs of part (ii) and (iii) are similar to that of part (i)
and omitted.
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