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ON SOME ASPECTS OF THE DIFFERENTIAL OPERATOR 

by 

PANAKKAL JESU MATHEW 

Under the direction of LIFENG DING 

ABSTRACT 

The Differential Operator D is a linear operator from ]1,0[C1  onto 

C[0,1]. Its domain ]1,0[C1  is thoroughly studied as a meager subspace of 

].1,0[C  This is analogous to the status of the set of all rational numbers Q 

in the set of the real numbers R.  

On the polynomial vector space nP  the Differential Operator D is a 

nilpotent operator. Using the invariant subspace and reducing subspace 

technique an appropriate basis for the underlying vector space  can be 

found so that the nilpotent operator admits its Jordan Canonical form. The 

study of D on nP  is completely carried out. Finally, the solution space V 

of the differential equation 0xa
dt
dxa....

dt
xda

dt
xd

011n

1n
1nn

n
=++++

−

−

−  is 

studied. The behavior of D on V is explored using some notions from 

linear algebra and linear operators. 

 
INDEX WORDS: Differential operator, linear operator, nilpotent operator, 

Jordan Canonical form. 
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1 

INTRODUCTION 

 

     The Differential operator 
dt
dD =  is a well known linear operator. In a standard 

functional analysis course it is mentioned as an unbounded linear operator from 

the space ]1,0[C1  to C[0,1] under the sup or the uniform norm. When the Closed 

Graph Theorem is introduced, the differential operator serves as a counter 

example  which asserts that although it is a closed operator, it is not bounded due 

to the fact that ]1,0[C1  is not a Banach Space. This reveals the significance of the 

question “ the operator is defined from where to where?”.  It is regretful that many 

interesting aspects of the differential operator has not gained much attention.  

     In this thesis by using the well known Banach-Steinhaus Theorem we first 

prove that ]1,0[C1  is meager, or a subspace of first category  in C[0,1]. So the 

status of ]1,0[C1  in  C[0,1] is analogous to that of the rational number Q in the 

real number R. 

     It is not easy to describe the structure of D in ]1,0[C1  directly. However, if we 

restrict D to some nowhere dense subspaces we can get a clear “cross-sectional 

view” of D. 

     In chapter 3 we restrict D on nP , polynomials of degree upto n-1. We see that 

D is nilpotent on nP , and we go through  the entire process to reach the Jordan 
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Canonical Form of D. The basis of nP  under which D admits its Jordan 

Canonical Form is obtained. 

     A linear operator T is algebraic if there is a polynomial  p such that p(T) = 0. 

In chapter 4 we note that D is not an algebraic operator on ]1,0[Cn . But we show 

that for any polynomial p the solution space V of p(D) = 0 is a finite dimensional 

subspace of ]1,0[Cn .  p is the minimal polynomial of D, so D is algebraic on V. 

As an algebraic operator on V, D has the advantage of Primary Decomposition. 

So its structure on V is fully obtained. In fact the polynomial p plays an important 

role. For some appropriate p, D is diagonalizable on V, and D is also semi-simple 

on V. 

     All the above cross-sectional views are obtained on finite subspaces of 

]1,0[C1 , which are nowhere dense subspaces of C[0,1].  

     We may ask the question “ could we further reveal the structure of D on other 

“infinite dimensional subspaces of ]1,0[C1 ”? The answer is “yes”. For example D 

on P, which is the collection of all polynomials. Under an appropriate basis of P, 

D is a unilateral shift operator. Many issues may arise. But that is some future 

research for the author.                               
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CHAPTER 1      

BANACH SPACES AND LINEAR OPERATORS                                                                  

 
     Throughout the thesis, the field F is either the field R of real numbers or the 

field C of complex numbers. The reader is expected to be familiar with the notion 

of vector spaces, normed vector spaces, norm on vector spaces and the linear 

operators. First we introduce some of the notations used in the thesis. 

(a) The vector space C(X) is the set of all real valued continuous functions on the  

compact  topological space X. 

(b) nP  is the set of all the  polynomials x(t) with complex coefficients of degree 

up to n-1, over the field F, in variable t. 

(c) For any ,Px n∈ let j1n

0j
jt)t(x ∑

−

=
ξ= , then ∑

−

=

−ξ=
1n

1j

1j
jt))t(x(D , is the derivative 

of   the polynomial x. Here, D is the differential operator and it is also a  linear 

operator. 

 

Example 1   In C(X), mentioned in (a) above, since a continuous real valued 

function on a compact topological space is bounded, we introduce the norm on 

C(X) as below:  

∞
f  = sup ∈∀∞<∈ f}Xx:)x(f{  C(X). 

∞
f  is called the super norm. 
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     For a normed vector space ).,V( we can induce a metric by 

                       ∈−= y,x,yx)y,x(d V.  

     It is called the metric induced by the norm. 

     So a normed vector space V is also equipped with a metric topology induced 

by its norm. We also call it a norm topology. Under this norm topology the 

notions of neighborhood, interior points, open sets, closed sets, compact sets and 

other concepts are defined in the conventional way. 

     In particular, a sequence }x{ n  in V converges to an element  x  in V if 

 .0xxlim)x,x(dlim nnnn
=−=

→∞→∞
 Again, a sequence { }nx is a cauchy sequence 

  if for each 0>ε there is positive integer N such that ε<− mn xx  holds for 

>m,n N. It is noted that every convergent sequence is a Cauchy sequence but the 

converse is not true. If every Cauchy sequence in V converges in V, then V is 

called a Complete  normed vector space. A complete normed vector space is 

called a Banach Space. 

 

PROPOSITION 1   The vector space C(X) in (a) is a Banach Space.  

Proof   We  need to prove that C(X) is complete under the metric  

.gf)g,f(d
∞

−=  Let }f{ n  be a Cauchy sequence in C(X). Then, ∃>ε∀ ,0  N  

such that n, m > N implies .ff mn ε<− . So, for all  ,Xx∈  

                       .Nm,nff)x(f)x(f mnmn >∀ε<−≤−
∞
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     So, for each ,Xx∈ )}x(f{ n  is a Cauchy sequence in .R  Now, since R is 

complete, we know that there exists a real number f(x) such that )x(f)x(fn → . 

So we have a real valued function )x(f  defined on X  and  ffn →  pointwisely 

on .X We now fix n  and let  ∞→m  so that )x(f)x(fm → . Hence, for each 

Xx∈ , .Nn)x(f)x(fn >∀ε<− Then, .}Xx:)x(f)x(fsup{ n ε≤∈−  ∀   

n > N.   So, .Nnffn >∀ε≤−
∞

 

     This means that nf converges to f uniformly on X. Since the uniform limit of a 

sequence of continuous functions is a continuous function, f is continuous i.e, 

)X(Cf ∈ . Thus, every Cauchy sequence }f{ n in C(X) converges to a vector f in 

C(X). Hence, C(X) is complete.                                                                           � .     

                                                                                                                           

THEOREM 1  [1] A linear operator acting between two normed vector spaces is 

continuous if and only if it is continuous at vector 0. 

PROOF    Necessity This is trivial. 

Sufficiency    

     Suppose T is continuous at 0. So by definition, 0>ε∀ , ∃  0>δ such that 

for  any Xx∈ , δ<x   implies  .Tx ε<   Now let .Xx∈ Then for Xy∈ , with  

δ<− xy , we have ε<− )xy(T  or .TxTy ε<−  So T is continuous at x. 

Now, since x is arbitrary, T is continuous on X.                                                   � 

.                                                             
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DEFINITION 1   Let YX:T → be a linear operator between two normed 

spaces. The operator norm of T is defined by   

                             }1x:Txsup{T ==  

     If  T  is finite, then T is called a bounded operator and if  ,T ∞= T is called 

an unbounded operator. Note that   xTTx ≤   holds for all  .Ux∈  

     To see this, if 0x = , the inequality is trivial. For ,0x ≠  the vector 

x
x
1y =  satisfies  1y = , and so T)y(Tx

x
1T

x
Tx

≤=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=  holds.  

Then, .xTTx ≤  In particular, it follows from the previous inequality that 

}1x:Txsup{T ≤= . Indeed, 

             }1x:xTsup{}1x:Txsup{}1x:Txsup{T ≤≤≤≤==  

 = T}1x:xsup{T =≤ . So, }1x:Txsup{T ≤= . For a linear operator the 

concepts of continuity and boundedness are equivalent. It is proved in the next 

theorem. 

 

THEOREM 2   [1]  A linear operator acting  between two normed spaces is 

continuous if and only if it is bounded.        

PROOF     Necessity    

      Suppose YX:T →  is continuous where X and Y  are two normed vector 

spaces. As T is continuous at 0,  so 0,0 >δ∃>ε∀  such that δ≤x ⇒  
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ε≤Tx .We pick  ,1=ε  so   1Txx <⇒δ≤ ⇒ 1Tx1x1
<⇒≤

δ
.                                

     Let, x1y
δ

=  , and yx δ= . So 1)y(T1y <δ⇒≤  1Ty <δ⇒  

∞<
δ

<⇒
1Ty  holds for all y with .1y ≤  

So we have, ∞<
δ

<⇒≤
1Tx1x . Hence, T is bounded. 

 b) Sufficiency 

     We assume T is bounded. So, ∞<=≤ M}1x:Txsup{ . It suffices to prove  

 that T is continuous at 0. Suppose, 0>ε  let  .
M
ε

=δ Then 

.1Mx
M

xx <
ε

⇒
ε

<⇒δ<  So, ε≤⇒≤⎟
⎠
⎞

⎜
⎝
⎛
ε

)x(TMMxT . 

So T is continuous at 0, hence T is continuous.  

                                                                                                                              �. 

DEFINITION 2   A scalar valued linear operator on a normed vector space is 

called a Linear Functional. 

 

Example 2   [3]  Let [a,b] be any finite interval on real t-axis, and let α  be any 

complex valued integrable function defined on [a,b]. Define y by  

∫ α=
b

a
dt)t(x)t()x(y   ]b,a[Cx∈∀ , then y is a linear functional on C[a,b]. 

     



       
 

 

8 

DEFINITION 3  Let RX:f →  be a linear functional. Then the Kernel  of f is 

defined as  Ker f = }.0)x(f:Xx{ =∈   

 

THEOREM 3    Suppose  RX:f → is a linear functional. Then f is continuous if  

and only if Ker f is a closed set. 

PROOF     Necessity 

     Observe that , Ker }0{ff 1−= . Now, {0} is a closed set in R and since f is 

continuous }0{f 1−  is closed in X. Hence, Ker f is closed in X.      

Sufficiency 

     Suppose Ker f  is a closed set in .X  If  f were not continuous, then  f is 

unbounded. Then, ∞=≤ }1x:)x(fsup{ . So for all N, there exists nx with 

1x n ≤  and n)x(f n ≥ . (Here the norm is the absolute value which means 

)x(f)x(f nn = ). So there is a sequence X}x{ n ∈ with 1x n ≤  and .)x(f n ∞→  

Since f is not bounded, Ker f ≠ .X So, ∉∃ x Ker f  and  .Xx∈  

     Let nnn xxy ε−= , where 
)x(f

)x(f

n
n =ε , and )x(f)x(f)y(f nnn ε−= = f(x)- 

f(x) = 0. So ∈ny  Ker f ∀  n. Note that 0n →ε  as ∞→n  So .xyn → So there 

exists a sequence }y{ n ⊆ Ker f, but →ny ∉x Ker f, which contradicts our 

assumption that Ker f is closed.                                                                            �. 
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     Note that every linear subspace of a finite-dimensional normed linear space is 

a closed subspace. Since Ker f is a closed subspace in a finite dimensional normed 

linear space , we have 

COROLLARY 1 Every linear functional on a finite-dimensional normed linear 

space is continuous. 

COROLLARY 2 Every linear operator from a finite-dimensional normed space 

to another normed space is continuous. 

 

)Y,X(LSPACETHE  

     Let YX:T → be a linear operator. We denote the collection of all bounded 

linear operators from X to Y by L(X,Y). The addition and scalar multiplication 

are introduced to L(X,Y) in a conventional way so that L(X,Y) is a vector space.        

     We mention a theorem, the proof of which follows immediately from the 

definition. 

 

THEOREM 4  [5]  T is a bounded linear operator between two normed spaces X 

and Y if and only if there exists a real number 0M ≥ such that 

xM)x(T ≤ holds for all .Xx∈  

 



       
 

 

10 

THEOREM 5  [1]   Let X  and  Y be two normed spaces. Then  )Y,X(L is a 

normed vector space. Moreover, if Y is a Banach Space, then )Y,X(L  is likewise 

a Banach space. 

PROOF   The norm on T is given by }.1x:Txsup{T ==  Clearly, from its 

definition 0T ≥ holds for all ).Y,X(LT∈  Also the inequality xTTx ≤  

shows that 0T = if and only if .0T = The proof of the identity T.T α=α  is 

straightforward. For the triangular inequality, let )Y,X(LT,S ∈ , and let 

Xx∈ with .1x = Then, 

                 TS)x(T)x(S)x(T)x(S)x)(TS( +≤+≤+=+  

holds, which shows that .TSTS +≤+  Thus, )Y,X(L is a normed vector 

space. 

     Now assume that Y is a Banach space. To complete the proof we have to show 

that L(X,Y) is a Banach space. Let }T{ n be a Cauchy sequence of L(X,Y). From 

the inequality ,xTT)x(T)x(T mnmn −≤−  it follows that for each Xx∈ the 

sequence )}x(T{ n of Y is Cauchy and thus convergent in Y. 

     Let )x(Tlim)x(T n= for each ,Xx∈  and note that T defines a linear operator 

from X to Y. Since }T{ n is a Cauchy sequence, and Cauchy sequence is a 

bounded set in a normed vector space, there exists some 0M >  such that 

MTn ≤  for every n. But the inequality xT)x(T nn ≤ ≤  xM , coupled with 
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the continuity of the norm, shows that xM)x(T ≤  holds for all .Xx∈  So from 

the previous theorem we have ).Y,X(LT∈  

     Finally, we show that TTlim n = holds in L(X,Y). Let .0>ε Choose K such 

that .Km,neveryforTT mn ≥ε<−   

     Now, the relation xx.TT)x(T)x(T nmnm ε≤−≤−  for all Km,n ≥  

implies x)x(T)x(Tlim)x(T)x(T nmmn ε≤−=−
∞→

 for all Kn ≥ and .Xx∈ That 

is, we have ε≤− nTT  for all ,Kn ≥ and therefore, TTlim n = holds in L(X,Y).                                            

                                                                                                                               �. 

 

 

 

 

 

 

 

 

 

 

 

 



       
 

 

12 

CHAPTER 2 

dt
dDOPERATORLDIFFERNTIATHE =  

 

     The differential operator 
dt
dD = is a linear operator. Let us first discuss the 

question “D is defined from where to where”, and then set the domain of D. 

     We start with the familiar case C[0,1], the Banach space of continuous real 

valued functions on the closed interval [0,1]. Consider the function  

                       f(x)=
⎪⎩

⎪
⎨
⎧

=

∈

.0xif,0

]1,0(xif,
x
1sinx 2

 

It is easy to verify that f(x) is differentiable at each point of [0,1] and 

                     (Df)(x)= )x(f ' =
⎪⎩

⎪
⎨
⎧

=

∈−

.0xif,0

]1,0(xif,
x
1cos

x
1sinx2

 

            We see that )x(f '  is not continuous at 0. So the differential operator D 

could map a differentiable function (that is also continuous and hence a member 

of C[0,1]) to a function that is not a member of C[0,1]. 

      Hence, if we choose the domain of D as the collection of differentiable 

function on [0,1] which is also a subspace of C[0,1], then the range of D would 

not be easy to determine. We impose a tougher condition : the domain of D 

consists of real valued functions with continuous derivatives denoted by ]1,0[C1 , 
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which is a subspace of C[0,1]. Then D maps every member of ]1,0[C1  to a 

member C[0,1]. In fact D is an onto map. Indeed, if the function f(x) is continuous 

at ]1,0[x∈ , then ∫=
x

0
dt)t(f)x(F is differentiable at x and )x(f)x(F' = . Hence we 

observe that the mapping ]1,0[C]1,0[C:D 1 → is onto. 

     Next, we explore and get  a better understanding of ]1,0[C1 . Let us begin with 

a few notions. 

 

DEFINITION 1      Suppose A is a subset of a metric space X. The set A is said 

to be nowhere dense set in X if the closure of A contains no interior points.  

     Note that if we denote the closure of A by  A , the interior of set E by 
ο
E , and 

the complement of set E by },Ex,Xx{Ec ∉∈= then the set A is nowhere dense 

if .A φ=
ο

 Since, for any set E, ( ) ,EE
cc=

ο
hence, φ=

ο

A  if and only if  

                                            ( )
c

c
AA ⎟

⎠
⎞

⎜
⎝
⎛==φ

ο

. 

     Hence, ( ) .XA
c
=  In other words A is nowhere dense in X if ( )cA  is dense in X 

i.e, the complement of the closure of A is dense in X. The typical examples of 

nowhere dense sets are finite sets of real numbers in R.   
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DEFINITION 2   A set is a meager set or of first category if it is the union of 

countably many nowhere dense sets. A set which is not meager is said to be of 

second category. For example the set Q is meager in R because Q is countable, so 

Q admits an enumeration : .}.,.r,r{Q 21=  and hence Υ
∞

=
=

1n
n},r{Q where each  }r{ n  

is nowhere dense. We have a very well known result on complete metric space, 

called the Baire Category Theorem. It asserts that a complete metric space is not 

of first category. 

 

PROPOSITION 1   In a complete metric space the complement of a meager set 

is dense and is of second category. 

PROOF     Let (X,d) be a complete metric space and A be a set of first category. 

      Now, since A is meager, Υ
∞

=
=

1n
nAA , where each nA  is nowhere dense. We 

show that cA is not meager. We prove this by contradiction. Suppose cA is 

meager. Then, ,BA
1n

n
c Υ

∞

=
=  where each nB  is nowhere dense. Now, cAAX ∪=    

⎟
⎠

⎞
⎜
⎝

⎛
∪⎟

⎠

⎞
⎜
⎝

⎛
=⇒

∞

=

∞

=
ΥΥ

1n
n

1n
n BAX  . So X is the union of countably many nowhere dense 

sets. Since, (X,d) is complete, so it contradicts the Baire Category Theorem. 

     Now, we show cA is dense in X.  

                        ΥΥ
∞

=

∞

=
⊆=

1n
n

1n
n AAA  

c

1n
n

c )A(A Ι
∞

=
⊇⇒  
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  Since, each A n  is nowhere dense, c
n )A(  is open and dense, so their countable 

intersection is also dense. This follows from the result that countable intersection 

of open dense sets is also dense in a complete metric space. Hence, 
c

1n
n )A(Ι

∞

=
is 

dense, so is .Ac                                                                                                     �. 

     Next we introduce a well know result on continuous linear operators on a 

Banach space : the Banach- Steinhaus Theorem.                                                     

 

BANACH –STEINHAUS THEOREM ([1]) 

     Let }A{ α be a family of continuous linear operators defined on  Banach space 

X and taking values in a normed vector space. In order that  },Asup{ ∞<α it is 

necessary and sufficient that the set }xAsup:Xx{ ∞<∈ α be of second category 

in X. 

PROOF    Necessity 

     Assume  
α

sup ∞<αA . Then x∀ , ∞<≤ αα xAxA . Hence we have 

:Xx{ ∈
α

sup X}xA =∞<α . Now, since X is complete, by the Baire Category 

Theorem, X is of second category. 

Sufficiency 

     Suppose :Xx{ ∈
α

sup ∞<αxA } is of second category. Let us consider 
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:Xx{Fn ∈= nxAsup ≤α
α

} .Nn∈∀  

     We note two things : 

1) nF  is a closed subset of X since each nF  can be written as 

                                   =nF Ι
α

−
α ))n,0(B(A 1 , 

where each )n,0(B  is the closed ball centred at  0 with radius n in the normed 

linear space. Since αA  is a continuous linear operator, each of the sets in the 

intersection is closed and arbitrary intersection of closed sets is closed, hence nF is 

closed.                      

2) :Xx{ ∈ ∞<α
α

xAsup }= .F
1n

nΥ
∞

=
  

     By the assumption that :Xx{ ∈
α

sup ∞<αxA } is of second category , so 

there is an mF  which is not nowhere dense. Hence mF  has a neighborhood, that is 

there is and0r >  0x such that .F}rxx:Xx{S m0 ⊆≤−∈= For any 1x ≤ , we  

have Srxx0 ∈+ . Then, ]x)rxx[(A
r
1xA 00 −+= αα  = ]xA)rxx(A[

r
1

00 αα −+ . 

Now, since 0x  and  rxx0 +  are in S, 

00 xA
r
1)rxx(A

r
1xA ααα ++≤ .

r
m2m

r
1m

r
1

=+≤  

This is true for every α  and  .1x ≤ So, we have sup ∞<≤≤α r
m2}1x:xA{  
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∞<≤⇒ α r
m2A  for every α ⇒  

α
sup .

r
m2A ∞<≤α                                    �                                              

NOTE   We make a small note before we prove the next theorem. 

For a real valued function x on [0,1] we show that for )1,0(t∈  if  )t('x  exists, 

then 
0h

lim
→

=
−−+

h2
)ht(x)ht(x )t('x  

Indeed, 
h2

)ht(x)t(x)t(x)ht(xlim
h2

)ht(x)ht(xlim
0h0h

−−+−+
=

−−+
→→

  

            =   ⎥⎦
⎤

⎢⎣
⎡ −−

−
−+

→ h2
)t(x)ht(x

h2
)t(x)ht(xlim

0h
 

            = 
)h(2

)t(x)ht(xlim
h2

)t(x)ht(xlim
0h0h −

−−
+

−+
→−→

 

            = 
2
1 )t('x +

2
1 )t('x  = )t('x . 

It is noted that the converse is not true i.e existence of 
h2

)ht(x)ht(xlim
0h

−−+
→

 

does not imply that )t('x  exists. For example, ]1,0[t,t)t(x ∈=  

h
)t(x)ht(xlim

0h

−+
→

 does not exist at t = 0  but 
h2

)ht(x)ht(xlim
0h

−−+
→

 = 0 at 

 t = 0. 

 

 

 

THEOREM 1 ]1,0[C1  is meager in ].1,0[C  
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 PROOF   Let ]1,0[Cx∈ . Now, fix t in (0,1). So for large Nn∈  we have  

)1,0()
n
1t,

n
1t( ⊆+− . Define a functional R]1,0[C:f →  by 

⎥⎦
⎤

⎢⎣
⎡ −−+=

−−+
= )

n
1t(x)

n
1t(x

2
n

n
2

)
n
1t(x)

n
1t(x

)x(fn  

It is easy to verify that nf  is a linear functional. Now we show that .nfn =     

}1x:)x(fsup{f nn ==
∞

= 
⎭
⎬
⎫

⎩
⎨
⎧

=−−+
∞

1x:)
n
1t(x)

n
1t(x

2
nsup  

 
⎭
⎬
⎫

⎩
⎨
⎧

=−++≤
∞

1x:)
n
1t(x

2
n)

n
1t(x

2
nsup  

 
⎭
⎬
⎫

⎩
⎨
⎧ =∈+≤ 1]}1,0[t:)t(xsup{:)1.

2
n1.

2
n(sup = n.  

This shows .nfn ≤  

     We next show that there is a function “x” such that .n)x(fn =  

Let x(s) = 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≤≤+

+≤≤−−

−≤≤−

.1s
n
1t,1

n
1ts

n
1t),ts(n

n
1ts0,1

 

 

Then, .1xand]1,0[Cx =∈
∞

Then, [ ] .n)1(1
2
n)x(fn =−−=  So we have  .nfn =    
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Hence, }Nn:f{ n ∈  is a subset of  ( )R],1,0[CL . But, Nn:f{ n ∈ } is not bounded. 

So, by the Banach-Steinhaus Theorem 
n

sup:]1,0[Cx{B ∈= })x(fn ∞<  is 

meager. 

     Now, if x is differentiable at t, then =
∞→

))t(x(flim nn
)t(x ' ,R∈ so if x is 

differentiable at t, then  }Nn),x(f{ n ∈  is a bounded set of real numbers. So, the 

set T of all differentiable functions at t is a subset of B. Of course 

.BT]1,0[C1 ⊆⊆  Hence ]1,0[C1  is meager in ]1,0[C .                                          �.                                            

We note here that ]1,0[C1  is not a Banach space due to Baire Category Theorem.                                           

     Now, let P denote the set of  all polynomials. By the well known Weierstrass 

Theorem, P is dense in C[0,1] under the uniform sup norm i.e, ].1,0[CP =  

Again, ].1,0[C]1,0[CP 1 ⊆⊆ This shows that ].1,0[C]1,0[C1 =  

     The above discussion tells us that most of the functions in C[0,1] are not 

differentiable, but the differentiable functions are dense in C[0,1].  

     Note that the set Q of rational numbers is meager in the space R of real 

numbers, and Q is dense in R under the Euclidean norm. So the status of ]1,0[C1  

in C[0,1] is analogous to that of Q in R. 

     Next, we show that D is an  unbounded operator. As we showed earlier  

]1,0[C]1,0[C:D 1 → . Let ]1,0[C}x{ 1n ∈ and n
n t)t(x = then, 1x n =

∞
 and  

n]}1,0[t:ntsup{)x(D 1n
n =∈= −

∞
holds for each n, implying .D ∞= Hence, D 
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is an unbounded operator. However, D is what we call a closed operator. We 

introduce a few notions below which will lead to a better understanding of closed 

operators. 

 

CARTESIAN PRODUCT SPACE 

      If X and Y are normed vector spaces equipped with norms  x•  and y•  

respectively. The Cartesian product space is given by  

                              }.Yy,Xx),y,x{(YX ∈∈=×  

Then the norm  defined  on  YX× is given by .yx)y,x( += This norm is 

called the product norm. There are other equivalent norms, such as  

( )2122 yx)y,x( +=  and  }y,xmax{)y,x( = . 

     It should be noted that lim )y,x()y,x( nn =  holds in YX× with respect to the 

product norm if and only if  lim xx n =  and  lim yyn = both hold. Moreover, if 

both X and Y are Banach Space, then YX× with the product norm is a  Banach 

Space. 

      Now, let T be a linear operator from X and Y. The graph of T is the subset G 

of YX×  given by  }Xx:))x(T,x{(G ∈= and .Txx))x(T,x( +=  

DEFINITION 3    A linear operator YX:T → is a closed operator if the graph 

}Xx:))x(T,x{(G ∈= is a closed set in .YX×  

     Now, we show that differential operator D is a closed operator. 



       
 

 

21 

     Let ]1,0[C]1,0[C:D 1 → .The graph of D is given by    

                                   ]}1,0[Cx:)Dx,x{(G 1∈=    

     We show that ]1,0[C]1,0[CG 1 ×⊆   is a closed set in  ].1,0[C]1,0[C1 ×  

     Let )Dx,x( nn converge to (x,y) in ].1,0[C]1,0[C1 × Then, xx n →  and 

yDx n → under uniform sup norm. Now by the well known theorem : 

“If fn converges uniformly to f, and if all the fn are differentiable, and if the 

derivatives f'n converge uniformly to g, then f is differentiable and its 

derivative  is g.” 

     We have, x is differentiable and y = Dx. Then G)y,x( ∈ is a closed set, and D 

is a closed operator. 

     Finally, we mention the Closed Graph Theorem that asserts that if X and Y are 

Banach spaces and YX:T → is a linear operator, then the closed property of the 

graph }Xx:))x(T,x{(T ∈=  in YX× implies that T is a bounded operator. 

    In the above discussion D has a closed graph in ].1,0[C]1,0[C1 ×  But the fact 

that D is not bounded gives a counterexample to the Closed Graph Theorem, 

where if X is not a Banach space then D is not necessarily bounded. We encounter 

this problem because ]1,0[C1  is not a Banach space, though C[0,1] is a Banach 

space. 
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       CHAPTER 3 

NILPOTENT OPERATORS AND JORDAN FORM 

 

In this chapter we come across some properties of the differential operator D. We 

first  review some  notions below. 

DEFINITION 1    Let T be a linear operator on a vector space V. If W is a 

subspace of V such that W)W(T ⊆ , we say W is invariant under T or is T-

invariant. For example Ker T is an invariant subspace of V as TKerv∈ then 

TKer0)v(T ∈= . So Ker T is an invariant subspace of T 

     If we have an invariant subspace in a finite dimensional vector space its matrix 

representation becomes much simpler as we see in the theorem below. 

 

THEOREM 1  [6]  Let W be an invariant subspace of a linear operator T on V. 

Then T has a matrix representation ,
C0
BA
⎥
⎦

⎤
⎢
⎣

⎡
where A is the matrix representation 

of wT that is the restriction of T  on W. 

 

DEFINITION 2    Let V be a vector space over a field F. Let M and N be two 

subspaces of V, such that 

                               1) }0{NM =∩   
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                               2) NyandMx,Vv ∈∈∃∈∀  such that .yxv +=  

        Then V is called the direct sum of M and N. We write it as  NMV ⊕= . 

We state a theorem without proof, pertaining to the dimension of the direct sum. 

 

THEOREM 2 [6] If V is a vector space and M and N are subspaces with 

dimensions m and n respectively, such that NMV ⊕= , then  

                          dimV = dim M + dim N   i.e,  dim V = m + n. 

 

DEFINITION 3   If M and N are two subspaces of V such that both are invariant 

under T and NMV ⊕= , then T is reduced by the pair (M,N).    

     The matrix representation of T is further simplified than the one mentioned in 

Theorem 1.  

 

THEOREM 3  [6]  If W and U are invariant subspaces of a linear operator T on a 

finite dimensional vector space V over F and ,UWV ⊕= then there is a basis β  

of V such that the matrix of T with respect to β  is ⎥
⎦

⎤
⎢
⎣

⎡

U

W

T0
0T

 or )T,T(diag UW , 

 where WT  is the matrix of restriction of T on W and UT  is the matrix of 

restriction of T on U. 
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     In general we note that the greater the number of invariant subspaces of a 

linear operator , the simpler will the matrix representation  of the linear operator 

be. 

     Let us take the case of the differential operator D acting on nP  i.e, polynomials 

x in t of degree .1n −≤ We note here that each n21 P,...,P,P  is an invariant 

subspace under D. The basis for nP  is given by ni1,t)t(x 1i
i ≤≤= − and 

.nPdim n =  

     Now let us find the matrix representation of the differential operator D. 

       .x0x0...x0x00Dx n1n211 ++++== −  

       .x0x0...x0x11Dx n1n212 ++++== −  

       .x0x0...x2x0t2Dx n1n213 ++++== −  

        . 

        . 

        .x0x)1n(...x0x0t)1n(Dx n1n21
2n

n +−+++=−= −
−  

     The matrix representation of D is given by  

         

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

0000000
1n000000

.......

.......
0..3000
0...200
0...010

D                
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     We proceed to introduce and study a very special but useful class of linear 

operators called the nilpotent operators.   

                                   

DEFINITION 4    A linear operator A is called nilpotent if there exists a positive 

integer p such that ;0Ap =  the least such integer p is called the index of 

nilpotence. 

We note that ,PP:D nn → is a nilpotent operator of index n. 

   

THEOREM 4 [3]  If T is a nilpotent linear operator of index p on a finite 

dimensional vector space V, and if ξ  is a vector for which ,0T 1p ≠ξ− then the 

vectors ξξξ −1pT,..,T,  are linearly independent. If H is a subspace spanned by 

these vectors, then  there is a subspace K such that KHV ⊕= and the pair (H,K)  

  (H,K) reduces T. 

PROOF   To prove the asserted linear independence, suppose that ∑
−

=
=ξα

1p

0i

i
i 0T , 

and let j be the least index such that .0j ≠α (We do not exclude the possibility 

j=0). Dividing through by jα−  and changing the notation in a obvious way, we 

obtain a relation of the form ∑ ∑
−

+=

+−

+=

−−+ =ξβ=ξβ=ξ
1p

1ji

1j1p

1ji

1ji
i

1ji
i

j .yT)T(TTT ,where 

∑
−

+=

−− ξβ=
1p

1ji

1ji
iTy . It follows from the definition of index of p that  
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                                     ;0yTyTTTTT p1j1jpj1jp1p ===ξ=ξ +−−−−−  

since this contradicts the choice of ξ ,we must have 0j =α  for each j. 

     It is clear that H is invariant under T; to construct K we go by induction on the 

index p of nilpotence. If p=1, then T = 0 and we have { } .V0V ⊕= we now 

assume the theorem is true for p-1.The range R of T is a subspace that is invariant 

under T ; restricted to R the linear operator T is nilpotent of index p-1. We write 

RHH0 ∩= and ξ=ξ T0 ; then 0H is spanned by  linearly independent vectors 

0
2p

00 T...,T, ξξξ − . The induction hypothesis may be applied, and we may 

conclude that R is the direct sum of 0H and some other invariant subspace .K0  

     We write 1K is the set of all vectors x such that Tx is in ;K 0 it is clear that 

1K is a subspace. The temptation is great to set 1KK = and to attempt to prove 

that K has the desired properties. But this need not be true ; H and 1K need not be 

disjoint. (It is true, but we shall not use the fact, that the intersection of  H and 

1K is contained in the null-space of T.)  In spite of this, 1K is useful because of the 

fact that VKH 1 =+ . To prove this, observe that Tx is in R for every x, and, 

consequently, Tx = y + z with y in 0H  and z in 0K . The general element of 0H is 

a linear combination of ;T,....,T 1p ξξ − hence we have 

∑ ∑
−

=

−

=
+ =ξα=ξα=

1p

1i

2p

0i
1

i
1i

i
i ,Ty)T(TTy where 1y  is in H. 
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     It follows that zTyTx 1 += , or )yx(T 1− is in .K0 This means that 1yx − is in 

,K1 so that x is the sum of an element (namely )y1  of H and an element (namely 

)yx 1−  of .K1  

     As far as disjointness is concerned, we can say at least that }.0{KH 0 =∩  To 

prove this, suppose that x is in 0KH ∩ , and observe first that Tx is in 0H (since x 

is in H). Since, 0K is also invariant under T, the vector Tx belongs to 0K along 

with x, so that Tx = 0. From this we infer that x is in 0H .(Since x is in H, we have 

∑
−

=
ξα=

1p

0i

i
iTx ; and therefore ∑

−

=
− ξα==

1p

1i

i
1i TTx0 , from the linear independence of 

ξjT , it follows that ,0.... 2p0 =α==α − so that ξα= −
−

1p
1p Tx ). We have proved 

that if x belongs ,KH 0∩ then it also belongs to ,KH 00 ∩ and hence that x = 0. 

     The situation now is this : H and 1K together span V, and 1K contains the two 

disjoint subspaces 0K and .KH 1∩  If we let c
0K  be the complement of 

)KH(K 10 ∩⊕ in 1K , that is if )KH(KK 10
c

0 ∩⊕⊕ = ,K1 then we may write 

;KKK 0
c

0 ⊕= we assert that this K has the desired properties. In the first place, 

1KK ⊂ and K is disjoint from 1KH ∩ ; it follows that }0{KH =∩ . In the second 

place, KH ⊕ contains both H and 1K , so that .VKH =⊕  Finally, K is invariant 

under T, since the fact that 1KK ⊂ implies that .KKAK 0 ⊂⊂ The proof of the 

theorem is complete.                                                                                             �. 
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DEFINITION 5  Let V be a vector space over a field F, and T be a linear 

operator on V. For any vector ξ  in V the subspace  

            )}x(FinpolynomialaisP:)T(P{Z ξ=ξ  

is called the T-cyclic subspace generated by .ξ  If ,VZ =ξ then ξ is called a cyclic 

vector of T. 

     In particular, if T is nilpotent with index p and ,0T 1p ≠ξ− then 

     ξξξ= −
ξ

1pT...,T,Z  is the T-cyclic subspace generated by .ξ            

     Theorem 4 shows that every nilpotent operator T on a finite dimensional 

vector space has a T-cyclic subspace ξZ  generated by vector ,ξ  and this cyclic 

subspace has a complementary T-invariant subspace 0V  such that the pair ξZ  and  

0V  reduce  T.        

     Let us further analyze the result in Theorem 4. Suppose T is nilpotent on V 

with index 1p . Then there is a T-invariant subspace 0V  such that 

,VZV 01
⊕= ξ where 111

1P ),(T....),(TZ 1
1

ξξξ= −
ξ  . From Theorem 3 we 

 know that T is represented by a matrix of the form )B,A(diag 11 , relative to the 

basis for V consisting of a basis for 
1

Zξ and a basis for .V0  Relative to the 1ξ -

basis for 
1

Zξ , { }111
1p ),(T....),(T 1 ξξξ− , the restriction of T on 

1
Zξ is represented 

by  
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                [ ] ).0(J

00..000
10..000
01.....
00.....
00.....
00..100
00..010

TZA
111 p1 =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

== ξξ  

We use the same notation for  general )(J r λ which denotes the rr× matrix with 

λ on the diagonal, ones on the super diagonal, and zeroes elsewhere. )(J r λ  is 

called a simple Jordan block. 

     Now, the restriction of T on 0V , 
0VT  is nilpotent on 0V of index 12 pp ≤ . 

From Theorem 4 we can find a T-invariant decomposition ,VZV 10 2
⊕= ξ  where 

,0T 2
1p2 ≠ξ−

222
1p ),(T...),(TZ 2

2
ξξξ= −

ξ .Then .VZZV 121
⊕⊕= ξξ  

     As above, we have the matrix of T on 
2

Zξ , [ ] ).0(JTZ
222 p=ξξ This means 

that there exists a basis for V relative to which T is represented by 

)B),0(J),0(J(diag 2pp 21
. 

     Continuing in this way, we eventually find, since dim(V) is finite, a T-

invariant direct-sum decomposition of the form ,Z...ZZV
k21 ξξξ ⊕⊕⊕= and 

a basis for V: 

                               111
1p ),(T,...),(T 1 ξξξ−  

                               222
1p ),(T,...),(T 2 ξξξ−  
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                                . . . . . .                                 

                               kkk
1p ),(T,...),(T k ξξξ−  

relative to which T is represented by )).0(J,...),0(J),0(J(diag
k21 ppp  

     The above discussion can be summarized in the following theorem. 

 

THEOREM 5 [2] If T is a nilpotent operator of index 1p , then there exists an 

integer k, k distinct vectors ,,...., k1 ξξ  and integers k21 p....pp ≥≥≥ such that 

vectors 

                                111
1p ),(T,...),(T 1 ξξξ−  

                               222
1p ),(T,...),(T 2 ξξξ−  

                                . . . .                                                                     

                               kkk
1p ),(T,...),(T k ξξξ−  

form a basis for V. Moreover V is the direct sum of the T-cyclic subspaces 

generated by iξ : .Z....ZZV
k21 ξξξ ⊕⊕⊕= Relative to the above basis, T is 

represented by the matrix )).0(J....)0(J),0(J(diag
k21 ppp  

     In fact, Theorem 5 concludes that for a nilpotent operator T on a finite 

dimensional vector space V we can find a suitable basis β  of V such that T 

admits a Jordan canonical form, where the number k of distinct “simple Jordan 

blocks” is equal to the number of vectors k1 ,..., ξξ . Note that the vectors 
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,T 1
1P1 ξ− ,T 2

1P2 ξ− . . . , k
1PkT ξ−  are linearly independent, and they are in the null 

space of T. So the nullity of T is greater than or equal to k. On the other hand  

                              ,Z....ZZV
k21 ξξξ ⊕⊕⊕= and    

                    .p...pZdim...ZdimVdimn k1k1
++=++== ξξ    

Note that the rank of T is  .knk)p...p()1p(...)1p( k1k1 −=−++=−++−  

     Hence the nullity of T is equal to .k)kn(n =−−  So the geometric multiplicity 

of T is k and   { ,T 1
1P1 ξ− ,T 2

1P2 ξ− . . . , k
1PkT ξ− } is a basis of null space of T. So 

we conclude that the number k of distinct simple Jordan blocks is exactly equal to 

the geometric multiplicity of T. 

 

Example 1 Let 55 RR:T → .The matrix representation of T under the standard 

basis is [ ] ,

00000
40000
00031
00002
00000

T

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=ε we apply Theorem 5 to T. 

We note here that 0T3 = and .0T2 ≠ T is nilpotent on .R 5  

Let 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=ξ

0
0
0
0
1

1 . So 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=ξ

0
0
1
2
0

T 1   and 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=ξ

0
0
6
0
0

T 1
2 , where 11 T, ξξ and 1

2T ξ are linearly 

independent. 



       
 

 

33 

Hence the cyclic subspace generated by 1ξ is  

1
2

11 T,T,Z
1

ξξξ=ξ = 

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∈

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

Ra,a,a;

0
0
a
a
a

0
0
6
0
0

,

0
0
1
2
0

,

0
0
0
0
1

3213

2

1

 

If the ordered basis is { }111
2 ,T,T ξξξ , the simple Jordan block is .

000
100
010

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
 

If the ordered basis is { }1
2

11 T,T, ξξξ , the simple Jordan block is 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

010
001
000

 

 

Now, let 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=ξ

1
0
0
0
0

2  and  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=ξ

0
4
0
0
0

T 2 . 

So that 220 T,V ξξ= = .Ra,a;

a
a
0
0
0

0
4
0
0
0

,

1
0
0
0
0

54

5

4

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∈

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
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If the ordered basis is { }22 ,T ξξ , the matrix of representation of T on 0V  is 

⎥
⎦

⎤
⎢
⎣

⎡
00
10

. If the ordered basis is { }22 T, ξξ , the matrix of representation of T on 0V  

is .
01
00
⎥
⎦

⎤
⎢
⎣

⎡
 So the matrix representation of T on 5R  is 

either 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

00000
10000
00000
00100
00010

    or .

01000
00000
00010
00001
00000

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

 

Using the terminology in Theorem 5, we have k = 2, 3p1 =  and .2p2 =  

     Now, we recall nn PP:D → , where nP  is the set of all polynomials with 

degree ≤  1n −  in variable t, the cyclic vector is .t 1n− With respect to Theorem 4, 

the vector ξ  is .t 1n−  Note that the vectors )t(D,...),t(D,t 1n1n1n1n −−−−  are 

linearly independent ,i.e, )!1n(,t)!1n(,...,t)1n(,t 2n1n −−− −−  are linearly 

independent. Hence, }1,t,...,t,t{spanH 2n1n −−=  and  },0{K = so that  

.KHPn ⊕=  

 

     The Jordan canonical form for a general linear operator is discussed below. We 

quote the next result without proof. 
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THEOREM 6 [2] Let V be a finite-dimensional vector space over an 

algebraically closed filed F. For any linear operator T on V, there exist  T-

invariant subspaces M and N, such that NMV ⊕= and  MT , the restriction of T 

on M, is nonsingular and NT , the restriction of T on N, is nilpotent. 

 

THEOREM 7 [2] Let V be a finite-dimensional vector space over an 

algebraically closed field F. If T is a linear operator on V with characteristic 

polynomial ∏
=

λ−=
r

1i

s
i ,)x()x(c i  then there exist T-invariant subspaces ..,N,N 21 , 

rN  such that 

a) ,N....NNV r21 ⊕⊕⊕=  

b)  ,s)Ndim( ii =  

c)   ,IT iiNi
η+λ= where iη is nilpotent. 

PROOF Let ,TIT 11 −λ= be a linear transformation on V. Using Theorem 6, there 

are complementary 1T -invariant subspaces 1N and 1M ( )11 MNV ⊕=  such that 

1M1T is nonsingular and 
1N1T is nilpotent. Now, 11 TIT −λ= , so for 1N∈α we have 

)(T)(T 11 α−αλ=α 1N∈ . It follows that 1N  is also T-invariant and similarly 1M  

 is T-invariant. Now, ,ITI)TI(T 1111N11N 1N11
η+λ=−λ=−λ= where 

1N11 T−=η     

 is nilpotent by construction. 
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    Suppose that 11 n)Ndim( = . Relative to the basis for V, consisting of a basis for 

1N and a basis for 1M , T is represented by a matrix of the form 

),A,A(diagA 21= where the 11 nn ×  matrix 1A  represents 
1N

T and 2A  represents 

.T
1M Now, )AxIdet()AxIdet()x(c)AxIdet( 21 −−==−  

and ,0)AIdet( 21 ≠−λ since 21 AI −λ  represents 
11M M11 TIT −λ= and is 

nonsingular by construction. Thus 1x λ− is not a factor of )AxIdet( 2− and hence 

1s
1)x( λ− must be a factor of ).AxIdet( 1− Since the degree of )AxIdet( 1− is 

,n1 we have .sn 11 ≥  

     Now, )IA( 11 λ− represents ,T)IT( 11N1 1N1
η=−=λ− which is nilpotent by 

construction. By Theorem 5 we can choose a basis for 1N  such that )IA( 11 λ− is 

upper triangular matrix whose only nonzero elements are ones on the super 

diagonal. This 1A has 1λ on every diagonal position and zeroes and ones on the 

super diagonal so 1n
11 )x()AxIdet( λ−=− . Thus 11 sn ≤ and , with the inequality 

established above, it follows that  .sn 11 =  

     If ,1r = the proof is completed; if not, we repeat the above argument using the 

operator .T
1M After r repetitions the proof is completed.                                      �. 

     In addition to the assertions in the above theorem, we have established that 

there is a basis for V relative to which T is represented by 
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),A...,A,A(diag r21 where iA has iλ on the diagonal, zeroes and ones on the 

super diagonal, and zeroes elsewhere. We thus have the following theorem. 

 

THEOREM 8 (Jordan)  [2]  Let A be an nn × matrix whose entries are from  

an algebraically closed field F. Suppose the characteristic polynomial of A is  

∏
=

λ−=−=
r

1i

s
i ,)x()AxIdet()x(c i then A is similar to a matrix with the iλ on the 

diagonal, zeroes and ones on the super diagonal, and zeroes elsewhere. 

     Note that if F is an algebraically closed field, then the hypothesis in Theorem 6 

and 7 about the factorability of c(x) is always satisfied. From Theorem 5 we know 

that for each i there exists an integer k(i) and k(i) integers : 

                                    )i(ik3i2i1i p....ppp ≥≥≥≥  

whose sum is ,si such that the nilpotent matrix )IA( ii λ−  is similar to   

                                   ))0(J,....),0(J),0(J(diag
)i(ik2i1i ppp  

and hence that iA is similar to 

                                    ))(J,....),(J),(J(diag ipipip )i(ik2i1i
λλλ . 

We now see that a Jordan canonical matrix similar to nFA∈ is completely 

determined by scalars : ,,...,,, r321 λλλλ  

                                      ,s,...,s,s,s r321  

                                      )1(k1131211 p,...,p,p,p , 
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                                      )2(k2232221 p,...,p,p,p ,                                . 

                                      . . . . 

                                      )r(rk3r2r1r p,...,p,p,p . 

     Note that the Jordan matrix is unique, except for the order in which simple 

Jordan forms appear on the diagonal. Note also that i
)j(k

1j
ij

r

1i
i sp,ns == ∑∑

==
  and that 

the minimal polynomial (its definition will be given in the next chapter) of A is 

given by ∏
=

λ−=
r

1i

p
iA

1i)x()x(m , 1ip  being the size of the largest simple Jordan 

block associated with .iλ We summarize with :  

                   

Theorem 9   [2]  The Jordan canonical form similar to A in nF is determined up to 

the order of the diagonal blocks, by constants. 

                                         ,,....,,, r321 λλλλ  

                                      ,s,....,s,s,s r321  

                                      )1(k1131211 p,...,p,p,p , 

                                      )2(k2232221 p,...,p,p,p ,                                . 

                                      . . . . 

                                      )r(rk3r2r1r p,...,p,p,p  

     For each r,....,2,1i = ,the integer k(i) is the number of simple Jordan blocks 

with eigenvalue iλ . Equivalently, )),AIdim(ker()i(k i −λ= which is the number 
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of linearly independent eigenvectors associated with iλ .The largest simple Jordan 

block associated with iλ is )(J iP 1i
λ and the minimal polynomial  of A is 

∏
=

λ−=
r

1i

p
iA

1i)x()x(m .    

 

MORE ABOUT JORDAN CANONICAL FORM  [4] 

 

As we have seen earlier a Jordan block is a k-by-k upper triangle matrix of the 

form 

                        

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

λ

λ
λ

=λ

...000
1......
.......
0...10
0...01

)(Jk  

There are )1k( − terms “+1” in the super diagonal, the scalar λ appears k times on 

the main diagonal. All other entries are zero, and ].[)(J1 λ=λ A Jordan matrix 

,MJ n∈ where nM is the set of all nn× matrices, is the direct sum of the Jordan 

blocks. 

,

)(J...00
......
......
0...)(J0
0...0)(J

J

kn

2n

1n

k

2

1

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

λ

λ
λ

=  



       
 

 

40 

,nn...nn k21 =+++  in which the orders  in may not be distinct and the values 

iλ  need not be distinct. If nMA∈  over an algebraically closed field, then there 

exists nMP∈ , which is non singular so that .PJPA 1−= Here, J is the Jordan 

canonical form of A. 

We note the following points: 

1) The number of Jordan blocks in J corresponding to eigenvalue iλ of A = 

number of linearly independent eigenvectors corresponding to iλ  = null 

space of )AI( i −λ = geometric multiplicity of iλ . 

2) The sum of orders of all Jordan blocks corresponding to iλ is the algebraic 

multiplicity of iλ . 

3) If λ  is an eigenvalue of A, then the smallest integer 1k such that 

0)IA( 1k =λ−  is the size of the largest block. The rank of 1k1)IA( −λ− is 

the number of blocks of size ,k1 the rank of 2k1)IA( −λ−  is twice the 

number of blocks of size ,1k1 − and so forth. The sequence of ranks of 

,)IA( ik1−λ−  recursively determine the orders of blocks in J. 

4) If k = n, then J is diagonalizable. 

    Again, let us consider the differential operator nn PP:D → . As we have already 

seen that the matrix representation of D with respect to the basis }t,...,t,t,1{ 1n2 −  

is given by   
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

0000000
1n000000

.......

.......
0..3000
0...200
0...010

D  

 

Let us try to find the Jordan canonical form of D. We see that all eigenvalues of D 

are 0, so .0=λ The following results can also be easily verified 

a) .0Dn =  

b) .0D 1n ≠−  

c) Nullity of D is 1. 

     So the largest Jordan block is of size n and obviously there is only one block of 

this size. So the Jordan canonical form of D is 

                               

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0...000
1...000
.......
.......
0..1000
0...100
0...010

J  

Let us find P for this differential operator D such that  

                         .PJPD 1−=  

.PJDP =⇒  
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[ ] [ ] JP..PPP..PPD n21n21 =⇒  

[ ] =n21 DP..DPDP ]P..PP[ n21

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0...000
1...000
.......
.......
0..1000
0...100
0...010

 

 

[ ] [ ]1n21n21 P..PP0DP..DPDP −=  

So, .PDP.,....,PDP,PDP,0DP 1nn23121 −====  We see that the solutions of  

a) 0DP1 =  is span

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0
.
.
0
0
1

                                        b) 12 PDP = is span

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0
.
.
0
1
1

 

c) 23 PDP =  is span

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0
.
.

!2/1
1
1

                                 d) 1nn PDP −=  is 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

− !)1n/(1
.
.

!2/1
1
1

 

Hence, the required P is of the form : 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−

=

)!1n(
10.....

)!2n(
1

)!2n(
1.....

.......

....0..

!2
1

!2
1..

!2
10.

11..110

11..111

P . 

It may be noted that   

   { }1n2n3n2 t,t)1n(,t)2n)(1n(...,t3...)1n(,t)!1n(,)!1n( −−− −−−−−−  

is a basis of nP , under which D admits the Jordan canonical form. 
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CHAPTER 4 

SOLUTION OF P(D) = 0  AND SOME RESULTS 

 

     We already learned that Jordan canonical form works on an algebraically 

closed field F, such as the complex C, but not on real R. The problem is the linear 

operator T on a finite dimensional vector space V over F may not have a single 

eigenvalue in R. Moreover, even if the characteristic polynomial factors complet- 

-ely over R into a product of linear polynomials, there may not be enough 

eigenvectors for T to span the space V. The primary decomposition takes care of 

these issues. 

 

DEFINITION 1   Let T be a linear operator on a finite dimensional vector space 

V over a field F. The minimal polynomial for T is the unique monic generator of 

the ideal of polynomials over F which annihilate T. 

     We note here that if dimension of V is n, then dimension of L(V,V) is 2n . 

Check that the first 1n 2 +  powers of T : 
2n2 T,...,T,T,I are linearly dependent. 

     Hence, there is a non-zero polynomial of degree 2n or less which annihilates 

T. Note that the collection of polynomials p which annihilate T i.e, 0)T(P = , is 

an ideal in the polynomial ring F[x]. Since the polynomial ring is a principal ideal 

ring, the generator of the above ideal exists. So the definition is reasonable.   
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Theorem 1 (Primary Decomposition Theorem) [6]  Let T be a linear operator 

on a finite dimensional vector space V over a field F. Let p be the minimal 

polynomial for T such that : 

                                      k1 r
k

r
1 p...p)x(p = ,  

where all the ip  are distinct irreducible monic polynomials over F and the ir  are 

positive integers. Let iW be the null space of iri )T(P , i = 1, . . . k. Then 

(A) .W...WV k1 ⊕⊕=  

(B) each iW is invariant under T. 

(C) if iT  is the operator restricted on iW by T, then the minimal polynomial for  

      iT  is .p iri  

     We notice that in the Primary Decomposition Theorem, it is not necessary that 

the vector space be finite dimensional, nor is it necessary for parts (A) and (B) 

that p be the minimal polynomial for T. In fact, if T is a linear operator on an 

arbitrary vector space and if there is a monic polynomial p such that p(T) = 0, 

then parts (A) and (B) in the theorem are valid for T. (Note that we will call T an 

algebraic operator which we discuss later). This is because the proof of the 

primary decomposition is based on the use of projections iE (which are identity 

on ,Wi  and zero on the other )Wj , and the fact that if k1 p,...,p  are distinct 

prime polynomials , the polynomials k1 f,...,f , where ∏
≠

==
ij

r
jr

i
i j

i
p

p
pf , 
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k,...,1i = , are relatively prime. Thus there are polynomials k1 g,...,g  such that 

.1gf
k

1i
ii =∑

=
 

 

     Let us consider the differential equation  

0x
dt
dx...

dt
xd

dt
xd

011n

1n
1nn

n
=α+α++α+

−

−

− , …….   (*) 

where 1n0 ,..., −αα are some constants. Let ]1,0[Cn  denote all n times continuo- 

-usly  differentiable functions on [0,1], which is a linear subspace of C[0,1]. The 

space V of solutions of this differential equation is a subspace of ]1,0[Cn . Let p 

denote the polynomial  

.s...ss)s(p 01
1n

1n
n α+α++α+= −

−  

Then the differentiable equation (*) can be denoted by 0x)D(p = . Hence the 

space V is the null space of the operator p(D). Therefore V is an invariant 

subspace of the differential operator D.   

     Let us regard D as a linear operator on V. Then 0)D(p = . It follows that p is 

the minimal polynomial of D on V. The polynomial p can be factored into the 

product of the powers of linear polynomials when we treat ]1,0[Cn  and V as 

complex vector spaces, and 1n0 ,..., −αα as complex numbers. So we have  

                         k21 r
k

r
2

r
1 )s(...)s()s()s(p λ−λ−λ−=  
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 where k21 ...,, λλλ  are distinct complex numbers and k21 r...,r,r  are positive 

integers. In fact, k21 ...,, λλλ  are eigenvalues of D. If jW  is the null space of        

the operator jr
j )ID( λ− , k,...,1j = then by Primary Decomposition Theorem, 

we have the following direct sum for V : 

k21 W...WWV ⊕⊕⊕= . 

It is easy to see that 
⎭⎬
⎫

⎩⎨
⎧ −=λ 1r,...,1,0m:et j

tm j  is a basis for jW , j = 1,. . . ,k.   

Hence, 

⎭⎬
⎫

⎩⎨
⎧ =−=λ k,...,1j;1r,...,1,0m:et j

tm j  

 is a basis for V. Moreover, ,nr...r k1 =++ and the dimension of V is n. 

     Let jN  denote the restriction of the operator ID jλ− on .Wj  Then jN  is  

nilpotent on jW  with index of nilpotence .rj Since any function which satisfies 

the differential equation  0x)ID( j =λ−   is the scalar multiple of tieλ , the  

dimension of the null space of  ID jλ− is 1,  that is, the nullity of jN is 1. Hence, 

corresponding to each eigenvalue jλ  there is only one elementary Jordan matrix 

block with size jr . Thus, the Jordan canonical form for D on the space V is the 

direct sum of k elementary Jordan matrices, one for each eigenvalue jλ  with size 

.rj   
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We next delve into some related issues. 

 

DEFINITION 2 [5] A linear operator T on a vector space V is said to be 

algebraic if there is a polynomial p such that p(T) = 0 on V. 

     Hence D is algebraic on the space V of the solutions of the differential 

equation (*). However, D is not algebraic on ]1,0[Cn . This is because for any 

polynomial g the space of the solutions of the differential equation g(D)x = 0 

must be finite dimensional and clearly ]1,0[Cn  is infinite dimensional. It follows 

that we cannot expect the Primary Decomposition would work on ]1,0[Cn  for D. 

     We mention the fact that the n-dimensional V of the solutions of (*) is a closed 

subspace in ]1,0[Cn . This is due to the fact that every finite dimensional subspace 

of a normed vector space is closed. Furthermore, V is nowhere dense in ]1,0[Cn . 

Indeed, for every closed proper subspace X of a normed vector space Y, at each 

point Xp∈ and for any 0>ε , the ε -open ball is { }ε<−∈=ε py:Yy),p(B . 

Let Yq∈ and Xq∉ and we a choose positive integer n satisfying ε<q
n
1 , then 

Xq
n
1p ∉+ , however ,q

n
1p)q

n
1p( ε<=−+  so ),p(Bq

n
1p ε∈+ . This shows 

us that X contains no interior points, and X is nowhere dense in Y. So is V 

nowhere dense in  ]1,0[Cn . 
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     The other question is whether the differential operator D is diagonalizable on 

the space V of the solutions of (*) . From linear algebra we know that a linear 

operator D is diagonalizable if and only if the minimal polynomial for D on V is 

the product of distinct linear polynomials , that is,  

)s.(..)s)(s()s(p k21 λ−λ−λ−= , 

where k21 ...,, λλλ  are distinct scalars. Therefore the diagonalizability of D on 

V depends on the polynomial p. Finally, we would like to ask the question: what 

is the advantage of diagonalizability of D on V ? We answer the question below. 

 

DEFINITION 3   Let V be a finite dimensional vector space over the field F, and 

let T be the linear operator on V. We say that T is  semi-simple operator if every 

T-invariant subspace has a complimentary T-invariant subspace. 

     It is  known that if the minimal polynomial for T is irreducible over the scalar 

field F, then T is a semi-simple operator . Its converse is also true. Therefore , T is 

semi-simple if and only if the minimal polynomial p for T is of the form 

k1 p...pp = , where k1 p,...,p are distinct irreducible polynomials over the field 

F. It follows that if the scalar field F is algebraically closed, then T is a semi-

simple if and only if T is diagonalizable. 

     Hence if the polynomial p is the product of distinct linear polynomials, then D 

is diagonalizable on the corresponding V, and hence D is also semi-simple on V. 

This may be the easiest way to handle D. 
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