
Georgia State University Georgia State University

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

12-4-2006

CAD Tools for DNA Micro-Array Design, Manufacture and CAD Tools for DNA Micro-Array Design, Manufacture and

Application Application

Nisar Hundewale

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Hundewale, Nisar, "CAD Tools for DNA Micro-Array Design, Manufacture and Application." Dissertation,
Georgia State University, 2006.
https://scholarworks.gsu.edu/cs_diss/13

This Dissertation is brought to you for free and open access by the Department of Computer Science at
ScholarWorks @ Georgia State University. It has been accepted for inclusion in Computer Science Dissertations by
an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/cs_diss
https://scholarworks.gsu.edu/computer_science
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

CAD TOOLS FOR DNA MICRO-ARRAY DESIGN,

MANUFACTURE AND APPLICATION

by

Nisar Hundewale

Under the Direction of Professor Alexander Zelikovsky

ABSTRACT

Motivation: As the human genome project progresses and some microbial and

eukaryotic genomes are recognized, numerous biotechnological processes have attracted

increasing number of biologists, bioengineers and computer scientists recently.

Biotechnological processes profoundly involve production and analysis of high-

throughput experimental data. Numerous sequence libraries of DNA and protein

structures of a large number of micro-organisms and a variety of other databases related

to biology and chemistry are available. For example, microarray technology, a novel

biotechnology, promises to monitor the whole genome at once, so that researchers can

study the whole genome on the global level and have a better picture of the expressions

among millions of genes simultaneously. Today, it is widely used in many fields- disease

diagnosis, gene classification, gene regulatory network, and drug discovery. For example,

designing organism specific microarray and analysis of experimental data require

combining heterogeneous computational tools that usually differ in the data format; such

as, GeneMark for ORF extraction, Promide for DNA probe selection, Chip for probe

placement on microarray chip, BLAST to compare sequences, MEGA for phylogenetic

analysis, and ClustalX for multiple alignments.

Solution: Surprisingly enough, despite huge research efforts invested in DNA array

applications, very few works are devoted to computer-aided optimization of DNA array

design and manufacturing. Current design practices are dominated by ad-hoc heuristics

incorporated in proprietary tools with unknown suboptimality. This will soon become a

bottleneck for the new generation of high-density arrays, such as the ones currently being

designed at Perlegen [109].

The goal of the already accomplished research was to develop highly scalable tools, with

predictable runtime and quality, for cost-effective, computer-aided design and

manufacturing of DNA probe arrays. We illustrate the utility of our approach by taking a

concrete example of combining the design tools of microarray technology for Harpes B

virus DNA data.

INDEX WORDS: CAD tools, design, DNA microarray, RNA Array, manufacture,
optimization, ORF, probe placement, Universal Tag Array,
workflow.

CAD TOOLS FOR DNA MICRO-ARRAY DESIGN,

MANUFACTURE AND APPLICATION

by

Nisar Hundewale

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2006

Copyright by

Nisar Hundewale

2006

CAD TOOLS FOR DNA MICRO-ARRAY DESIGN,

MANUFACTURE AND APPLICATION

by

Nisar Hundewale

Major Professor: Prof. Alexander Zelikovsky

Committee: Prof. Yi Pan

Prof. Robert Harrison

Prof. Ludmila Perelygina

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

December 2006

 iv

to The Creator of universes

 v

ACKNOWLEDGMENTS

Thanks to my advisor Prof. Alexander Zelikovsky for giving me advise and guide me in

the research. I am grateful to the Chair Prof. Yi Pan for his constant encouragement

through out my stay at GSU. I would like to give special thanks to Prof. Harrison for

sharing his valuable knowledge. I thank Prof. Ludmila Perelygina for her time to explain

the biological basis of the work. I thank all the colleagues and faculty members who have

spend their time discussing with me various research problems.

I thank all the student peers who have also spent great deal of their time working together

on different research topics. My special thanks to Mourad Atlas who did spend lot of time

working together on interesting bioinformatics and biostatistics problems.

Special thanks to my family members who have patiently been my moral support

thorough out my education and career.

 vi

TABLE OF CONTENTS

 Page

ACKNOWLEDGMENTS . v

LIST OF TABLES . ix

LIST OF FIGURES. x

CHAPTER

1. INTRODUCTION . 1

2. PREVIOUS WORK . 6

2.1 DNA Array Design . 6

3. DNA MICROARRAY SOFTWARE TOOLS INTEGRATION 12

3.1 DNA Array Flow . 12

3.2 Herpes B Virus . 13

3.3 DNA Microarray Workflow. .. 13

3.4 Reading Genomic Data and ORF Extraction: . 14

3.5 Probe Selection . 16

3.5.1 Statistical Approaches . 18

3.5.2 Thermodynamic Approaches . 28

3.5.3 Other Approaches To Probe Selection 35

3.6 Physical Design . 48

3.6.1 Manufacturing: . 50

3.6.2 Evaluation of Placement Techniques for DNA Probe Array

Layout . 50

3.6.3 A Design Method of DNA chips for SNP Analysis Using

 vii

Self Organizing Maps . 53

3.6.4 Soft Lithography for Oligonucleotide Arrays Fabrication . . . 55

3.7 Hybridization and Analysis . 56

3.8 Experimental Study . 56

4. UNIVERSAL TAG ARRAY (UTA) DESIGN . 60

4.1 Probe Selection . 60

4.2 Tag Assignment . 61

4.2.1 Universal DNA Tag System: A Combinatorial Design

Scheme .

62

4.2.2 Optimally Multiplexed Applications of Universal DNA Tag

Systems . 68

4.2.3 Improved Tag Set Design and Multiplexing Algorithms for

Universal Arrays . 73

4.2.4 Exact and Approximation Algorithms for DNA Tag Set

Design . 78

4.2.5 Multiplexed Genotyping with Sequence-Tagged Molecular

Inversion Probes . 82

5. PARALLEL STATISTICAL-VALIDATION OF CLUSTERING

 ALGORITHMS FOR THE ANALYSIS OF MICROARRAY DATA 84

5.1 Introduction . 85

5.2 Algorithms And Implementation . 85

5.3 Results and Discussion . . . 86

5.3.1 Speed up and efficiency . 87

 viii

6. GENOTYPE SUSCEPTIBILITY AND INTEGRATED RISK

 FACTORS FOR COMPLEX DISEASES . 90

6.1 Introduction . 90

6.2 Prediction Methods for Genotype Susceptibility. 92

6.3 Quality of Susceptibility Prediction Methods . 97

7. CONCLUSION . 100

8. PROSPECTIVE DESIGN APPLICATION 105

8.1 RNA Microarray Design . 105

8.1.1 RNA-DNA Microarray Design . 105

8.1.2 RNA-RNA Microarray Design . 107

8.2 Digital Microfluidics-Based Biochips Design 116

9. RELATED PUBLICATIONS . 119

10.OTHER PUBLICATIONS . 120

BIBLIOGRAPHY . 121

 ix

LIST OF TABLES

Table Page

3.1 DNA Flow Results, K=1. 58

3.2 DNA Flow Results, K=2. 58

6.1 Confusion Table . 98

6.2 The comparison of sensitivity, specificity, accuracy and risk rate with 95%

 confidence intervals (CI) and p-value for 6 prediction methods for two real

 data sets. 99

 x

LIST OF FIGURES

Figure Page

2.1 (a) 2-dimensional probe placement. (b) 3-dimensional probe

 embedding. The nucleotide deposition sequence S = (ACT)

 corresponds to the sequence of three masks M1, M2 and M3.

 In each mask the masked sites are shaded and the borders

 between exposed and masked sites are thickened. (c) Periodic

 nucleotide deposition sequence S. (d) Synchronous embedding

 of probe CTG into S; shaded sites denote the masked sites in the

 corresponding masks. (e-f) Two different asynchronous embeddings

 of the same probe. 8

3.1 Detailed DNA Array Design Flow . 59

4.1 DNA Universal Tag Array Design Flow . 61

6.1 LP-based Prediction Method. (a) The set of case, control and test

 genotypes are phased resulting in the sparse graph with vertices-

 haplotypes and edges-genotypes. (b) The last two SNPs are dropped

 without collapsing case and control edges resulting in a denser graph.

 (c) The LP finds optimal weights for vertices-haplotypes. (d) The

 status of test genotypes is predicted from the sign of the sum of weights

 of their endpoints. 93

8.1 RNA Design Flow . 106

8.2 Schematic flow chart of specific RNA detection on a microplate 117

8.3 Synthesis methodology for digital microfluidics-based biochips. 118

CHAPTER 1

INTRODUCTION

DNA probe arrays – DNA arrays or DNA chips for short – are the means of

choice for performing a wide range of genomic analyses, including gene expression

monitoring, mutation detection, and single nucleotide polymorphism analysis (see,

e.g., [89] for a survey). The reasons for this wide acceptance are a unique combina-

tion of robust manufacturing, massive parallel measurement capabilities, and highly

accurate and reproducible results. Current commercial DNA arrays integrate hun-

dreds of thousands of different probes on a surface only slightly larger than 1cm2,

enabling researchers to perform fast and reliable genome-wide analyses using small

sample volumes. Next-generation designs are expected to integrate up to hundreds

of millions of different probes [109]. Finally, a future “killer application” is to build

arrays with billions of probes that would allow one to analyze all SNPs in a humane

genome in a single experiment.

Today, most DNA arrays are manufactured through a highly scalable process,

referred to as Very Large-Scale Immobilized Polymer Synthesis (VLSIPS), that com-

bines photolithographic technologies adapted from the semiconductor industry with

combinatorial chemistry [3, 109, 56]. Similar to Very Large Scale Integration (VLSI)

circuit manufacturing, multiple copies of a DNA array design are simultaneously syn-

thesized on a wafer, typically made out of quartz. When synthesis is complete, the

wafers are diced and arrays are packaged individually. Depending on the number of

distinct probes per array, a single 5” square wafer can yield between 49 and 400 ar-

rays. To initiate synthesis, linker molecules including a photolabile protective group

1

are attached to the wafer, forming a regular 2-dimensional pattern of synthesis sites.

Probe synthesis then proceeds in successive steps, with one nucleotide (A, C, T, or

G) being synthesized at a selected set of sites in each step. To select which sites will

receive nucleotides, photolithographic masks, or reticles, are placed over the wafer.

Exposure to light de-protects linker molecules at the non-masked sites. Once the

desired sites have been activated in this way, a solution containing a single type of nu-

cleotide (which bears its own photolabile protection group to prevent the probe from

growing by more than one nucleotide) is flushed over the wafer’s surface. Protected

nucleotides attach to the unprotected linkers, initiating the probe synthesis process.

In each subsequent step, another mask is used to enable selective de-protection and

single-nucleotide synthesis. This cycle is repeated until all probes have been fully

synthesized. After the chip is synthesized, it is hybridized and image scanning then

indicates where successful and unsuccessful hybridization of control probes occur as

given by the image intensities [89]. Bright control spots indicate successful hybridiza-

tion resulting in sound control probes, while dim control spots indicate unsuccessful

hybridization resulting in defective control probes.

As the number of DNA array designs is expected to ramp up in coming years

with the ever-growing number of applications [63, 131], there is an urgent need for

high-quality software tools to assist in the design and manufacturing process. The

biggest challenges to rapid growth of DNA array technology are:

• drastic increases in design sizes with simultaneous decrease of array cell sizes –

next-generation designs are envisioned to have hundreds of millions of cells of

sub-micron size;

• increased non-recurring design and manufacturing costs, which quickly become

prohibitive for designs that have low production volumes; and

2

• increased complexity of the design process, which leads to unpredictability of

design quality and design turnaround time.

Surprisingly enough, despite huge research efforts invested in DNA array appli-

cations, very few works are devoted to computer-aided optimization of DNA array

design and manufacturing. Current design practices are dominated by ad-hoc heuris-

tics incorporated in proprietary tools with unknown suboptimality. This will soon

become a bottleneck for the new generation of high-density arrays, such as the ones

currently being designed at Perlegen [109].

The goal of the already accomplished research was to develop highly scalable tools,

with predictable runtime and quality, for cost-effective, computer-aided design and

manufacturing of DNA probe arrays. The challenges identified above were addressed

on several levels:

• accurate formalization and modelling of the entire DNA array design and man-

ufacturing process;

• identification of intermediate optimization objectives highly correlated with fi-

nal design quality and cost;

• optimization of individual design steps, and integration of an entire design flow

by introducing flow-aware optimizations and feedback loops;

• development of novel algorithm techniques leading to highly scalable, predictable,

and near-optimal tools for all design phases;

• extensive algorithm engineering and empirical study that thoroughly tests the

efficiency of proposed algorithms on both synthetic and industrial benchmarks;

• exploration and simulation of new manufacturing technology solutions and method-

ologies that extend beyond the current state-of-the-art; and

3

• creation of electronic media for distribution of high-quality, open-source software

implementations of CAD tools, synthetic and industry benchmarks, and results

of empirical studies.

The next chapter summarizes previous work on DNA array design. The third

chapter addresses DNA microarray design and the detailed basic design flow as laid

out by [12]. The fourth chapter deals with the design flow of universal tag microarrays

(UTA), as it enhances the design and manufacturing steps while reducing the cost

and time of manufacture of microarray as laid out by [72]. This area is the least

researched and the newest of interest. With the advent of microarray technology

high-throughput data poses a greater challenge in terms of processing it. The time

and hardware resources required in order to analyze the data is enormous therefore

requires to choose a suitable algorithm. In chapter five, we present parallel statistical

validation of clustering algorithms for the analysis of microarray data.

Affymetrix [3] in July 2006 announced that it plans to introduce a one million-SNP

product by the first quarter of 2007. With the dramatic reduction of the price of its

current two-chip 500K SNP genotyping set to $250, and also increasing throughput

and enabling scientists to run more samples, and thereby increase the power of their

genetic association studies. For example, thousands of samples are needed to find

genes that are associated with the complex diseases like diabetes. We perform disease

association study and present the results in chapter six.

The chapter seven is the conclusion and summary of the work and remaining

problems mention in the dissertation. In the eighth chapter we discuss the prospective

microarray design technologies. We describes RNA microarray design and propose the

software tools for creating a RNA design workflow. Also, we illustrate the workflow

of synthesis methodology for digital microfluidics-based biochips.

We list the relevant paper publications, and author’s other publications in chapters

nine and ten.

4

At last, the bibliography of referred publications marks the end of this dissertation.

5

CHAPTER 2

PREVIOUS WORK

2.1 DNA Array Design

Bearing to the similarity between the manufacturing of DNA arrays and that of

VLSI chips, the design of DNA arrays shares many common principles with VLSI

circuit design. In this section we describe the physical design of DNA microarray.

Under ideal manufacturing conditions, the functionality of a DNA array is not

affected by the placement of the probes on the chip, or the particular order in which

nucleotides of each probe are synthesized. In practice, since manufacturing process

is prone to errors, probe placement and synthesis schedules affect to a great degree

the hybridization sensitivity and ultimately the functionality of the array. There

are several types of synthesis errors that take place during array manufacturing.

First, a probe may not loose its protective group when exposed to light, or the

protective group may be lost but the nucleotide to be synthesized may not attach to

the probe. Second, due to diffraction, internal reflection, and scattering, unintended

illumination may occur at sites that are geometrically close to intentionally exposed

regions. The first type of manufacturing errors can be effectively controlled by careful

choice of manufacturing process parameters, e.g., by proper control of exposure times

and by insertion of correction steps that irrevocably end synthesis of all probes that

are unprotected at the end of a synthesis step [3, 109]. Errors of second type of

errors result in synthesis of unforeseen sequences in masked sites and compromises

interpretation of experimental data. To reduce such uncertainty, one can exploit

6

freedom in how probes are assigned to array sites by optimizing the placement and

embedding of the probes such that the sum of border lengths in all masks is minimum.1

Kahng et al [81] view array design as a three-dimensional placement problem

(Figure 2.1(a-b)): two dimensions represent the site array, and the third dimension

represents the nucleotide deposition sequence S. Each layer in the third dimension

corresponds to a mask that induces deposition of a particular nucleotide (A, C, G,

or T); a probe is embedded within a “column” of this three-dimensional placement

representation. Border length of a given mask is computed as the number of conflicts,

i.e., pairs of adjacent exposed and masked sites in the mask. Given two adjacent

embedded probes p and p′, the conflict distance d(p, p′) is the number of conflicts

between the corresponding columns. The border length of the embedding is the sum

of conflict distances between adjacent probes, and the border minimization problem

(BMP) seeks to minimize this quantity.

The border minimization problem was considered for uniform arrays (i.e., arrays

containing all possible probes of a given length) by Feldman and Pevzner [54], who

proposed an optimal solution based on 2-dimensional Gray codes. For non-uniform ar-

rays, the border minimization problem was formulated by Hannenhalli et al. [65], who

gave methods for placement (at array sites) and embedding (in the mask sequence)

of probes in a synchronous synthesis regime, in which the nucleotide deposition se-

quence S is periodic, and the ith fperiod (ACGT) of S synthesizes a single (the ith)

nucleotide in each probe. This implies a unique and trivially computed embedding of

each probe p in the sequence S; see Figure 2.1(d).

In the synchronous synthesis context, the conflict distance between two probes is

d(p, p′) = 2h(p, p′), with h(p, p′) denoting the Hamming distance between p and p′, i.e.,

the number of positions in which p and p′ differ. As recounted in [65], the first array

1Reducing unwanted illumination improves the signal to noise ratio in image analysis after hy-
bridization, and thus permits smaller array sites or more probes per array [71].

7

design at Affymetrix used a travelling salesman problem (TSP) heuristic to arrange all

probes in a tour that heuristically minimized Hamming distance between neighboring

probes in the tour. The tour was then threaded into the two-dimensional array of sites,

using a technique similar to one previously used in VLSI design [86]. [65] enhanced

this threading approach to achieve up to 20% border length reduction for large chips.

Recently, in [79], Kahng et al suggested an epitaxial placement heuristic which places

a random probe in the center of the array and then continues to insert probes in sites

adjacent to already-placed probes, so as to greedily minimize the number of induced

conflicts. Epitaxial, or “seeded crystal growth”, placement is a technique that has

been well-explored in the VLSI circuit placement literature [107, 115]. Our epitaxial

placement method improves over the previous TSP-based approach by up to 10%.

AT

ATACT

AC

AC

CT

N
uc

le
ot

id
e

de
po

si
tio

n
se

qu
en

ce
 S

A

C

G

T

A

C

G

T

T

CT

G
...

C

T

G

G

T

C

T

G

C

(c) (d) (e) (f)

T

C C

(a)

A

C

T

A

N
uc

le
ot

id
e

de
po

si
ti

on
 s

eq
ue

nc
e

S
=

A
C

T

M1

M2

M3

CC

C

A

TT

T

T

T

C

C

C

A

A

T

A

A

(b)

Figure 2.1. (a) 2-dimensional probe placement. (b) 3-dimensional probe embedding. The nucleotide deposition
sequence S = (ACT) corresponds to the sequence of three masks M1, M2 and M3. In each mask the masked sites are
shaded and the borders between exposed and masked sites are thickened. (c) Periodic nucleotide deposition sequence
S. (d) Synchronous embedding of probe CTG into S; shaded sites denote the masked sites in the corresponding
masks. (e-f) Two different asynchronous embeddings of the same probe.

Recently, in [79], Kahng et al introduced the border minimization problem for

the asynchronous synthesis regime, which allows arbitrary probe embeddings, as il-

lustrated in Figure 2.1(e-f). Asynchronous synthesis has identical technological re-

quirements with synchronous synthesis. Asynchronous synthesis is already mandated

by minimization of the number of synthesis steps. At the same time, asynchronous

embedding offers more flexibility for reducing total border length.

Note that in the asynchronous context, the conflict distance between two adja-

cent probes depends on their embedding. In [79] Kahng et al proposed dynamic

8

programming algorithms that embed a given probe optimally with respect to fixed

embeddings of the probe’s neighbors. We also suggest two ways to improve the em-

bedding of probes that have already been placed (e.g., by threading as in [65], or by

epitaxial methods) onto array sites. We describe the chessboard and batched greedy

methods for optimizing probe embeddings after assignment of probes to their posi-

tions in the array. The chessboard method alternates between optimal embedding

adjustment of “black” and “white” sites with respect to their neighbors (which al-

ways have different color). The batched greedy method implements non-conflicting

optimal embeddings in a greedy fashion. Our experiments show that the chessboard

method (winning slightly over the batched greedy method) decreases by 15.5-21.8%

the number of conflicts in the original synchronous placement.

Furthermore, in [79] Kahng et al give the first known non-trivial a priori lower

bounds on the total border length of the optimum synchronous solution based on

Hamming distance, and of the optimum asynchronous solution based on the length of

the Longest Common Subsequence (LCS). These afford an estimate of potential future

progress due to improved probe placement algorithms for synchronous embedding. We

also give an LCS-distance based lower bound method that yields bounds on possible

improvement from exploiting the freedom to change probe embeddings but not their

placement.

In ongoing work, Kahng et al are developing high-quality, scalable methods for de-

signing large DNA arrays, seeking methods that allow more accurate modelling of the

array design problem, and hence form the basis of more practically relevant heuris-

tics. Two of our main design goals are: (i) to enable scaling to 100 million or more

placeable objects envisioned for the next-generation of DNA arrays [89] (say, within

the current or next generation of workstations), and (ii) to enable easy parallelism

(implying near-linear speedup on workstation clusters) wherever possible. We next

note that the placer design can be made according to two basic functions [115]: initial

9

placement and (iterative) placement improvement. Each of these functions can apply

to (i) the assignment of probes to array sites, and/or (ii) the embedding of probes in

the mask sequence S. Within an overall placement metaheuristic, the requirements

for one function are strongly dependent on the implementation of the other function.

The following extensions to the border length minimization problem are important

in practice, but have not been addressed by previous works on the problem [65, 79].

1. Distance-dependent border conflict weights. Back-reflection of light af-

fects not only adjacent array cells, but also cells that are as far as 3 cells apart

[71]. This implies that we should weight conflicts according to the distance

between cells.

2. Position-dependent border conflict weights. The weight of border con-

flicts depends on the position in the probe since contamination errors are more

harmful in the middle of the probe [71]. Suggested weights are given by the

square root of the distance to the closer endpoint (so, conflict weight varies

from 1 to
√

12 in a 25-mer).

3. Polymorphic probes. Some of the synthesized DNA probes occur both un-

modified and mutated in the middle position (e.g., for detection of single nu-

cleotide polymorphism in the target DNA or for reliability of the hybridization

test). To minimize border length the SNPs are placed together, so the general

BMP requires placing and aligning a mixture of single probes, 2- and 4-ominoes.

In a later paper [80], Kahng et al reported improved algorithms for the border

minimization problem that, unlike the previous methods in [65, 79], account for the

above practical extensions. More importantly, unlike the methods in [65, 79], which

have at least quadratic time complexity, our methods have nearly-linear runtime and

are hence practically scalable to hundreds of millions of probes. In the remaining of

this section present the description and experimental validation of the “engineering”

10

of a scalable, high-quality asynchronous placement heuristic for DNA array design

[80]. Kahng et al demonstrated the value of simple ordering-based methods for initial

placement. Kahng et al also proposed the use of scalable sliding-window and row-

epitaxial techniques having antecedents in large-scale integrated circuit placement

[47, 70, 107, 115], as well as a local improvement operator based on reassignment of

an “independent” set of probes. A recurring motif is the analogy between silicon chip

design and DNA chip design, pointing to the value of technology transfer between the

40-year old VLSI CAD field and the newer realm of probe array design. Experimental

results showed to confirm the linear scaling of runtime complexity and better solution

quality compared to best previous methods.

11

CHAPTER 3

DNA MICROARRAY SOFTWARE TOOLS
INTEGRATION

3.1 DNA Array Flow

In [12], we presented a concatenated software solution for the entire DNA array

flow exploring all steps of a consolidated software tool. The proposed software tool

has been tested on Herpes B virus as well as simulated data. Our experiments showed

that the genomic data follow the pattern predicted by simulated data although the

number of border conflicts (quality of the DNA array design) is several times smaller

than for simulated data. We also reported a trade-off between the number of border

conflicts and the running time for several proposed algorithmic techniques employed

in the physical design of DNA arrays.

We describe the main flow of the producing a DNA chip, methods employed to

read a genomic data from database and producing ORF’s in FASTA format. We

illustrate the models used for probe selection, Promide and Tm checker, with specific

details regarding the production of pool of probes that must optimize hybridization

affinity, and satisfy the constraints on the melting temperature. We describe VLSI

CAD models of chip-physical design, and how to engage CAD algorithms in probe

placement and embedding. We discuss mask and array manufacturing process that

is a combination of photolithography and combinatorial chemistry, as well as a hy-

bridization experiment and the analysis of gene intensities. We discuss a specific

application of the DNA chip production to analyze the genome of the Herpes B virus,

and we give the experimental results. We present the DNA Array flow (see 3.1).

12

3.2 Herpes B Virus

Herpes B virus generally causes only mild localized or asymptomatic infections in

its natural hosts, Asian monkeys of the genus Macaca [83, 84]. In contrast, B virus

infections in foreign hosts, humans or monkey species other than macaques, often

result in encephalitis encephalomyelitis, and death [105, 132]. Recently, complete

sequencing of the herpes B virus genome has been achieved [106]. The genome of

B virus is 156,789 bp in length. 72 genes exist as a single copy and within unique

genomic regions whereas two genes appear twice due to the duplication of the large

and small repeat regions where they reside. The genomic sequence is proposed to

facilitate identification of the genetic basis and possible molecular mechanisms of

enhanced B virus neurovirulence in humans, which results in an 80% mortality rate

following zoonotic infection.

The best known means for achieving this challenging goal are DNA probe arrays.

The standard approach is to design a chip consisting of approximately 20 probes per

gene and include also control probes which will constitute to around 1500 probes

which is a small chip. Unfortunately, all gene sequences are very similar since 74.5%

of all bases are G+C. This makes finding sufficient amount of unique probes for each

gene a challenging if not impossible task. We propose to use universal DNA tag arrays

for gene expression assay for Herpes B virus.

3.3 DNA Microarray Workflow

The basic flow for DNA microarray design begins with ”ORF extraction” [12]

(where ORF is the open reading frame). Probe selection, physical design, manufac-

turing and finally hybridization and analysis are the remaining steps of the design

flow. [12] Each of these steps is discussed below with accompanied research paper ref-

erences. The majority of this chapter is devoted to probe selection and design, since

probe selection is common among DNA microarray, RNA, and UTA. The methods

13

discussed in the probe selection portion are applicable to both the RNA design and

UTA design chapters.

In the following sections we discuss each stage of DNA Array Flow.

3.4 Reading Genomic Data and ORF Extraction:

In this step, we use ORF extraction programs to extract the desired ORF.

ORF Extraction: ORF extraction is the process of extracting the usable por-

tions of the DNA from the genome sequence. Portions that have looped around and

hybridized with itself are unusable, and must not be included. Thus the usable por-

tions or ORFs are extracted. [12] The importance of the ORF is that it is the portion

that can be ”transcribed into mRNA.” [12]

The extraction process can be done using the ORF Finder software. [12] ORF

Finder is a product of NCBI. The definition of ORF used by ORF Finder is the

prokaryotic definition. [12] The significance of the definition used is that it only

allows ORF Finder to be ”useful in detecting the initial exons in a eukaryotic gene

sequence.” [12]

Another option for ORF extraction is GenMark. GenMark’s Orflist function pro-

duces the list of ORFs. Both the position of the ORFs, the DNA strands, and coding

frame are output. [12]

ORF Extraction Using ORF Finder: Extracting ORF sequence from the

genome sequence is straightforward using ORF Finder. ORF can be extracted by

means of the genome’s sequence or id. ORF Finder is an extremely simple program

at the NCBI that can be used to visualize open reading frames in a DNA sequence.

An open reading frame is simply a subsequence of DNA that could potentially be

transcribed into mRNA.

ORF Finder uses the prokaryotic definition of an open reading frame, and therefore

is only useful in detecting the initial exons in a eukaryotic gene sequence. Each of these

14

ORFs represents a potential initial exon in a gene. The interface to ORF Finder is

extremely functional, allowing the user to select and BLAST individual ORFs, which

can be a somewhat effective way of finding unknown genes with initial exons that

are similar to known genes. Also, the documentation and support available from the

NCBI is good, especially considering the simplicity of ORF Finder. However, ORF

Finder is a very limited tool for predicting genes within DNA sequences, and there

are many more other programs available.

ORF Extraction Using GenMark: GenMark server provides e-mail based

identification of protein coding regions in DNA sequences from prokaryotic and eu-

karyotic species. GeneMark server accepts a formatted message containing a DNA

sequence in text format (numbers and spaces allowed, see below). Orflist is a func-

tion in GenMark, which is responsible for producing a list of evaluated open reading

frames. The option ’Orflist’ instructs to return a list of area’s of the DNA sequence

where GeneMark has identified a coding region. In the ORF list output, the ”left

end” and ”right end” columns denote the physical position of the ORF in the sample

sequence in absolute nucleotides relative to the beginning of the sample sequence.

”DNA strands” indicates the strand in which the ORF lies. ”Coding frame” indi-

cates the reading frame in which the ORF lays relative beginning to the sequence.

”Avg prob” denotes the mean coding potential over the indicated range and reading

frame. ”Start Prob” denotes the start probability, which is a measure of the likelihood

that indicated start marks the true beginning of the ORF. There are several outputs;

however, our concern will focus on the physical position and the name of the ORFs.

ORF Parser: In this step, we used the ORFs produced by GenMark because

of the accuracy of GenMark over ORF Finder. In this step we parse the ORFs

produced by GenMark to suit the input format acceptable by Promide. The output

of GenMark is lists of start and end positions of each ORF along with their names.

The parser locates each ORF using their positions within the entire sequence and

15

creates a file with all ORF’s in FASTA format. The content of pool of ORF’s using

provided information from GenMark is parsed to extract the target of the sequence

in question. Although, Perl has strong native string matching capability; however,

working at the character level is not as efficient compared to C++ or Java that is

why we choose to implement the first parser using C++. The convenience here is

that each time the genome sequence changes, we do not have to rewrite our parser.

3.5 Probe Selection

This step is analogous to the logic synthesis in VLSI design; the probe selec-

tion step is responsible for implementing the desired functionality of the DNA array.

Although probe selection is application dependent, many underlying criteria are com-

mon all DNA micro-array technologies. The challenge for probe selection is how to

identify the optimum probes for each gene. The basic criteria for the probes are the

following: The probe should be a unique sequence in the all-coding sequences of the

target genome, even with allowable number of mismatches, should not be self comple-

mentary, be close to the 3’ end of that gene, does not contain single nucleotide multiple

repeat regions, such as AAAAAA, does not a representative of low complexity region,

and should have almost the same GC percentage as that of the target genome. Em-

pirically, the optimum probe for a gene would be the one with minimum hybridization

free energy for that gene (under the appropriate hybridization conditions) and, max-

imum hybridization free energy for all other genes in the hybridization pool. Probe

selection presents the first algorithm that can select suitable custom oligonucleotide

probes (e.g. 25-mers) for microarray experiments on a truly large scale. For example,

oligos for human genes can be found within 50 hours. This becomes possible by using

the longest common substring as a specificity measure for candidate oligos. Promide

[110] presents an algorithm based on a suffix array with additional information that

is efficient both in terms of memory usage and running time to rank all candidate

16

oligos according to their specificity. Promide also introduce the concept of master

sequences to describe the sequences from which oligos are to be selected. Constraints

such as oligo length, melting temperature, and self-complementarily are incorporated

in the master sequence at a preprocessing stage and thus kept separate from the

main selection problem. We want to select 25-mers for every known ORF of budding

sequence using Promide. We assume that the oligonucleotide probe sequence is the

coding sequence of the gene; this choice depends on the type of assay being used.

We already obtain a FASTA file with all genome ORF sequences using GenMark and

Parser1.

Checking Temperature of Hybridization: In this step, we check the tem-

perature of our probe that we produce from Promide. We calculate the temperature

using the formula, 2 * number of A and number of T plus 4 times the number of G

and C. Using this formula, we find that the temperature chosen before in Ocand is

closed to the one calculated.

The selection of probes is what defines the functionality of the array [12]. The

main issue facing probe selection is the problem of finding the best probes for the

gene in question. [12], according to the criteria listed earlier in this section. Atlas et

al [12] describe the ”optimal probe for a gene” to be the probe with ”the minimum

hybridization free energy for that gene and, maximum hybridization free energy for

all other genes in the hybridization pool”. [12]

Probe selection methods can be broken down into statistical approaches, thermo-

dynamic approaches, and other miscellaneous approaches. The following subsections

deal with each of the above mentioned methodologies and present research that uti-

lizes those methods.

17

3.5.1 Statistical Approaches

A statistical approach to probe selection may also utilize some thermodynamic

properties, but the overwhelming methodology behind the selection is statistical in

nature. The next few subsections feature some statistical approaches to probe selec-

tion from [113], and [111].

Group Testing with DNA Chips: Generating Designs and Decoding

Experiments [113] Schliep et al [113] propose an approach to the design of microar-

rays ”based on group testing.” [113] The approach is purported by Schliep et al [113]

to be the first ”that explicitly takes cross-hybridization and experimental errors into

account while accommodating several targets.” [113] The approach used is statistical

and non-adaptive. [113]

The ”goal is to devise a group testing design which covers each target with a

certain number of probes and allows identification of several targets simultaneously

while using a reasonably small total number of probes.” [113] Due to the difference in

microarrays from traditional subjects of group testing some of the standards of group

testing had to be adjusted and some added to cope with the specifics of microar-

rays. First the individuals cannot be randomly assigned to groups. [113] Other areas

that differ from conventional group testing situations is that cross-hybridization still

presents a problem, the possibility of high error rates exist, and the targets are ca-

pable of constantly changing. These departures from traditional group testing create

further areas of concern in designing the testing scheme. [113]

The following notation is used to help describe the specifics of [113]́s work. ”The

m target sequences are denoted by ti(1 ≤ i ≤ m) the initial n0 probe candidates by

p′k(1 ≤ k ≤ n0) and the final n ≤ n0 probes selected for the design by pj(1 ≤ j ≤ n).

Thus every pj is equal to some p′k.” [113] The ”target set incidence matrix H” is

defined as ”Hik := 1 if target ti hybridizes to probe candidate p′k, and Hik := 0

otherwise.” [113] D is the design matrix, and is a ”sub matrix of H.” [113] ”Dij = 1

18

if target ti hybridizes to the selected probe pj.” [113] P (i) is the ”set of probes

hybridizing to target ti.” [113]

Groups are designed such that ”a potential target group T only exists if there is

a probe that binds to all.” [113] The probes ”should not be self-complementary and

not cross-hybridize to targets outside their intended target set.” [113] The selection

of candidates uses the ”longest common factor.” [113] ”lcf(s, t) of two strings s and t

is the maximum length of a substring that occurs in both s and t.” [113] The longest

common factor statistic is defined as ”lcfs(o, l)... as the number of genes g′ 6= g

containing an oligo o′ with lcf(o, o′) = l.” [113]

In order to find a good group testing design it is imperative that sets that are not

too large be distinguishable. [113] The following is a definition of the separability of

target sets. [113]

Definition 1 Let S be set of target sequences. We say that a probe p hybridizes to

the set S when p hybridizes to at least one target in S. By P(S) we denote the set of

all probes hybridizing to S, i.e.,P (S) := ∪ti∈SP (ti).

[113] This definition can be more clearly stated that if a particular probe can hybridize

with one set of target probes but not with another, then the probe separates the two

sets of target probes.

Probes are added ”until every target is covered by at least d oligos.” [113] All

”pairs of targets are separated by at least d oligos.” [113] When the hybridization is

complete the process of deciphering which ”targets were present in the sample,” and

”using the results for the different probes,” to do so. [113] In other words the results

must be decoded.

The probability that ”a set T of targets constitutes all targets present in a sample

given the result vector r” [113] can be expressed as follows.

P [T |r] =
P [r|T] · P [T]

P [r]
(3.1)

19

[113] The likelihood that the view is of a specific result is as follows.

P [r|T] =
∏
pj

f(rj, |T (j) ∩ T |) (3.2)

[113]

Schliep et al [113] ”formulate a Bayesian prior for the presence of a group of targets

in the sample.” [113] ”Impendence between targets” [113] is assumed and there are

two factors. [113] The first is the number of appearances of each target ”ti in samples

containing at least one target is denoted fi,” [113] and the second is ”the distribution

describing the likelihood of finding a particular number of different targets in one

sample.” [113] ck is the ”prior probability of observing k different targets in one

sample.” [113] The ”quantity proportional to the prior” [113] can be defined as the

following assuming T to be the ”set of targets.” [113]

P [T] ∝ C|T | ·
∏

ti∈T

fi

∏

ti3T

(1− fi) (3.3)

[113]

The marginals are not easily computable due to the fact that the ”exact com-

putation requires work exponential in the number of targets.” [113] P [r] not being

available ”precludes...computing the posterior in closed form.” [113] Marginals are

the actual interest. [113] The following is the marginals ”expressed in ”terms of the

posterior.” [113]

P [tpresentinsample|r] ∝ ∑

T t∈T

P [T |r] (3.4)

[113]

To cope with the above difficulties, the Markov Chain Monte Carlo (MCMC)

approach can be used. [113] The marginal P [tpresentinsample|r] can be estimated

using the Monte Carlo approach. [113] The estimation is ”the relative frequency with

20

which t is continued in the sets Tk.” [113] Sampling must be done ”from P [T |r],” [113]

which leads to ”construction of a Markov chain over the space of all sets T .” [113]

”P [T |r] is the stationary distribution.” [113] Using Bayes’ theorem, the ”fraction

P [Tk|r]/P [Tkδ{ti}|r] equals” [113]

c|Tk|(1− fi)

c|Tk|+1fi

∏

pj∈P (i)

f(rj, |T (j)T̂k|)
f(rj, |T (j)T̂k|+ 1)

(3.5)

[113] ”if ti 3 Tk and , for ti ∈ Tk

c|Tk|+1fi

c|Tk|(1− fi)

∏

pj∈P (i)

f(rj, |T (j)T̂k|)
f(rj, |T (j)T̂k| − 1)

(3.6)

[113]

The main focus of [113] was to present a ”DNA microarray design methodology

based on non-unique oligos and group testing.” [113] The method is predominantly

geared toward dealing with the problem that arises due to the ”closely related target

sequences.” [113] This might be seen with related viruses. This high level of rela-

tion poses the interesting problem of finding probes for every target. The work as

stated before is the ”first that explicitly considers cross-hybridization issues and ex-

perimental errors within this framework.” [113] The method has high ”robustness”,

and is able to identify ”92% of the targets present.” [113] Schliep et al [113] remark

that more work could be done to acquire more information about ”the dynamics of

hybridization reactions.” [113] Other areas needed for work are those examining the

usage of ”several unique probes for each target.” It is currently unknown if this can

be done with other methods. Another area needing further examination is that of

”detecting recombination events.” [113]

Fast and Sensitive Probe Selection for DNA Chips Using Jumps in

Matching Statistics Rahmann et al [111] presents a design approach to DNA mi-

croarrays that attempts to deal with the design problems associated with large scale

21

DNA arrays while preserving the accuracy. The approach is ”based on jumps in

matching statistics.” [111]

The standard notation used in the description of Rahmann et al’s work [111]

follows.
∑

is used to denote a finite alphabet, and
∑∗ is the set of strings ”consisting

of characters from
∑

and
∑+ for all non-empty substrings.” [111] Prefix of a string is

defined to be the ”a factor that starts at the beginning of the string.” [111] Suffix of a

string is defined to be ” a factor that ends a string.” [111] |s| denotes the length of the

string s, and si,···,j denote the substring from indexes of s from i to j. s(i) = si···|s|−1

denotes the ”suffix string starting at position i.” [111]

Matching statistics need to be explored in order for the proposed approach to be

understood. The following definitions and lemmas are necessary in order to explain

the jumping.

Definition 2 (Matching Statistics) For strings s and t, the matching statistics of

s against t are mss|t = ms = (ms0, · · · ,ms|s|−1), where msi is the length of the longest

prefix of s(i) that occurs somewhere in t.

[111]

Lemma 1 (Suffix property of matching statistics) Consecutive matching statis-

tics decrease by at most one: ms
s|t
i ≥ ms

s|t
i−1 − 1foralli = 1, · · · , |s| − 1

[111]

Definition 3 (Jumps in matching statistics) We say that a jump occurs at po-

sition i > 0 in mss|t if and only if ms
s|t
i 6= 0 and ms

s|t
i > ms

s|t
i−1 − 1.

[111] This definition leads to the following notation that will be used to describe the

[111] ’s work. The jump level is represented as Ji = ms
s|t
i if there is a ”jump at

position i.” [111] A jump is defined to be a pair. The pair is composed of the jump

22

level and position of the jump. As an example the following is the jump at position

i, (i, Ji)

Taking ”u as a substring of s,” [111] the following Lemma defines the matching

statistics of substrings.

Lemma 2 (Matching statistics of substrings) Let u = si···i+L−1, so |u| = L.

Then ms)ku|t = min(ms
s|t
i+k, L− k) (k = 0, · · · , L− 1)

[111]

Lemma 3 (Jumps in matching statics of substrings) Jumps in msu|t can oc-

cur at position k = 0, and otherwise at most at those positions 0 < k < L where a

jump occurs in mss|t at position i + k.

[111]

Definition 4 We define the [i, L]-jump-set of mss|t as the set consisting of jumps

between positions i + 1 and i + L − 1(inclusive), and the closest jump to the left of

i + 1 at position i− d for the appropriate distance d ≥ 0

[111]

Corollary 1 Let u be the substring of length L of s that starts at position i. To

obtain the jumps in msu|t, it suffices to look at the [i, L]-jump-set of mss|t

[111]

The definition matching statistics with mismatches follows.

Definition 5 (Matching statistics with f mismatches) For strings s and t, the

matching statistics allowing f mismatches of s against t are mss|t;f = (msf
0 , · · · ,msf

|s|−1),

where msf
i is the length of the longest prefix of s(i) that occurs somewhere in t with

at most f mismatches.

23

[111] Jumps can subsequently be defined as before through the following Lemma.

Lemma 4 Let u be a substring of s starting at position i. the longest common sub-

string of u and t with at most f mismatches is the maximal level of all jumps in

msu|t;f . It can be computed from the [i, |u|]-jump set of mss|t;f

[111]

In order to determine the frequency of jumps in matching statistics, [111] considers

”the number of occurrences KL of a random string of length L in t.” [111] n−L + 1

is the number of ”possible starting positions.” [111] pL is the ”probability that the

length L substring a t a given position agrees with a random string of length L.”

[111]

Lemma 5 E[KL] = (n− L + 1) · pL

[111] It is theoretically possible that exact distribution of KL can be determined by

taking into account all autocorrelations of all words. [111] It has also been proven

that the estimation P (KL = 0) ≈ e−E[KL] is accurate. [111] ”KL has a Poisson

distribution,” [111] The occurrences of KL in t are independent if a random word has

”no or low self-overlap,” which will occur if π is not ”close to a Dirac distribution.”

[111] The KL occurrences in t that are independent and non overlapping, are rare

due to the constraint that E[KL] << n. [111] From the previous lemma is can be

approximated that:

P (KL = k) = e−λ · λk

k
(3.7)

where λ = E[KL] = (n − L + 1) · pL [111] E)L is the expected number of jumps

in ”mss|t to jump level L.” [111] The probability that ”a jump to level L occurs at

position i in s,” follows. [111]

Lemma 6 pL = e−λ·(1−q2) − e−λ, where λ = (n− L + 1) · pL

[111]

24

Theorem 1 An estimate of the expected number EL of jumps in mss|t with jump

level L is given by EL = (m−L−1)e−λ·(1−q2) +2e−λp− (m−L+1)e−λ, where lambda

has he same value as in the previous lemma.

[111] The discussion will be restricted to only one mismatch because with greater

number of mismatches the Poisson distribution of KL breaks down.

Theorem 2 The expected number EL of jumps to level L in the matching statistics

with one mismatch msm|s;1 is approximately given by EL = (m−L+1)(e−λ·(1−q2)−e−λ),

where λ = (n− L + 1) · L · pL−1 · q

[111]

Considering ”L∗ where E+
L∗ ≥ 1 but E+

L∗+1 < 1, ” jumps to level L∗ are observed

but not jumps ”to or above L∗ + 1.” [111] L∗ is an accurate ”estimate of lcf(s, t).”

[111] For no mismatches λ ≈ npL, e−λx ≈ 1 − λx, and thus EL ≈ mq2λ ≈ mnq2pL.

[111] The following apply to the case with only one mismatch. λ ≈ nLqpL−1, and

EL ≈ Lmnq3pL−1. [111] For exact matches the following thus applies.

E+
L ≈ mnqpL (3.8)

For one mismatch the following therefore applies.

E+
L ≈ Lmnq2pL−1 (3.9)

Since E+
L is defined for both integers and non-integer values the following definition

defines the center of the distribution of lcf.

Theorem 3 The center Loof the lcf of two random strings with lengths m and n =

θ(m) generated with close to uniform character distribution π on
∑

is

Lo ≈ ln(mn) + ln q

ln(1
p
)

(3.10)

25

This simplifies to Lo ≈ log|
∑

|(mn) when π is uniform and |∑ | >> 1. For the length

of the longest common factor with one mismatch (lcf 1), the center Lo is the solution

of the equation

mnq2 · Lo · pLo−1 = 1 (3.11)

[111]

Probe selection done via jumps in matching statistics measure oligo specificity

using free energy. [111] δG(o, T) denotes the ”Gibbs free energy of an oligo o at

temperature T .” [111] The free energy is the measure of the oligos ”tendency not to

hybridize to its perfect match.” [111] A negative value of the free energy thus says the

oligo tends to hybridize to its match at the given temperature T. [111] The stability

can be evaluated quickly. [111] The stability is denoted −∆G(o, T). Of main interest

here is the ”stability of oligo-gene hybridizations (o, g′), where g′, does not contain

an exact match of o.” [111] The ”most stable perfect and near-perfect partial match

of o and g′” are treated as if they were exact. The following is the estimation, where

G0 is ∆G(o−0, T), and G1 is ∆G(o−1, T).

∆G(o, g′, T) ≈ min{G0, G1 + γ} (3.12)

[111] This is synopsized by the measure of ”the stability of the hybridization of g′ to

o (is measured) by the lowest free energy of either a perfect partial match (G0) or

of a penalized near-perfect partial match (G1 + γ).” [111] The quantification of the

specificity is obtained through the difference between the estimate and the value of

the free energy. [111]

The value of the estimation that is desired is one that leaves a large difference

between the estimated and the known value of the free energy. Thus the oligos

that are being sought are those for which the above is true. A preprocessing step is

introduced to process the jumps. msg|g′;0 and msg|g′;1 are the list of jumps in both

26

”for all other genes g′ 6= g.” [111] A threshold can be implemented to restrict the

jumps. The threshold should be maximized. The computation need for the jump list

is expensive, but must only be done once. [111] Finding the ”gene-specific oligos in

gene g, the following (is done to) each other gene g′ for exact matching statistics and

one mis-matching statistics, and for each candidate oligo o from left to right.” [111]

• Let i be the stating position of the current oligo o. for each gene g′ 6= g, we do

the following.

1. Find l = mso|g′
o from the first element of the [i, |o|]-jump set of msg|g′. This

value is updated in constant time from the previous oligo. Evaluate the

stability −∆G(ō, T) of the partial match ō = oo···l−1.

2. For each remaining jump (i + k, Ji+k) in the [i, |o|]-jump set , determine

whether there is also a jump at position k in the substring matching statis-

tics mso|g′. If yes, let l = min{Ji+k, |o| − k} denote the jump level and

evaluate the stability −∆G(ō, T) of ō = ok···kl−1.

3. The most stable match found in this way is compared tot eh perfect match

stability, and difference is recorded as the specificity of o with respect to

g′.

• Oligo o is rejected when the specificity with respect to too many genes g′ is low.

[111]

It is suggested by [111] that the increase in time during the selection phase is

worth while since the chip design is not time limited, when considering an increase

by a factor of 2 or 3. It is unclear however, whether the energy based relation due to

its dependence on sequence composition, would be an improvement and worth while.

It is suggested that it be tested on a large scale.

27

3.5.2 Thermodynamic Approaches

A thermodynamic approach to probe selection is one in which the thermodynamic

characteristics are considered in the probe selection process. Melting temperature is

frequently one of the main considerations for selecting probes. The melting temper-

ature is used to help reduce the number of cross hybridizations and tends to be the

dominant methodology used for probe selection algorithms. The following subsections

feature the work of [121], and [78].

Fast and Accurate Probe Selection Algorithm for Large Genomes: [121]

Sung et al [121], proposes an algorithm for probe selection based on the ”homo-

geneity, sensitivity, and specificity”; however, no heuristics are used which allows for

greater accuracy. Homogeneity filter, sensitivity filter and specificity filter are used

to eliminate unsuitable probes based the corresponding criteria. [121]

Homogeneity filter addresses the melting temperature, and ”eliminates probes

that hybridize at a temperature that is out of the experiment temperature range.”

[121] Next the sensitivity filter is applied and ”eliminates probes with secondary

structures.” [121] Cross-hybridization is eliminated using the specificity filter. [121]

To further understand the approach used by Sung et al [121] it is necessary to formally

define the probe selection problem. ”Given a set of genes G = {g1, g2, · · · , gn} and

a parameter m which specifies the length of the probes, the probe design problem

finds, for every gene gi, a length m probe (that is substring of gi) which satisfies (1)

Homogeneity, (2) Sensitivity, and (3) Specificity.” [121]

The first filtering applied is the ”homogeneity filter” [121]. This filter considers

the melting temperature in relation to the experiment temperature and the number

of GC complexes. The number of the ”GC rich complexes” should not be too high or

too low due the increased stability of these bonds. [121] The melting temperature of

the probes must fall inside some predefined range, and this melting temperature for

the probe of length m is calculated using the ”nearest-neighbor method.” [121] The

28

following is the equation for melting temperature used.

Tm(p) =
∆H(p)

∆S(p) + Rx log(CT)
− 273.15 + 16.6 log(Na) (3.13)

In the previous equation R =molar gas constant, CT =total molar concentration of

the annealing oligonucleotides. [121] ”Na is the salt concentration of the solution

in which the oligomers are dissolved.” [121] ∆H(p) and ∆S(p) are the enthalpy

and entropy for helix formation of p respectively.” [121] The ”optimal hybridization

temperature Th of p is determined from Tm(p) by” [121]

Th(p) = Tm(p)− 25− 0.62(Cf) (3.14)

The calculation of the melting temperature and GC content requires only ”one pass”

through the probes ”the homogeneity of a probe can be determined in linear time.”

[121]

The next filtering that takes place is the sensitivity filtering. This step in the

filtering process determines if the probes contain secondary structures. If a probe

does contain a secondary structure it is eliminated. The basic technique used is to

take ”a segment of length x from the 3′ end of each probe, if it can form a consecutive

length y complementary segment with itself, it is said to have a secondary structure.”

[121] The sensitivity filter runs in linear time.

The specificity filter is the next filter to be used to eliminate unsuitable probes.

This is the most complicated filter. The specificity filter attempts to minimize ”cross-

hybridization of probes with other DNA sequences.” [121] In order to determine

cross-hybridization it must find ”for each length -m probe p in gene g, whether there

exists a length -m substring q in G − {g} such that H(p, q) < some threshold w. If

such a q is found, then the probe p is said to be able to cross-hybridize with other

genes.” [121] Thus any probes meeting this criteria must be eliminated. To do the

29

specificity filtering the ”Pigeon Hole Principle” is used in an effort to ”speed up the

searching process.” [121]

The following is the ”key lemma” of the ”Pigeon Hole Principle to determine

whether a probe will cross-hybridize.” [121]

Lemma 7 If there exist length-m probes p and q such that H(p, q) < w, then we

can find length-k substrings p′ = p[i · · · i + k − 1] and q′ = [i · · · i + k − 1] such that

H(p′, q′) ≤ v where v = [(w − 1) k
m

]

[121] The probes deemed to be ”bad” can be filtered out using the following algorithm,

which is based on the previous lemma. Also, ”for any two length-k substrings s1 and

s2 in the genome, ...they form a hit if H(s1, s2) ≤ v where v = [(w − 1) k
m

]...the

set of hits for s can be found by enumerating all substrings in the genome that has

Hamming distance ≤ v with s.” [121]

Algorithm 1 For every g ∈ G,

• For every hit between some length-k substring s1 of gene g and some length-k

substring s2 of gene g′ ∈ G− {g},

– For every length-m substring p and q which contain s1 and s2, respectively.

∗ if H(p, q) < w, p can cross-hybridize and we remove it from the candi-

date probe list.

[121] In the worst possible case the ”complexity of the basic algorithm is as bad as

the brute force approach.” [121] However, in practice the algorithm performs much

better than the brute force algorithm. [121]

A further improvement can be made to the algorithm. The improvement is based

on gapped hashing. [121] The previous lemma can be extended to the following.

Lemma 8 If there exist length-m probes p and q such that H(p, q) < w, then we can

find length-k substrings p′ = p[i]p[i + m
k
]p[i + 2m

k
] · · · p[i + (k − 1)m

k
], q′ = q[i]q[i +

30

m
k
]q[i + 2m

k
] · · · q[i + (k − 1)m

k
] for i = 0, 1, 2, · · · , m

k
− 1 such that H(p′, q′) ≤ v where

v = [(w − 1) k
m

]

[121] This can be further improved by using preprocessing. [121] The hamming dis-

tance can be precomputed and stored. The extension to the lemma and preprocessing

further reduce the complexity of the algorithm. [121]

Results show that the filtering makes it possible for this algorithm to be used for

”finding oligo probes for long or short genomes.” [121] ”Divide and conquer” was

used to overcome the difficulty of ”genomes whose size exceeds the memory limit of

a computer.” [121] This leads to less restriction based on hardware constraints. [121]

Further examination of methods that avoid heuristics should be considered, as the

use of heuristics increase the efficiency and reduce the accuracy.

Selecting signature oligonucleotides to identify organisms using DNA

arrays: Probes must be chosen for each sequence to be attached to an array. The

selection of probes to effectively perform this task is of concern. Probes must be

selected so that they do not hybridize with any other sequences. The probes are then

attached to the surface and then hybridized to the sequence.

The formal problem is expressed by [78] as follows: Given n target sequences

t1, t2, . . . tn, find a temperature T and n probe sequences p1, p2, . . . , pn such that:

TM(pi, ti)− ε > T > TM(pi, ti) + ε (3.15)

for all k 6= z, i = 1, . . .,n, where TM(x, y) is the temperature below which the two

strands x and y are bound and above which they denature. [78]

The proposed algorithm only considers probes that are perfect compliments to the

sequence under consideration, probes that are unique, and then the remaining probes

are evaluated for melting temperature using the Nearest Neighbor Thermodynamic

Model. The algorithm requires that the following be known:

31

• Melting Temperature between all compliments.

• Which basepairs are going to form the duplex.

• The alignment resulting in the largest TM .

[78] To minimize the amount of time to find the desired probes, all probes that can be

eliminated due to reasons other than melting temperature are eliminated before the

temperature is computed. This is because calculation of the temperature is costly.

The first step in the algorithm is the construction of a Suffix Tree (ST). [78]

The ST contains the ”inverse compliments of all target sequences.” [78] The suffix

tree is then used to find those prospective probes that do not meet the uniqueness

requirement. The redundancy of the probes is exploited through the use of the ST.

If a calculation of melting temperature has already been done on a subsequence of a

probe then it does not have to be recomputed since the information is already stored

in the ST. The probe information is stored in the suffix tree and then used to make

probe selection suggestions. [78]

The TM requires knowledge of the alignment. The alignment of sequences with

a weight function w(., .) will be dealt with using a dynamic programming approach.

Considering two sequences, ”the general idea is to consecutively extend the align-

ment, starting with an alignment of prefixes of the two sequences x and y.” [78] This

algorithm is from Needleman-Wunsch. The modification of the algorithm for Kader-

ali’s purposes is to ”calculate ∆H and ∆S for all prefix-alignments, choosing the one

resulting in the highest local melting temperature.” [78] ”The dynamic programming

recursion is as follows:

∆Hi,j =





∆Hi−1,j−1 + ∆∆H(xi, yj) if t=0,

∆Hi−1,j + ∆∆H(xi,−) if t=1,

∆Hi,j−1 + ∆∆H(−, yj) if t=2

(3.16)

32

∆Si,j =





∆Si−1,j−1 + ∆∆S(xi, yj) if t=0,

∆Si−1,j + ∆∆S(xi,−) if t=1,

∆Si,j−1 + ∆∆S(−, yj) if t=2

(3.17)

and tε{0, 1, 2} is to be chosen such that

TM(i, j) =
∆Hi,j

∆Si,j + R ln CT

4

(3.18)

[78] Here ”∆∆H(xi, yj) and ∆∆S(xi, yj) denote the nearest neighbor parameters,”

when x and y are paired with ’-’ it represents the gap in the alignment. [78]

To further reduce the running time of the algorithm, computation is minimized

further by only computing information once. Given the dynamic programming ta-

ble ”for two sequences,” and that they need to be aligned. [78] If the two share a

subsequence then they can share a sub-table. The shared sub-table part need not be

recomputed or the other sequence. The generalized suffix tree is used to ”identify

common prefixes of substring pairs of all the different sequences.” [78] The ”defining

property” of the suffix tree ”is that each path from the root node to a leaf corresponds

to a suffix of the string represented by the tree, and vice versa.” [78] The construction

of the suffix tree is linear. [78]

Probe pre-selection is done to minimize the cost of temperature calculations. The

criteria used for the pre-selection follows:

• Probe Length - The assumption is made that variables minlen and maxlen and

all probes must satisfy minlen ≤probe≤maxlen

• Unique Probes - Only probes that are complementary to exactly one substring

of all target sequences.

• Probe Melting Temperature - Minimum temperature that a probe-target duplex

should be able to withstand.

33

[78] After constructing a suffix tree of the ”compliments of all target sequences ... ap-

plying the above criteria and removing all infeasible probes from the tree is straight-

forward.” [78]

The last step of the algorithm is to determine the melting temperatures of the

”duplexes formed between all substrings left in the subtree and all target sequences.”

[78] The calculations of temperatures for some substrings can be reused to decrease

running time in cases where the substring occurs in more than one sequence. By

design the suffix tree causes grouping of the prefixes in such a way as to cause common

prefixes to be grouped together. [78]

Once the melting temperatures have been calculated, the ”objective now is to se-

lect a temperature T and one probe from the list for each of the target sequences, such

that the array experiment can be carried out at temperature T, and the probes se-

lected will hybridize only to their intended target sequence.” [78] The selection of the

temperature T, must adhere to the following condition from Kaderali. ”Given n DNA

or RNA target sequences t1, t2, . . . , tn, given furthermore for each target sequence ti

a finite set of probe sequences Pi where Pi
⋂

Pj = 0 for all i, j; i 6= j. Furthermore

given for all target sequences ti and all probe candidates pjε
⋃n

k=1 Pk the melting tem-

peratures TM(ti, pj) at which target ti and probe pj dissociate. For each probe pkεPi,

and for each target sequence ti find a temperature T.

TM(ti, pk) ≥ T > TM(tj, pk)foralli 6= j (3.19)

The idea here is to sort all probes according to descending melting temperature, and

consecutively move down the scale removing all those ”probes that will cross-hybridize

at the new temperature.” [78] This is an iterative process and continues ”until...a

feasible, unambiguous probe is found for every target or until all probes have been

removed.” [78]

34

The algorithm has been tested on ”randomly generated sequences of different

lengths.” [78] However, effective analysis of the running times could not be obtained

because the complexity and running time are heavily dependent on the selection of

”filtering criteria.” [78] This selection of criteria is a problem facing algorithms in

this area.

3.5.3 Other Approaches To Probe Selection

This section features areas related to probe selection, but not necessarily algo-

rithms for probe selection. [117] offers a parallel architecture to help with probe

selection demands, while [67] offers a linear algebra solution to the probe selection

problem. Finally, [87] gives an entropy estimator for consideration. While all these

are related to probe selection they are not actual algorithms for solving the probe

selection problem via a statistical method or thermodynamic method.

Real-Time Primer Design for DNA Chips [117] Simmler et al [117], offers a

parallel architecture to assist in overcoming the hurdles associated with the complexity

of the probe selection algorithms and the hardware constraints faced. The main

concentration is that of primer design.

The hybridization conditions or ”parameters taken into account for selecting each

optimal primer set have major influence on the quality of the hybridization pro-

cess.” [117] Primer length, melting temperature (calculated the same as in [121]),

GC content, secondary structures (specifically self annealing, self end annealing, pair

annealing, and pair end annealing) are all parameters to be considered.

The primer length is the ”amount of bases that build the biological primer.” [117]

Therefore the length is a definition of the ”selectivity of the primer.” [117] The

melting temperature is considered to make sure the prospective primer has a melting

temperature that falls within the predefined temperature range of the experiment.

Due to the stability of the GC pairs, it is also critical to limit the number of these

35

bonds present. Finally the consideration of secondary structures is the most complex.

There are several ”criteria used for the detection of secondary structure effects”, these

will be explored next. [117]

The following ”score function” [117] is used to compare the ”primer sequences and

examines the possibility of a hybridization to itself or another primer.” [117]

s(pi, qj) =





2, if {pi, qj} = {A, T};
4, if {pi, qj} = {C, G};
0, else.

(3.20)

[117] uses p and q to represent to primers, that are being ”analyzed for secondary

structures.” [117] The secondary structure possibilities can be further broken down

into sub areas with different calculations for each.

The first to consider is when the primer hybridizes with itself. This is referred to

as self annealing (SA). [117] To make the SA calculation the primer and the ”opposite

version of the same primer” is used. [117] The ”calculation of the SA score starts

with the left shifted opposite primer, where only one overlapping position with the

original primer exists. It compares each single overlapping position using the score

function and accumulates each single score values to an alignment score...the opposite

primer is shifted one position at the right end of the original primer.” [117] The SA

function follows:

SA(p, q) = max
k=−(n−1),···,m−1

n∑

i=1

s(pi, qi+k) (3.21)

The next to consider is the self end annealing(SEA). The difference between the SA

and the SEA calculation is that the SEA calculation ”considers only those alignments

where the 3′ end of the original primer belongs to the overlapping region.” [117] The

other difference is the ”SEA score is accumulated only for these overlaps which are

continuous.” [117]

36

Pair annealing(PA), ”takes the interaction of different primers into account and

calculates all possible primer pairs.” [117] The last to consider is the pair end anneal-

ing(PEA). ”PEA is similar to SEA and evaluates all possible binding starting from

the 3′ end of the primer.” [117]

The previously discussed methods are ”combined into a scoring vector.” [117] The

following is the scoring vector.

scPCR(p, q) = (length(p), GC(p), Tm(p), sa(p), sea(p),

length(q), GC(q), Tm(q), sa(q), sea(q), pa(p, q), pea(p, q)).

[117] The ideal score vector follows.

scPCR,ideal = (lengthf , GCf , TM,f , 0, 0, lengthr, GCr,

TM,r, 0, 0, 0, 0)

[117] The ”melting temperatures, and GC content are set to the forward and reverse

primer.” [117] ”The deviation between the calculated value and the given value is

computed for each parameter of the scoring...each is then weighted.” [117]

lPCR is the quality score and is calculated as follows.

lPCR =
12∑

i=1

ki|sc(p, q)i − (scideal)i| (3.22)

[117] The scoring vector and the ideal vector for the chip are as follows.

scChip(p) = (lenght(p), GC(p), Tm(p), sa(p), sea(p)) (3.23)

[117]

scChip,ideal(p) = (lengthf , GCf , Tm,f , 0, 0) (3.24)

37

[117] The ”distance lChip is used for the selection the optimal primer is calculated”

as follows. [117]

lChip =
5∑

i=1

ki|sc(p, q)i − (scideal)i| (3.25)

[117]

The calculations for the quality score are extremely expensive in relation to compu-

tation time. Therefore Simmler et al [117] attempts to lessen the complexity through

a ”primer design architecture.” [117] The architecture suggested by [117] is a parallel

architecture.

The first part of the quality score calculation is that of computing ”several pa-

rameters for the given sequence pair,” [117] while the second part is the calculation

for the distance values. [117] The parameters that comprise the first part of the cal-

culation include the ”length, GC content, the melting temperature, and SA SEA, PA

and PEA value.” [117]

The first and second calculation portions of the quality score are independent

of one another and can thus be computed via a parallel architecture. [117] The

first architecture used to perform the first part of the quality score calculations will

compute the ”length, GC content, melting temperature, SA score, and SEA score.”

[117] ”These values are calculated for each single primer defined by the length range

and the window length.” [117] ”A sub score sc1 is calculated for each primer.” [117]

The primers are then filtered and selected, and stored ”using the window position,

the sub score, and the length of the primer.” [117]

The optimal primer pair is then selected, after primers are computed for both

windows. [117] The second architecture will calculate the PA and PEA values. [117]

The calculations of the PA and PEA values is done in parallel. [117] The parallel

approach decreases processing time. [117] ”The results are compared to the given

ranges, multiplied with the given weight and combined to the sub score sc2.” [117]

”The quality score is calculated using this sub score sc2 and adding the sub scores of

38

the forward primer and the reverse primer.” [117] The best primer is then selected

via a filter. [117]

The goal of [117] is to propose a method to ”accelerate the execution time of a

primer design application.” [117] This is accomplished, and the complexity of the

calculations are reduced to a level of acceptability. Since the main computation is

that of the annealing value, the complexity could be further reduced if the cost of the

annealing value could be further reduced. [117] It is also stated by [117] that ”config

assembly or a precise primer based database search (might) also gain (from) using an

annealing matrix.” [117]

Linear Reduction Methods for Tag SNP Selection: He et al, propose a

linear algebra solution to the tag SNP selection problem. The ”tag SNP selection

problem” is stated below. [67]

Problem 1 Given the full pattern of all SNP’s for a small sample, select minimum

number of tag SNP’s that will allow to reconstruct the full data set, i.e., reconstruct

any haplotype from tag SNP’s.

[67]

P is defined to be a population of haplotype vectors, n as the number of sets of

haplotype vectors H = hi|i = 1, · · · , n. [67] Each H has m coordinates.[67] ”Each of

n haplotype vectors corresponds to a haplotype drawn from the population P and

each of m positions corresponds to a SNP site in a haplotype.” [67]

”Tag SNP’s are k position-sites” t1, t2, · · · , tk, ti ∈ i, · · · ,m. [67] According to

He et al, it is possible to reconstruct a haplotype from ”its tag SNP vector-like

value” hk = (ht1 , · · · , htk). [67] The ”statistical tag SNP selection and haplotype

reconstruction problem (STTS)” is as follows:

Problem 2 Given a set of n haplotype vectors H on m sites and k < m, find k tag

sites t1, · · · , tk and a reconstruction function f = (f1, · · · , fm), such that for any hap-

lotype h ∈ P expected Hamming distance between h and its prediction h̄ is minimized.

39

[67]

The formulation given in this chapter does not ”specify any restrictions on what

tag SNP’s can be used when the value of a particular SNP is decided.” [67] The

assumption in He et al’s paper is that the population P is ”a set of already sequenced

haplotypes.” [67] Below is the ”new optimization problem formulation.” [67]

Problem 3 Given population as a set P of p haplotypes on m sites, a population

sample H ∈ P of n haplotypes and an integer k < m, find k tag sites t1, · · · , tk and a

reconstruction function f = (f1, · · · , fm), such that average Hamming distance |h, h̄|
nryerrnsny haplotype h∈P

H
and predicted haplotype h̄ = f(hk) is minimized.

[67]

It is common if sites are synonymous (which occurs frequently) to drop all but

one that are the same since no additional information is included. For He et al’s

[67] needs, a more general statement can be made. If there are k columns that are

”dependent”, then kth site can be dropped. ”Two sites are synonymous if and only

if they are collinear.” [67]

Theorem 4 Let H be a set of haplotypes obtained from two haplotypes by recombi-

nation events at g sites. Then the linear rank of H, rank(H)≤ g + 2.

[67]

The steps for linear reduction proposed in He et al’s paper are the following.

• Form the population sample H extract r = rank(H) of sites T (H) = (t1, · · · , tr)
forming a basis of columns-sites.

• For each column-site in fj,j = 1, · · · ,m in H find a unique representation

fj =
∑r

i=1 ai,jh(ti)

• Output the set of tag SNP’s T (H) and the reconstruction function f = (f1, · · · , fm).

40

[67]

The implementation of the reduction can be done using Gaussian elimination.

This is efficient. Using Gaussian elimination the echelon form of the matrix can be

found and it will be called H′. ”Let F be the matrix H′ in which zero rows are

dropped, so F is an rxm matrix...for any haplotype h with the tag SNP values hr,

the predicted reconstruction h̄ = f(hr) equals:

h̄ = hrF (3.26)

[67]

There are two linear reduction implementation compared. The first is ”where

the SNPs are taken in the order in which they are given in H” and the second is

the Randomized LR (RLR) where it is randomized. [67] Experimental results of

comparing the 3RLRP (Randomized LR with Post Processing with 3 times more

SNP’s), RLRP, RLR, and LR, show that for a population of size 1000, the error is

dependent on the size of the population, and ”the number of tag SNP’s is always

close to the size of the sample.” [67]

Further work is planned in order to ”apply tag selection to genotype data.” [67]

There is also some interest by [67] to ”explore different possibilities of combining (the

method) with block methods.” [67]

Estimating DNA Sequence Entropy: The goal of [87] is to present an entropy

estimator. The previous entropy estimators used the probability of ”n-tuples for large

n” [87], however, these estimates converged too slowly to be a good estimator for the

entropy. [87]

Other proposed methods include ”Biocompress”, which is inaccurate due to the

additional expense of compression. Thus the estimates are always too large. Another

previously suggested was the ”match length entropy estimator”. [87] The problem

with this estimator is that is assumes the sequence is generated by Markov. CDNA

41

is another program to estimate the entropy, but convergence has not been proven.

However, in the paper presented by [87], an entropy estimator is developed called

GTAC(Grammar Transform Analysis and Compression).

GTAC is universal, and based on the grammar based codes. The comparisons

done with GTAC and other estimators are based on the following guidelines:

• Is the code universal with respect to any stationary source? That is, will the en-

tropy estimate converge to the actual entropy if the sequence is long enough? A

limited one, such as the Match Length entropy estimator must make the addition

assumption that the source is a Markov process.

• Is the run time linear?

• How good are the algorithm’s entropy estimates?

[87]

A brief background in context free grammars, and grammar based code is pre-

sented to lay the ground work for an entropy estimator based on the context free

grammars, and grammar based code (proposed by Kieffer and Yang). The definition

of a context free grammar (CFG) is G = (V, T, P, S). V is ” a finite non-empty set of

variables, T is a finite non-empty set of terminal symbols that is disjoint from V , S

is a distinguished element of V called the start symbol, and P is a set of production

rules which map elements of V onto V ∪ T).” [87]

Kieffer and Yang’s proposition is that a sequence x is ”transformed into a CFG Gx

from which x can be fully recovered.” [87] Gx is then compressed, using ”arithmetic

coder”. [87] In order to retrieve x, Gx must adhere to the following rules:

• the language generated by Gx consist of only x.

• Gx is deterministic, that is, any variable in V appears only once on the left had

side of the production rules, P

42

• P does not contain the empty string on the right hand side of any rule.

• Gx has no useless symbols. That is, during the process of deriving x from the

production rule corresponding to the start symbol S, each production rule in

Gx is used at least once.

[87] If Gx adheres to the rules then it is classified as an ”admissible grammar”. [87]

w(Gx) is called the sequence that is ”obtained by concatenating the right hand

side of all production rules of Gx in some order and then deleting the first appearance

of each variable.” [87]

H(Gx) =
∑
s

n(s) log
|w(Gx)|

n(s)
(3.27)

[87] In the above equation n(s) is the number of times s appears in w(Gx). s is either

a variable or terminal symbol.

Theorem 5 According to arithmetic coding or enumerative coding, one can assign a

uniquely decodable binary codeword B(Gx) to each admissible CFG Gx(or its equiva-

lent form) such that:

|B(Gx)| = f(Gx) + H(Gx) (3.28)

where |B(Gx)| denotes the length of the binary codeword B(Gx), and f(Gx) repre-

sents the overhead paid to the universality of grammar based codes. In (2), f(Gx) is

negligible as compared to H(Gx) and is upper bounded, in the worst case scenario by

:

f(Gx) ≤ 5|Gx|+ α (3.29)

where |Gx| denotes the total entities in the right hand side o all production rules of Gx,

and α is the cardinality of the source alphabet and is 4 in the case of DNA sequence.

[87] From the above theorem it can be seen that the grammar transform should

provide H(Gx) of Gx and f(Gx) are small.

Irreducible grammars produce ”efficient universal compression algorithms.” [87]

Therefore, the following theorem:

43

Theorem 6 For any sequence x, let ζ(x) be the set consisting of all irreducible gram-

mars G representing x. Then the following hold:

• There is a constant c, which depends only the cardinality of the source alphabet,

such that for any sequence x

maxG∈ζ(x)|G| ≤ c|x|
log |x| (3.30)

where |x| denotes the length of x.

• For any stationary, ergodic source Xi
∞
i=1 with entropy H, the quantity:

max{| |B(G)|
n

−H| : G ∈ ζ(X1 · · ·Xn)} (3.31)

goes to 0 with probability one as n →∞.

[87] This leads to the following remark.

Remark 1 Part b of Theorem 2 represents the worst case scenario. The actual

convergence rate at which

|B(Gxn)|
n

−H (3.32)

where Gxn is an irreducible grammar representing Xn = X1 · · ·Xn, goes to 0 depends

on the source Xi
∞
i=1 and the irreducible grammar transform Xn → Gxn.

[87]

The suggested estimator uses a normalized grammar entropy H(Gx)
|x| of Gx.

Theorem 7 Let Xi
∞
i=1 be any data source. Then for a constant d > 0, the following

holds with probability at least 1− n−d:

|H(Gxn)|
n

≥ −1

n
log P (Xn)− f(Gxn)

n
− d log n

n
(3.33)

for any grammar transform x → Gx, where Xn = X1 · · ·Xn and P (Xn) denotes the

probability of Xn.

44

[87] This theorem leads to the following remark.

Remark 2 From information theory one can interpret (− log P (Xn))
n

as the entropy in

bits per letter of Xn. From theorems 1, and 2 it follows that for irreducible grammar

transforms, f(Gxn)
n

is quite small and upper bounded, in the worst case scenario by

O(1
log n

). Therefore, theorem 3, says that with a high probability, the entropy estima-

tors associated with grammar based codes with irreducible grammar transforms will

never severely underestimate the actual entropy.

[87]

The algorithm for GTAC is based on solving the ”longest non-overlapping patter

(LNP) problem.” [87] The problem can be formalized as follows:

Problem 4 (LNP Problem) Given a set of strings, P , find the longest substring

β such that β occurs in at least two non-overlapping positions somewhere in P .

[87] Adding the following constraints we can define GTAC.

• G = (V, T, P, S), when we let P be the set of all right hand sides of the production

rules P.

• The length of β is at least two.

[87]

The basic description of the steps of GTAC is that the algorithm finds and reduces

the LNP repeatedly, and in the process it creates a new rule. The following more

explicitly describes the algorithm based on if ”an LNP β appears in the following

form:” [87]

• A → α1 ∗ β ∗ α2 ∗ β ∗ α3

Then rewrite the previous rule as two rules.

45

• A → α1 ∗B ∗ α2 ∗B ∗ α3

B → β

In an LNP β appears in different rules,

• A → α1 ∗ β ∗ α2

B → α3 ∗ C ∗ α4

then rewrite the previous rules and introduce a new one as follows.

• A → α1 ∗ C ∗ α2

B → α3 ∗ C ∗ α4

C → β

[87] GTAC also have the ability to recognize reverse complements which of integral

necessity for an estimator. Reverse complements are handled by having two sets of

non-terminals. One set are just non-terminals, the others are the reverse comple-

ment. These sets are denoted A1, · · · and R1, · · · respectively. The algorithms deals

with reverse complements as follows. When given an input, the algorithm creates a

grammar. GTAC then finds the LNP. If ”there is two or more occurrences of β, create

a rule Ai → β ignoring any occurrences of β̄r(reverse compliment of β). If there is

only one occurrence of β and one of β̄r, then create a rule using one of the reverse

complement non-terminals, Ri → β, which means interpret the second occurrence of

the non-terminal in the right hand side of a rule as the reverse complement.” [87]

After the preceding has taken place the entropy can be calculated. [87] The following

is the algorithm to implement GTAC.

• GTAC(x) begin

create rule S → x ;

T=new suffix tree(x) ;

md = max depth(T) ;

Q[] = new array of queries(size=md);

46

• for each interior node n of T do

if(n is an LNP)

add n to Q[depth(n)];

end while;

• for l=md down To 2 do

while (Q[l] is non-empty) do

n=pop(Q[l])

B=new non terminal

• for each β[] = path to node n do

p[] = 2l chars to left of β[] in y;

for i=1 to 2l do

• if(suffix(p[i]) contains β[1] in T)

remove suffix in T after p[2l];

end for;

• for i=1 to l do

if(suffix(β[i]) goes beyond β[l] in T)

remove suffix in T after β[l]

end for;

• replace β with B in rules;

end for;

• create rule B → β;

end while;

end for;

estimate entropy based on grammar;

end alg;

47

[87]

The running time of the algorithm runs in linear time. Comparing GTAC to

Bicompress-2 shows that GTAC always gives better performance. In eight of the ten

results GTAC beat CDNA. Work is projected to attempt to combine GTAC with

other methods, since other approaches to estimating entropy currently converge too

slowly. [87]

3.6 Physical Design

This is the main step of the flow. Its inputs are pools of probes from the probe

selection step. In this step also, even though we face the conflict problem of the

nucleotides, the Chip program introduces new algorithms to reduce the number of

conflicts when we place and embed the probes. The Chip program also gives running

time for each algorithm. Physical design for DNA arrays is equivalent to the physical

design phase in VLSI design. It consists of four steps: deposition sequence design,

which is a basic optimization in DNA array design, is minimizing the number of

synthesis steps, or, equivalently, minimizing the number of photo-lithographic masks

used in the manufacturing process; test control, which is equivalent of built-in self-test

(BIST) structures in VLSI design, and aim at detecting catastrophic manufacturing

defects, i.e., defects that irrevocably compromise the functionality of the DNA chip.

Additionally, DNA chip designs incorporate control structures for ensuring reliable

interpretation of results; probe placement, which is responsible for mapping selected

probes onto locations on the chip, and probe embedding, which embeds each probe

into the deposition sequence (i.e., determines synthesis steps for all nucleotides in

the probe). The result of physical design is the complete description of the reticles

(photomasks) used to manufacture the microarray.

Deposition Sequence Design: Fundamental optimization in DNA array design

is minimizing the number of synthesis steps, or, equivalently, minimizing the number

48

of photolithographic masks used in the manufacturing process. Current methodolo-

gies use a predefined deposition sequence, typically periodic. Chip authors propose

to optimize the deposition sequence with respect to a given set of selected probe

pools, and add a feedback loop to provide updated design rules and parameters to

the probe selection step. So, the number of synthesis steps affects manufacturing time

and the cost of the mask set, and also directly affects the quantity of defective probes

synthesized on the chip. Therefore, a basic optimization in DNA array design is to

minimize the number of synthesis steps. In the simplest model, this optimization has

been reformulated as the classical shortest common super sequence (SCS) problem

[[82], [123]]

2-D Probe Placement: Under ideal manufacturing conditions, the functionality

of a DNA array is not affected by the placement of the probes on the chip, or the

particular order in which nucleotides of each probe are synthesized. In practice, since

manufacturing process is prone to errors, probe placement and synthesis schedules

affect to a great degree the hybridization sensitivity and ultimately the functionality

of the array. There are several types of synthesis errors that take place during array

manufacturing.

3-D Probe embedding: Recently, in [79], Kahng et al introduced the border

minimization problem for the asynchronous synthesis regime, which allows arbitrary

probe embeddings. Asynchronous synthesis has identical technological requirements

with synchronous synthesis. Asynchronous synthesis is already mandated by mini-

mization of the number of synthesis steps. At the same time, asynchronous embedding

offers more flexibility for reducing total border length.

The physical design problem of DNA chips is similar to that faced by VLSI design.

[12] Attempting to maximize the number of probes present on a chip while minimizing

the chip size. According to [12] there are four main steps in the physical design portion

of the design flow.

49

• Deposition Sequence Design

• Test Control

• Probe Placement

• Probe Embedding

[12] The four steps can be further explained as the minimization of ”synthesis steps,”

[12] for deposition sequence design. Test control is said by [12] to be analogous to

”built-in self-test structures in VLSI design.” [12] The probe placement and probe

embedding are placement of probes on the chip, and how the probes adhere to the

chip. The result of the physical design is the information needed for manufacturing.

[12]

3.6.1 Manufacturing:

In this step, DNA array goes through a combination of photolithography and com-

binatorial chemistry process, resulting in many of the arrays’ powerful capabilities.

With a calculated minimum number of synthesis steps, DNA arrays with hundreds

of thousands of different probes are packed at an extremely high density. This fea-

ture enables researchers to obtain high quality, genome-wide data using small sample

volumes. Manufacture is scalable because the length of the probes, determines the

number of synthesis steps required. This automated production process yields arrays

with highly reproducible properties, which reduces user set-up time by eliminating

the need for individual labs to produce and test their own arrays.

3.6.2 Evaluation of Placement Techniques for DNA Probe Array Layout

[81] The main focus of [81] work is to apply the concepts of VLSI design to

DNA probe placement. The primary concern is minimizing ”total border cost.”[81]

50

”Portioning based algorithms” are proposed, as well as a ”simple in-place probe re-

embedding algorithm,” an experiment is also conducted to evaluate the probe place-

ment currently available, and the ones given by [81].

The main problem addressed is the border cost problem. According to [81] the

problem is formally defined as ”finding a three-dimensional placement of the probes:

two dimensions represent the site array and the third dimension represents the nu-

cleotide deposition sequence S.” [81] Border length is computed as the ”number of

conflicts , i.e. pairs of adjacent exposed and masked sites in the mask.” [81] The

conflict distance between two probes is the number of ”conflict between the corre-

sponding columns.” [81] The total border length is the sum of the conflict distances

between pairs of probes. [81]

The partitioning algorithm proposed by Kahng et al [81]is based on the portioning

used for VLSI design. The algorithm is a new ”centroid-based quadrisection method

that applies the recursive partitioning paradigm to DNA probe placement.” [81] A

probe set R is quadrisecting into the following partitions ”R1, R2, R3, R4,” [81] and

each probe p that is in the probe set R is assigned to a partition of R. The partition

of R chosen is based on minimizing the conflicts. The conflict is calculated between p

and a ”centroid.” [81] There is one centroid for each of the four partitions of R. The

centroids are chosen from R based on their total distance to each other. The four

probes of R with the greatest distance are assigned as centroids of R. The following

is the centroid selection process formally defined.

• Input: Partition(set of probes) R

• Output: Probes C0, C1, C2, C3 to be used as centroids for the 4 subpartitions

– Randomly select probe C0 in R

– Choose C1εR maximizing d(C1, C0)

– Choose C2εR maximizing d(C2, C0) + d(C2, C1)

51

– Choose C3εR maximizing d(C3, C0) + d(C3, C1) + d(C3, C2)

– Return {C0, C1, C2, C3}

[81]

After the centroid selection is completed, and the max depth is reached, a place-

ment step is done. The placement step places the partitions probes into the section of

the chip corresponding to the partition. The following is the complete ”partitioning

based placement algorithm for DNA arrays.” [81]

• Input: Chip size SxS; set P of DNA probes

• Output: Probe placement which heuristically minimizes total conflicts

– Let l = 0 and Let L = maximumrecursiondepth

– Let Rl
1,1 = P

– For l = 0 to L− 1

∗ For i = 1 to 2l

· For j = 1 to 2l

· Let the set of (next-level) subpartitions be Rnext = {Rl+1
2i−1,2j−1 =

0, Rl+1
2i−1,2j = 0, Rl+1

2i,2j = 0}

· SelectCentroid (Rnext)

· For all probes pεRl
i,j

· Insert p into the yet-unfilled partition of Rnext whose centroid has

minimum distance to p

– For i = 1 to 2L

∗ For j = 1 to 2L

· Reptx(RL
i,j, R

L
i,j+1)

52

When comparing the new re-embedding algorithm ”given a two-dimensional probe

placement, improves the embedding of the probes without re-placing,” to the chess-

board and the batched greedy algorithm the following was noted. [81] The sequential

new algorithm takes a different outlook from the chessboard and greedy. Instead of

re-embedding ”an independent set of sites on the DNA chip,” it is proposed by Kahng

et al [81] that ”dropping this requirement permits faster propagation of the effects

of any new embedding, and hence convergent to a better local optimum.” [81] It is

shown that the ”re-embedding of the probes in a sequential row-by-row order leads to

a reduction in the border cost by 0.8% compared to the chessboard algorithm.” [81]

A current open problem given by [81] is that of ”developing a tighter lower bound.”

[81]

3.6.3 A Design Method of DNA chips for SNP Analysis Using Self Or-

ganizing Maps

[48] To solve the problem of chip size Douzono et al [48] uses self organizing

maps (SOM). The goal is to ”obtain common features of DNA sequences with small

number of probes which efficiently cover the target sequence with sufficient resolution

for finding the correct position of SNPs.” [48]

To attempt to minimize the size of the DNA chip, SOM was employed to select

probes. SOM will work for long sequences, which is untrue for the clustering approach.

[48] SOM has been explored before in reference to DNA chips, but this work uses SOM

for finding probes ”which were sufficient to represent the target sequences, detecting

feature of DNA sequences.” [48] The reason for choosing SOM is based on the fact that

”SOM can organize the generic feature of the DNA sequences by sufficient learning

of known DNA sequences.” [48] The following is the algorithm used to ”train the self

organizing map of fixed length probes.” [48]

1. Initialize the map of probes using random sequences of specified length.

53

2. Select a position of reference sequence (RS) randomly and find the closest probes

on the map to the sub-sequence which starts from that position.

3. Update the closest probe Pr found in step 2 as follows.

• For each symbol in the probe

• If the symbol is A (G,T,C)

• Then modify the value Pr. A(G,T,C) = Pr.A(G,T,C)+1

• If Pr.A(G,T,C)¿Th-U

• Then update the symbol to A(G,T,C) and set all Pr.A(G,T,C) to 0.

4. Update the probe Pr’ whose distance is closer than M-Dist from Pr geometrically

using the same procedure in step 3.

[48] ”Repeat steps 2-4, changing the value Th-U and M-Dist.” [48] Pr.A(T,C,G)

denote the ”intermediary value which are introduced to gradually update the discrete

values.” [48] If the threshold(Th-U) is reached the updating occurs. [48]

In order for a map to be trained, ” a reference sequence whose length are suffi-

ciently long to detect the common feature of DNA sequences,” [48] were used. [48]

”made SNP analysis using each set of the probes obtained form each map,” after

training. [48] The ”rates detecting SNPs of all single nucleotide changes,” [48] where

calculated. It was determined that longer probes give worse coving rates. This is due

to the fact that longer probes require more probes. It was also determined that the

algorithm presented by [48] is high in calculation time and is not suitable to ”train

larger maps.” [48]

The algorithm using SOM by [48] can in fact select small numbers of probes

that are in fact ”representative of the feature DNA sequence for SNP analysis.”

[48] Thus it is determined to be acceptable for SNP analysis, but unacceptable for

”sequencing by hybridization.” [48] This is true because an insufficient number of

54

probes are organized by the algorithm. This is one area where the algorithm needs

improvement. ”For sequencing by hybridization not enough probes will hybridize

to target sequences.” [48] In order for the algorithm to be used on larger maps,

improvement needs to be made in the algorithm. [48]

3.6.4 Soft Lithography for Oligonucleotide Arrays Fabrication

[68] design a chip fabrication method for DNA chips. The method is based on

a chemistry protocol. The overall goal is to reduce the expense, and increase the

accuracy and reliability of the chips. [68]

There are currently two approaches to probe fabrication. [68] The ”sequential

individual probe fixation,” is useful for ”low-density arrays.” [68] However, the ”on-

chip synthesis” is useful for high-density arrays. [68] The method used by [68] is of the

”on-chip synthesis” type. The method uses molecular stamping or soft lithography

to ”fabricate the oligonucleotide arrays.” [68]

The steps needed to perform soft lithography begin when the surface of the ”sub-

strate is treated so that it could bind single nucleotides.” [68] The following are the

steps necessary to conduct the ”stamping coupling.” [68] ”The mixed acetonitrile

solution with nucleoside monomer and tetrazole as reactants is spread on features

of the modification stamp, then transferred onto the modified substrate surface by

machine alignment stamping until acetonitrile is vaporized to nearly dryness,...the

nucleoside monomer on features of the stamp is coupled with the predefined regions

on the substrate.” [68] Therefore, the all spots on the chip except those which will

have an A are covered by the first stamp. The second stamp allows sites to couple

with T. The third is for C, and the fourth is for G. After four stampings, ”oxidation,

capping and detritylation are conducted.” [68] The next layer then precedes in the

same fashion.

55

[68] tested the soft lithography method by adhering the ”same oligonucleotide

sequence... to different feature of the ...slide.” [68] The results of the test showed

that the method was acceptable, and that it was ”steady, and could be reused.” [68]

3.7 Hybridization and Analysis

In this step, hybridization experiments are performed. During the hybridization

experiment label of each probe is quantified, and probes are diluted so that all are at

an equal concentration. Usually, a duplicate filter or micro-array is prepared for each

probe to be assayed. Probes are hybridized separately with each array. Filter arrays

are incubated with probe and washed in much the same way as is done for Southern

or Northern blotting. For glass microarrays, hybridization is done under a cover

slip. Dipping into wash solutions washes slides along with cover slips. Commercially

produced arrays come in cassettes, in which hybridization, washing, and detection is

done.

3.8 Experimental Study

Herpes B virus is a member of the subfamily Alphaherpesvirinae from the genus

Simplex virus. Herpes B (HB) virus is mild localized or asymptotic infection in its

internal hosts [106]. In contrast HB virus infection in foreign host, humans or monkeys

species other than macaques often result in encephalitis, encephalomyelitis, and death.

Herpes B virus genome is 156,798 bps long and includes 74 genes [106]. In this study,

we design a chip to carry on experiments to study HB virus. The chip should contain

20 to 50 probes for each of 74 genes. To do that we follow the following step: First,

we extract the genome sequence from GenBank using BioPerl [22] tools by giving the

genome id to Genbank [61]. After getting the genomic data, we feed it to GenMark

[61], which gives a set of ORF for Herpes B Virus. The ORF generated from GenMark

is going to be the input for Probe Selection step, Promide [110]. However, the format

56

provided by GenMark is not suitable for Promide input; therefore we use our parser

Parser1 as tool to change the format of the input. Parser1 get as input the ORF’s

name, their left and right physical position. After parsing the data, Parser1 produces

a set of ORF in FASTA format. The ORF generated form Parser1 will be provided

to Promide for probe selection [110] that is to generate a set of pools of probes. Since

melting temperature play very important role in DNA arrays, Promide gives a freedom

of choosing the melting temperature for probes. Checking melting temperature [116]

for probes will be offered by Sigma-Genosys. We use the temperature 60 and 65 as

best melting temperature to carry on our experiments. [[110], [78]], the generated

pool of probes from both temperatures has the same targets but the average pool

size for each temperature is different. The pool of probes spawned will be nosh to

the Chip program [79]. However, the pool of probes given is not in the proper format

of Chip’s input. For this reason we create the second parser for DNA array flow,

”Parser2”. Parser 2 will read probes from Promide- which in the form of ACTG-

and output them in the format-0123- where 0 stand for A, 1 for C, 2 for T and 3for

G. Beside converting the format of Promide, our parser can choose from the pool of

probes the number of candidate for each probe, which make a powerful tools when

we want to change the chip size. The pool of probes produce by Parser will be given

to Chip program to produce a chip and compare the number of conflict [80] for each

algorithm, CPU time usage of Herpes B virus and simulated data. We will repeat

the experiment for different chip size, temperature and number of candidate chosen

from each probe. The Chip Program does not allow us to read a real data [80]; it uses

random generated pool of probes. We added a module to the Chip program that can

read data from a file ”Readpool”. This module read real data file chooses a number

of candidate wanted for each probe. Readpool model measures a number of conflicts

between probes and gives CPU time for each algorithm. The goal of this study is to

design a chip for HB virus. To measure the quality of our design we have to minimize

57

Algorithm Herpes B Virus Simulated Data
(K=2) # Conflicts CPU Time(sec) # Conflicts CPU Time(sec)
Initial 107577 265992
Tsort 98830 0.17 231526 0.08

Tsp 95640 0.22 227960 0.09
Lalign 79254 0.25 189272 0.1

Reptx 2 64830 4.45 154766 1.58
Chessboard 63594 15.58 150812 7.1

Table 3.1. DNA Flow Results, K=1.

Algorithm Herpes B Virus Simulated Data
(K=2) # Conflicts CPU Time(sec) # Conflicts CPU Time(sec)
Initial 54205 265328
Tsort 49746 0.3 232954 0.14

Tsp 48541 0.34 227762 0.15
Lalign 42858 0.42 182972 0.16

Reptx 2 32098 7.84 149332 3.16
Chessboard 31498 20.93 146708 10.89

Table 3.2. DNA Flow Results, K=2.

the number of conflict between the probes. For this reason we perform the following

experiments in HB virus using the chip program. The results of the experiment, using

following parameters, are presented in Tables 1 and 2. Melting Temperature: In our

experiment, we choose 65 C as the melting temperatures for our DNA probe array.

Number of Candidates (K): We experimented with different values of K (number of

candidates) for each pools of probes: 1 and 2. Chip Size: We ran our Experiments

with chip size 60x60. Pool Size: In order to design a chip of 60x60, we selected 47

probes from each set of probes. The algorithms in Chip Program as well as Promide

were implemented in C. The parser1 was implemented in C++; however, parser 2

was implemented in Perl. We run all the code on Linux server. The experiments were

run on randomly generated data and herpes B Virus genome data.

58

Figure 3.1. Detailed DNA Array Design Flow

59

CHAPTER 4

UNIVERSAL TAG ARRAY (UTA) DESIGN

Universal Tag Arrays (UTA) consist ”of a set of DNA strings called tags, designed

such that each tag hybridizes strongly to its antitag (Watson-Crick Complement)”

and will not hybridize strongly to any other antitag. [72] Hundewale et al [72] report

that ”sample analysis is typically performed by a sequence of hybridization and single-

base extension reactions involving reporter probes consisting of application specific

primers ligated to antitags.” [72] UTAs have a defined design flow. Hundewale et al

[72] built on the work of Atlas et al [12] and defined this design flow as consisting of

five steps. The first step is the ”reading of genomic data,” then the ”open reading

frame (ORF) extraction.” [72] The next step is probe selection, then tag assignment,

and finally ”hybridization experiment and analysis.” [72] Below is the flow provided

by [72].

The two design areas for UTAs that are reviewed in this chapter are probe selec-

tion, and tag assignment.

4.1 Probe Selection

The Probe selection step is the step that defines the purpose of the array. [12]

According to Atlas et al [12] the ”challenge for probe selection is how to identify the

optimum probes for each gene.” Probe selection for UTAs is the same as for DNA

arrays. Therefore, it is clear that the same problems are faced in probe selection for

UTAs as was seen for DNA arrays. The methods discussed in the previous probe

selection section are applicable here as well.

60

Genome ID

ORF Extraction

Probe pool selection

Tag assignment

Hybridization experiment and

analysis

Figure 4.1. DNA Universal Tag Array Design Flow

Atlas et al [12] gives the following criteria for probe selection: ”probe should be a

unique sequence in the all-coding sequences of the target genome, should not be self-

complementary, be close to the 3énd of that gene, does not contain single nucleotide

multiple repeat regions, does not a representative of low complexity region and should

have almost the same GC percentage as that of the target genome.” [12]

4.2 Tag Assignment

Tag assignment is the assignment of tags to primers. This is a complicated issue

due the fact that undesired hybridizations between primers and tags can occur. [72]

The tag assignment problem is stated by Hundewale et al [72] as the assignment of

anti-tags/tags to primers.

61

Ben-Dor et al [19] presents a combinatorial tag design scheme, and later addresses

assay specific sources of error in [20]. Mandoiu et al [93], suggests an improved tag

set design and multiplexing algorithm for universal arrays, and later in [94] suggests

an exact and approximation algorithm for DNA tag set design.

4.2.1 Universal DNA Tag System: A Combinatorial Design Scheme

. Ben-Dor et al [19] in their paper address the problem of containing the maximum

number of probes in an array while minimizing cross-hybridization. Ben-Dor et al

[19], formalize the problem using a thermodynamic model of hybridization. [19] It

is also proven in their paper that the combinatorial approach is ”near-optimal” for

construction. [19]

The melting temperature of a duplex is when half of the duplexes are hybridized

and half are melted (single strand form).[19] This melting temperature can be used

to define the hybridization affinity of two oligonucleotides. [19] Using temperature

parameters C and H, then (C < t < H). [19] ”if a duplex has a melting temperature

of at most C, at most a fraction of the duplexes will form. Similarly, if a duplex has

a melting temperature of least H, then at temperature t, at least a fraction of the

duplexes will form.” [19] This leads to the formalization of the design goal. [19] The

goal is to create a tag/antitag system such that:

• for each tag U, t(U, Ū) ≥ H and

• for any two distinct tags U and V, t(U, V̄) < C

[19] ’t’ is the melting temperature, and C and H are temperatures. This would prevent

cross-hybridization [19] The 2-4 rule is used for estimating the melting temperature.

[19] The 2-4 rule gives the melting temperature to be 2 times the number of A-T

bases and 4 times the number of C-G bases. [19]

62

Formally the design problem according to [19] is to create a tag/antitag ”system

with a maximum number of tag-antitag pairs such that the following are satisfied:”

[19]

• for each tag-antitag pair (U, Ū) the melting temperature (using the 2-4 rule)

satisfies t(U, Ū) ≥ H

• for any two distinct tags U and V and for each oligonucleotide x that occurs as

a substring in both U and V, t(x, x̄) < C

[19] All strings are assigned numbers equal to half their melting temperature. [19]

The following definition from [19] formalizes the weights given to each string.

Definition 6 The weight w(s) of a string s = a1a2...ak is
∑k

i=1 w(ai) where w(A)=w(T)=1

and w(C)=w(G)=2. Given two parameters c and h, we call a set T of strings or ”tags”

a valid c-h code if the following two conditions are satisfied.

[19]

• Condition 1 Each tag has a weight of h or more

• Condition 2 Any substring of weight c or more occurs at most once

[19] The ”problem of finding a maximum valid c-h code” [19] is called the ”Com-

binatorial Tag Design Problem”. [19] The upper bound of the number of tags in a

valid c-h code is defined as the global upper bound divided by the minimum amount

of resource used by each tag. [19] The resource considered here is made up of those

substrings that are of weight c or more. [19] These substrings can only occur once

in a valid code. [19] These substrings are called c-tokens and are defined by [19] as

follows:

Definition 7 We call a string t a c-token if w(t) ≥ c, but does not properly contain

a suffix of weight ≥ c

63

[19] The tail weight of a T is the sum of all the tail weights of all the c-tokens contained

inside the tag. [19] The c-token tail weight is the weight of the last character of the

c-token. [19]

Lemma 9 Any tag in a valid c-h code has a till weight of at least h-c+1

[19] The upper bound on the tail weight of valid c-h code is based on conditions 1

and 2, and ”we use < n > to denote the set of strings with weight n ∈ N , and Gn, to

denote the number of such strings. [19] It is straight forward to derive the recurrence

G1 = 1, G2 = 2, and Gn = 2 ∗ Gn−2 + 2 ∗ Gn−1forn ≥ 3.” [19] The maximum total

weight of the tokens is derived from the tail weights of the different classes of tokens.

[19] Using ’S’ to denote strong characters (those characters with a weight of 2, either

C or G), and using ’W’ to denote weak characters (those characters with a weight of

1, either A or T). [19] The following table are the classes of tokens.

Max. occurrences Max.

Token class in valid code tail weight

< c− 2 > S 2 ∗G− c− 2 4 ∗Gc−2

S < c− 3 > S 4 ∗G− c− 3 8 ∗Gc−3

< c− 1 > W 2 ∗G− c− 1 2 ∗Gc−1

S < c− 2 > W 2 ∗G− c− 2 4 ∗Gc−2

[19]

This table leads to the following theorem that provides the upper bound.

Theorem 8 any valid c-h code contains at most 2∗Gc−1+6∗Gc−2+8∗Gc−3

h−c+1
tags.

[19] There are two parts to the construction, the first stage is to create a circular

string of tokens. [19] These tokens must only occur once. [19] The second portion

of the construction is to extract the tags from the circular string. [19] The extracted

tags must meet condition 1 and must have a weight of h or more. [19] In order to

satisfy condition 2 the weight of the overlap between tags must have a weight of at

most c-1. [19]

64

The second portion of the construction can be done using a greedy algorithm. [19]

Iterating through the circular string and finding the first tag of weight h or more, then

moving backward in the circular string until the weight of c or more is reached and

them moving forward one to begin the next tag. [19] Each tag will have a weight of

h+1 at most, and the overlap between tags is at least c-2. [19] If we call the circular

string C then we are in search of the at least w(C)
h−c+3

− 1 tags. [19] This is the lower

bound for the number of tags. [19]

Definition 8 (Circular String Problem) Given the parameters c > 0 and h > c,

construct a set C of circular strings that contain any substring of weight ≥ c at most

once, and maximize

[19]
∑

C∈c

(
w(C)

h− c + 3
− 1) (4.1)

[19] Encoding is given to each character in order to assign each character a meta

character and a bit. [19] A=(W,0), T=(W,1), C=(S,0), and G=(S,1) are the assign-

ments for the meta characters and bits respectively. [19] Each string is assigned a

meta-string and a bit string, based on the encoding given to each character. [19]

Every circular string is a meta-string that is composed of a repeated meta-string.

[19] It is guaranteed to not contain two of the same tokens since the meta-string will

be paired with a different sequence of the bit-string. [19] DeBruijn sequence is a

binary sequence in which each substring only occurs once. [19] These sequences are

constructed in linear time and it is assumed that a ”DeBruijn sequence of order k is

given for each k ∈ N .” [19] Starting from some fixed position with in the sequence

and labelling it the origin gives a string denoted by D2
k. [19]

If the meta-string contains the following properties:

• gcd(|µ| +1, 2|µ|)=1

65

• µW cannot be represented as a concatenation of two or more identical sub-

strings.

[19] the cycle will be:

Co(u) = ((µ ∗W)2|µ|, (Do
|µ|)

|µ|+1) (4.2)

[19] A more general case of the cycle is if α is the shortest period of µW, and set k =

k(µ) = gcd(|α|, 2|µ|). ”For any meta-strings µ with w(µ)=c, our code contains the k

cycles:” [19]

Ci(µ) = ((α)
2|µ|

k , (D2
|µ|)

|α|
k), 0 ≤ i ≤ k (4.3)

[19] The cycles constructed are:

C :=
⋃

w(µ)=c

k(µ)−1⋃

i=0

Ci(µ) (4.4)

[19]

All cycles are combined into one cycle before tags are extracted. Two cycles can

be pasted together if they share a ”common substring s with a weight of c-1”. [19]

The following two Lemmas explain the pasting method.

Lemma 10 For any two cycles A and B that share a common substring of weight

c-1, past (A,B) contains exactly the union of the tokens contained in B.

[19]

Lemma 11 There exists a sequence of past operations that merges all cycles of C

into a single cycle.

[19]

Proof 1 The central observation is that each cycle Ci(µ), where µ is a meta-string

containing k ≥ 1 strong characters, can be pasted with a cycle of the form Cj(v),

where v contains only k-1 strong characters. To see how this works, observe that the

66

circular meta-string of Ci(µ) can be expressed as a repetition of µ’S for some meta-

string µ’ of weight c-1. Consider an instance s of µ’ in Ci(µ). The string sT is a

token of weight c and , according to Lemma 6, does occur in some cycle Cj(v) with

v=µ’W. Observe that the meta-string v contains only k-1 strong characters. Since

both cycles Ci(µ) and Cj(v) contain s as a substring, they can be pasted together.

[19] This proof and the two previous Lemmas give the following theorem.

Theorem 9 The above construction yields at least

2 ∗Gc−1 + 6 ∗Gc−2 + 4 ∗Gc−3

h− c + 3
− 1 (4.5)

tags.

[19]

[19] claim that the Circular String Problem is solved optimally. Using the following

Lemmas the optimum performance of the solution to the Circular String Problem is

proven. [19] Allowing r to equal c/2, and assuming c to be even and C’ to be the set

of cycles. [19] A bound is placed on the number of weak characters and the number

of strong characters. [19]

Lemma 12 for k ∈ 0, · · · , r − 1, the number of instances of the meta-string skW in

C’ is at most 2kG2(r−k).

[19]

Lemma 13 C’ contains at most 2r instances of the meta-string Sr

Lemma 14 The number of strong characters in C’ equals the number of instances of

the meta-string SkW (over k = 1, · · · , r − 1), plus the number of instances of Sr.

[19] The next Lemma shows that the upperbound is in fact G2r−1.

67

Lemma 15
r−1∑

k=1

2kG2(r−k) = G2r−1 (4.6)

[19] This leads to the following theorem.

Theorem 10 The total weight of any valid set of cycles is at most Gc + 2 ∗Gc−1

[19]

This theorem proves that it is in fact optimal. However, it must be validated that

the assumption by [19] that ”violations are infrequent” is in fact true in order for

the method to be useful. [19] Choosing of antitags for screening is also a persistent

problem. [19]

4.2.2 Optimally Multiplexed Applications of Universal DNA Tag Systems

. The major focus of [20] is to show ways of avoiding cross-hybridization caused

by assay specific components. Primer to anti-tag cross-hybridization is the focus of

the paper by Ben-Dor et al [20]. The goal is more clearly stated as an attempt to

”maximize the multiplexing rate for a given set of SNPs, under given primer to antitag

cross-hybridization constraints.”[20] Ben-Dor et al [20] ”choose how to partition the

set of SNPs into assignable subsets and to assign tags to SNP sites” in order to

”control the multiplexing rate.” [20]

The multiplexing problem can be modelled using a bipartite graph.[20] One side

of the graph is the primers and the other side is the tags. [20] Each edge is a possible

cross-hybridization. [20] The cross-hybridization is between a primer and an antitag.

This means the problem is really ”the problem of covering the primer vertices, using

a minimum number of subgraphs of max degree one.” [20]

In order to formally define the problem it is necessary to label some variables.

The tag sequence will be denoted as T , the antitags that correspond to the tags will

be denoted as T̄ . P is the set of primers, m = |P |, n = |T |.[20] The graph will be

called G, the subset of the vertices will be R. The subgraph of G ”induced by R” is

68

GR.[20] V (G) is the set of vertices, E(G) is the set of edges of G.[20] An assumption

is made that all cross-hybridization is represented in binary matrix form.[20] Letting

A be a binary mbyn matrix, ”such that:”

Ap,t =





1 if p ∈ P potentially hybridizes with t̄ ∈ T̄ ,

0 otherwise.
(4.7)

[20]

Definition 9 A set of reporter molecules (p1, t1), · · · , (pk, tk) (with distinct pi ∈ P

and distinct tj ∈ T) is said t be non-cross-hybridizing if Api,ti = 0 for all i 6= j.

[20]

Definition 10 A set of k distinct primers p1, · · · , pk ⊆ P is called assignable if there

exists a non-cross-hybridizing set of reporter molecules {(p1, t1), · · · , (pk, tk)} for k

distinct tags t1, · · · , tk ∈ T .

[20]

Definition 11 A sub-permutation matrix is a square 0-1-matrix whose rows and

columns can be permuted such that all entries outside the main diagonal are 0

[20]

Observation 1 A set of primers Ṕ ⊆ P is assignable if and only if Ṕ corresponds

to the row set of a sub-permutation sub-matrix of A.

[20] From the above observation, another observation can be made from viewing A

as a bipartite graph, and G = (P, T, A).[20] If A is a bipartite graph then P are the

vertices of primers, T are the vertices that are tags, and the edges represent the cross-

hybridization.[20] Furthermore, ” a subgraph H = (′P, ′T, ′E) of G is called balanced

if |′P | = |′T |. H is an assignable subgraph if H is a balanced induced subgraph of

maximum degree 1.” [20]

69

Observation 2 A matrix A with a set of rows P and a set of columns T is a sub-

permutation matrix if and only if the bipartite graph G = (P, T,A) is an assignable

graph.

[20] These observations lead to the formal statement of the problem.[20]

Problem 5 Minimum Primer cover (MPC). Given a bipartite graph G = (P, T, A),

find a minimum primer cover of P .

[20]

Ben-Dor et al [20], prove that the MPC problem is NP-complete, ”even if the

number of tags is required to be greater or equal to the number or primers.” [20]

Every primer can have ”edges with at most d tags.” [20] This is due to the fact

that every primer in the primer set P must be bound by some constant d.[20] This

bounding is due to the fact that primer substrings of any excessive length would lead

to cross hybridization.[20] d is some constant that bounds the degree of every p ∈ P .

[20] the ”optimum solution of cardinality” is ”at least 2”, for the input MPC instance.

For d=1, ”polynomial for m ≤ n.” [20]

Lemma 16 Let G = (P, T,A) ba 1-bounded instance of MPC, with m ≤ n. Then a

minimum primer cover for G can be found in polynomial time.

[20] The result here is a ”polynomial algorithm”, that will produce a solution ”of

cardinality at most m
n

d+1
for a d-bounded input instance.” [20]

Theorem 11 Let G = (P, T, A) be a d-bounded input instance of MPC. Then we can

find, in polynomial time, a solution to MPPC on G of cardinality at most m
n

(d+1)

It can be noted here that for m ≤ n the approximation ratio is
m
n

d+1

2
, and for m > n

”at least m
n

subgraphs are needed in order to cover the primer set.” [20]

Ben-Dor et al [20], next addresses the greedy approach to MPC. The greedy algo-

rithm works by finding the largest assignable subset and removing it recursively.[20]

The downfall to this is the fact that it is NP-hard.[20]

70

Problem 6 Maximum Assignable Primer set (MAP). Given a bipartite graph G, find

a maximum assignable subgraph of G.

[20] As stated earlier the MAP problem is NP-hard and is proven to be so by Ben-Dor

et al [20].

”Portioning a bipartite graph into vertex-disjoint assignable subgraphs that cover

the set of primers” can be useful only when ”the number of primers is at most the

number of tags.” [20]

Problem 7 (Minimum Partition into disjoint Assignable Subgraphs (MPDAS)). Given

a bipartite graph G = (P, T, A), find a minimum set of vertex-disjoint assignable sub-

graphs that cover P .

[20] The problem of MPDAS is also a NP-complete problem.[20]

Theorem 12 Let G = (P, T, A) be an input bipartite graph in which the degree of

each p ∈ P is bounded by d, and m ≤ n. Then we can find, in polynomial time a

solution to MPDAS on G of cardinality at most 2D.

[20] If the number of tags is greater than the number of primers, smaller covers can be

produced. [20]The suggestion of Ben-Dor et al [20] is that MPDAS is useful for ”multi-

plexing the solution-phase experiments, it is possible to perform the genotyping using

a single array, at the cost of performing slightly more solution-phase experiments.”

[20] This is in reference to the method of ”introducing blocking oligonucleotides”, in

between the extension and hybridization steps. [20]

The first algorithm to address MPC is based on the theoretical analysis, and

the second algorithm is based on the set cover approximation.[20] Built in the first

algorithm is a cover ” with size at most m
n

d+1
, for any set of primers with degree

bounded by d.[20]

Algorithm 2 1. ε ← 0

71

2. Unmark all vertices of T

3. Sort the tags in T in non-decreasing order based on their degrees in GP∪T

4. T́ ← 0

5. While there are unmarked tags do:

(a) Find an unmarked tag t ∈ T or t ∈ T́ with lowest degree

(b) Mark t

(c) If T́ ∪ t is assignable then T́ ← T́ ∪ t

6. Find a set Ṕ of —T́— primers that form a non-cross-hybridizing set with T́

7. ε ← ε ∪ Ṕ (add Ṕ to the cover)

8. Update P ← P or P ← Ṕ

9. If P = 0 then halt else go to step 2

[20] The second algorithm needs some clarification for step number 3. In step number

3 a primer is removed the method by which the primer is selected is based on the

primer’s potential. [20] The potential is the sum of the potentials of the neighbor

tags. [20] The primer that is removed is the primer with the maximum potential.[20]

The potential of a tag of degree w is 2−w.[20] The additional rule of subtracting 1
2

is used when a primer is next to a tag of degree 1.[20] The following is the second

algorithm based on the set cover.

Algorithm 3 1. ε ← 0

2. Ṕ ← P

3. While Ṕ is not assignable remove a primer of maximum potential from Ṕ .

4. ε ← ε ∪ Ṕ (add Ṕ to the cover).

72

5. Update P ← P or P ← Ṕ .

6. If P = 0 then halt else go to 2.

[20]

The second algorithm based on set cover outperformed the first algorithm.[20]

This was true for all simulations. [20] There are many assay specific sources of error

including primer to antitag cross-hybridization, sandwich cross-hybridization, primer

to primer mis-extension, and primer to tag mis-extension. [20] only address the

problem of primer to antitag cross-hybridization. Thus the other are still possible

sources of error and should be researched more completely for possible solutions.

4.2.3 Improved Tag Set Design and Multiplexing Algorithms for Univer-

sal Arrays

. Mandoiu et al, address two problems with tag set design. The first problem ad-

dressed is the tag set design problem that was defined by [19]; however here [19] work

is extended to include the problem of anti-tag to anti-tag hybridization. The second

problem addressed is the tag assignment problem. Mandoiu et al [93] attempts to im-

prove the multiplexing rate. The goal of improving the multiplexing rate comes from

the fact that it is not ”possible to assign all tags to primers in an array experiment

due to unwanted cross-hybridizations.” [93]

More generally the universal array tag set design problem is maximizing the

tags.[93] If the number of tags is maximized then more ”reactions ... can be mul-

tiplexed using a single array.” [93] In order for the assay to function correctly the

following constraints are placed on the tags and antitags.

• (H1) Every antitag hybridizes strongly to its tag;

• (H2) No antitag hybridizes to a tag other than its complement and

• (H3) There is no antitag to antitag hybridization.

73

[93]

As was used in [19], ”hybridization affinity” is approximated using the 2-4 rule.[93]

However, the constraints on tags has been modified from that defined by [19] . The

departure from [19] is that [19] allowed tags of unequal length.[93] However, [93]

requires that C1, C2, and C3 be met. The following describes the requirements for

valid tags.

Definition 12 For given constants l, h, and c with l ≤ h ≤ 2l, a set of tags T ⊆
A,C, T, G is called valid if the three following conditions are satisfied:

• (C1) Every tag in T has a weight h or more

• (C2) Every DNA string of weight c or more appears as substring at most once

in the tags of T

• (C3) If a DNA string x of weight c or more appears as a substring of a tag, then

x̄ does not appear as a substring of a tag unless x = x̄.

[93] Formalization of the tag set design problem is given in the following:

Problem 8 (Universal Array Tag Set Design Problem:) Given constants l, h,

and c with l ≤ h ≤ 2l, find a tag set of maximum cardinality.

[93] A new upperbound is calculated based on the new constraints of the tags, and a

greedy algorithm for creating tag sets is proposed.[93]

Using c-tokens and tail weights described by [19] , the following Lemma defines

the number of c-tokens that are allowed in a valid tag.

Lemma 17 Let c ≥ 4. Then the total number of c-tokens that appear as substrings

in a valid tag set is at most 3Gc−2 + 6Gc−3 + G c−3
2

if c is odd, and at most 3Gc−2 +

6Gc−3 + 1
2
G c−3

2
if c is even. Furthermore, the total tail weight of c-tokens that appear

as substrings in a valid tag set is at most 2Gc−1 + 4Gc−3 + 2G c−3
2

if c is odd and at

most 2Gc−1 + 4Gc−3 + G c−3
2

+ G c−4
2

74

[93]

Theorem 13 For every l, h, c with l ≤ h ≤ 2l and c ≥ 4, the number of tags in a

feasible tag set is at most. min{
3Gc−2+6Gc−3+G c−3

2

l−c+1
,

Gc−2+6Gc−3+ 1
2
G c−3

2

h−c+1
}

for c odd and at most

min{
Gc−2+6Gc−3+ 1

2
G c−3

2

l−c+1
,
2Gc−1+4Gc−3+G c−3

2
+G c−4

2

h−c+1
}

for c even.

[93]

The greedy algorithm to construct the tags, begins with an empty set of tags.[93]

During each iteration the next letter in the DNA alphabet is added.[93] If the added

letter completes a c-token that has already been used in the current tag or in a

previous tag the letter is removed and the next letter in the alphabet is tried.[93]

When there are no further choices of letters backtracking is done to begin the sequence

of trying to add a letter again.[93] This continues until a complete tag is formed.[93]

Once a tag is generated the tag is saved, and ”backtrack to the last letter of its first

c-token.” [93]

To avoid the formation of nucleation complexes that may produce undesired hy-

bridization, primers are assayed using large number of arrays and the assignment of

antitags to primers adhere to the following constraints.[93]

• (A1) If primer p forms the configuration where a primer and a tag other than

the compliment of the ligated antitag, then antitag t̄’ is not assigned to any

primer in array experiments in which p is assayed, unless it is assigned to p

itself.

• (A2) If primer p forms the configuration where a primer and an antitag are

hybridized, then antitag t̄′ is not assigned to any primer in array experiments

in which p is assayed (this time assigning t̄′ to p is not allowable).

75

• (A3) If primers p and p’ form the configuration where two primers hybridize,

then they are assayed on different array experiments.

• (A4) Antitag t̄ is never assigned to primer p if they form the configuration in

which two reported probe substrings hybridize and at least one of which straddles

a ligation point, with t’=t.

• (A5) If antitag t̄ is assigned to primer p in an array experiment, and the result-

ing reporter probe forms the configuration in which two reporter probe substrings

hybridize and at least one of which straddles a ligation point with t’ 6= t, then

antitag t̄’ is not assigned to any primer in that experiment.

[93] The following is the formalized multiplexing problem.

Problem 9 (Universal Array Multiplexing Problem) Given primers P = p1, · · · , pm

and tag set T = t1, · · · , tm, find a partition of P into the minimum number of

assignable sets.

[93] Since in most cases there are multiple primers available, multiplexing rates can be

increased by combining the primer selection and tag assignment.[93] This maximizes

the hybridization patterns available.[93] Proposed recently in other research is a mod-

ification of primer selection tools.[93] The idea is that the tools will return ”pools”.[93]

These ”pools” will contain all primer candidates.[93] A primer pool is ”assignable if

we can select a primer for each pool to form an assignable set of primers.”[93]

Problem 10 (Pooled Universal Array Multiplexing Problem) Given primer

pools P = P1, · · · , Pm, and tag set T = t1, · · · , tm, find a partition of P into the

minimum number of assignable sets.

[93] [93], only addresses solving the pooled multiplexing problem when (Al) is en-

forced. The authors purport that for the constraint (A2) the solution for (A1) can

be extended, and for constraints (A3-A5) the best solution is to re-assign primers

76

violating the constraints.[93] The algorithm for solving the multiplexing problem for

only (A1) constraint being enforced follows.

Algorithm 4 (Primer pool assignment algorithm) Input: Primer pools

P = {P1, · · · , Pm} and tag set T

OutputTriples (pi, ti, ki), 1 ≤ i ≤ m, where pi ∈ Pi is the selected primer

for pool i ti is the tag assigned to pi and ki, is the index of the array on

which pi is assayed

k ← 0

While P 6= 0 do

k ← k + 1

P ′ ← P

While |X(P ′)|+ |Y (P ′)| < |P ′| do

Remove the primer p of maximum potential from the pools in P ′
If p’s pool becomes empty then remove it from P ′
End While

Assign pools in P ′ to tags on array k using Lemma 2

P ← P
P ′

End While

[93]

Lemma 18 A set P of primer pools is assignable iff |X(P)|+ |Y (P)| ≥ |P |

[93]

For each iteration of the algorithm Lemma is checked, to see if it is satisfied.[93]

If Lemma is not satisfied then a primer of maximum ”potential” is deleted.[93] If the

last primer is deleted then the pool is deleted from the set of pools.[93]

77

The result of using the greedy algorithm for tag selection, using constraint (C3)

halved the number of tags selected compared to only using (C1) and (C2).[93] The re-

sults for the integrated primer selection and tag assignment, showed marked improve-

ment in multiplexing rates, this was achieved with the pooling aware algorithm.[93]

None of the pool aware algorithms seems to consistently out perform the others, so

the best suggestion is to run all and choose the one that gives the best solution.[93]

The multiplexing rate could be examined and evaluated to see if improving the rate

is possible.

4.2.4 Exact and Approximation Algorithms for DNA Tag Set Design

. Mandoiu et al [94] focus on solutions for the design of tag sets for universal

tag arrays. [94] give an ”integer linear programming formulations for two previous

formalizations of the tag set design problem.”[94] Also presented is a correlation be-

tween the tag set design problem and the ”problem of packing the maximum number

of vertex-disjoint directed cycles in a given graph.” [94]

The design of tag sets contains two types of constraints.[94] The first type of

constraint is the stability constraint, and the second type is the non-interaction

constraint.[94] The hybridization model used by Mandoiu et al [94] is the model used

by Ben-Dor et al [19] . The model used by Ben-Dor et al [19] is the c-token hybridiza-

tion model. The most basic description of the c-token model is that hybridization

only occurs if ”one oligo contains as substring the complement of a substring of weight

c or more of the other, where c i8s a given constant.” [94]

The stability constraint used by Mandoiu et al [94] is both the predetermined

length for tags and matching lengths (l, where l = 20) for tags as used by Affymetrix’s

GenFlex arrays, and the variable length tag with minimum length h (h here is a

predefined constant), presented by Ben-Dor et al [19] .[94]

78

The non-interaction constraints used by Mandoiu et al [94] are both of the follow-

ing, denoted as C and C̄ respectively.

(C) ”For every feasible tag set τ , let Nτ (x) ≤ 1 for every DNA string x of weight c

or more.” [94]

(C̄) ”For every feasible tag set τ , Nτ (x) + Nτ (x̄) ≤ 1 for every DNA string x of

weight c or more.” [94]

The notation used by Mandoiu et al [94] is for the previously defined constraints is

γε1,multiple specifies ”whether or no the c-token uniqueness constrain is enforced.”

[94] αεl, h specifies which tag length constraint is used, and βεC, C̄ specifies if the

anti-tag/tag constraint is used or the anti-tag/tag, and anti-tag/anti-tag constraint

is used.[94] The ”maximum tag set design problem with constrains α, β, γ, is denoted

MTSDP(α|β|γ).” [94]

Other notations used by Mandoiu et al [94] are the following:

• ”Let N denote the number os c-tokens”. [94]

• ”C = c1, · · · , cN denote the set of all c-tokens”. [94]

• ”Let C0 ⊆ C denote the set of c-tokens of weight c + 1 that end with a weak

base (of the form S < c− 2 > W)” [94]

• ”Let C2 ⊆ C denote the set of c-tokens of weight c that end with a strong base

(of the form < c− 2 > S)” [94]

[94]

The first integer linear programming formulation is that of MTSDP(l|C|1).[94]

The ”ILP (integer linear programming) formulation uses an auxiliary directed graph

79

G = (V,E) with V = s, t ∪ ⋃
1≤i≤NVi, where Vi = vk

i ||ci| ≤ k ≤ l.” [94] ”G has a

directed arc from vk
i to vk+1

j for every triple i, j, k such that |ci| ≤ k ≤ l− 1 and cj is

obtained from ci by appending ta single nucleotide and removing the maximal prefix

that still leaves a valid c-token.” [94] ”G also has an arc from s to every vεVfirst,

where Vfirst = v
|ci|
i |ciε

C
C0
∪ v

|ci|+1
i |ciεC2, and an arc from vl

i to t for every l ≤ i ≤ N .”

[94]

The following is the integer program:

maximize
∑

vεVfirst

(xv) (4.8)

subjecttoxv =
∑

eεin(v)

(ye) =
∑

eεout(v)

(ye), (
vεV

s, t
(4.9)

∑

vεVi

(xv ≤ 1), 1 ≤ i ≤ N (4.10)

xv, yeε0, 1,
vεV

s, t, eεE
(4.11)

∑

vεVi∪Vj

xv ≤ 1, ciεC0 cj = ĉi i < j (4.12)

[94]

Mandoiu et al [94] then describe two algorithms for MTSDP(l—C—multiple), and

note that the other variants of MTSDP(*—*—multiple) can be handled with same

algorithms containing minimal changes.[94]

The first algorithm uses an alphabetic tree search algorithm, that ”marks a c-token

as unavailable only when a complete tag is found.” [94] ”The algorithm performs

an alphabetical traversal of a 4-ary tree representing all 4l possible tags, skipping

over subtrees rotted at internal vertices that correspond to tag prefixes including

unavailable c-tokens.” [94] Mandoiu et al [94] notes that the ”alphabetic tree search

algorithm produces a maximal feasible set of tags τ .”

80

By defining a tag to be periodic if ”t is the length l prefix of an infinite string

x∞, where x is a DNA string with |x| < |t|,” [94] the following Lemma can be

formulated.[94]

Lemma 19 For every c and l, there exists an optimal tag set τ in which every tag

has the uniqueness property or is periodic.

[94] Periodic tags ”make better use of the limited number of available c-tokens,” than

the tags that fit the uniqueness property.[94] This is due to the fact that ”a periodic

tag whose shortest period has length p contains as substrings exactly p c-tokens,”

and those tags that meet the uniqueness property ”contain between l− c+1 and l−c
2+1

c-tokens.” [94] Therefore a ”feasible solution for MTSDP(l—C—multiple) consisting

of n tags.” is the ”vertex-disjoint packing of n cycles in Hc.” [94] Here Hc is a graph

with C ”as its vertex set, and in which a token ci is connected by an arc to token cj iff

ci and cj can appear consecutively in a tag, i.e., iff cj is obtained from ci by appending

a single nucleotide and removing the maximal prefix that still leaves a valid c-token.”

[94] The problem can then be expressed as the ”Maximum vertex-disjoint directed

cycle packing problem”. [94] The problem is formally formulated as follows:

Given a directed graph G, find a maximum number of vertex-disjoint directed cy-

cles in G.[94]

It can be proven that the solution to the maximum vertex-disjoint directed cycle

packing problem is ”APX-hard even for regular directed graphs with in-degree and

out-degree of 2.” [94] Mandoiu et al [94] used a greed algorithm to solve the prob-

lem. They enumerated ”possible tag periods in pseudo-lexicographic order and check

for each period if all c-tokens are available for the resulting tag,” and [94] refer to

”this algorithm as the greed cycle packing algorithm.” [94] Further extensions are

81

mentioned by [94]. One open problem listed by [94] is that of finding a ”tight upper

bound and exact method for MTSDP formulations.” [94]

4.2.5 Multiplexed Genotyping with Sequence-Tagged Molecular Inver-

sion Probes

[17] Baner et al [17] present a ”strategy that combines DNA detection specificity

and sensitivity with the potential to analyze large numbers of target sequences in

parallel.” [17] The steps used are:

1. ”padlock probes with universal tag sequences were reacted with target DNA”

2. ”molecularly inverted”

3. ”amplified together”

4. ”identified in a multiplex analysis ”

/citebaner03 The method proposed by Baner et al [17] is purported to result in the

”lowering of the scale, cost and sample requirements of high-throughput genotyping.”

[17]

Padlock probes were used to create ”linear dimeric molecules,” [17] that are ”easily

distinguished from circularized probes by exonucleolyic degradation.” [17] This re-

duces the rise of ”nonspecific amplification products,” as seen when PC amplification

probes are used to evaluate target sequences. The ”exonuclease treatment protocol”

removes a significant number of the dimeric molecules and little effects are seen in

the circularized probes. [17]

The molecular inversion probe genotyping was accomplished by ”redesigning the

padlock probes to be locus specific to avoid the need for balancing allele-specific probes

at every locus.” [17] This was done ”before increasing the multiplexing level.” [17]

This is accomplished by leaving out the ”polymorphic nucleotide a the 3énd.” [17] The

gap that was created in this process was then filled during ”four separate allele-specific

82

polymerization and ligation reactions.” [17] The melting temperature was considered

during tag selection since all were intended to have similar melting temperatures.

The base composition was also considered in order to ensure the similarity in base

composition. When these are considered the tags can all hybridize under the same

conditions.

After the amplification is complete, ”the products are hybridized on four DNA

microarrays and the components are deco0ded by measuring the fluorescence signals

at the corresponding complementary tag site on the DNA array.” [17]

The results show that ”16% of the probes were inactive during a single synthesis.”

[17] The projection of the problem as assumed to be due to ”errors in the database,

probe design or failures of oligonucleotide synthesis, probe synthesis, ro the assay

itself.” [17] Out of 23,450 assays, 21,336 where called ”full genotypes,” [17] and 1,746

”half genotypes.” [17]

83

CHAPTER 5

PARALLEL STATISTICAL-VALIDATION OF
CLUSTERING ALGORITHMS FOR THE ANALYSIS OF

MICROARRAY DATA

Currently, clustering applications use classical methods to partition a set of data

(or objects) in a set of meaningful sub-classes, called clusters. A cluster is therefore a

collection of objects which are ”similar” among them, thus can be treated collectively

as one group, and are ”dissimilar” to the objects belonging to other clusters. How-

ever, there are a number of problems with clustering. Among them, as mentioned

in [46], dealing with large number of dimensions and large number of data items can

be problematic because of computational time. In this chapter [13], we investigate

all clustering algorithms used in [46] and we present a parallel solution to minimize

the computational time. We apply parallel programming techniques to the statisti-

cal algorithms as a natural extension to sequential programming technique using R.

The proposed parallel model has been tested on a high throughput dataset. It is

microarray data on the transcriptional profile during sporulation in budding yeast.

It contains more than 6,000 genes. Our evaluation includes clustering algorithm scal-

ability pertaining to datasets with varying dimensions, the speedup factor, and the

efficiency of the parallel model over the sequential implementation. Our experiments

show that the gene expression data follow the pattern predicted in [46] that is Diana

appears to be solid performer also the group means for each cluster coincides with

that in [46]. We show that our parallel model is applicable to the clustering algo-

rithms and more useful in applications that deal with high throughput data, such as

gene expression data.

84

5.1 Introduction

In fact, there has been a great deal of work on gene expression analysis, each using

distinct data sets of gene expression, cluster-ing techniques. However, the majority of

these works has given emphasis on the biological results, with no critical evaluation of

the computational time of the clustering algorithm used in high dimension data. In

the few works in which clustering algorithms was applied with gene expression data,

the focus was only on the evaluation of the proposed validation methodology. As a

consequence, so far, with the exception of [46], there is no study on which clustering

methods are used in parallel computing for the analysis of data from high through-

put gene expression time series. Based on this, a data driven comparative study of

parallel computing, clustering and validation methods used in the literature of high

throughput gene expression analysis is accomplished in this chapter. More specifi-

cally, parallel computing in R is used which allows a programmer to employ several

machines, or processors, during program execution. This means that set of algorithms

must be partitioned in such a manner as to be made optimal for the statistical prob-

lem at hand. In terms of clustering algorithms, six algorithms are analyzed in the

experiments. In terms of validation methods, versions of three validation methods are

used to compare the clustering algorithms. All the experiments are performed with

data sets of time series gene expression of the yeast. This data was chosen because

there is a wide availability of public data, as well as the comparison of the time taken

by [46] and the solution proposed in this chapter.

5.2 Algorithms And Implementation

First we implement each of these clustering techniques using S+ for the sporulation

data. Chu et al. [37] advocated grouping the expressed genes into seven temporal

classes on biological grounds. Following Chu et al. [37], the number of clusters was

set to seven in each case. As expected, there are some differences in the results

85

of the various algorithms. Overall, K-means and Diana seem to be most effective

in achieving good separation and almost distinct class boundaries. One potential

problem with Fanny is that it typically produces only few distinct hard clusters. For

this data set, only three clusters were produced, even though seven were desired.

Further details, including pictures, can be obtained from the supplementary website.

5.3 Results and Discussion

From table 1, it appears that the parallel solution follow the pattern predicted by

[46]. More specifically, the mean for each cluster did not change for all the algorithms

using all the validation methods, and Fanny had the worst performance. On the other

hand, we notice that the time taken by each process is slightly increased by couple of

seconds due to the communication between the slave and the master program.

Table 1.? the weight of each cluster and parallel cpu time for each algorithm

86

CV Cl4 Cl5 Cl6 Cl7 Cl8 Cl9 Cl10 Cl11 Cl12 Time

HC1 0.225 0.22 0.164 0.185 0.182 0.227 0.244 0.26 0.252 12

KM1 0.28 0.3 0.158 0.319 0.402 0.37 0.384 0.388 0.38 12

DI1 0.144 0.198 0.266 0.314 0.327 0.365 0.376 0.361 0.36 16

HC2 0.478 0.477 0.497 0.511 0.525 0.551 0.526 0.515 0.519 17

MO1 0.451 0.507 0.501 0.53 0.591 0.582 0.587 0.592 0.597 17

KM2 1.132 0.867 0.453 0.701 0.906 0.88 0.917 0.905 0.881 18

DI2 0.437 0.534 0.807 0.869 0.901 0.948 0.895 0.822 0.826 19

MO2 3.256 3.156 3.132 3.001 3.102 3.005 2.985 2.899 2.851 21

PLS1 0.13 0.126 0.288 0.337 0.213 0.22 0.255 0.253 0.258 240

PLS2 2.224 2.215 2.315 2.173 2.171 2.403 2.436 2.756 2.768 245

FA1 0.157 0.202 0.272 0.277 0.314 0.282 0.256 0.439 0.363 988

FA2 0.625 0.542 0.671 0.655 0.71 0.645 0.59 0.963 0.872 1004

KM3 2.414 2.358 2.07 2.065 1.996 1.965 1.912 1.869 1.837 1732

DI3 2.331 2.28 2.251 2.219 2.197 2.18 2.12 2.03 2.002 1830

HC3 3.434 3.431 3.324 3.321 3.306 3.265 3.242 3.226 3.214 2143

MO3 2.985 2.6 2.59 2.351 2.229 2.213 2.15 2.185 2.179 2197

PLS3 3.436 3.412 3.431 3.412 3.281 3.278 3.233 3.224 3.19 2428

FA3 2.658 2.6 2.626 2.648 2.625 2.619 2.606 2.741 2.7 2819

5.3.1 Speed up and efficiency

Hypothetically, speedup, or Sp, should be perfectly linear when using an embar-

rassingly parallel algorithm. This is a somewhat unrealistic assumption, given the

fact that large amounts of data must be transferred to the various nodes for the use

in the computations. In addition to this, the parallel solution, or their contributions

to the statistics of interest, must be collected and output by the master node at the

end of the program which can reduce speedup. Again, each row of Table 1 is for a run

of the parallel solution program for a corresponding number of nodes p. All execution

87

times are compared to that of the serial, or p = 1, run of the program. The last col-

umn of the table contains the CPU time take by the parallel solution which is T(p) =

2869 second equivalent to 1 hour and 8 minutes. We computed the absolute speedup

as S(p)=T(s)/T(p), where T(s) is the execution time of the sequential program and

T(p) the time needed for performing the parallel version on p processors. Therefore,

the speedup is S(p)=T(s)/T(p)= 39914/2869=14.19. The absolute efficiency is then

computed as speedup/p, where p = 16. Thus, the performance of our parallel solu-

tion is: E(p)=S(p)/p=14.16/16=88.7%. The performance loss of the program with

only one level running in parallel in comparison to the ideal efficiency (= 1) is due to

communication and management cost that sequential program is spared.

The main contribution of this chapter was to present a comparative analysis of

sequential and parallel clustering and validation algorithm applied to the analysis of

gene expression data. In order to do so, a parallel model implementing the clustering

algorithms introduced in [46] was proposed. The study carried out in this chapter is

more complete than previous ones, as it used the same data sets that used in [37],

and included methods not evaluated before. Furthermore, no comparative analysis of

parallel clustering performed before on high throughput time series gene expression

data.

In summary, we have presented a simple system for parallelization which many

statisticians will be able to use immediately to de-crease computational processing

time for many computationally intensive problems. We consciously do provide a

solution flexible enough to express all classes of parallel algorithms. Instead, we focus

on a system that is very easy to learn to use, yet is powerful enough to express a

large class of important parallel computations. Parallelizing a computation reduces

computing time, but the effort required to develop and deploy a parallel solution

must be considered as well. The simplicity of our solution helps to reduce this effort.

It is therefore an effective solution for statistical research projects which create and

88

evaluate computationally intensive statistical procedures, and for distributing the

resulting tools to other users.

With the success from parallelizing these techniques, the next step is to wonder

whether other clustering methods of high throughput matrices would see similar re-

sults. Another area is, we suggest that the entire parallel model be made available

through web services, so that users can upload high throughput data, whose matrix

is already available, and with an option of choosing to set the required parameters

the suite will produce the means measure for each cluster calculated by each clus-

tering algorithms and statistical validation chosen . Webservices have increasingly

been of interest because of the ease and simplicity of usage. With Webservices the

usage complexity of several tools can be abstracted. Users do not have to manually

execute the tools and utilities. Considering the users may not be computer wizards,

web interface would provide added simplicity for experimenters to effectively use the

suite.

89

CHAPTER 6

GENOTYPE SUSCEPTIBILITY AND INTEGRATED
RISK FACTORS FOR COMPLEX DISEASES

Recent improvements in the accessibility of high-throughput genotyping have

brought a great deal of attention to disease association and susceptibility studies.

This chapter [96] explores possibility of applying discrete optimization methods to

predict the genotype susceptibility for complex disease. The proposed combinatorial

methods have been applied to publicly available genotype data on Crohn’s disease

and autoimmune disorders for predicting susceptibility to these diseases. The result of

predicted status can be also viewed as an integrated risk factor. The quality of suscep-

tibility prediction algorithm has been assessed using leave-one-out and leave-many-out

tests and shown to be statistically significant based on randomization tests.The best

prediction rate achieved by the prediction algorithms is 69.5% for Crohn’s disease

and 63.9% for autoimmune disorder. The risk rate of the corresponding integrated

risk factor is 2.23 for Crohn’s disease and 1.73 for autoimmune disorder.

6.1 Introduction

Recent improvement in accessibility of high-throughput genotyping brought a

great deal of attention to disease association and susceptibility studies[133]. High

density maps of single nucleotide polymorphism (SNPs)[66] as well as massive geno-

type data with large number of individuals and number of SNPs become publicly

available[43, 59, 76]. A catalogue of all human SNPs is hoped to allow genome-wide

search of SNPs associated with genetic diseases.

90

Success stories when dealing with diseases caused by a single SNP or gene were

reported. But some complex diseases, such as psychiatric disorders, are characterized

by a non mendelian, multifactorial genetic contribution with a number of susceptible

genes interacting with each other[99, 25]. In general, a single SNP or gene may be

impossible to associate because a disease may be caused by completely different mod-

ifications of alternative pathways. Furthermore, there are no reliable tools applicable

to large genome ranges that could rule out or confirm association with a disease. It

is even difficult to decide if a particular disease is genetic, e.g., the nature of Crohn’s

disease has been disputed [10]. Although answers to above questions may not ex-

plicitly help to find specific disease-associated SNPs, they may be critical for disease

prevention. Indeed, knowing that an individual is (or is not) susceptible to (or belong

to a risk group for) a certain disease will allow greatly reduce the cost of screening

and preventive measures or even help to completely avoid disease development, e.g.,

by changing a diet.

Disease association analysis is usually searching for a SNP which can be a sta-

tistically significant risk factor. In epidemiology, the importance of the integrated

risk factor is commonly measured by risk rates. The risk rate is the ratio of disease

incidence proportion in the population exposed to the risk factor to that in the non-

exposed population. Unfortunately, the traditional direct statistical association so far

is unsatisfactory and arguably is not applicable to complex diseases [39]. Even if an

individual SNP has a significant relative risk rate it may give only negligible absolute

increase of probability, e.g., from 10 in a million to 20 in a million. Note that the

cumulative power of several SNPs is difficult to assess because of SNP linkage. So it

would be desirable to have a tool that would integrate different genetic risk factors

resulted in high disease prediction rate and high risk rate.

This study is devoted to the problem of assessing accumulated information tar-

geting to predict genotype susceptibility to complex diseases with significantly high

91

accuracy and statistical power. In this chapter, we first give several discrete opti-

mization based algorithms for prediction disease susceptibility. We then compare

leave-one- and leave-many-out tests demonstrating that prediction accuracy of sug-

gested methods is sufficiently resilient to discarding case/ control data implying that

leave-one-out test is a trustworthy accuracy measure. The randomization techniques

have been used for computing the statistical significance level of proposed methods

and resulted prediction weights. We show that prediction rate and statistical signifi-

cance are well correlated.

The proposed methods are applied to two publicly available data: Crohn’s disease

[43] and autoimmune disorder [126]. In the leave-one-out cross-validation tests the

proposed linear programming (LP) based method achieves prediction rate of 69.5%(p-

value below 2%) and 61.3%(p-value below 62%) and the risk rates of 2.23 and 0.98,

respectively. We also show that SVM methods used in [91, 129] are not much worse

than our proposed LP-based method.

The next section formally defines the problem and describes several universal and

adhoc methods for predicting genotype susceptibility to complex diseases. Section

6.3 describes real case/control data sets, discusses prediction and risk rate measures

and compares results for several susceptibility prediction methods. We draw the

conclusion in the last section.

6.2 Prediction Methods for Genotype Susceptibility

In this section we first describe the input and the output of prediction algorithms

and how to predict genotype susceptibility. We the describe several universal and

adhoc prediction methods.

Specifications of prediction algorithms. Data sets have n genotypes and each

has m SNPs. The input for a prediction algorithm includes:

(G1) Training genotype set gi = (gi,j), i = 0, . . . , n− 1, j = 1, . . .m, gi,j ∈ {0, 1, 2}

92

test genotypescase genotypes control genotypes

(a) (b)

(c)

101

110

010 011

000

+202

- 022

- 012

+221

+122

-210

-000

+010

+.8

-.5

+.2 -.6

-.4

+.4

-1.0

-.4

+.2

+.3

-.3

-.8

+.4

0001111001
±22021

0001001000
±02020

1010111001
+12201

0110110111
+22121

0000010100
+20200

0100101010
+01022

0001000001
-00022

0111001001
-01222

0110000011
-02222

0100011010
-21020

±220

±020

(d)

+.8

-.5

+.2 -.6

-.4
-.9

-.2

Figure 6.1. LP-based Prediction Method. (a) The set of case, control and test genotypes are phased resulting in
the sparse graph with vertices-haplotypes and edges-genotypes. (b) The last two SNPs are dropped without collapsing
case and control edges resulting in a denser graph. (c) The LP finds optimal weights for vertices-haplotypes. (d) The
status of test genotypes is predicted from the sign of the sum of weights of their endpoints.

(G2) Disease status s(gi) ∈ {−1, 1}, indicating if gi, i = 0, . . . , n− 1, is in case (1) or

in control (-1) , and

(G3) Testing genotype gn without any disease status.

The input data can also be phased, then each genotype is represented by a pair of

haplotypes. We will refer to the parts (G1-G2)of the input as training set and to the

part (G3) as the test case. The output of prediction algorithms is the disease status

of the genotype gn, i.e., s(gn).

Below we describe several universal prediction methods. These methods are adap-

tations of general computer-intelligence classifying techniques.

Closest Genotype Neighbor (CN). For the test genotype gt, find the closest (with

respect to Hamming distance) genotype gi in the training set, and set the status s(gt)

equal to s(gi).

93

Support Vector Machine Algorithm (SVM). Support Vector Machine (SVM)

is a generation learning system based on recent advances in statistical learning theory.

SVMs deliver state-of-the-art performance in real-world applications and have been

used in case/control studies [91, 129]. We use SVM-light [88] with the radial basis

function with γ = 0.5.

Random Forest (RF). A random forest is a collection of CART-like trees following

specific rules for tree growing, tree combination, self-testing, and post-processing.

We use Leo Breiman and Adele Cutler’s original implementation of RF version 5.1

[28]. This version of RF handles unbalanced data to predict accurately. RF tries to

perform regression on the specified variables to produce the suitable model. RF uses

bootstrapping to produce random trees and it has its own cross-validation technique

to validate the model for prediction/classification.

CDPG: Tomita [124] introduced the Criterion of Detecting Personal Group (CDPG)

for extracting risk factor candidates(RFCs). RFCs are extracted using binomial test

and random permutation tests. CDPG performs exhaustive combination analysis

using case/control data and assumes the appearance of case and control subjects

belonging to a certain rule as a series of Bernoulli trials, where two possible outcomes

are case and control subjects with some probabilities.

We now describe two ad hoc prediction methods (i.e., classifying techniques taking

in account the nature of the classification problem). The first method is 2-SNP

method [85] and the second method is a variation of the LP-based method [95].

Most Reliable 2 SNP Prediction [85] (MR). This method chooses a pair of

adjacent SNPs (site of si and si+1) to predict the disease status of the test genotype

gt by voting among genotypes from training set which have the same SNP values as

gt at the chosen sites si and si+1. They chose the 2 adjacent SNPs with the highest

prediction rate in the training set.

94

LP-based Prediction Algorithm (LP). This method are based on the follow-

ing genotype graph X = {H, G}, where the vertices H are distinct haplotypes and

the edges G are genotypes each connecting its two haplotypes (vertices) (see Figure

6.1(a)).

When applying graph heuristics to X, we found that it is necessary to increase

the density of X. This can be achieved by dropping certain SNPs (or, equivalently,

keeping only certain tag SNPs). Indeed, dropping a SNP may result in collapsing of

certain vertices in X, i.e., different vertices become identical. Collapsing vertices may

also result in collapsing certain edges (genotypes). Discarding a SNP is not allowed

if it results in collapsing edges from case and control populations, but collapsing of

edges from the same population is allowed (see Figure 6.1(b)).

A simple greedy strategy consists of traversing all the SNPs and dropping a SNP

if it is allowed. The resulted set of SNPs is a minimal subset of SNPs which do not

collapse genotypes from opposite disease status. Unfortunately, in the original graph

X we may already have collapsed edges from opposite populations - in fact, Daly

et al data contain such pair of genotypes. Only such original collapsing is allowed

– the status of such edges is assumed to be the one of majority of genotypes. Our

experiments show that on average, we are left with 21 tag SNP’s out of 103 for Daly

et al [43] data and 29 tag SNP’s out of 108 for Ueda et al [126] data (see description of

the next section). The selected set tag SNPs are better candidates for being disease

associated, in fact only such tag SNPs were used in the prediction methods with the

highest accuracy.

After collapsing the graph X we add the edge corresponding to the test-case

genotype gn. If the edge gn collapses with another edge gi, then we set the predicted

disease status s(gn) = s(gi). Otherwise, we apply one of the following two methods

for computing the disease status s(gn). The LP-based method assumes that certain

haplotypes are susceptible to the disease while others are resistant to the disease.

95

The genotype susceptibility is then assumed to be a sum of susceptibilities of its two

haplotypes.

We want to assign a positive weight to susceptible haplotypes and a negative

weight to resistant haplotypes such that for any control genotype the sum of weights

of its haploptypes is negative and for any case genotype it is positive (see Figure

6.1(c)). We would also like to maximize the confidence of our weight assignment

which can be measured by the absolute values of the genotype weights. In other

words, we would like to maximize the sum of absolute values of weights over all

genotypes.

Formally, for each vertex hi (corresponding to haplotype) of the graph X we wish

to assign the weight pi, −1 ≤ pi ≤ 1 such that for any genotype-edge eij = (hi, hj),

s(eij)(pi +pj) ≥ 0 where s(eij) ∈ {−1, 1} is the disease status of genotype represented

by edge eij.

The total sum of absolute values of genotype weights is maximized

∑

eij=(hi,hj)

s(eij)(pi + pj) (6.1)

The above formulation with the objective (6.1) is the linear program which can

be efficiently solved by a standard linear program solver such as GNU Linear Pro-

gramming Kit (GLPK) [64].

For the left-out testing genotype gn, we compute the sum of weights of its hap-

lotypes. If the sum is strictly positive, the genotype is attributed to the case, if the

sum is strictly negative, it is attributed to the control (see Figure 6.1(d)), otherwise

s(gn) is assigned according to 2-SNP prediction algorithm [85].

96

6.3 Quality of Susceptibility Prediction Methods

In this section we describe the two real case/control population samples and the

results of leave-one-out and leave-many-out cross-validation tests estimating suscep-

tibility prediction methods on these sets.

Data Sets. The data set Daly et al [43] is derived from the 616 kilobase region of

human Chromosome 5q31 that may contain a genetic variant responsible for Crohn’s

disease by genotyping 103 SNPs for 129 trios. All offspring belong to the case popu-

lation, while almost all parents belong to the control population. In entire data, there

are 144 case and 243 control individuals. The missing genotype data and haplotypes

have been inferred using 2SNP phasing method [30]. The highest risk rate for single

SNP is 2.7.

The data set of Ueda et al [126] are sequenced from 330kb of human DNA con-

taining gene CD28, CTLA4 and ICONS which are proved related to autoimmune

disorder. A total of 108 SNPs were genotyped in 384 cases of autoimmune disorder

and 652 controls. Similarly, the missing genotype data and haplotypes have been

inferred. The highest risk rate for single SNP is 1.9.

Cross-validation Tests. In the leave-one-out cross-validation, the disease status of

each genotype in the data set is predicted while the rest of the data is regarded as

the training set. In the leave-many-out cross-validation, n individuals are uniformly

at random picked up from the data set, marked and put back, where n is the size of

the data set. This way, approximately 2/3 of the individuals are picked at least once

and marked while the rest will not be marked. The training set consists of marked

data and the testing set consists of unmarked data.

Quality Measures. In cross-validation tests, the predicted and the actual disease

statuses are compared and the standard confusion matrix is filled (see Table 6.1).

Predicted cases and predicted controls are notated by pCS and pCO respectively. We

report sensitivity, specificity, and accuracy of the prediction methods. We also report

97

Table 6.1. Confusion Table.

True Data (Golden Standard)
Case Control

pCS True Positive False Positive Positive Prediction Rate
TP FP PPR= TP/(TP+FP)

pCO False Negative True Negative Negative Prediction Rate
FN TN NPR= TN/(FN+TN)

Sensitivity Specificity Accuracy
TP/(TP+FN) TN/(FP+ TN) (TP+TN)/(TP+FP+FN+TN)

the the risk rate of the corresponding integrated risk factor associated with each

prediction method. It is computed as the the ratio of the probability of developing

disease among those predicted susceptible to the probability of developing disease

among those predicted non-susceptible [41]:

Risk Rate =
TP

TP + FP
/

FN

TN + FN

We report the 95% confidence intervals (CI) for accuracy and risk rate, for leave-

one-out test 95% CI is computed using bootstrapping. We also compute significance

level, p-value, for the accuracy of prediction algorithms computed using 5000 random-

ized instances. On the randomized instances, the average prediction rate for SVM

and RF has been 60% and for all other methods except has been 50%.

Results and Discussion. Table 6.2 compares 6 different prediction methods for

both data sets. Column C denotes performed cross-validation tests, LOO stays for

leave-one-out test and LMO stays for leave-many-out test. For leave-one-out test, the

best accuracy is achieved by LP – 69.5% on Daly et al. [43] data and by MR – 63.9%

on Ueda et al. [76] data. For leave-many-out test, the accuracy only slightly degrades

showing resiliency to the size of the data. The risk rates for the integrated risk factor

associated with prediction methods are comparable with risk rates for individual

SNPs – for the first data set, 2.23 (LP method) vs 2.7 and for the second data set,

1.73 (RF method) and 1.64 (MR method) vs 3.2. The good performance of SVM

98

Table 6.2. The comparison of sensitivity, specificity, accuracy and risk rate with 95% confidence intervals (CI)
and p-value for 6 prediction methods for two real data sets.

Daly et al. [43]
C Quality Prediction Methods

measure CN SVM RF CDPG MR LP
sensitivity 45.5 20.8 34.0 68.8 30.6 37.5
specificity 63.3 88.8 85.2 58.0 85.2 88.5

L accuracy 54.6 63.6 66.1 62.2 65.5 69.5
O 95%-CI ±.9 ±.5 ±.6 ±.8 ±.9 ±.5
O p-value 0.03 0.04 0.30 0.04 0.03 0.01

risk rate 1.25 1.52 1.83 1.49 2.00 2.23
95%-CI ±.09 ±.04 ±.03 ±.02 ±.02 ±.05

sensitivity 45.9 18.0 30.0 59.7 28.0 36.0
L specificity 54.0 89.3 82.2 55.6 76.5 82.3
M accuracy 52.2 62.9 64.2 57.1 58.5 68.4
O 95%-CI ±.9 ±.5 ±.5 ±.9 ±.9 ±0.5

risk rate 0.99 1.45 1.67 1.47 1.15 2.01
95%-CI ±.06 ±.26 ±.12 ±.01 ±.01 ±.01

Ueda et al. [76]
C Quality Prediction Methods

measure CN SVM RF CDPG MR LP
sensitivity 37.7 14.3 18.0 58.6 6.9 7.1
specificity 64.5 88.2 92.8 61.7 97.2 91.2

L accuracy 54.8 60.9 65.1 60.5 63.9 61.3
O 95%-CI ±.9 ±.3 ±.4 ±.8 ±.9 ±.3
O p-value 0.04 0.70 0.73 0.05 0.04 0.62

risk rate 1.05 1.15 1.73 1.67 1.64 0.86
95%-CI ±.01 ±.03 ±.03 ±.01 ±.01 ±.03

sensitivity 34.8 12.7 13.4 56.0 7.2 8.0
L specificity 64.8 90.5 83.5 56.9 89.4 82.7
M accuracy 53.4 61.8 62.4 56.6 58.4 59.3
O 95%-CI ±.9 ±.3 ±.3 ±.9 ±.9 ±.6

risk rate 0.98 1.22 1.25 1.38 0.76 0.98
95%-CI ±.06 ±.03 ±.03 ±.01 ±.01 ±.01

and certain other universal methods indicate that they can possibly be adjusted to

improve specific ad hoc methods for prediction of susceptibility to complex diseases.

99

CHAPTER 7

CONCLUSION

DNA Array Flow

Our experiments show that the genomic data follow the pattern predicted by

simulated data. In case of Herpes B virus, like simulated data, increasing number of

candidates per probe (k) decreases number of border conflicts during the probe place-

ment algorithms. However, the number of border conflicts is several times smaller

than for simulated data. We give the trade-off between number of border conflicts

and the CPU time taken for the various algorithms that are defined in the physical

design. In [12], we give a concatenate software solution for the entire DNA array flow,

and we explore all steps in a single automated software suite of tools. We suggest that

the entire software suite be made available through web services, so that users can

enter name of organism, whose DNA sequence is already available at GenBank, and

with an option of choosing to set the required parameters the suite will produce the

DNA probe micro-array chip layout. Web Services have increasingly been of interest

because of the ease and simplicity of usage. With Web Services the usage complexity

of several tools can be abstracted. Users do not have to manually execute the tools

and utilities. Considering the users could be biologists or those who may not be

computer wizards, web interface would provide added simplicity for experimenters to

effectively use the suite.

The design flow for DNA array is comprised of five steps. The first is ORF

extraction, followed by probe selection, physical design, manufacturing and finally

hybridization and analysis. [12] The probe selection and physical design are the main

100

areas where research is prevalent. Probe selection applies to DNA, RNA and UTA.

The physical design presents a problem similar to that of VLSI design.

Probe selection is divided into statistical methods and thermodynamic methods.

[113] and [111] approached probe selection from a statistical point of view while

thermodynamic approach remains the method most commonly seen.

[113] approached the design issues using a group testing method. This method

had to be adapted to cope with the untraditional nature of probe selection compared

to that of a more common subject for group testing. The main focus of this approach

is that of coping with ”closely related target sequences.” [113] Remaining areas of

interest include the usage of ”several unique probes for each target,” [113] using other

methods, and finding more information about ”dynamics of hybridization reactions.”

[113] The approach used by Rahmann et al [111] attempted to deal with the design

problems associated with large scale DNA arrays while preserving the accuracy. The

approach is ”based on jumps in matching statistics.” [111] There is an increase in

the time cost of the selection phase, but it is argued that it is acceptable since it is

only an increase by a factor of 2 or 3. [111] Testing on a large scale is still needed to

solidify the results. [111]

[121] presents a thermodynamic approach to probe selection. The approach does

not use heuristics, and employs a series of filters to perform the selection. [121] The

algorithm is practical for long or short genomes, and a divide and conquer approach is

used to deal with hardware constraints for large genomes. Additional examination of

eliminating heuristics from some approaches might is an interesting idea to increase

accuracy at the cost of efficiency.

[78] gives an thermodynamic approach as well. The algorithm proposed by [78]

uses the NN thermodynamic model, and probes must be a perfect compliment to the

sequence. All probes that can be eliminated prior to calculating the melting temper-

ature are eliminated to reduce the time cost of the calculations, and redundancy is

101

attempted to be avoided by use of a suffix tree. [78] The algorithm has been tested on

”randomly generated sequences of different lengths.” [78] However, effective analysis

of the running times could not be obtained because the complexity and running time

are heavily dependent on the selection of ”filtering criteria.” [78] This selection of

criteria is a problem facing algorithms in this area.

Other attempts to assist with probe selection include the work by [117], who

proposed a parallel architecture to assist overcoming hardware constraints that occur

due to the intensive resources necessary during probe selection. [67] offers a linear

algebra approach to probe selection, and finally [87] develops an entropy estimator.

The physical design of the DNA array is closely linked to the design of VLSI chips.

Maximizing the number of probes, while minimizing the size of the chip is the goal.

[81] uses the logical approach and utilizes principles of VLSI design to improve

the physical design. The method centers around minimizing border cost. [81] When

comparing the new re-embedding algorithm ”given a two-dimensional probe place-

ment, improves the embedding of the probes without re-placing,” to the chessboard

and the batched greedy algorithm the following was noted. [81] It is shown that the

”re-embedding of the probes in a sequential row-by-row order leads to a reduction in

the border cost by 0.8% compared to the chessboard algorithm.” [81] A current open

problem given by [81] is that of ”developing a tighter lower bound.” [81]

[48] attempts to use self organizing maps to solve the physical design problem.

The method is determined to be acceptable for SNP analysis, but unacceptable for

”sequencing by hybridization.” [48] This is true because an insufficient number of

probes are organized by the algorithm. This is one area where the algorithm needs

improvement.

Probe selection and physical design are the most researched and also have some the

larger problems. Probe selection is important because it directly effect the outcome

of the experiment and is a source of much energy and time.

102

Universal Tag Array (UTA) Design [19] addresses the problem of maximiz-

ing the number of probes, while minimizing cross-hybridization. The approach used

in [19] is that of the thermodynamic model. The combinatorial approach used to

construct the array has proven to be near-optimal. [19] The assumptions made by

[19] are the following:

1. ”If a sequence has a weight greater than or equal to h (corresponding to melting

temperature greater than or equal to 2h in the 2-4 model) then the sequence

will hybridize to its complement.” [19]

2. ”Sequence x will fail to hybridize to sequence y provided that there is no string

z of weight greater than or equal to c such that z is a substring of x and zC us

a substring of y.” [19]

However, concerns such as ”secondary structure in a tag may cause it to fail to

hybridize to its antitag” [19]. Ben-Dor et al [19] do note that the scheme provided in

their paper will only be useful if can be verified that ”violations are infrequent” and

those violations that do exist are eradicated ”by deleting some tags.” [19]

In [20] the main issue is addressing assay specific cross hybridization.” While [19]

addresses the cross-hybridization ”between tags and foreign anti-tags,” [20] points

out other areas of assay specific cross hybridization not discussed in [19]. Examples

of possible problems are, ”primer to antitag cross-hybridization, ...sandwich cross-

hybridization,...primer to primer mis-extension, and primer to tag mis-extensions.”

[20] However, the only source of cross-hybridization specifically addressed by [20] is

the primer to antitag cross hybridization. This problem is address by associating the

problem with the ”problem of covering the vertices of one side of a bipartite graph

by a minimum number of balanced sub-graphs of maximum degree 1.” [20]

Mandoui et al [93] tackle two problems the first problem addressed is the tag set

design problem extended to include anti-tag to anti-tag hybridization. The second

103

problem addressed is the tag assignment problem. An attempt is made to improve

the multiplexing rate. The desired result is to address the problem of assigning ”all

tags to primers in an array experiment.” This is addressed since this is not possible

due to cross-hybridization. [93] Constraints are placed on the tags as follows.

• (H1) Every antitag hybridizes strongly to its tag;

• (H2) No antitag hybridizes to a tag other than its complement and

• (H3) There is no antitag to antitag hybridization.

[93] A greedy algorithm is used and the result did experience improvement in the

multiplexing rates. Although addressing the lack of a truly good pooling aware al-

gorithm, is an example of an area that could be researched for completely as well as

improving the multiplexing rate further.

[94] focused on solutions for the design of tag sets for universal tag arrays. The

tag set design must adhere to two types of constraints.[94] The stability constraint,

and the non-interaction constraint are applied.[94] The same model used by [19] for

hybridization is used by [94].

[94] used a greedy algorithm to solve the problem, called the ”greed cycle packing

algorithm.” A remaining problem is that of finding a ”tight upper bound and exact

method for MTSDP formulations.” [94]

Genotype Susceptibility In this chapter, we discuss motivation behind the

genotype susceptibility studies. The developed ad hoc susceptibility prediction method

based on linear programming is shown to have high prediction rates and high relevant

risk rate for associated integrated risk factors for two completely differentcase/control

studies for Crohn’s disease [43] and autoimmune disorders [76]. The extensive com-

putational results show great potential of the proposed prediction methods. In our

future work we are going to continue validation of the proposed method.

104

CHAPTER 8

PROSPECTIVE DESIGN APPLICATION

8.1 RNA Microarray Design

RNA Arrays are the least researched area discussed in this chapter. DNA mi-

croarrays have been researched extensively, while RNA Arrays have experienced little

research. DNA microarrays use reverse transcription which is an indirect method of

analyzing mRNA expressions. [6] The following is a presentation of the current re-

search on RNA-DNA and RNA-RNA interactions. RNA-DNA is where RNA bonds

with DNA, while RNA-RNA is RNA to RNA interactions. The design flow for RNA-

DNA or RNA-RNA is comprised of the same steps as DNA microarray, except that

the ORF extraction is no longer necessary as a step in the process. It can also be

seen via the flow chart below that probe selection is present as a step in the design

flow.

8.1.1 RNA-DNA Microarray Design

Alsaidi et al, focus on the ”development of a direct, simple, rapid, accurate and

sensitive system for RNA detection and quantification.” [6] This differs from current

methods using DNA microarray and realtime PC, since they use an indirect approach

to RNA detection. [6]

The system is ”based on the RNA 3́-labelling by using labelled-dNTPs and DNA

polymerase on a DNA template.” [6] Solid phase RNA detection and quantification

”by immobilization of the template,” [6] is currently being explored (see Figure 8.2).

To ”perform detection and quantification for a specific mRNA in the solid phase,its

105

Genome ID

1. DNA-RNA-DNA probe formation

2. Physical Design

3. Manufacturing

4. Hybridization experiment and Analysis

Figure 8.1. RNA Design Flow

3́-region needs to be removed so as to expose its unique internal sequence for selective

labelling and detection.” [6] RNase H is used as an ”RNA endonuclease.” [6] RNase

H is only used in this way when a ”DNA guiding sequence” is present. [6] Since

RNase H does not ”digest RNA-RNA duplex” and can split RNA in a RNA-DNA

duplex, the proposed design by Alsaidi et al is a ”5́-DNA- 3h́ybrid template in which

the DNA and RNA sequences serve as a guiding sequence and a protecting sequence,

respectively.” [6]

”Immobilization of the 3́-terminus of the DNA-RNA hybrid template on a mi-

croplate allows immediate Klenow labelling following RNase H digestion of the mRNA

3́-region.” [6] This double digestion leaves a product of ”short RNA fragment hy-

bridized to its template in the solid phase for detection.” [6] The length of the

template affects the amount of interference. Thus the template needs to be long.

106

The immobilization of the ”hybrid template,” is done through a ”3́-NH2 group on a

microplate by N-hydroxylsuccinimide displacement.” [6] Specific RNA are hybridized

to the template and others are washed away after ”incubation of a mixed RNA pop-

ulation on the functionalized microplate.” [6] ”Enzyme-binder conjugates” are used

to bond to the ”immobilized RNA target through the hapten label.” [6] The ”de-

tection of the specific RNA” is achieved when the ”immobilized enzyme catalyzes a

chemiluminescence reaction in the presence of substrates.” [6]

When long periods of exposure where used the background was visible, but short-

ening the time removed the background. The appearance of the background was due

to the ”nonspecific binding of the conjugate.” [6]

The result of the paper by Alsaidi et al is the design of a ”novel system for RNA-

specific detection on a microplate by immobilizing the hybrid templates and using

an enzyme label.” [6] The implication of this is that it is the first such system, and

can be used for ”rapid detection of pathogens and diseases” as well as for ”analysis

of environmental samples, in which mRNAs are partially degraded.” [6] The method

developed by [6] is ”direct, simple, cost-effective, and rapid without reverse tran-

scription, PC transcription, etc...” unlike DNA array technology. [6] also suggest

that sensitivity can be increased through use of smaller chips, as well as background

reduction. This method can be used for ”environmental samples” where some degra-

dation has occurred. It is also suggested that the work has the potential to later

be used for ”developing methodologies for rapid on site detection of bacteria and

viruses.” [6] This area is so new that many areas are as yet unexplored and have left

many open areas for future research.

8.1.2 RNA-RNA Microarray Design

There have been many studies involving ”antisense” RNAs. Antisense RNAs are

the string of nucleotides that are the complements to the message sense. mRNA

107

and antisense RNA can form duplexes just like DNA does, providing that they are

complements of one another. According to [5] ”small RNAs have ... been artificially

constructed to knock-out genes of interest in humans and other organisms for the

purpose of finding out more about their function.” One of the problems facing RNA

duplexes is that while algorithms exist to predict the ”secondary structure of a single

RNA molecule,” [5] no algorithms have been developed to predict the ”joint secondary

structure of two interacting RNA molecules.” [5] Thus one of the main focuses of [5]

is the presentation of the ”RNA-RNA interaction prediction (RIP) problem.” [5]

Algorithms are also proposed to solve the RIP problem. Free energy minimization is

the focus of the algorithms for predicting the ”secondary structure of two interactive

RNA molecules.” [5]

The basics of the RIP problem are that given two RNA S and R, how can the

joint secondary structure be predicted. [5] The ”joint secondary structure between S

and R” is defined by [5] as being the ”set of pairings where each nucleotide of S and

R is paired with at most one other nucleotide either from S or R.” [5] In order to

explain the three energy models used in [5], it is necessary to define some notation

used in the definitions provided by [5].

• S[i] = the ith nucleotide of an RNA sequence S

• S[i, j] = the substring of S extending from S[i]toS[j]

• S[k, k] = S[k]

• S[i, i− 1] = empty sequence

• S[i, i− 1]r = reverse of S[i− 1, i]

• S[1] = 5énd of S

• R[1] = 3énd of R

108

[5]

The three models used to compute the ”free energy of interaction RNA sequences”

[5] follow:

1. ”Sum of free energies of individual Watson-Crick base pairs as a crude approx-

imation to the total joint free energy. The basepair energy model is known to

be inaccurate.” [5]

2. The ”second free energy model is based mostly on stacked pair energies...which

provide the main contribution to the energy model employed by the Mfold

program.” [5] To cope with the lack if ”thermodynamic information on pseu-

doknots or kissing loops,” [5] incorporate another approach, ”to differentiate

the thermodynamic parameters of external bonds from the internal bonds by

multiplying the external parameters with a weight slightly smaller than 1.” [5]

3. The last free energy model is one that uses both the stacked pair and basepair

models. This model sums ”up the free energies of various types of internal loops

and stacked pairs.” [5] ”This model...will be referred to as the loop energy

model.” [5]

The RIP problem for both the stacked pair and basepair models is proven by [5]

to be an NP-Complete problems. The proofs follow from the proof of the ”longest

common subsequence of multiple binary strings” being a NP-Complete problem.

For the basepair model, the free energy between two interacting RNA is approx-

imated ”as the sum of the free energies of bonded nucleotide pairs.” [5] If x and y

are nucleotides, then the ”Watson-Crick free energy of a bond” [5] between x and

y is denoted ase(x, y), for internal bonds, and ′e(x, y) for external bonds. [5] How-

ever, for [5] it is accepted that ′e = e. E(S[i, j], R[′i, ′j]) is the ”free energy between

interacting RNA strands S[i, j] and R[′i, ′j] for all i < j and ′i < ′k.” [5] E will

be computed to minimize the free energy. The assignment of E(S[i, i], R[′i, ′i]) to

109

e(S[i], R[′i]), allows for the computation of E(S[i, i], R[′i, ′i]). [5] This computation

will be done ”inductively as the minimum of the following.”

1. mini−1≤j;′i−1≤′′j:(k 6=i−1or′k 6=′i−1),(k 6=or′k 6=′j) E(S[i, k], R[′i, ′k])+E(S[k+1, j], R[′k+

1, ′j])

2. E(S[i + 1, j − 1], R[′i, ′j]) + e(S[i], R[′j])

3. E(S[i, j], R[′i + 1, ′j − 1]) + e(R[′i], R[′j])

[5] [5] proves that the ”above dynamic programming is correct”, and that the ”table

E can be computed in time θ(|S|3 · |R|3) and in space θ(|S|2 · |R|2).” [5]

In the stacked pairs model ”the bonds between nucleotide pairs form uninterrupted

sequences.” [5] Internal stacked pair X[i]−X[j], X[i+1]−X[j−1]) will be represented

by ee(X[i, i + 1], X[j − 1, j]), and ”the energy of the external stacked pair X[i] −
Y [j], X[i + 1] − Y [j − 1])” [5], will be represented as ′ee(X[i, i + 1], Y [j, j + 1]). [5]

For [5] ′ee = σee. It is noted that there is no symmetry between ee and ′ee. [5]

The following ”four energy functions” [5] are necessary in order to ”compute the joint

structure between S and R.” [5]

1. ES(S[i, j], R[′i, ′j]) denotes the free energy between S and R such that S[i]

bonds with S[j]. [5]

2. ER(S[i, j], R[′i, ′j]) denotes the free energy between S and R such that R[′i]
bonds with R[′j]. [5]

3. El(S[i, j], R[′i, ′j]) denotes the free energy between S and R such that S[i] bonds

with R[′i]. [5]

4. Er(S[i, j], R[′i, ′j]) denotes the free energy between S and R such that S[j]

bonds with R[′j]. [5]

110

”The overall energy is defined to be: ” [5]

E(S[i, j], R[′i, ′j]) =





ES(S[i, j], R[i′, j′],
ER(S[i, j], R[′i, ′j]),
Er(S[i, j], R[′i, ′j]),
El(S[i, j], R[′i, ′j]),
mini≤k≤j−1;′i≤′k≤′j−1{E(S[i, k],

R[′i, ′j]) + E(S[k + 1, j], R[′k + 1, ′j])},
mini≤k≤j−1{E(S[i, k],−)+

E(S[k + 1, j]), R[′i, ′j])},
min′i≤′k≤′j−1{E(S[i, j], R[′i, ′k])+

E(−, R[′k + 1, ′[j])},
min′i≤′k≤′j−1{E(−, R[′i, ′k])+

E(S[i, j], R[′k + 1, ′[j])}.

(8.1)

[5] The following are the initial values of the energy functions listed above.

El(S[i, j],−) = ∞, Er(S[i, j],−) = ∞ (8.2)

[5]

El(−, R[′i, ′j]) = ∞, Er(−, R[′i, ′j]) = ∞ (8.3)

[5]

El(S[i, i], R[′i, ′i]) = 0, Er(S[i, i], R[′i, ′i]) = 0 (8.4)

[5]

ES(S[i, i],−) = ∞, ER(−, R[′i, ′i]) = ∞ (8.5)

[5] The following is the ”complete description of the dynamic programming formula-

tion.” [5]

111

El(S[i, j], R[′i, ′j]) = min{El(S[i + 1, j], R[′i + 1, ′j]) +

′ee(S[i, i + 1], R[′i, ′i + 1]), E(S[i + 1, j], R[′i + 1, ′j])}

[5]

Er(S[i, j], R[′i, ′j]) = min{Er(S[i, j − 1], R[′i, ′j − 1]) +

′ee(S[j − 1, j], R[′j − 1, ′j]), E(S[i, j − 1], R[′i, ′j − 1])}

[5]

ES(S[i, j], R[′i, ′j]) = min{ES(S[i + 1, j − 1], R[′i, ′j]) +

ee(S[i, i + 1], S[j − 1, j]), E(S[i + 1, j − 1], R[′i, ′j])}

[5]

ER(S[i, j], R[′i, ′j]) = min{ER(S[i, j], R[′i + 1, ′j − 1]) +

ee(R[′j − 1, ′j]r, R[′i, ′i + 1]r), E(S[i, j], R[′i + 1, ′j − 1])}

[5] It is also proven by [5] that the ”above dynamic programming formulation is

correct.” [5] ES, ER, El, Er can also be shown to have running time θ(|S|3 · |R|3), and

can be ”computed ... in space,” θ(|S|2 · |R|2). [5]

Due to the expense (in relation to time), the stacked pair energy model is excessive.

For short strands of RNA the model can take 15 minutes to complete. For longer

strands this is excessive and prohibitive. [5] An observation is made by [5], that the

”(predicted)self structures are mostly preserved in the joint secondary structures.”

112

[5] It is then proposed that it might be ”sufficient to compute the joint structure

of two RNA sequences by simply computing the set of loop pairs that form bonds

to minimize the total joint free energy.” [5] This approach can be extended to one

that ”maintains that each RNA sequence will tend to preserve much of its original

secondary structure after interacting with the other RNA sequence.” [5] The sequence

that is preserved is referred to as ”independent subsequence.” [5]

Definition 1 Independent Subsequences:

Given an RNA sequence R and its secondary structure, the substring R(i, j) is an

independent subsequence of R if it satisfies the following conditions.

• R[i] is bonded with R[j]

• j − 1 ≤ κ for some user specified length κ

• There exists no ′i < i and ′j < j such that R[′i] is bonded with R[′j] and

′j − ′i ≤ κ

[5] It is possible to use the following greedy algorithm ”to compute the independent

sequences of a given RNA molecule.” [5]

1. Let IS be the set of independent subsequences in R; initially we set IS = 0.

2. Starting from the first nucleotide of R find the first nucleotide R[i] which bonds

with another nucleotide R[j], (j > i).

3. If j − i ≤ κ then update IS = IS ∪ R[i, j] and move to R[j + 1]. Else move to

R[i + 1]

4. Repeat step 2.

[5] It can be proven by [5] that the above greedy algorithm finds the ”correct indepen-

dent subsequences.” [5] The following is used to ”calculate the joint structure between

113

R and S by minimizing the total free energy of their independent subsequences (ISs)

via means of establishing bonds between their nucleotides.” [5] If ”the minimum free

energy of the joint secondary structure of the two ISs, SIS[i] and RIS[j] be eIS(i, j).

The value of eIS(i, j) can be computed via” the greedy algorithm described above.

[5] ”The minimum joint free energy between the consecutive sets of ISs of R and S

is calculated once eIS(i, j) is computed for all i, j. Let n and m denote the number

of ISs in S and R respectively.” [5] ”Let E(SIS[i], RIS[j]) = E[i, j] bet the smallest

free energy of the interacting IS lists SIS[i] and RIS[j] interact with each other.” [5]

Definition 1 Let SIS[i] and SIS[j] be two ISs in a given RNA sequence S. The

distance between SIS[i] and SIS[j], denoted d(SIS[i], SIS[j]) is defined as the number

of nucleotides S[k] that do not lie between a bonded pair of nucleotides S[h] and S[′h]

that are both located between SIS[i] and SIS[i].

[5] To compute the value of E[i, j], dynamic programming can be used as in the

following: [5]

E[i, j] = min′i<i,′j<j|d(SIS [i],SIS [j])≤(1+ε)·d(RIS [′i],RIS [j]+σ

(E[′i, ′j] + eIS(i, j) + Σ′i<′′i<ieIS(′′i, 0) + Σ′j<′′j<jeIS(0, ′′j))

min∀i,jE[i, j] + Σi<′ieIS(′i, 0) + Σj<′jeIS(0, ′j) (8.6)

[5] It is also proven by [5] that ”the above dynamic programming formulation correctly

computes E[i, j].

Searching ”for target sequences for specific antisense RNA molecules in whole

genomic and plasmid sequences,” is a necessity for the algorithms presented. [5]

”The Stacked Pair Model is not efficient when searching through large sequences.”

[5] The Loop Energy Model is used for the target prediction and contains two steps.

[5]

114

1. ”Using the cDNA annotation available for genomic sequences,” [5] the ”candi-

date target sequences...that is known to include the target,” [5] is found. The

”cDNA is extended towards the 5ánd 3ÚTR ends,” [5] in order to ”compute

the potential mRNA.” [5] The cDNA is extended as follows: [5]

(a) ”Each cDNA is extended up to l1 nucleotides at its 5ÚTR, and by l2

nucleotides a its 3ÚTR, where l1 and l2 are user defined parameters.” [5]

(b) The ”extended cDNA sequence is trimmed from both ends via a dynamic

programming routine in order to compute its subsequence which has the

lowest energy density.” [5] The prediction of the ”resulting mRNA of each

such cDNA” [5] is its ”trimmed extension.” [5]

2. The ”joint secondary structure predication algorithms based on Loop Energy

Model” is then run to ”determine if there are any external bonds formed between

each candidate target sequence and the antisense RNA sequence.” [5] There are

three constraints used.

(a) ”At least one IS in the candidate target sequence which lies before the

start codon should interact with an independent subsequence in the query

sequence.” [5]

(b) ”All predicted interactions between pairs of ISs should include at least ξ

uninterrupted bonds for some user specified constraint ξ.” [5]

(c) ”At least two pairs of independent sequences must be interacting with each

other.” [5]

[5]

The program used ”40 hrs on a PC equipped with 2GHz Pentium IV processor

and i GB of main memory to detect all targets of the CopA sequence on the complete

R1 plasmid.” [5] The only potential target returned was the correct target CopT. [5]

115

Other tests returned similar results. [5] No other papers were located that discussed

this area thus much research is need and many areas are open for further exploration.

RNA Microarray Design Conclusion

Since little research is available on this area, only two works were summarized and

presented. The first is that of [6], who presented work on DNA-RNA and the second

is that of [5], who presented work on RNA-RNA.

[6] attempted to develop a ”direct, simple, rapid, accurate, and sensitive system

for RNA detection.” [6] This is different than that of the DNA since the DNA is

an indirect approach while RNA is direct. [6] The system is ”based on the RNA

3́-labelling by using labelled-dNTPs and DNA polymerase on a DNA template.” [6]

The result of the paper by Alsaidi et al is the design of a ”novel system for RNA-

specific detection on a microplate by immobilizing the hybrid templates and using an

enzyme label.” [6] It is suggested by [6] that sensitivity can be increased through use

of smaller chips, as well as background reduction.

One of the problems facing RNA duplexes is that while algorithms exist to predict

the ”secondary structure of a single RNA molecule,” [5] no algorithms have been de-

veloped to predict the ”joint secondary structure of two interacting RNA molecules.”

[5] Thus one of the main focuses of [5] is the presentation of the ”RNA-RNA inter-

action prediction (RIP) problem.” [5] Free energy minimization is the focus of the

algorithms for predicting the ”secondary structure of two interactive RNA molecules.”

[5] No other papers were located that discussed this area thus much research is need

and many areas are open for further exploration.

8.2 Digital Microfluidics-Based Biochips Design

Chakrabarty [35] presents design, testing, and applications of digital microfluidics-

based biochips.

116

Figure 8.2. Schematic flow chart of specific RNA detection on a microplate117

Figure 8.3. Synthesis methodology for digital microfluidics-based biochips.

118

CHAPTER 9

RELATED PUBLICATIONS

1. M. Atlas, N. Hundewale, S. Datta, ”Parallel Statistical-Validation of Clus-

tering Algorithm for the Analysis of High Throughput Data”, Bioinformatics

Oxford University Press (under review).

2. M. Atlas, N. Hundewale, S. Datta, ”Parallel Statistical-Validation of Cluster-

ing Algorithm for the Analysis of High Throughput Data”, Research Louisville

2005 (Best third poster Award).

3. W. Mao, N. Hundewale, S. Gremalschi, D. Brinza, A. Zelikovsky, Genotype

Susceptibility using Decision Fusion Methods 2006 IEEE International Confer-

ence on Granular Computing (IEEE-GrC2006) pp. 754-757.

4. N. Hundewale, A. Zelikovsky, I. Mandoiu, P. Prajecue, ”Integrated Design of

Tag System” Proc. The Ninth Annual International Conference on Research in

Computational Molecular Biology (RECOMB’05), Cambridge, MA, May 2005,

refereed poster.

5. M. Atlas, N. Hundewale, L. Perelygina, A. Zelikovsky, ”Consolidating Soft-

ware Tools for DNA Microarray Design and Manufacturing,” Proc. Interna-

tional Conf. of the IEEE Engineering in Medicine and Biology (EMBC’04),

September 2004, 172-175.

119

CHAPTER 10

OTHER PUBLICATIONS

1. N. Hundewale, S. Jung, A. Zelikovsky, ”Energy Efficient Node Caching and

Load Balancing Enhancement of Reactive Ad Hoc Routing Protocols”, Journal

of Universal Computer Science (JUCS), Springer, vol. 13 (2007), to appear in

the special issue.

2. Q. Cheng, Y. Zhang, X. Hu, N. Hundewale, A. Zelikovsky, ”Routing Using

Messengers in Sparse and Disconnected Mobile Sensor Networks”, Atlantic Web

Intelligence Conference 2006, Studies in Computational Intelligence 26, pp. 31-

40.

3. N. Hundewale, Q. Cheng, X. Hu, A. Bourgeois, A. Zelikovsky, Autonomous

Messenger Based Routing Technique in Disjoint Clusters of Mobile Sensor Net-

works Agent-Directed Simulation 2006 Huntsville, AL, April 2006, pp. 57-64.

4. S. Jung, N. Hundewale, A. Zelikovsky, ”Energy Efficiency of Load Balanc-

ing in MANET Routing Protocols,” Proc. International Workshop on Self-

assembling Wireless Networks, (SAWN 2005). pp 476-483.

5. S. Jung, N. Hundewale, A. Zelikovsky, ”Node Caching Enhancement of Re-

active Ad Hoc Routing Protocols,” Proc. IEEE Wireless Communication and

Networking Conference (WCNC’05), March 2005, Volume 4, pp 1970- 1975.

120

BIBLIOGRAPHY

[1] Miron Abramovici and Melvin A. Breuer and Arthur D. Friedman, (1993) ‘Digital

Systems Testing and Testable Design’, Wiley-IEEE Press.

[2] Affymetrix Inc. ‘GenFlex Tag Array Technical Note No. 1’,

http://www.affymetrix.com/support/technical/technotes/genflex technote.pdf.

[3] http://www.affymetrix.com

[4] S.B. Akers, (1981)‘On the use of the linear assignment algorithm in module

placement’, Proc. 18th Design Automation Conference (DAC 1981), pp. 137–

144.

[5] Can Alkan, Emre Karakoc, Joe Nadeau, S Cenk Sahinalp and Kaizhong Zhang

(2005) ‘RNA-RNA Interaction Prediction and Antisense RNA Target Search’,

Proc. of the Ninth Annual International Conference on Research in Computa-

tional Molecular Biology (RECOMB 2005 - LNBI 3500), pp. 152–171.

[6] Mohammed Alsaidi and Elena Lum and Zhen Huang (2004) ‘Direct Detection

of a Specific Cellular mRNA on Functionalized Microplate’, ChemBioChem, pp.

1136-1139.

[7] C. J. Alpert and A. B. Kahng, (1994) ‘Multi-Way Partitioning Via Spacefill-

ing Curves and Dynamic Programming’, Proc. ACM/IEEE Design Automation

Conf., pp. 652-657.

121

[8] C. J. Alpert and A. B. Kahng, (1995) ‘Multi-Way Partitioning Via Geometric

Embeddings, Orderings, and Dynamic Programming’, in IEEE Trans. on CAD

14(11), pp. 1342-1358.

[9] C. J. Alpert, A. B. Kahng and D. S. Yao, (1998) ‘Spectral Partitioning: the

More Eigenvectors, the Better’, Discrete Applied Mathematics.

[10] Anderson, M. (2001) ‘Crohn’s: An Autoimmune or Bacteria-Related Disease?’,

The Scientist, 22:15-16.

[11] A.A. Antipova, P. Tamayo and T.R. Golub, (2002)‘ A strategy for oligonucleotide

microarray probe reduction’, Genome Biology 3(12):research0073.1-0073.4.

[12] M. Atlas, N. Hundewale, L. Perelygina and A. Zelikovsky (2004) ‘Consolidating

Software Tools for DNA Microarray Design and Manufacturing’, Proc. IEEE

International Conference of Engineering in Medicine and Biology (EMBC), pp.

172–175.

[13] M. Atlas, N. Hundewale and S. Datta (2005) ‘Parallel Statistical-Validation

of Clustering Algorithm for the Analysis of High Throughput Data’, Research

Louisville 2005.

[14] Marco Autili, Paola Inverardi and Massimo Tivoli,(2004) ‘Automatic Adaptor

Synthesis for Protocol Transformation’, First International Workshop on Coor-

dination and Adaptation Techniques for Software Entities (WCAT04) in con-

junction with ECOOP.

[15] K. Nandan Babu and S. Saxena, (1997) ‘Parallel algorithms for the longest com-

mon subsequence problem’, Proc. 4th Intl. Conf. on High-Performance Comput-

ing, pp. 120-125.

122

[16] Dusan Balek and Franktisek Plasil, (2001) ‘Software and Connectors and Their

Role in Component Deployment’, In Proceedings of DAIS’01, Krakow, Kluwer.

[17] Johan Baner, Paul Hardenbol, Mats Nilsson, Eugeni A. Namsaraev, George A

Karlin-Neumann, Hossein Fakhrai-Rad, Mostafa Ronaghi, Thomas D. Willis, Ulf

Landegren and Ronlad W. Davis (2003) ‘Multiplexed genotyping with sequence-

tagged molecular inversion probes’, Nature Biotechnology 21, pp. 673–678.

[18] J. J. Bartholdi and L. K. Platzman, (1982) ‘An O(N log N) Planar Travelling

Salesman Heuristic Based On Spacefilling Curves’, Operations Research Letters

1(4), pp. 121-125.

[19] A. BenDor, R. Karp, B. Schwikowski and Z. Yakhini (2000) ‘Universal DNA tag

systems: a combinatorial design scheme’, Journal of computational Biology, vol.

7(3-4), pp. 503–519.

[20] A. BenDor, T. Hartman, B. Schwikowski, R. Sharan and Z. Yakhini (2003) ‘To-

wards optimally mulitplexed applications of universal DNA tag systems’, Proc.

7th Annual International Conference on Research in Computational Molecular

Biology, pp. 48–56.

[21] Casey Best, Margaret-Anne Storey, and Jeff Michaud (2002) ‘Designing a

component-based framework for visualization in software engineering and knowl-

edge engineering’, SEKE 2002 pp. 323–322.

[22] http://www.bioperl.org

[23] Bjerre LM, Verheij TJM, Kochen MM (2003) ‘Antibiotics for community ac-

quired pneumonia in adult outpatients’, Clinical Evidence 10:1724-37.

[24] M. Borodovsky, ‘GeneMark’, http://opal.biology.gatech.edu/GeneMark.

123

[25] Botstein, D., Risch, N. (2003) ‘Discovering Genotypes Underlying Human Phe-

notypes: Past Successes for Mendelian Disease, Future Approaches for Complex

Disease’, Nature Genetics, 33:228-237.

[26] J. Branke and M. Middendorf, (1996) ‘Searching for shortest common super-

sequences by means of a heuristic-based genetic algorithm’, report, July 1996.

See also: ‘Searching for shortest common supersequences’, Proc. Second Nordic

Workshop on Genetic Algorithms and Their Applications, pp. 105-113.

[27] J. Branke, M. Middendorf and F. Schneider, (1998) ‘Improved heuristics and

a genetic algorithm for finding short supersequences’, OR Spektrum 20(1), pp.

39-46.

[28] Breiman, L. and Cutler, A. http://www.stat.berkeley.

edu/users/breiman/RandomForests/

[29] S. Brenner (1997) ‘Methods for sorting polynucleotides using oligonucleotide

tags’, US Patent 5,604,097.

[30] Brinza, D. and Zelikovsky, A. (2006) 2SNP: Scalable Phasing Based on 2-SNP

Haplotypes, Bioinformatics.

[31] Kyle Brown, Phillip Eskelin, and Nat Pryce (1999) ‘A Mini-pattern language for

Distributed Component Design’, Pattern Languages of Programs (PLoP) Con-

ference.

[32] Lubomir Bulej and Tomas Bures (2003) ‘A Connector Model Suitable for Auto-

matic Generation of Connectors’, Tech. Report No. 2003/1, Dep. of SW Engi-

neering, Charles University, Prague.

124

[33] A. E. Caldwell, A. B. Kahng and I. L. Markov, (1999)‘Optimal Partitioners and

End-Case Placers for Standard-Cell Layout’, Proc. ACM Intl. Symp. on Physical

Design, pp. 90-96.

[34] Carlos Canal, (2004) ‘On The Dynamic Adaptation Of Component Behaviour’,

First International Workshop on Coordination and Adaptation Techniques for

Software Entities (WCAT04) in conjunction with ECOOP.

[35] Krishnendu Chakrabarty (2005) ‘Design, Testing, and Applications of Digital

Microfluidics-Based Biochips’, Proceedings of the 18th International Conference

on VLSI Design held jointly with 4th International Conference on Embedded

Systems Design (VLSID05) IEEE pp.

[36] T. F. Chan, J. Cong, T. Kong and J. R. Shinnerl, (2000)‘Multilevel Optimization

for Large-Scale Circuit Placement’, Proc. IEEE/ACM Intl. Conf. on Computer

Aided Design, pp. 171-176.

[37] Chu S., DeRisi J., et al., (1998) ‘The transcriptional program of sporulation inv

budding yeast’, Science, 282, pp. 699705.

[38] Ciprian-Bogdan Chirila, Pierre Crescenzo, and Philippe Lahire (2004) ‘A Re-

verse Inheritance Relationship Dedicated to Reengineering: The Point of View

of Feature Factorization’, MASPEGHI Workshop at ECOOP 2004, MechAnisms

for SPEcialization, Generalization and inHerItance Oslo.

[39] Clark AG. (2003) ‘Finding Genes Underlying Risk of Complex Disease by Linkage

Disequilibrium Mapping’, Curr Opin Genet Dev., 13(3):296-302.

[40] Clifton, T., and Teahan, W. J. (2004) ‘Question Answering with Knowledgeable

Agents’, Artificial Intelligence and Intelligent Agents vol. 04.4.

[41] Clinical Epidemiology Glossary, http://www.med.ualberta.ca/ebm/define.htm.

125

[42] D. R. Cutting, D. R. Karger, J. O. Pederson and J. W. Tukey, (1992) ‘Scat-

ter/Gather: A Cluster-Based Approach to Browsing Large Document Collec-

tions’, (15th Intl. ACM/SIGIR Conference on Research and Development in

Information Retrieval) SIGIR Forum, pp. 318-329.

[43] Daly, M., Rioux, J., Schaffner, S., Hudson, T. and Lander, E. (2001) ‘High Reso-

lution Haplotype Structure in the Human Genome’, Nature Genetics, 29:229-232.

[44] V. Dancik, (1998) ‘Common subsequences and supersequences and their expected

length’, Combinatorics, Probability and Computing 7(4), pp. 365-373.

[45] B. DasGupta, K.M. Konwar, I.I. Mandoiu, and A.A. Shvartsman (2005) ‘Highly

scalable algorithms for robust string barcoding’, Proc. 2005 International Work-

shop on Bioinformatics Research and Applications (IWBRA’05).

[46] Datta, S and Datta, S. (2003) ‘Comparisons and validation of statistical cluster-

ing techniques for microarray gene expression data’, Bioinformatics, 19, 459-466.

[47] K. Doll, F. M. Johannes, K. J. Antreich, (1994) ‘Iterative Placement Improve-

ment by Network Flow Methods’, IEEE Transactions on Computer-Aided Design

13(10), pp. 1189-1200.

[48] Hiroshi Douzono, Shigeomi Hara and Yoshio Noguchi (2001) ‘A Design Method

of DNA chips for SNP Analysis Using Self Organizing Maps’, Proc. IEEE, pp.

[49] Scott F. Dowell, M.D., M.P.H. (2004) ‘Surviving Pneumonia-Just a Short-Term

Lease on Life?’, American Journal of Respiratory and Critical Care Medicine Vol

169. pp. 895-896.

[50] http://www.photomasks.com/

[51] Eggimann P, Revelly JP. (2006) ‘Should antibiotic combinations be used to treat

ventilator-associated pneumonia?’, Semin Respir Crit Care Med 27(1):68-81.

126

[52] Scott J. Emrich1, Mary Lowe and Arthur L. Delcher (2003) ‘PROBEmer: a web-

based software tool for selecting optimal DNA oligos’, Nucleic Acids Research

Vol. 31, No. 13, pp. 3746-3750.

[53] Philip Eskelin (1999) ‘Layering Frameworks in Component-Based Development’,

Proceedings of Pattern Languages of Programs.

[54] W. Feldman and P.A. Pevzner, (1994) ‘Gray code masks for sequencing by hy-

bridization’, Genomics, 23, pp. 233–235.

[55] Thomas M. File Jr, MD, James S. Tan, MD, Joseph F. Plouffe, MD.(1998).

Lower respiratory tract infections the role of atypical pathogens: mycoplasma

pneumoniae, chlamydia pneumoniae, and legionella pneumophila in respiratory

infection’, Infectious Disease Clinics of North America Volume 12, Number 3.

[56] S. Fodor, J. L. Read, M. C. Pirrung, L. Stryer, L. A. Tsai and D. Solas (1991)

‘Light-Directed, Spatially Addressable Parallel Chemical Synthesis’, Science 251,

pp. 767-773.

[57] D. E. Foulser, M. Li and Q. Yang, (1992) ‘Theory and algorithms for plan merg-

ing’, Artificial Intelligence 57(2-3), pp. 143-181.

[58] C. B. Fraser and R. W. Irving, (1995) ‘Approximation algorithms for the shortest

common supersequence’, Nordic J. Computing 2, pp. 303-325.

[59] Gabriel, G., Schaffner, S., Nguyen, H., Moore, J., Roy, J., Blumenstiel, B., et

al. (2002) ‘The Structure of Haplotype Blocks in the Human Genome’, Science,

296:2225-2229.

[60] Martin Gaedke, Joern Rehse, and Guntram Graef (1999) ‘A Repository to

Facilitate Reuse in Component-Based Web Engineering’, International Work-

127

shop on Web Engineering at the 8th International World-Wide Web Conference

(WWW8), Toronto, Canada.

[61] http://www.ncbi.nlm.nih.gov

[62] N.P. Gerry, Nancy Witowski, Joseph Dat, Robert P. Hammer, George Barany

and Francis Branay (1999) ‘Universal DNA Mutations’, Journal of Molecular

Biology, vol. 292, pp. 251–262.

[63] D.H. Geschwind and J.P. Gregg (Eds.), (2002)Microarrays for the neurosciences:

an essential guide, MIT Press, Cambridge, MA.

[64] GLPK (2000). GNU Linear Programming Kit. http://www.gnu.org.

[65] S. Hannenhalli, E. Hubbell, R. Lipshutz and P.A. Pevzner, (2002) ‘Combinato-

rial Algorithms for Design of DNA Arrays’, Chip Technology, (ed. J. Hoheisel),

Springer-Verlag.

[66] The International HapMap Project, http://www.hap map.org

[67] J. He and Z. Yakhini (2004) ‘Linear Reduction for Haplotype Inference’, Proc.

Workshop on Algorithms in Bioinformatics (WABI), pp. 352–371.

[68] N.Y He, P.F. Xiao, Z.C. Ziu and Z.H. Lu (2001) ‘Soft Lithography for Oligonu-

cleotide Arrays Fabrication’, Proc. of the 23rd Annual EMBS International

Conf., pp.

[69] Earl A. Hubbel and David P. Smith, (2000)‘Techniques for Synthesis Integrity

Evaluation Utilizing Cycle Fidelity Probes’, United States Patent, patent number

6,130,046.

[70] D. J. Huang and A. B. Kahng, (1997)‘Partitioning-Based Standard Cell Global

Placement With an Exact Objective’, Proc. ACM Intl. Symp. on Physical Design,

pp. 18-25.

128

[71] E. Hubbell and M. Mittman , (2002)‘Personal communication’, Affymetrix, Santa

Clara, CA, July 2002.

[72] Nisar Hundewale, Ion Mandoiu, Claudia Prajescu and Alexander Zelikovsky

(2005) ‘Integrated Design Flow for Universal DNA Tag Arrays’, Proc. of the

Ninth Annual International Conference on Research in Computational Molecular

Biology (RECOMB 2005 - LNBI 3500) pp.

[73] Hussain S, McCurry K, Dauber J, Singh N, Kusne S.(2002) ‘Nocardia infection

in lung transplant recipients’, Journal of Heart Lung Transplant 21(3):354-9.

[74] Ayaz Isazaheh (2004) ‘Software Engineering: Integration’, Applied And Compu-

tational Mathematics: An International Journal vol. 3:1, pp. 56–66.

[75] T. Jiang and M. Li, (1995) ‘On the approximation of shortest common super-

sequences and longest common subsequences’, SIAM J. Computing 24(5), pp.

1122-1139.

[76] Johnson, G.C.L., Esposito, L., Barratt, B.J., Smith, A.N., Heward, et al. (2001)

‘Haplotype Tagging for the Identification of Common Disease Genes’, Nature

Genetics, 29:233-237.

[77] Leon Jololian and Murat M. Tanik (2001) ‘A Framework for a Meta-Semantic

Language for Smart Component-Adapters’, Journal of Sytems Integration vol.

10(3), pp. 269–297.

[78] Lars Kaderali and Alexander Schiep (2002) ‘Selecting signature oligonucleotides

to identify organisms using DNA arrays’, Bioinformatics 18 , pp. 1340–1349.

[79] A.B. Kahng, I.I. Măndoiu, P.A. Pevzner, S. Reda, and A. Zelikovsky, (2002)‘Bor-

der Length Minimization in DNA Array Design’, Proc. 2nd International Work-

shop on Algorithms in Bioinformatics (WABI 2002), R. Guigó and D. Gusfield

129

(Eds.), Springer-Verlag Lecture Notes in Computer Science Series 2452, pp. 435-

448.

[80] A.B. Kahng, I.I. Măndoiu, P.A. Pevzner, S. Reda, and A. Zelikovsky, (2003)‘En-

gineering a Scalable Placement Heuristic for DNA Probe Arrays’, Proc. 7th An-

nual International Conference on Research in Computational Molecular Biology

(RECOMB), pp.

[81] Andrew B. Kahng, Ion Măndoiu, Sherief Reda, Xu Xu and Alex Z. Zelikovsky

(2003) ‘Evaluation of Placement Techniques for DNA Probe Array Layout’, Proc.

IEEE International Conference on Computer Design(ICCD), pp. 116–123.

[82] S. Kasif, Z. Weng, A. Derti, R. Beigel, and C. DeLisi, (2002) ‘A computational

framework for optimal masking in the synthesis of oligonucleotide microarrays’,

Nucleic Acids Research vol. 30, e106.

[83] Keeble S. A. (1960) ‘B virus infection in monkeys’, Ann. N. Y. Acad. Sci.

85:960969.

[84] Keeble S. A., Christofinis G. J. and Wood W. (1958) ‘Natural B virus infection

in rhesus monkeys’, J. Pathol. Bacteriol, 76:189-199.

[85] Kimmel, G. and Shamir R.. (2005) A Block-Free Hidden Markov Model for Geno-

types and Its Application to Disease Association. J. of Computational Biology,

Vol. 12, No. 10: 1243-1260.

[86] T. Kozawa et al., (1983)‘Automatic Placement Algorithms for High Packging

Density VLSI’, Proc. 20th Design Automation Conference (DAC 1983), pp. 175–

181.

130

[87] J. Kevin Lanctot, Ming Li and En-hui Yang ‘Estimating DNA sequence entropy’,

SODA ’00: Proceedings of the eleventh annual ACM-SIAM symposium on Dis-

crete algorithms (2000), pp. 409–418.

[88] Joachims, T. http://svmlight.joachims.org/

[89] R.J. Lipshutz, S.P. Fodor, T.R. Gingeras, D.J. Lockhart, (1999) ‘High density

synthetic oligonucleotide arrays’, Nat. Genet. 21, pp. 20–24.

[90] F. Li and G.D. Stormo, (2001)‘Selection of optimal DNA oligos for gene expres-

sion arrays,’ Bioinformatics 17(11), pp. 1067-1076.

[91] Listgarten, J., Damaraju, S., Poulin B., Cook, L., Dufour, J., Driga, A.,

Mackey, J., Wishart, D., Greiner,R., and Zanke, B.. (2004) Predictive Models

for Breast Cancer Susceptibility from Multiple Single Nucleotide Polymorphisms.

mphClinical Cancer Research, Vol. 10, 2725C2737, 2004.

[92] Francisca Losavio, Dinarle Ortega, and Mara A. Prez (2002) ‘Modeling EAI’,

SCCC 2002 pp. 195–203.

[93] I. Mandoiu, C. Prajescu, and D. Trinca (2005) ‘Improved Tag Set Design and

Multiplexing Algorithms for Universal Arrays’, Proc. International Workshop on

Bioinformatics Research and Applications (IWBRA) pp. .

[94] Ion Mandoiu and D. Trinca (2005) ‘Exact and Approximation Algorithms for

DNA Tag Set Design’, Proc. 16th Annual Symposium on Combinatorial Pattern

Matching (CPM 2005), pp.

[95] Mao, W., He, J., Brinza D. and Zelikovsky, A. (2005) ‘A Combinatorial Method

for Predicting Genetic Susceptibility to Complex Diseases’, Proc. International

Conf. of the IEEE Engineering in Medicine and Biology (EMBC’05).

131

[96] W. Mao, N. Hundewale, S. Gremalschi, D. Brinza, A. Zelikovsky, (2006) ‘Geno-

type Susceptibility using Decision Fusion Methods’, IEEE International Confer-

ence on Granular Computing (IEEE-GrC2006), pp. 754-757.

[97] McCracken G. H. Jr. (2000) ‘Diagnosis and Management of pneumonia in chil-

dren’, Pediatr. Infect. Dis J. 19(9):924-8.

[98] B. Medjahed, B. Benatallah, A. Bouguettaya, A. H. H. Ngu, and A. K. Elma-

garmid (2003) ‘Business-to-business interactions: issues and enabling technolo-

gies’, The VLDB Journal - The International Journal on Very Large Data Bases

vol. 12:1.

[99] Merikangas, KR., Risch, N. (2003) ‘Will the Genomics Revolution Revolutionize

Psychiatry’, The American Journal of Psychiatry, 160:625-635.

[100] Michelow Ian C., Olsen Kurt, BS, Lozano Juanita, Rollins Nancy K., Ziegler

Thedi, Kauppila Jaana, Leinonen Maija and McCracken George H. (2004) ‘Epi-

demiology and Clinical Characteristics of Community Acquired Pneumonia in

Hospitalized Children’, Pediatrics Vol. 113 No. 4, pp. 701-707.

[101] http://www.mosis.org

[102] Mikhail V. Naganov (2005) ‘Towards Automatic Generation of Q Adaptors’,

IASTED International Conference on Software Engineering in Innsbruck, Aus-

tria.

[103] NIH, ‘Orf finder’, http://www.ncbi.nih.gov/gorf/gorf.html.

[104] Michael Ostapchuk, M.D., Donna M. Roberts, M.D., and Richard Haddy, M.D.

(2004) ‘Community-Acquired Pneumonia In Infants and Children’, American

Family Physician70:899-908.

132

[105] Palmer A. E., (1987) ‘B virus, herpes virus simile: historical perspective’, J.

Med. Primatol., 16:99-130.

[106] Perelygina L., Zhu L., Zurkuhlen H., Mills R., Borodovsky M. and Hilliard J.K.

(2003) ‘Complete Sequence and Comparative Analysis of the Genome of Herpes

B Virus (Cercopithecine herpesvirus 1) from a Rhesus Monkey’, J. Virology,

77(11):61676177.

[107] B. T. Preas and M. J. Lorenzetti, eds., (1988)‘Physical Design Automation of

VLSI Systems’, Benjamin-Cummings.

[108] Paul Pop, ‘A Survey of Three Approaches to the Automation of Design Pat-

terns’, Lecture Notes, Computer and Information Science Dept. Linkpings uni-

versitet.

[109] http://www.perlegen.com

[110] Sven Rahmann, (2002) ‘Rapid large-scale oligonucleotide selection for microar-

rays’, Proc. IEEE Computer Society Bioinformatics Conference (CSB’02).

[111] Sven Rahmann (2003) ‘Fast and Sensitive Probe Selection for DNA Chips Using

Jumps in matching Statistics’, Proc. of the computational Systems Bioinformat-

ics, pp.

[112] Resor, III , et al. (1992)‘Apparatus and method for making large area electronic

devices, such as flat panel displays and the like, using correlated, aligned dual

optical systems’, US Patent RE33836.

[113] Alexander Schliep and Sven Rahmann (2003) ‘Group Testing with DNA Chips:

Generating Designs and Decoding Experiments’, Proc. of the Computational Sys-

tems Bioinformatics, pp.

133

[114] R. Sengupta and M. Tompa, (2002) ‘Quality Control in Manufacturing Oligo

Arrays: a Combinatorial Design Approach’, Journal of Computational Biology

9, pp. 1–22.

[115] K. Shahookar and P. Mazumder, (1991) ‘VLSI Cell Placement Techniques’,

Computing Surveys 23(2), pp. 143-220.

[116] http://www.sigma-genosys.com

[117] H. Simmler, H. Singpiel and R. Manner (2003) ‘Real-Time Primer Design for

DNA Chips’, IEEE Computer Society, pp.

[118] Gerald Benoit (2003) ‘Bioinformatics’, , pp.

[119] Kaleigh Smith (2002) ‘Universal Microarrays: An Algorithmic Approach’, , pp.

[120] L. Steinberg, (1961)‘The backboard wiring problem: a placement algorithm”,

SIAM Review 3, pp. 37–50.

[121] Wing-Kin Sung and Wah-Heng Lee (2003) ‘Fast and Accurate Probe Selection

Algorithm for Large Genomes’, Proc. of the computational Systems Bioinformat-

ics, pp.

[122] V. G. Timkovsky, (1993) ‘Ten etudes on shortest common nonsubsequence and

supersequence approximations’, XXX, pp.

[123] A.C. Tolonen, D.F. Albeanu, J.F. Corbett, H. Handley, C. Henson, and P.

Malik, (2002) ‘Optimized in situ construction of oligomers on an array surface’,

Nucleic Acids Research vol. 30, e107.

[124] Tomita, Y., Yokota, M. and Honda, H. (2005) Classification method for predic-

tion of multifactorial disease development using interaction between genetic and

environmental factors, IEEE computational systems bioinformatics conference,

abstract.

134

[125] http://www.eetimes.com/semi/news/OEG20020517S0074

[126] Ueda, H., Howson, J.M.M., Esposito, L. et al. (2003) ‘Association of the T Cell

Regulatory Gene CTLA4 with Susceptibility to Autoimmune Disease’, Nature,

423:506-511.

[127] C. Pierrat, (2002)‘Multiple image reticle for forming layers’, US Patent, July

2002.

[128] C. Holmes, (2002)‘Cyclic and substituted immobilized molecular synthesis’, US

Patent 6468740, October 2002.

[129] Waddell, M., Page,D., Zhan, F., Barlogie, B., and Shaughnessy, J..(2004) Pre-

dicting Cancer Susceptibility from SingleNucleotide Polymorphism Data: A Case

Study in Multiple Myeloma. Proceddings of BIOKDD 2005, 05, 2005.

[130] Wang X, Seed B. (2003) ‘Selection of oligonucleotide probes for protein coding

sequences’, Bioinformatics 19(7):796-802.

[131] J.A. Warrington, R. Todd, and D. Wong (Eds.) (2002) ‘Microarrays and cancer

research’, BioTechniques Press/Eaton Pub., Westboro, MA.

[132] Weigler B. J., (1992) ‘Biology of B virus in macaque and human hosts: a review’,

Clin. Infect. Dis., 14:555-567.

[133] Zhang, K., Calabrese, P., Nordborg, M., Sun, F. (2002) ‘Haplotype Block Struc-

ture and Its Applications in Association Studies: Power and Study Design’, The

American Journal of Human Genetics, 71:1836-1894.

135

	CAD Tools for DNA Micro-Array Design, Manufacture and Application
	Recommended Citation

	CAD TOOLS FOR DNA MICRO-ARRAY DESIGN, MANUFACTURE AND APPLICATION

