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Long-term intrinsic and synaptic plasticity must be coordinated to ensure stability
and flexibility in neuronal circuits. Coordination might be achieved through shared
transduction components. Dopamine (DA) is a well-established participant in many forms
of long-term synaptic plasticity. Recent work indicates that DA is also involved in both
activity-dependent and -independent forms of long-term intrinsic plasticity. We previously
examined DA-enabled long-term intrinsic plasticity in a single identified neuron. The
lateral pyloric (LP) neuron is a component of the pyloric network in the crustacean
stomatogastric nervous system (STNS). LP expresses type 1 DA receptors (D1Rs). A
1 h bath application of 5 nM DA followed by washout produced a significant increase
in the maximal conductance (Gmax) of the LP transient potassium current (IA) that peaked
∼4 h after the start of DA application; furthermore, if a change in neuronal activity
accompanied the DA application, then a persistent increase in the LP hyperpolarization
activated current (Ih) was also observed. Here, we repeated these experiments with
pharmacological and peptide inhibitors to determine the cellular processes and signaling
proteins involved. We discovered that the persistent, DA-induced activity-independent (IA)
and activity-dependent (Ih) changes in ionic conductances depended upon many of the
same elements that enable long-term synaptic plasticity, including: the D1R-protein kinase
A (PKA) axis, RNA polymerase II transcription, RNA interference (RNAi), and mechanistic
target of rapamycin (mTOR)-dependent translation. We interpret the data to mean that
increasing the tonic DA concentration enhances expression of a microRNA(s) (miRs),
resulting in increased cap-dependent translation of an unidentified protein(s).

Keywords: stomatogastric, Kv4, HCN, small noncoding RNA, argonaute, conductance ratio, crustacean, activity-
dependent

INTRODUCTION
Dopaminergic systems use volume transmission to modulate
cognitive and motor functions (Zoli et al., 1998; Schultz, 2007;
Oginsky et al., 2010). Tonic and burst firing neurons release
Dopamine (DA) that can then diffuse and act predominantly
at remote extra-synaptic receptors before reuptake by DA trans-
porters. As a result, target neurons are tonically exposed to DA;
e.g., approximately tens of nM in the striatum and prefrontal
cortex (Owesson-White et al., 2012; Nirogi et al., 2013; Zuo
et al., 2013), and superimposed upon this baseline are periodic
fluctuations in DA that can transiently rise to ∼µM levels near
the release sites of bursting DA neurons (Park et al., 2011; Rice
et al., 2011; Owesson-White et al., 2012).

Phasic and tonic DA have distinct roles in the CNS. Pha-
sic DA may encode reward prediction error (Steinberg et al.,
2013), provide sustained motivational drive (Howe et al., 2013)
and modulate motor behaviors (Gerfen and Surmeier, 2011).
On the other hand, tonic DA is thought to have an enabling
function because tonic administration of drugs, such as L-dopa

or neuroleptics, can enable motor, motivational and cognitive
behaviors (Schultz, 2007). The effects of tonic DA have largely
been attributed to D2Rs, but all receptors can show high and
low affinity states and there is increasing evidence that tonic DA
acting at high affinity type 1 DA receptors (D1Rs) may also enable
and shape circuit output over the long-term (Trantham-Davidson
et al., 2004; Rodgers et al., 2011a,b; Wall et al., 2011; Saba et al.,
2012).

We previously showed that the sole lateral pyloric (LP) neuron
in the stomatogastric nervous system (STNS) of the spiny lobster,
Panulirus interruptus, expressed high and low affinity D1Rs but
not D2Rs (Zhang et al., 2010; Rodgers et al., 2011a,b; Krenz et al.,
2013). Low affinity LP D1Rs were activated by µM DA to produce
immediate and reversible alterations in the biophysical properties
of LP voltage gated ionic currents (Harris-Warrick et al., 1995;
Johnson et al., 2003; Kloppenburg et al., 2007; Zhang et al., 2010).
High affinity LP D1Rs activated by nM DA produced effects
over two time scales. They rapidly conferred activity-dependence
upon LP Ih to maintain a conductance ratio and its activity
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correlate (Krenz et al., 2013), and they also acted through a slower
process(es) to persistently influence ion current densities. A 1 h
application of 5 nM DA or saline (control) to the superfusate
bathing LP, followed by a 4 h washout and subsequent voltage
clamp to measure LP IA showed that LP IA Gmax was significantly
increased by 25% in the DA-treated relative to control prepa-
rations (Rodgers et al., 2011b). If the experiment was repeated,
but LP activity was altered during the 1 h 5 nM DA (or saline)
application, then LP Ih was also significantly increased by 55%
in DA-treated preparations relative to saline controls (Rodgers
et al., 2011a). Here we examine the cellular processes mediating
DA’ s persistent effects and show that many of the same elements
involved in long-term synaptic plasticity underpin DA-induced
long-term intrinsic plasticity.

MATERIALS AND METHODS
ANIMALS
California spiny lobsters, Panulirus interruptus, were purchased
from Marinus Scientific (Long Beach, CA) and Catalina Offshore
Products (San Diego, CA). Lobsters were maintained at 16◦C in
aerated and filtered seawater. Animals were anesthetized on ice
before dissection.

CHEMICALS AND PEPTIDES
Tetrodotoxin (TTX), flupenthixol and myristoylated PKI(14−22)

were purchased from Tocris Bioscience (Bristol, UK), flavopiridol
was from Selleckchem (Houston, TX), and all other chemicals
were purchased from Sigma-Aldrich (St. Louis, MI). Peptides
were synthesized by Biomatik (Wilmington, DE). DA was made
fresh every 30 min to minimize oxidation. In all experiments,
antagonists were administered 10 min before DA application.
Rp-cAMPS (1 mM) effectively blocks protein kinase A (PKA)
in several arthropod models such as Drosophila and crustaceans,
including Panulirus (Erxleben et al., 1995; Kuromi and Kidokoro,
2000; Zhang et al., 2010). PKI is an effective blocker of the
PKA catalytic subunit in crustaceans (Dixon and Atwood, 1989).
Dosages of rapamycin (100 nM), anisomycin (30 µM) and acti-
nomycin D (50 µM) were previously demonstrated to be effec-
tive in several invertebrate models including Panulirus (Rodgers
et al., 2011a). Concentrations of flavopiridol (100 nM) and 5, 6-
dichloro-1-β-D-ribobenzimidazole (DRB, 100 µM) were chosen
based on previously demonstrated effective dosages (Chao and
Price, 2001; Bensaude, 2011; Yuan and Burrell, 2013).

EXPERIMENTAL PREPARATION
The STNS was dissected and pinned in a Sylgard lined Petri
dish using standard techniques (Selverston et al., 1976). The
stomatogastric ganglion (STG) was desheathed and isolated with
a Vaseline well. The STG was superfused with saline consisting of
(in mM) 479 NaCl, 12.8 KCl, 13.7 CaCl2, 39 Na2SO4, 10 MgSO4,
2 glucose, 4.99 HEPES, 5 TES at pH 7.4. Intracellular somatic
recordings used to identify neurons were obtained with sharp
high resistance glass microelectrodes filled with 3 M KCl (20–30
MΩ) and an Axoclamp 2B amplifier (Axon Instruments, Foster
City, CA). Neurons were identified by correlating action poten-
tials from somatic intracellular recordings with extracellularly
recorded action potentials on identified motor nerves, and by

their characteristic shape and timing of oscillations. The process
of dissection and cell identification usually took 3–5 h.

SOMATIC TWO-ELECTRODE VOLTAGE CLAMP (TEVC)
For two-electrode voltage clamp (TEVC) of LP Ih, the well sur-
rounding the STG was superfused for 1 h with blocking saline:
saline containing 10−6 M picrotoxin to block inhibitory gluta-
matergic synaptic inputs (Marder and Eisen, 1984; Cleland and
Selverston, 1995), 10−7 M TTX to block voltage-gated Na+ chan-
nels, 2 × 10−2M tetraethylammonium (TEA) to block voltage-
gated K+ channels, 2 × 10−4M cadmium chloride (CdCl2) to
block Ca2+- and Ca2+-dependent channels. The LP neuron was
next impaled with two low resistance voltage clamp micropipettes
(8–10 MΩ when filled with 3 M KCl) connected to Axoclamp 2B
or 900A amplifiers (Molecular Devices, Foster City, CA). LP was
clamped to a −50 mV holding potential using pClamp software.
Ih was elicited using a series of 4 s hyperpolarizing voltage steps,
from−60 mV to−120 mV in 10 mV increments with 6 s between
steps. Steady state peak currents were measured by fitting the
current trace back to the beginning of the hyperpolarizing voltage
step or by subtracting the initial fast leak current from the slowly
developing peak of Ih at the end of each negative voltage step.
Currents were converted to conductance (G = Ipeak/(Vm–V rev)
and fitted to a first order Boltzmann equation. V rev Ih =−35 mV
(Kiehn and Harris-Warrick, 1992). For TEVC measurement of
LP IA the command potential was stepped from −50 mV to
−90 mV for 200 ms to remove resting inactivation. The deinac-
tivating prepulse was immediately followed by a 400 ms testpulse
to activate the channels. Activation pulses ranged from −40 to
+40 mV in 10 mV increments. To subtract the leak current, the
hyperpolarizing prepulse was omitted and instead the prepulse
was set to −40 mV to remove IA activation from the −50 mV
holding potential. Currents were converted to conductance (G =
Ipeak/(Vm–V rev) and fitted to a first order Boltzmann equation.
V rev IA = −86 mV (Eisen and Marder, 1982). TEVC experiments
were done at 19–22◦C as measured with a probe in the bath.
Temperature did not change by more than 1◦C during any given
experiment.

CLONING AND SEQUENCING LOBSTER ARGONAUTE 1 (AGO1)
Total RNA was isolated from the lobster nervous system using
TRIzol (Ambion, Austin, TX) and converted to cDNA using
Superscript (Life Technologies, Grand Island, NY) according to
manufacturers’ instructions. Degenerate primers were generated
based on alignments with Drosophila melanogaster (Genbank
accession: AB035447), Penaeus monodon (Genbank accession:
DQ343133), and Daphnia pulex (wfleabase: NCBI_GNO_68324)
and are shown in Table 1. Degenerate polymerase chain reactions
(PCRs) were performed with Advantage Taq (Clontech, Mountain
View, CA) as previously described (Baro et al., 1994). PCR prod-
ucts were cloned with a TA cloning kit (Qiagen, Valencia, CA)
using the manufacturer’s instructions. The 3′ end was obtained
with lobster specific primers, S. For 1 (Table 1) and a SMARTer
RACE kit (Clontech) using instructions provided. The 5′ end
was obtained with lobster specific primer, S. Rev 2 (Table 1)
and a FirstChoice RLM RACE Kit (Ambion) using instructions
provided. All sequencing was performed by the GSU DNA core
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facility. Sequences were analyzed and manipulated with the Laser-
gene 10 suite of DNASTAR software (Madison, WI).

PEPTIDE INJECTION
The his-tagged hook (HHHHHHPDNGTSAWGEPNESSPG-
WGEMD) and mutant hook (HHHHHHPDNGTSvavEPNESSP-
vavEMD) peptides were diluted in water to a working concentra-
tion of 10 ng/ml and fast green was added to 0.04% to visualize
injections. Microloaders (Eppendorf) were used to directly fill
glass pipettes (8–15 MΩ when filled with 3 M KCl) with the
solution (i.e., no backfilling). Because of the high resistance of
the peptide solution, pipette tips were broken before injection by
gently touching a Kim wipe. The peptide was pressure injected
into LP neurons using a Picospritzer III (General Valve/Parker
Hannifin). Only two pressure pulses (on average 32 psi and 47 ms)
separated by 30 s were applied. Intracellular recording during the
injection showed that the injection procedure had no effect on
LP voltage envelope and firing properties. Extracellular recordings
were used to continuously monitor the activity of the LP neuron
before, during and for 1 h after peptide injection.

Table 1 | PCR Primers.

Primer Sequence 5’ to 3’
description

D. For 1 TKCARACDTCKRCYATGATCAA
D. Rev 1 TGHGTYACATCRGCWCCCA
D. For 2 CCIGAYAARTGYCCIMGIMRRGTNAA
S. For 1 GTCCCAGGCATCAGACCGAAGGTGTTC
S. Rev 1 CGAACCAAATTGTTTATCTCTCTCTCTCGGTCAGG
S. Rev 2 CTGGGAAAGGCATGTACCATGGTCTCG

STATISTICAL ANALYSES
The data were checked for normality and analyzed using para-
metric statistical tests including Student t-tests and ANOVAs. In
the one case where data were not normally distributed, a non-
parametric Kruskal-Wallis test was used. All data were analyzed
using Prism Statistical software package (Graphpad). Significance
threshold was set at p < 0.05 in all cases. Statistical outliers were
excluded if the values fell greater than two standard deviations
from the mean and this resulted in exclusion of one experiment.
Means and standard errors are presented unless otherwise noted.
ANOVAs were usually followed by Tukey’s post hoc tests that make
all pairwise comparisons.

RESULTS
EXPERIMENTAL MODEL
A persistent activity-dependent increase in LP Ih Gmax was elicited
by two coincident events: an activation of high affinity LP D1Rs
and a reduction in LP burst duration (Rodgers et al., 2011a).
We used a simple experimental model to coincidently elicit these
events and study the cellular processes involved in long-term
intrinsic plasticity: the spiny lobster STNS was dissected and
pinned in a dish (Figure 1A). The STG, which contains the LP
neuron, was continuously superfused with saline. Intracellular
and extracellular recordings were used to identify the sole LP
neuron as described in Section Materials and Methods. Both in
vivo (Heinzel et al., 1993) and in situ (Figure 1B), the LP neuron
undergoes spontaneous slow oscillations in membrane potential
(∼20 mV at 1–2 Hz) with a burst of spikes riding on the depo-
larized plateau of each oscillation. The standard experimental
protocol used to elicit the persistent increase in LP Ih Gmax is
diagrammed in Figure 1C. LP activity was altered during a 1 h
application of DA followed by washout of DA. At the end of the

FIGURE 1 | The experimental model. (A) The stomatogastric nervous
system is dissected and pinned in a dish. Dopamine neurons (black) in the
commissural ganglia (COGs) project through the stomatogastric nerve (stn) to
the STG. The L-cells (gold) in the COGs are the source of neurohormonal DA
that constantly bathes the STG. In these experiments, the STG is isolated
with a Vaseline well (rectangle) and constantly superfused throughout the
experiment (arrows). There are ∼30 neurons in the STG including the single
LP neuron that is illustrated in red. (B) Intracellular LP recordings from a

typical experiment where the STG was sequentially superfused with saline
(control), 5 nM DA and 5 µM DA. Note that 5 µM but not 5 nM produced a
significant decrease in LP burst duration (a) and cycle period (b). Scale bars
are 20 mV and 500 ms. (C) Diagram of typical somatic TEVC experiments to
measure persistent changes in LP Ih. (D) Representative LP Ih recording
elicited with a series of hyperpolarizations from −50 mV to −120 mV in
10 mV increments from a holding potential of −50 mV; current (top) and
voltage (bottom) traces are shown; scale bars are 5 nA and 500 ms.
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wash, the preparation was superfused with blocking saline for 1 h
to prevent spontaneous activity, and LP Ih was then measured
with somatic TEVC (Figure 1D). We previously demonstrated
that in the absence of DA, LP Ih Gmax does not exhibit rapid
activity-dependent changes (Krenz et al., 2013); and, measures of
LP Ih before and after the block indicate that it does not change
appreciably during the block (LP Ih Gmax before block = 0.125 +
0.013 µS; LP Ih Gmax after 1 h block = 0.120 + 0.012 µS, n = 7,
Student t-test, p = 0.796).

Three methods were previously used to elicit a persistent
∼55% increase in LP Ih Gmax by simultaneously activating high
affinity D1Rs while altering LP activity (Rodgers et al., 2011a).
The first two methods used a 1 h application of 5 nM DA to
activate high affinity D1Rs and either concurrent application of
TTX to block activity or concurrent injection of a hyperpolarizing
bias current into LP to reduce LP burst duration and decrease
LP duty cycle (burst duration/period). These treatments were
followed by a 2.5 h saline wash, a 1 h block and TEVC mea-
surement of LP Ih. The fact that both methods produced the
same persistent ∼55% increase in LP Ih Gmax suggested that the
specific change in activity did not determine the magnitude of
the alteration in LP Ih Gmax measured 3.5 h after the treatment
ended (other time points were not examined). In the absence of
a change in activity, 5 nM DA had no effect; and, TTX had no
significant effect in the absence of 5 nM DA. The third method
used to elicit a persistent ∼55% increase in LP Ih Gmax was a 1 h
application of 5 µM DA alone, which activates both high affinity
D1Rs to permit activity-dependent regulation of LP Ih Gmax and
low affinity D1Rs to decrease LP burst duration and reduce LP
duty cycle (Figure 1B, compare top and bottom panels). When
TTX was included with 5 µM DA, the same 55% increase in LP
Ih Gmax was observed, again suggesting that the magnitude of the
persistent change in LP Ih Gmax measured 3.5 h after the treatment
was not strictly correlated with the magnitude of the change in
activity. However, a change in activity was required because, if a
depolarizing bias current was injected into LP to prevent the 5 µM
DA-induced decrease in LP burst duration and duty cycle, then
there was no persistent change in LP Ih Gmax in the presence of
5 µM DA. The most parsimonious interpretation of these data
is that 5 µM DA and 5 nM DA + TTX acted through the same
pathway to produce a persistent ∼55% increase in LP Ih Gmax.
Therefore, these two treatments are used interchangeably to study
the processes involved.

TIME COURSE OF THE PERSISTENT INCREASE IN LATERAL PYLORIC
(LP) Ih Gmax

Previous experiments showed that a 1 h DA application accom-
panied by a change in activity produced a 55% increase in LP
Ih Gmax measured after a 2.5 h DA washout followed by a 1 h
block (Rodgers et al., 2011a). To gain insight into the mechanism
involved, we examined the time course of the increase. The
experiments are diagrammed in Figure 2A. For the DA-treated
group, the STG was superfused with 5 µM DA for 1 h followed
by washout with saline for 0–6 h. At the end of the washout, the
STG was treated with blocking saline for 1 h followed by TEVC to
measure LP Ih. Control experiments were performed in which the
STG was superfused with saline for 0 h (acute) or 3.5 h (control)

followed by a 1 h block and TEVC to measure LP Ih. The measured
LP Ih Gmax for each experiment was divided by the mean LP Ih

Gmax value for control experiments, and the resulting normalized
LP Ih Gmax was plotted (Figure 2B). The data indicated that the
increase in LP Ih Gmax developed slowly, peaked within 2–3 h
of the start of DA application and then slowly declined over a
similar time course. In the absence of 5 µM DA, LP Ih Gmax did
not change significantly over time (compare acute and control
treatment groups).

In order to further demonstrate that the persistent activity-
dependent increase in LP Ih was enabled by activation of high
affinity D1Rs, and not washout of 5 µM DA, we performed one
additional experiment (Figure 2A, orange bar). After dissection
and cell identification, STGs were superfused with 5 nM DA +
TTX for 3 h followed immediately by TEVC measures of LP
Ih. The data were normalized as described above and plotted
(Figure 2B, orange stars). The results indicated that the persistent
increase in LP Ih Gmax did not depend upon DA washout. The
mean fold-changes in LP Ih Gmax for the two 3 h treatment groups
were 1.39 + 0.07 (3 h 5 nM DA + TTX) vs. 1.42 + 0.14 (1 h 5 µM
DA + 1 h wash + 1 h block). These means were not significantly
different from one another, but both were significantly increased
relative to control. Since we previously showed that neither 5 nM
DA nor a change in LP activity produced a significant long-
term change in LP Ih Gmax relative to saline controls on its own
(Rodgers et al., 2011a), we interpret the data presented here to
mean that tonic activation of high affinity D1Rs enables a slow
cellular process(es) that permits activity-dependent regulation of
LP Ih Gmax.

THE TYPE 1 DA RECEPTOR (D1R)- PROTEIN KINASE A (PKA) AXIS IS
REQUIRED FOR THE PERSISTENT INCREASE IN LATERAL PYLORIC (LP)
Ih Gmax

Experiments were next performed to determine if the persistent
increase in LP Ih Gmax was mediated by high affinity D1Rs
acting through PKA (Figure 3). The experiment is diagrammed
in Figure 3A: from t = −10–60 min, the STG was superfused
with saline that in some cases contained TTX with or without
a pharmacological reagent. In some experiments, 5 nM DA was
added to the superfusate from t = 0–60 min. From t = 1 h–3.5 h,
the STG was superfused with saline alone. The preparation was
then blocked for 1 h and LP Ih was measured with TEVC. Previous
work showed that under these conditions, superfusing TTX alone
from t = −10–60 min had no significant effect on LP Ih Gmax

relative to saline controls (Rodgers et al., 2011a). Flupenthixol
antagonizes LP D1Rs (Zhang et al., 2010; Rodgers et al., 2011b)
and in these experiments10 µM flupenthixol blocked the increase
in LP Ih Gmax elicited by 5 nM DA + TTX but had no effect
on its own (Figure 3B). Similarly, a competitive antagonist for
cAMP binding to PKA, Rp-cAMPS, completely blocked the DA-
and activity-dependent persistent increase in LP Ih Gmax, but
had no effect in the absence of DA (Figure 3C). These data are
consistent with the idea that D1Rs act through PKA to persistently
alter LP Ih Gmax; however, Rp-cAMPS can potentially antago-
nize other cAMP binding proteins including exchange protein
activated by cAMP (epac) and hyperpolarization activated cyclic
nucleotide-gated (HCN) channels (Shabb, 2011). To confirm PKA
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FIGURE 2 | Time course for the persistent increase in LP Ih Gmax. (A)
Diagram of the experimental protocol for each of the four treatment groups.
For all treatment groups a single measure was obtained for each preparation
using two-electrode voltage clamp (TEVC) at the end of the experiment, i.e.,
LP Ih was not repeatedly measured over time within a given preparation;
rather, terminal measurements from DA-treated preparations were compared
to terminal measurements from control preparations and 68 animals were
used for all of the experiments shown. Note that for the DA-treated group,
the length of the saline wash varied across time points. (B) Plot of normalized
LP Ih Gmax for each experiment in every treatment group. Each symbol is a
discrete experiment; e.g., the preparations in the 1 h DA-treatment group are
different from the preparations in the 1.5 h DA-treatment group. Each y -value

represents the LP Ih Gmax for that experiment divided by the mean for the
control experiments. The solid horizontal lines represent the means. Note
that means will not be accurate at later time points where n ≤ 3, and they are
only meant to show a decreasing trend over time. The numbers on the x-axis
correspond to the hours that elapsed between the beginning of the DA
application and the beginning of the block, i.e., x = 1 means that there was no
saline wash before application of blocking saline; x = 2 indicates a 1 h saline
wash, etc. Blue asterisks indicate significant differences relative to the control
group as determined with a one-way ANOVA followed by Dunnett’s post hoc
tests that compared the control treatment group to the acute and no washout
treatment groups and each time point in the DA-treated group except those
time points with n ≤ 3: F (7,50) = 3.921, p = 0.0018.

involvement, the experiment was repeated with the specific mem-
brane permeable PKA blocker, myristoylated PKI(14−22), which
specifically binds to and inactivates the catalytic subunit of PKA
(Wen and Taylor, 1994; Shabb, 2011). PKI also blocked the DA-
and activity-dependent persistent increase in LP Ih Gmax but had
no effect in the absence of DA (Figure 3D). Together these data
suggested that a functional D1R-PKA axis was necessary for the
persistent activity-dependent increase in LP Ih Gmax.

MECHANISTIC TARGET OF RAPAMYCIN (mTOR)-DEPENDENT
TRANSLATION IS REQUIRED FOR THE PERSISTENT INCREASE IN
LATERAL PYLORIC (LP) Ih Gmax

Mechanistic target of rapamycin (mTOR) is a conserved serine
threonine kinase that functions as part of the protein complex,

mTORC1, to regulate cap-dependent translation in all eukary-
otic cells (Foster and Fingar, 2010). We used the mTORC1
specific blocker, rapamycin, and the translation blocker, ani-
somycin, to determine if mTORC1 and translation were also
necessary for the DA- and activity-dependent increase in LP
Ih Gmax (Figure 4). In these experiments, from t = 0–60 min,
the STG was superfused with saline that did or did not (con-
trol) contain 5 µM DA, followed by a 1 h wash with saline,
a 1 h block and TEVC to measure LP Ih. Either 100 nM
rapamycin or 30 µM anisomycin was also superfused from
t = −10–120 min. The data indicated that both mTOR and
translation were necessary to produce the DA- and activity-
dependent persistent increase in LP Ih Gmax. In the presence
of either blocker, 5 µM DA could no longer elicit a significant
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FIGURE 6 | Transcription is required for the DA- and
activity-dependent persistent increase in LP Ih Gmax. (A) Diagram of
the experimental protocol. (B) Flavopiridol (100 nM) blocks the persistent
increase in LP Ih Gmax elicited by 5 µM DA. LP Ih Gmax is plotted for each
treatment group; each symbol is one experiment; the horizontal bars
represent the means. Asterisk indicates a significant difference as
determined using t-tests to compare DA and saline treatment groups in
preparations with (p = 0.701) and without (p = 0.011) flavopiridol. Note
that an ANOVA could not be performed due to unequal variances

between +/− flavopiridol groups (F -test, p < 0.03). (C) DRB (100 µM)
blocks the persistent increase in LP Ih Gmax elicited by 5 µM DA. Asterisk
indicates a significant difference as determined using a one-way ANOVA
with Tukey’s post hoc tests that made all pairwise comparisons, F (3,25) =
3.827, p < 0.022. (D) Actinomycin D (50 µM) blocks the persistent
increase in LP Ih Gmax elicited by 5 µM DA but has no effect alone.
Asterisks indicate significant differences as determined using a one-way
ANOVA with Tukey’s post hoc tests that made all pairwise comparisons,
F(3,26) = 7.611, p = 0.0008.

measured LP IA. The hook blocked the DA induced increase in LP
IA Gmax (Figure 7A); thus, the RNAi pathway was necessary for
the persistent increase in LP IA. We next repeated the experiments
with the transcription blockers diagrammed in Figure 6A. DRB
alone significantly increased LP IA Gmax relative to saline controls
(t-test, p = 0.026, n > 5 per treatment group), and was not con-
sidered further. On the other hand, both flavopiridol (Figure 7B)
and actinomycin D (Figure 7C) blocked the DA-induced increase
in LP IA Gmax. Consistent with the idea that 5 µM DA and 5 nM
DA acted through the same pathway, flavopiridol also blocked the
persistent ∼25% increase in LP IA Gmax elicited by 5 nM DA +
TTX (mean + SEM LP IA Gmax in 5 nM DA + TTX = 3.1 + 0.2 µS,
n = 8; in flavopiridol + 5 nM + TTX = 2.08 + 0.23 µS, n = 4;
Student’s t-test p = 0.005). We concluded that RNA polymerase
II transcription was also necessary for the DA-induced persistent
increase in LP IA.

DISCUSSION
The main finding of the work presented here is that tonic nM
DA can act at high affinity D1Rs to permit a persistent, activity-
dependent increase in LP Ih Gmax through a signaling network
that relies on the canonical D1R-PKA axis, RNA Polymerase II
transcription, components of the RNAi pathway, mTORC1 and
translation. All of these same elements are also necessary for the
activity-independent, persistent increase in LP IA Gmax elicited by
tonic nM DA.

POTENTIAL MECHANISMS FOR HOW 5 nM DA PERSISTENTLY
REGULATES LATERAL PYLORIC (LP) IA AND LP Ih

Modulatory tone continuously influences ion current density:
Washout of modulatory tone reduced LP IA Gmax and adding
5 nM DA back to the bath prevented the decrease and could
even produce a persistent increase (Rodgers et al., 2013). The
mechanism involved did not rely on alterations in the number
of Kv4 transcripts (Rodgers et al., 2011b) that encode the pore-
forming subunits of the channels mediating LP IA (Baro et al.,
1997, 2000). If bath application of 5 nM DA was accompanied
by a significant change in LP slow wave activity, then a persistent
increase in LP Ih was also observed (Rodgers et al., 2011a). In
the simplest case, high affinity D1Rs regulate both LP IA and
Ih through the same mechanism, and activity-dependence is
bestowed upon LP Ih through an additional process.

RNA polymerase II transcription is essential for the persistent
increase in LP IA and Ih elicited by 5 nM DA. Both mRNAs and
miRs are transcribed by RNA polymerase II. Our data suggest
miR expression is regulated by dopaminergic tone. The RNAi
pathway, which processes miRs and mediates their effects, is
necessary for the DA-induced persistent increases in LP IA and
Ih Gmax. Injecting the Ago hook to sequester endogenous Ago1,
and thereby obstruct RNAi, did not appear to alter LP IA or Ih

over the long-term (several hours); however, Ago hook injections
did block the persistent increase in LP IA and Ih Gmax elicited
by 5 nM DA. The most parsimonious interpretation of these
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FIGURE 7 | miR transcription is required for the DA-dependent
persistent increase in LP Ih Gmax. (A) The Ago hook blocks the persistent
increase in LP IA Gmax elicited by 5 nM DA. The Ago hook injection
experiments described in Figure 5A were repeated without TTX, and LP IA

Gmax was measured. Each symbol represents one experiment, and the
horizontal bars represent the means. The asterisk indicates a significant
difference between the saline and DA-treated preparations, as determined
using Student t-tests for the non-injected preparations (p < 0.006) and the
hook-injected preparations (p = 0.244). (B) Flavopiridol (100 nM) blocked the
persistent increase in LP IA Gmax elicited by 5 µM DA. Experiments
diagrammed in Figure 6A were repeated with flavopiridol except that LP IA

was measured and plotted for each treatment group. Each symbol is one
experiment; horizontal bars are the means. Asterisk indicates a significant
difference as determined using t-tests to compare DA and saline treatment
groups in preparations with (p = 0.969) and without (p = 0.004) flavopiridol.
Note that unequal variances between +/− flavopiridol groups prevented
analysis with an ANOVA (F -test, p < 0.008). (C) Actinomycin D (50 µM)
blocked the persistent increase in LP IA Gmax elicited by 5 µM DA.
Experiments diagrammed in Figure 6A were repeated with Actinomycin D,
except that LP IA was measured and plotted for each treatment group. Each
symbol is one experiment; horizontal bars are the means. Asterisks indicate
significant differences as determined using a Kruskal-Wallis test with
Dunn’s multiple comparison posthoc tests, p = 0.0014.

data is that DA regulates miR expression, although there are
other explanations (Pinder and Smibert, 2013). If DA suppressed
miR expression, then Ago hook injections should have occluded
the DA effect. Since Ago hook injections blocked rather than
occluded DA’s effect, it is more likely that DA enhanced miR
expression. Consistent with this hypothesis, activation of high
affinity D1Rs has been shown to enhance miR-181a expression
in hippocampal neurons (Saba et al., 2012). The half-lives of
miRs are variable, ranging from minutes to hours (Bail et al.,
2010; Krol et al., 2010). MiR expression can be regulated by
altering rates of transcription (Fiore et al., 2009; Impey et al.,
2010; Nudelman et al., 2010), processing (Heinrich et al., 2013;
Massirer and Pasquinelli, 2013) and/or degradation (Chatterjee
and Grosshans, 2009; Krol et al., 2010; Wibrand et al., 2010;
Grosshans and Chatterjee, 2011). DA could be acting on one
or all three of these processes to enhance miR expression. The
D1R-PKA axis could directly increase transcription rates through
the cAMP response element binding protein (CREB), a tran-
scription factor known to augment the expression of several
miRs (Vo et al., 2005; Tan et al., 2012a,b). Monoamines can
also regulate the expression of Piwi-interacting RNAs (piRs),
an additional class of small noncoding RNAs that can promote
long-term neuronal plasticity by regulating transcription factor
expression (Rajasethupathy et al., 2012). Thus, it is possible that
DA could indirectly influence miR transcription by regulating
piRs. It should be noted that although both Piwi and Ago1
proteins possess PIWI domains, the amino acids necessary for
binding to the Ago hook are not preserved in Piwi proteins
(Parker et al., 2004), and the Ago hook does not pull down Piwi
proteins (Till et al., 2007). Theoretically, DA could also regulate
the processing or stabilization of nascent miRs, but to the best
of our knowledge, this has not yet been demonstrated. For the
remainder of this discussion, we assume the same miR(s) controls
both LP IA and Ih densities in order to permit their co-regulation;
however, it is also possible that distinct miRs regulate LP IA and
Ih densities, and in this case, both DA and a change in activity
may be required to increase the expresson of the miR regulating
Ih density (Wibrand et al., 2010; Cohen et al., 2011; Eacker et al.,
2011).

Both mTORC1 and translation are necessary for the DA-
induced persistent increases in LP IA and Ih Gmax. Many cellular
processes are regulated by mTORC1, including cap-dependent
translation (Laplante and Sabatini, 2012). The most parsimonious
interpretation of the data is that DA directly or indirectly enhances
mTORC1-dependent translation of a protein(s) because, the
mTORC1 inhibitor, rapamycin, and the translation inhibitor, ani-
somycin, had no effect on their own, but each prevented the per-
sistent increases in LP IA and Ih elicited by 5 nM DA. The identity
of the transcript(s) undergoing enhanced mTORC1-dependent
translation is unknown. Increased translation of ion channel
subunits could augment ion channel surface expression and LP
maximal conductances, including the pore-forming subunits that
mediate IA (Kv4) and Ih (HCN) or the auxiliary subunits that
regulate channel conductance and trafficking (An et al., 2000;
Zhang et al., 2003; Santoro et al., 2009; Lin et al., 2010; Santoro
et al., 2011). Additional candidates for altered translation include
a wide variety of proteins involved in ion channel translation,
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trafficking and surface expression. Despite the fact that there are
many potential targets, for the ease of discussion, here we further
consider only Kv4 and HCN transcripts.

How might the increased expression of a miR lead to increased
mTORC1-dependent translation of Kv4 and HCN transcripts?
RNA binding proteins (RBPs) act in a combinatorial fashion to
repress or enhance translation of the transcript to which they
bind (Darnell and Richter, 2012; Darnell, 2013). miRs remodel
the RBP complexes bound to transcripts and thereby either inhibit
or facilitate their translation (Lee and Vasudevan, 2013). We
hypothesize that 5 nM DA promotes expression of a miR that
can reconfigure the RBP complexes on Kv4 and HCN transcripts
to facilitate their translation. There are a number of ways that
this could occur: the miR could act as a decoy and compete
with Kv4 and HCN transcripts for binding to a repressive RBP
(Eiring et al., 2010); or, the miR could compete with a more
repressive RBP for binding to Kv4 and HCN transcripts (Ma
et al., 2010). Then again, the miR could noncompetitively bind
Kv4 and HCN transcripts and recruit RBPs that promote trans-
lation (Vasudevan et al., 2007; Tsai et al., 2009). Alternatively,
the miR could de-repress Kv4 and HCN transcripts by reducing
the number of available repressive RBPs; for example, the miR
could bind repressive RBP transcripts and block their translation
initiation (Djuranovic et al., 2012; Meijer et al., 2013) and/or
elongation (Graber et al., 2013a) and/or promote their degrada-
tion (Djuranovic et al., 2011; Fukaya and Tomari, 2012). Since
a given transcript is regulated by multiple elements, the afore-
mentioned models could account for both the activity-dependent
and -independent regulation of LP Ih and IA, respectively, if we
postulate activity-dependent remodeling of an additional RBP
complex on HCN transcripts. Although these hypotheses have the
advantage of being simple and straightforward, they are highly
speculative. It is also possible that the miR(s) indirectly alters RBP
complexes on Kv4 and HCN transcripts by regulating transcripts
encoding other types of proteins. For example, Kv1 transcripts in
hippocampal neurons compete with CAMKIIα and other tran-
scripts for binding to a limited number of Hu/embryonic lethal,
abnormal vision (ELAV) RBPs that promote translation; and,
Kv1 transcripts bind these facilitatory RBPs and are translated
only when competitor transcripts (e.g., CAMKIIα are destabi-
lized and degraded (Sosanya et al., 2013), suggesting that the
shared RBPs may promote switching between two distinct pro-
grams/states.

COMMONALITIES BETWEEN ACTIVITY-DEPENDENT REGULATION OF
LATERAL PYLORIC (LP) Ih AND SYNAPTIC PLASTICITY
Learning and memory depend upon coordinated intrinsic and
synaptic plasticity (Sehgal et al., 2013). Coordination can be
achieved through shared transduction components. In this
regard, many of the cellular processes underpinning long-term
activity-dependent regulation of LP Ih Gmax and synaptic plas-
ticity are similar. First, miRs can contribute to long-term synap-
tic plasticity in multiple species. Throughout the mammalian
brain, miRs participate in activity-dependent synaptic remodeling
and regulate cognition by controlling components of the post-
synaptic density, spine volume and synaptic cytoskeletal proteins
(Schratt, 2009; Eacker et al., 2013; Hansen et al., 2013). miRs

are also linked to synaptic plasticity and long-term memory in
Drosophila (Ashraf et al., 2006; McCann et al., 2011). In Aplysia,
serotonin can down-regulate expression of a miR that normally
constrains synaptic plasticity (Rajasethupathy et al., 2009). Sec-
ond, mTOR-dependent translation is necessary for long-term
synaptic plasticity in a number of systems (Hoeffer and Klann,
2009; Gkogkas et al., 2010; Graber et al., 2013b). In rat hip-
pocampal neurons, the D1R-PKA axis permits local mTORC1-
dependent translation of the glutamate receptor subunit, GluR1,
in an activity-dependent fashion (Smith et al., 2005). D1Rs medi-
ate memory consolidation in the gerbil auditory cortex through
mTOR-dependent protein synthesis (Schicknick et al., 2008).
In Aplysia, long-term facilitation of a sensory-motor synapse
relies on serotonin-enabled local mTORC1-dependent translation
(Yanow et al., 1998; Casadio et al., 1999; Wang et al., 2009). Simi-
larly, long-term facilitation at a crayfish neuromuscular synapse
required local mTOR-dependent translation (Beaumont et al.,
2001). While synaptic and intrinsic activity-dependent processes
employ similar mechanisms, it is important to note that modu-
latory tone also utilizes the same elements to persistently regulate
ion current density in an activity-independent fashion (Rodgers
et al., 2011b).

DOPAMINERGIC TONE ACTS OVER TWO DISTINCT TIME SCALES TO
CO-REGULATE IA AND Ih

The balance of ion conductances, rather than the absolute number
of ion channels, can determine certain features of neuronal activ-
ity (Marder, 2011). It appears that several mechanisms can control
the balance of the same conductance pair. Different mechanisms
may predominate in each cell type; for example, GABAA receptors
and HCN1 channels co-vary to maintain hippocampal neuron
resting membrane potential (Bonin et al., 2013), but in cortical
pyramidal neurons, these two conductances vary inversely to
maintain excitatory post synaptic potential summation (Chen
et al., 2010). Even within the same cell type, two conductances
can be co-regulated by multiple mechanisms that act over distinct
time scales. In LP, IA and Ih densities are coordinated by at least
three distinct mechanisms in order to maintain the timing of
LP activity; and, for two of the mechanisms, dopaminergic tone
was shown to play a permissive role. In the first, most rapid
mechanism, activation of high affinity D1Rs conferred activity-
dependence upon LP Ih. Alterations in LP activity that advanced
LP firing phase largely due to a decrease in LP IA triggered a
rapid compensatory decrease in LP Ih to restore the timing of the
LP activity phase (Krenz et al., 2013). Activation of high affinity
LP D1Rs also enabled co-regulation of LP IA and Ih through
a second, slower process described here. Collectively, our work
shows that an increase in dopaminergic tone produces a slow
increase in LP IA Gmax, independent of LP Ih; however, when
LP activity changes, then the same DA-enabled mechanism is
engaged to increase LP Ih Gmax. In another study, overexpres-
sion of Kv4 channels in LP neurons increased LP IA over days
in organ culture and triggered a compensatory increase in LP
Ih through a third, activity-independent mechanism (MacLean
et al., 2003, 2005). Descending modulatory inputs were intact
in the latter study, but it is unclear if modulatory tone played
a role. It has been demonstrated that other modulators can
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maintain activity and conductance ratios over the long-term,
and removal of modulators appears to change the ratios that
are maintained (Rezer and Moulins, 1992; Thoby-Brisson and
Simmers, 1998, 2002; Khorkova and Golowasch, 2007). Taken
together, the data suggest that modulatory tone may influence
neuronal identity by determining which homeostatic mechanisms
are in play.

DOPAMINERGIC TONE MAY PERSISTENTLY REGULATE
VOLTAGE-GATED CONDUCTANCES IN OTHER CELL TYPES
If regulation of voltage-gated conductances by modulatory tone
is widespread, then the findings presented here could have
important implications for neurological and psychiatric disorders
involving disruptions in dopaminergic tone. For example, in
a mouse model of Parkinson’s disease, dopaminergic tone was
severely attenuated and Ih was persistently reduced in globus
pallidus neurons (Chan et al., 2011). Since DA receptors are
expressed in rodent globus pallidus neurons (Mansour et al.,
1990; Marshall et al., 2001; Araki et al., 2007), the reduction in
Ih could potentially be explained by a lack of normal DA-enabled,
activity-dependent compensation.
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