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The modulation of the Drosophila Shaw2 Kv channel by 1-alkanols and inhaled anesthetics is correlated with
the involvement of the S4–S5 linker and C-terminus of S6, and consistent with stabilization of the channel's
closed state. Structural analysis of peptides from S4–S5 (L45) and S6 (S6c), by nuclear magnetic resonance
and circular dichroism spectroscopy supports that an α-helical conformation was adopted by L45, while
S6c was only in an unstable/dynamic partially folded α-helix in dodecylphosphocholine micelles. Solvent ac-
cessibility and paramagnetic probing of L45 revealed that L45 lies parallel to the surface of micelles with
charged and polar residues pointing towards the solution while hydrophobic residues are buried inside the
micelles. Chemical shift perturbation introduced by 1-butanol on residues Gln320, Thr321, Phe322 and
Arg323 of L45, as well as Thr423 and Gln424 of S6c indicates possible anesthetic binding sites on these
two important components in the channel activation apparatus. Diffusion measurements confirmed the asso-
ciation of L45, S6c and 1-butanol with micelles which suggests the capability of 1-butanol to influence a pos-
sible interaction of L45 and S6c in the micelle environment.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Voltage-gated potassium (Kv) channels comprise a large family of
potassium channels, which are vitally important in the regulation of
electrical signaling in a variety of excitable cells [1]. Utilizing the com-
bination of genomic and biophysical techniques, a growing number of
discoveries have linked Kv channel mutations with a number of dis-
eases [1–4].

Kv channels share a similar structural topology. They are tetramers
formed from four identical subunits each having six transmembrane-
helices (S1–S6). The first four helices (S1–S4) form a voltage sensing
domain (VSD), that detects voltage difference across cell membranes
via charged amino acids. The S5 and S6 segments of all four subunits

form a pore domain where the S5–S6 linkers (P-loop) act as an extra-
cellular selectivity filter while the S6 C-termini of all subunitsmake up
the intracellular pore portal [5]. Numerous studies suggest that open-
ing and closing of the Kv channel are carried out by coupling the con-
formational changes of the VSD and S6 C-termini through the S4–S5
linker [6–16]. This necessitates conformational malleability and cor-
rect positioning of the S4–S5 linker in order to transmit the coupling
between the VSD and S6 C-terminus.

Their involvement in vital biological processes and disease states
render Kv channels important targets for drug therapy [3,17]. Numer-
ous small molecules and drugs have been found to interact with Kv
channels. On the extracellular side, the P-loop and adjacent residues
of S5 and S6 are binding sites for toxins and channel blockers
[18,19]. Binding sites for small molecules are also located on the intra-
cellular side of S5 and S6 [20,21].

The Drosophila Shaw2 is a neuronal Kv channel that is closely re-
lated to the mammalian Kv3 channels [22]. The Shaw2 channel is se-
lectively inhibited by 1-alkanols and halothane at pharmacologically
relevant concentrations [23–25]. The action of the inhibitors is consis-
tent with binding to an intracellular site and the stabilization of the
channel's close state [26]. However, the precise molecular interac-
tions governing 1-alkanol binding and the mechanism of channel in-
hibition are not understood.

The energetics and kinetics of this inhibition have been investigat-
ed by applying a combination of biochemical, electrophysiological and
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structural methods [27,28]. We have demonstrated that S4–S5 linker
of Shaw2 is required for 1-alkanol inhibition. Transplanting just a
thirteen amino acid segment from Shaw2 S4–S5 linker into Kv3.4
causes this modified human channel now also to become 1-alkanol re-
sponsive [24]. The Shaw2 S4–S5 linker peptide (L45) readily adopts an
α-helical structure in solution and in the membrane environment
(phospholipid micelles), while the corresponding Kv3.4 peptide does
not [27,28]. This links the 1-alkanol response to the α-helical propen-
sity of L45. Additional elements involved in 1-alkanol binding were
identified by alanine scanning to be S5 and S6 [29], as demonstrated
by the observation that mutating the second Pro in the PVP motif of
S6 resulted in suppression of the 1-alkanol inhibition. This was attrib-
uted to the destabilization of the closed state [29]. Furthermore, a
recent study supports the presence of putative 1-alkanol and halo-
thane binding pockets in interfaces involving the S4–S5 linker, S5
and S6 [30].

Despite numerous functional studies, the precise molecular events
governing 1-alkanol modulation are not fully understood due to the
lack of direct structural information. Encouraged by previous NMR
studies on small linker peptides from Shaker and HERG channels in
a micelle environment [31,32], we investigated the participation of
the S4–S5 linker and S6 C-terminus in the 1-alkanol modulation of
Shaw2 channels by focusing on the following objectives: first, deter-
mine the structures of peptides derived from the S4–S5 linker (L45)
and S6 C-terminus (S6c) in a membrane-like environment (DPC mi-
celles); second, determine the orientation of the L45 in DPC micelles
to understand residue accessibility; and finally, explore potential
binding sites of 1-alkanols in micelle bound peptides.

2. Materials

The Shaw2 S4–S5 linker peptide (L45, GLKILIQTFRASA) and S6 C-
terminus peptides (S6c, VIVSNFAMYYSHTQ) derived from the voltage-
gated Shaw potassium channels were purchased from Biopeptide
Co., Inc. (San Diego, CA). Deuterated dodecylphosphocholine, DPC-d38
(D, 98%) was purchased from CDN Isotopes Inc. (Quebec, Canada).
Gadolinium-diethylenetriaminepentaacetic acid bismethylamide (Gd-
DTPA-BMA) was from GE Healthcare (Princeton, NJ) as Omniscan™

gadodiamide injection (287 mg/ml). 2,2,2-Trifluoroethanol (TFE,
99.5%) was from Aldrich. TFE-d3 (D, 99.5%) and D2O (D, 99.9%) were
from Cambridge Isotope Laboratories (Andover, MA). 1-Butanol (99%)
was from Fisher Scientific (Fair Lawn, NJ). 1,2-Dimyristoyl-sn-glycero-
3-phosphocholine (DMPC, 99%) and 1,2-dihexanoyl-sn-glycero-3-
phosphocholine (DHPC, 99%) were from Avanti Polar Lipid, Inc.
(Alabaster, AL). Tetradecyltrimethylammonium bromide (TTAB,
99.5%) was from Sigma-Aldrich Co. (St. Louis, MO).

3. Methods

3.1. CD spectroscopy

CD samples were prepared by dissolving peptides in 5 mM sodium
phosphate buffer, pH 6.0, to a final concentration of 50 μM unless de-
scribed otherwise. A JA-810 spectropolarimeter (Jasco, Tokyo, Japan)
was used to record all CD spectra at room temperature. Each spectrum
was the average of four scans. The resulting spectra were deconvoluted
using CDPro [33,34].

3.2. NMR spectroscopy

Themicellar NMR sampleswere prepared by co-dissolving peptides,
typically 1 mM with 30 mM DPC-d38 in 10 mM sodium phosphate
buffer (pH 5.8, unless described otherwise) containing 10% D2O. For
D2O experiments the samples were lyophilized and resuspended in
100% D2O. For the paramagnetic sample preparation, Gd-DTPA-BMA

(287 mg/ml)was added to themicellar samples to a final concentration
of 2 mM.

All NMR spectra were collected on 500 and 600 MHz Bruker Avance
systems using a 5 mm triple resonance (TXI) Z-gradient probe head or
TXI cryoprobe (Bruker). For assignments and structure determination,
1D spectra were recorded using presaturation or jump-and-return
pulse sequences to suppress solvent (water) signal [35]. 2D NMR ex-
periments: TOCSY, NOESY, and natural abundance 1H-13C-HSQC were
recorded with presaturation as appropriate and using time propor-
tional phase increment (TPPI) for quadrature detection in F1. The
mixing times were set to 44 ms for TOCSY (2K×512, 32 scans) and 75
and 400 ms for NOESY experiments (2K×512, 32 scans), respectively.
NMR spectra were assigned using Sparky [36] following standard
methods [37].

To assess the residue accessibilities and the peptide orientation
utilizing proton relaxation properties, saturation-recovery NOESY
(2K×512, 32 scans) and inversion-recovery 1H-13C-HSQC (2K×128,
32 scans) spectra in the absence and presence of the paramagnetic re-
agent were recorded. For the saturation recovery NOESY a pulse train
was implemented to saturate all protons and cross peak volumes
were used to calculate the paramagnetic attenuation Ai of Hα protons.
Briefly, NMR cross peak volumes Vi

p,d were measured and autoscaled
according to the relation [38,39]:

vp;di ¼ Vp;d
i = ∑Vp;d

i =n
� �

ð1Þ

where vi
p,d is the autoscaled peak volume from the sample with (p)

and without (d) paramagnetic reagent. Vi
p,d is the cross peak volume

of the sample with and without paramagnetic reagent; n is the num-
ber of cross peaks measured. Paramagnetic attenuations Ai were then
calculated according to:

Ai ¼ 2− vpi
vdi

: ð2Þ

In the inversion-recovery HSQC, a 180° 1H pulse followed by a var-
iable recovery delay (τ) precedes a normal HSQC experiment. 1H T1
values were obtained via fitting the inversion-recovery HSQC peak in-
tensities to:

I ¼ I0 1−2e−τ=T1
� �

ð3Þ

where I is the signal intensity after time τ and I0 is the fully relaxed
signal. The paramagnetic relaxation enhancement (PRE) was then
calculated for each residue as the slope of the relaxation rate constant
R1 (R1=1/T1) vs. Gd(III)DTPA-BMA concentration plot. The orienta-
tion of the peptide helix in the micelle is then obtained by fitting
the measured PRE to the equation [40]:

PRE ¼ kπ

6 Aþ 1:5 Å⋅ sin τð Þ⋅ x−1ð Þ−3:25 cos τð Þ⋅ cos 1:745 x−1ð Þ þ ρð Þ� �3
ð4Þ

where k is a constant; A is the immersion depth (Å) of the helical axis
at the position of the first residue used for calculation in micelles; τ is
the angle (rad) between the axis of the peptide helix and the mem-
brane surface; ρ is the angle (rad) between the Hα of the first residue
whose PRE data was used to fit Eq. (4) and a line, which is perpendic-
ular to the helix axis and points towards the membrane surface; x is
the residue number; 1.5 is the helix pitch per residue; 3.25 is the av-
erage radius of the helix measured from Hα; and 1.745 (2π/3.6) de-
fines the periodicity of 3.6 residues per turn.

Diffusion measurements were carried out using Diffusion-Ordered
Spectroscopy (DOSY) [41]. A 1D setup (stegp1s1d) was run prior to
DOSY experiments (stegp1s) to optimize parameters: diffusion time
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Δ (d20), the spoil gradient (p19) and gradient length δ (p30). All gra-
dients were applied as half sine shapes. Δ (d20) of 200 ms and p19 of
1.1 ms (−6.2 G/cm)were chosen for all 2DDOSY acquisitions, δ (p30)
was set as 2.2 ms and 3.5 ms for peptide without and with micelles,
respectively. The actual strength (g) of the half sine shaped gradients
was varied from 0.735 to 34.9 G/cm. Typically, 256 scans and a data
matrix of 8K×16 were recorded. The spectra were processed using
the Bruker AU program (dosy2d) and data were fitted to the equation
below with XWINNMR T1/T2 software:

I ¼ I0⋅e
�DðγgδÞ2 Δ−δ=3ð Þ ð5Þ

where I0 is unattenuated signal intensity, D is the diffusion coefficient,
γ is the gyromagnetic ratio of the observed nucleus, in this case
γ(1H)=4.258⁎103 Hz/G.

3.3. Structure calculations

The 3D structure was calculated by utilizing DYANA (DYnamics Al-
gorithm for NMR Applications) [42]. Cross peak volumes of a 75 ms
NOESY were used as input for CALIBA to obtain distance restraints.
This information together with 12 3JNH-Hα constants extracted from
1D spectra were used for local conformational analysis and generation

of final distance constraints (total 197) and angle constraints (total
60) in HABAS following established protocols [42]. The final structures
were generated through 3000 steps stimulated annealing using a stan-
dard setup and visualized with the program Molmol [43] or Pymol.

4. Results/discussion

4.1. Shaw2 L45 structure in TFE studied by CD and NMR spectroscopy

To examine how readily Shaw2 L45 assumes an α-helix, TFE was
used to probe the extent and location of helix formation. In the absence
of TFE, L45 is only partially structured [28]. Upon increasing the TFE
concentration the peptide gradually assumes an α-helical confor-
mation. Noticeably, no isodichroic point could be observed, therefore
the transition cannot be analyzed using a simple two-state model. The
44 ms TOCSY spectrum of Shaw2 L45 in the presence of 20% TFE
(Fig. 1A) clearly reveals the coexistence of three different conforma-
tions. This is supported by the three distinct sets of TOCSY cross peaks
between Hα and side chain Hβ protons for both Gln320 and Phe322.
For both residues, themost downfield shifted TOCSY pattern represents
a β-strand conformation; the middle correlation is attributed to its ran-
dom coil state and the most upfield indicates α-helical conformation.

Fig. 1. A) Hα–Hβ region from a 500 MHz TOCSY spectrum (44 ms mixing time) of 1 mM Shaw2 L45 in 10 mM sodium phosphate, pH*=3.0 with 20% TFE at 293 K. The box marks
the Hα–Hβ cross peaks of Gln320 and Phe322. Labels indicate α-helical conformation, a; β-sheet, b and random coil, c. B) Hα–Hβ region TOCSY spectrum (45 ms mixing time) of
1 mM Shaw2 L45 in 30 mM DPC, 10 mM sodium phosphate, pH*=5.8 at 302 K. Gln320 correlations to δ and γ protons are also visible below the box.

Fig. 2. CD spectra of A) L45 and B) S6c in the presence of increasing DPC concentrations (a: 1.5 mM, b: 3.0 mM, c: 20 mM and d: 30 mM DPC).
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The chemical shift index method (CSI) [44] provided a more de-
tailed picture of the location and growth of the α-helix of Shaw2
L45 as a function of the TFE concentration (SI Table S1). In the ab-
sence of TFE, CSI indicates the presence of an α-helix from Gln320
to Ala326. As the TFE concentration increases the α-helix grows to
encompass Ile319 and then Leu318 and finally fills in to the N termi-
nus. This signifies the presence of a stable α-helix at the C-terminus
that grows towards the N-terminus.

4.2. Structure of Shaw2 L45 in DPC micelles

CD spectra of the Shaw2 L45 in micelles (Fig. 2A) revealed α-helical
characteristics. The α-helical content, as judged by the ellipticity at

208 nm, increases upon raising the DPC concentration and plateaus
around 20 mM DPC. This is attributed to micelle packing [45]. The
α-helical content of L45 at 20 and 30 mM of DPC is calculated to be
79.3% and 83.4%, respectively. In DMPC/DHPC bicelles (SI Fig. S1) L45
is also α-helical but at a lower content.

The NMR structure of the Shaw2 L45 in 30 mM DPC micelles was
generated from 197 distance and 60 torsion angle restraints (SI Table
S2). As expected a substantial number of medium-range connectivities,
e.g. Hα proton of residue i to amide protons of residue i+3 and/or i+4,
which is characteristic of anα-helical structure were observedwhile no
long-range constraints are evident (SI Fig. S2). Calculations were then
performed using the DYANA macro anneal and structures were visual-
ized with Pymol. A regular α-helix is formed from residues Ile317 to
Ser325while the helix is less ordered at the C-terminus and is disrupted
at the N-terminus (Fig. 3). This is either due to dynamics or a conse-
quence of fewer constraints at that location. A Ramachandran plot con-
firmed that most of the phi and psi angles fall in the area of the α-helix
favored region (SI Fig. S3). In contrast to the structure of L45 in 20% TFE
(Fig. 1A), we did not observe any evidence suggesting the presence of
more than one conformation of L45 in DPC micelles (Fig. 1B).

4.3. Solvent exposure and orientation of Shaw2 L45 in DPC micelles

The solvent accessibility of Shaw2 L45 in DPC micelles can be
probed with paramagnetic reagents. These reagents effectively relax
exposed NMR active nuclei, while nuclei that are buried in a micelle
are protected. In this study the Gd-DTPA-BMA contrast agent was cho-
sen because the large organic moiety that chelates Gd3+ attenuates
the relaxation enhancement compared to a naked paramagnetic ion.
In addition, this reagent was shown to not interact with either mem-
branes or proteins [46–48]. Fig. 4A lists the ratio of T1 values of L45
Hα protons obtained from inversion-recovery 13C-1H HSQC in the
presence and absence of Gd-DTPA-BMA (SI Table S3). In the presence
of the reagent, Gly314, Lys316, Ile317, Ile319, Gln320 and Arg323
show a large decrease in the T1 value, indicative of solvent accessibil-
ity. In contrast, Leu315, Leu318, Phe322 and Ala326were onlymargin-
ally affected, suggesting that they are buried in the micelle.

The solvent accessibility can be further explored using the para-
magnetic attenuation method presented previously [38,39]. In this
analysis, residues with an Ai greater than 1.39 are classified as highly
accessible, residues with 1.39≥Ai≥0.61 have moderate accessibility
and residues with b0.61 are considered protected. As expected the

Fig. 3. Shaw2 L45 NMR structure in DPC micelles generated by DYANA. A total of 40
structures were generated. The mean backbone RMSD is 0.96±0.33 Å, and 1.44±
0.27 Å for the mean heavy atom. The resulting structures were visualized with Pymol.
A) 20 conformers with the lowest target function (from 3.13⁎10−2 to 9.07⁎10−2). B)
Top view of the lowest energy conformer in cartoon mode. Hydrophobic residues are
shown in yellow and polar side chains are in red. C) Side view.

Fig. 4. A) T1 ratio of L45 Hα protons. T1(0) and T1(2) are T1 of L45 Hα protons in the absence or presence of 2 mM of Gd-DTPA-BMA. B) Paramagnetic attenuation Ai of L45 Hα protons
versus residue number.
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Hα of charged residues Lys316 and Arg323 are highly accessible while
Hα of Leu315 is considered protected. All other residues with 1.39≥
Ai≥0.61 are intermediate (Fig. 4B). Qualitative T1 values (data not
shown) obtained from saturation-recovery NOESY experiments for
Hγ protons also indicate that the side chains of Ile319 and Gln320
are solvent exposed while Thr321 is partially shielded.

To probe the orientation of an α-helical peptide in a micelle a pre-
viously described method was applied [40]. Briefly, paramagnetic re-
laxation enhancements (PREs) computed from the T1's of each Hα in
the presence and absence of the paramagnetic reagent were used to
extract tilt angle (τ), immersion depth (A) and rotation (ρ) of the pep-
tide in the micelle by fitting the PRE data to Eq. (4). The effects of im-
mersion depth, rotation and tilt angle on the PRE are explored using a
model α-helical system described in Supplementary material (SI Fig.
S4). For the fitting of the PRE of L45 only Leu318 to Ser325 were con-
sidered because this approach requires a regular α-helical structure
(Fig. 5). As shown in Fig. 6, the immersion depth A of the Hα proton
of Leu318, the first residue in the calculation, was calculated to be
7.0±1.5 Å and it points towards the center of the micelle with a rota-
tion angle ρ of 206±4.0°. The helix tilt angle, τ is 6.9±2.8°. Consider-
ing the surface curvature of a DPC micelle with a diameter of ~40 Å
[49], we can conclude that L45 is bound to the surface and nearly par-
allel to it as shown in Fig. 6. According to orientation and residue ac-
cessibility data, Leu315, Leu318, Phe322 and Ala326 are buried
inside the micelle while the charged residues Lys316 and Arg323,
and the polar residue Gln320 face towards the solution and Thr321
and Ser325 are at the interface.

4.4. Structural features of S6c in TFE and micelles

Unlike L45, the CD spectra of S6c upon TFE titration display a two-
state transition from random coil toα-helix (SI Fig. S5). It also requires
more TFE (~80%) to obtain 50%α-helical conformation than is needed
for L45, signifying a lowerα-helical propensity of S6c. In both DPCmi-
celles and DMPC/DHPC bicelles S6c adopts a partial α-helix (Fig. 2B
and SI Fig. S1). Specifically, the helical content plateaus at just 39.4%
at 20 mM DPC (Fig. 2B). The lower α-helicity is also manifest in the
peptide dynamics in micelles. This is supported by the line width
and the small chemical dispersion of the peptide resonances (SI Fig.
S6). In addition, and in contrast to L45, no α-helical characteristics
(3JNH-Hα, NOESY connectivity) were observed. Therefore we conclude
that this peptide adopts a more disordered and dynamic structure.

4.5. Potential alkanol binding sites on Shaw2 L45 and S6c

Upon the addition of a small amount of 1-butanol (1–5 mM) to
Shaw2 L45 in micelles we observed HN chemical shift changes
(~0.03 ppm) for Gln320, Thr321, Phe322 and Arg323 (Fig. 7). This
appears to be specific for 1-butanol since methanol did not produce
any chemical shift changes in the range tested (up to 10 mM, data
not shown). A related observation is that the addition of 10% TFE
(~1.4 M) to Shaw2 L45 in micelles produced an additional NOE con-
tact between HN of Gln320 and Thr321. This implies that Gln320 and
Thr321 are sensing the presence of 1-butanol and TFE and may act
as a site of interaction for such molecules. Similarly, Cα and Hα chem-
ical shift changes induced by high TFE concentrations again map to
Thr321. These results are in good agreement with a recent mutagene-
sis study of L45 where mutating Thr321 to alanine had a negative ef-
fect on the modulation of the channel by 1-butanol [30]. We note
that the local chemical shift changes are quite small and are consistent
with only minor local structural changes but would not support helix
disruption or unwinding.

1-Butanol titration of S6c in DPC micelles also revealed a small
chemical shift change (~0.02 ppm) of Thr423 and Gln424 amide pro-
tons in the presence of just 2 mM 1-butanol indicating that these res-
idues may interact with 1-butanol while all the other amide protons
were insensitive (SI Fig. S6).

4.6. Organization of L45, S6c and 1-butanol on micelles

Diffusion measurements using 2D DOSY can aid in exploring
intermolecular interaction [50]. As shown in Table 1, the L45
showed a 58% decrease in the diffusion constant (15.6⁎10−11 to
6.6⁎10−11 m2 s−1) in the presence of micelles. Similarly, the diffu-
sion constant of S6c is also greatly lowered in micelles. This fur-
ther demonstrates that both L45 and S6c are micelle associated.
Furthermore, the lower diffusion constant measured for L45 when
S6c is added suggests that both the peptides can coexist on the

Fig. 5. PRE analysis of Shaw2 L45 in DPC micelles. Data for residue L318 to S325 were
used for fitting Eq. 4. Errors were derived from the nonlinear least squares fit.

Fig. 6. Orientation of Shaw2 L45 in micelles. The micelle is represented by the light shaded region. A, immersion depth; ρ, rotation; τ, helix tilt angle. Blue indicates polar peptide
residues while yellow signifies hydrophobic amino acids.
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same micelle. The slightly lower diffusion constant of 1-butanol
(65.1 to 57.3⁎10−11 m2 s−1) also indicates its association with
the micelles part of the time. This property may facilitate the inter-
action of 1-butanol with peptide residues that are located at the in-
terface or inside micelles. However, the interaction of 1-butanol
with the L45–S6c peptide pair could not be observed in this system.
We note that the peptides may distribute unevenly among the mi-
celles, which may complicate an interpretation.

5. Conclusions

The response of Shaw2 Kv channels to 1-alkanols is dependent on
the S4–S5 linker peptide, as the binding for 1-butanol is coupled to its
α-helix propensity of the linker region [28]. Both CD and NMR exper-
iments established that L45 adopts an α-helical conformation in DPC
micelles.

The solvent accessibility and angular orientation of Shaw2 L45 on
micelles was determined using paramagnetic perturbation methods.
The results substantiate that the linker peptide resides on the mem-
brane surface and lies essentially parallel to it. Surface accessibility ex-
periments suggest that the hydrophobic residues (Leu315, Leu318,
and Phe322) are located inside the micelle, while Lys316, Gln320,
and Arg323 face towards the solution. The combination of the surface
location of L45, theα-helical conformation and the orientation as well
as the fact that it is important for channel function make it an attrac-
tive and accessible molecular target. The other important component

of the alkanol response, S6c, in contrast to L45, only forms a partial
α-helix as observed by CD spectroscopy. Moreover NMR data reveals
that the α-helix is not stable on the NMR time scale.

Diffusion constant measurements confirmed that L45, S6c and
1-butanol can associate with micelles, which encourages an interac-
tion among the components. Chemical shift perturbations implicate
residues Gln320, Thr321, Phe322 and Arg323 on L45 and Thr423 and
Gln424 on S6c as potential 1-butanol binding candidates. This finding
along with the fact that 1-butanol is capable of interacting with
micelles suggests that membrane associated 1-butanol might perturb
the interaction of S6c and L45. Canonicalmodels of voltage-dependent
gating can explain how this perturbation stabilizes the channel's
closed state to produce inhibition [51]. In Shaker-related Kv channels,
such as Shaw2, the activation gate prefers its closed conformation
[52]. It is therefore necessary to apply force to open it. Upon depolar-
ization of the membrane potential, the voltage sensors adopt their
“up” conformation and pull on L45, which acts as the “handle” that ac-
tively opens the activation gate through its interaction with S6c.
1-Butanol and other inhaled anesthetics may dislodge this interaction
and, consequently, the channel remains closed [25].

Although the mechanism of the gating and inhibition of Shaw2 Kv
channel is complex and requires the participation of all four monomers
that must be embedded in a cell membrane for function, our results
shed light on the local structure and interaction of key components of
the Shaw2 Kv channel, which governs the 1-alkanol sensitivity of the
entire channel.

Fig. 7. Left panel: change of the 1D NMR HN region of L45 in micelles upon 1-butanol titration at 303 K. A, L45 in micelles. B, L45 peptide in micelles with 1 mM 1-butanol. C, L45
peptide in micelles with 5 mM 1-butanol. Right panel: L45 NMR structure cartoon with mapped 1-butanol induced chemical shift changes (light green).

Table 1
Diffusion measurements of L45, S6c, micelles and 1-butanol at 293 K. Samples were prepared in 10 mM sodium phosphate, 99.96% D2O (pH*=4.0). The diffusion constant of HDO
servers as an internal reference. Diffusion constants are given in [m2 s−1].

Sample HDO (10−11) 1-Butanol (10−11) L45 (10−11) S6c (10−11) DPC (10−11)

1-Butanol (4 mM) 156 65.1±0.5
DPC (30 mM) 154 7.8±0.2
1-Butanol+DPC 154 57.5±0.3 7.8±0.13
L45 (~1 mM) 152 15.6±0.6
L45+DPC 154 6.6±0.1 7.5±0.12
L45+DPC+1-butanol 156 56.8±2 6.5±0.15 7.6±0.1
S6c (~0.6 mM) 158 15.6±0.1
S6c+DPC 158 7.6±0.05 7.9±0.25
L45+S6c+DPC+1-butanol 159 59.6±0.2 6.2±0.1 NA 7.7±0.2
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