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ABSTRACT 
 

SYNDROMIC SURVEILLANCE USING POISON CENTER DATA: AN EXAMINATION OF NOVEL 
APPROACHES 

 
By 

 
KAI YEE LAW 

 
JULY 22, 2016 

 
 

Surveillance is a key component of public health practice. Early detection of a new 
outbreak or new information about a public health issue could prevent morbidity and mortality 
and reduce healthcare expenditures for the economy. Syndromic surveillance is a subset of 
public health surveillance practice that uses pre-diagnostic data to monitor public health 
threats. The syndromic surveillance approach posits that patients first interface with the 
healthcare system in non-traditional ways (e.g., buying over-the-counter medications, calling 
healthcare hotlines) before seeking traditional healthcare avenues such as emergency rooms 
and outpatient clinics. Thus detection of public health issues may be more timely using 
syndromic surveillance data sources compared to diagnosis-based surveillance systems.  

One source of information not yet fully integrated in syndromic surveillance is calls to 
poison centers. United States poison centers offer free, confidential medical advice 24 hours a 
day, seven days a week through a national help line to assist in poison exposures. Call data are 
transmitted and stored in an electronic database within minutes to the National Poison Data 
System (NPDS), which can be used for near-real-time surveillance for disease conditions or 
exposures.  

The studies presented in the dissertation explore new ways for poison center records to 
be used for early identification of public health threats and for evaluating policy and program 
impact by identifying changing trends in poison center records. The goals of the studies were 1) 
to assess whether poison center records can be used for surveillance of noninfectious 
foodborne disease outbreaks (FBDOs) and assess whether certain features of poison center 
records are more likely associated with a confirmed noninfectious FBDO, 2) to assess whether 
state public health interventions such as prescription drug monitoring programs were 
associated with a reduction in opioid use trends, and 3) to assess whether state legislation such 
as recreational marijuana legalization was associated with an increase in marijuana and 
reduction in synthetic cannabinoid use trends. 

The approach and findings from these three studies expand upon current knowledge of 
how poison center records can be used for syndromic surveillance and provide evidence that 
justifies expansion of poison center surveillance into avenues not yet explored by local, state, 
and federal public health. 
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Chapter 1: Introduction to Syndromic Surveillance and Poison Center Data 

 

1.1 Background  
 

Surveillance is a key component of public health practice. Constant and accurate 

monitoring for current and emerging public health threats is one of the most important 

missions in public health (Lee, Thacker, Teutsch, & Louis, 2010). Early detection of a new 

outbreak or new information about a known public health issue could prevent morbidity and 

mortality and reduce healthcare expenditures for the economy. The field of public health 

surveillance grew from basic mortality monitoring in the 17th century, and today includes a 

range of different data sources to monitor a multitude of diseases and conditions (Eylenbosch 

& Noah, 1988).  

Syndromic surveillance is a subset of public health surveillance practice that uses pre-

diagnostic data to monitor public health threats. The syndromic surveillance approach posits 

that patients first interface with the healthcare system in non-traditional ways such as buying 

over-the-counter (OTC) medications or calling healthcare hotlines before seeking healthcare in 

ways identifiable in traditional public health surveillance systems (Chen, Zeng, & Yan, 2010). 

While syndromic surveillance lacks case confirmation accuracy compared to its lab-based or 

diagnostic-based surveillance counterparts, this emerging field may be able to identify threats 

quicker for more prompt public health response. One source of information not yet fully 

integrated in syndromic surveillance approaches is calls to poison centers. United States poison 

centers offer free, confidential medical advice 24 hours a day, seven days a week through a 

national help line to assist in poison exposures. Call data are transmitted and stored in an 

electronic database every eight minutes to the National Poison Data System (NPDS), which can 
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be used for near-real-time surveillance for disease conditions or exposures and to provide 

situational awareness during incidents of public health significance (Wolkin, Martin, Law, & 

Schier, 2011). The purpose of this dissertation is to examine the ability for poison center calls to 

identify and monitor current and emerging public health threats using syndromic surveillance 

analytical approaches.  

1.2 Public health surveillance definition  
 

Public health surveillance is the ongoing and systematic collection, management, 

analysis, and interpretation of data followed by the dissemination of these data to public health 

programs to stimulate public health action (CDC, 2012). The modern concepts of public health 

surveillance were derived from public health activities developed in the past to control disease 

spread in a community. In the 1680’s, analysis of mortality was used in health planning in 

London (Eylenbosch & Noah, 1988). In the United States, basic elements of public health 

surveillance were found in Rhode Island in 1741, where colonies passed laws requiring the 

reporting by taverns of contagious diseases (Thacker, Qualters, & Lee, 2012). While historically 

public health surveillance used mortality data and tracked infectious diseases, the field has 

since broadened to include a variety of data sources for all aspects of public health activities 

(Lee, Thacker, Teutsch, & Louis, 2010). Regardless of the broadening of surveillance in public 

health, the definition of public health surveillance remains unchanged after more than thirty 

years, given its flexibility and applicability even in the modern days of surveillance practice. The 

practice of public health surveillance today is much more complicated and continually changing 

with advancements in technology and analytic methods.  
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Traditional public health surveillance systems rely on physicians’ reporting and 

laboratory testing of diseases and conditions important for public health. These activities are 

considered the backbone of surveillance activities; one of the main indicators of a nation’s 

disease surveillance capability is based on its laboratory testing capabilities (Hamburg, Sparling, 

Choffnes, & Mack, 2007). Traditional surveillance systems include voluntary physician reporting 

and laboratory testing from sentinel sites such as emergency room departments and physician 

offices, and the reported diseases can cover a wide range of conditions based on the needs of 

the public health jurisdiction. Examples of traditional surveillance systems that use physician 

reporting or laboratory testing include the National Notifiable Disease Surveillance System, the 

National Respiratory and Enteric Virus Surveillance System and the Foodborne Diseases Active 

Surveillance Network, all United States (US) national surveillance systems which have the 

highest confirmatory accuracy compared to other types of surveillance systems but may take 

weeks to a month for reporting (NREVSS, 2015; FoodNet, 2015; NNDSS, 2015). Traditional 

surveillance systems can also focus on subsets of more severe inpatient illnesses, including 

those involving intensive care unit (ICU) support and death (NVSS, 2015). All of these types of 

surveillance systems listed above monitor disease trends among inpatient populations and can 

only capture those that seek care at a healthcare facility (Fricker, 2013).  

The traditional physician-laboratory surveillance network has its strengths and 

weaknesses. Given data sources such as physician diagnoses and laboratory results which have 

higher confirmatory accuracy, the data are more specific than those using pre-diagnostic data. 

Also, the availability of identifiable information for each case makes it possible to initiate 

epidemiological investigation and intervention early (Koutsonanos, 2014). On the other hand, 
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the time and cost required for case confirmation through laboratory confirmation or physician 

reporting can substantially delay an effective public health response.   

1.3 Syndromic surveillance definition 
 

The term syndromic surveillance originally referred to the gathering of information 

about patients' symptoms (such as coughing or fever) during the early phases of illness (Hennig, 

2003). Although syndromic surveillance was developed for early detection of large-scale 

releases of biologic or chemical agents, the current goals and uses of syndromic surveillance 

span across all aspects of public health (Hennig, 2004). There are two generally accepted 

definitions of syndromic surveillance used in the literature: 1) to conduct public health 

surveillance using health-related data that precede diagnosis and signal a sufficient probability 

of a case of an outbreak to warrant further public health response (Syndromic Surveillance, 

2015; Mandl, et al., 2004; Palvin, 2003); 2)and an investigational approach assisted by 

automated data acquisition and generation of statistical alerts to monitor disease indicators in 

real-time or near real-time to detect outbreaks of disease earlier than would otherwise be 

possible with traditional public health methods (Hennig, 2004; Buehler, Hopkins, Overhage, 

Sosin, & Tong, 2004). Thus, syndromic surveillance is public health surveillance restricted to 

leading indicators of disease (Fricker, 2013). Of particular distinction of syndromic surveillance 

to other surveillance approaches, particularly traditional surveillance systems, is the use of pre-

diagnostic data to detect trends and outbreaks. Certain syndromic surveillance programs 

monitor surrogate data sources such as OTC medication sales or school absenteeism data that 

may be indicative of an emerging public health threat (Debjani, Metzger, & Hefferman, 2005; 

Rodriguez, Zhang, & Leguen, 2007). Other programs monitor groups of signs and symptoms 
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(syndromes) potentially indicative of a public health threat (e.g., gastrointestinal symptoms for 

a norovirus outbreak) using pre-diagnostic clinical data such as chief complaints reported to the 

emergency department (Hefferman & Mostashari, 2004). Data sources for syndromic 

surveillance mostly fall into two general categories: 1) the use of health care services such as 

patient visits to clinics or emergency departments (ED), ambulance dispatch records, health 

hotline calls, laboratory test requests; and 2) indicators of health-related behaviors, such as the 

purchase of OTC medicines or absence from school or work (Mandl, et al., 2004; Koutsonanos, 

2014). A list of common syndromic surveillance data sources are listed in Table 1-1.  

Table 2-1. Clinical-based and alternative data sources commonly used for syndromic surveillance (Hennig, 2004). 

Clinical-based data sources  

   Emergency department (ED) patient volume 

   Total admissions from ED  

   ED triage log of chief complaints  

   Ambulatory-care clinic outcome  

   Emergency medical system (911) call type 

   Provider hotline volume, chief complaint 

   Poison center calls  

   Insurance claims or billing data  

   Clinical laboratory or radiology order volume  

Alternative data sources 

   School absenteeism  

   Work absenteeism  

   Over-the-counter medication sales  

   Volume of internet-based health inquiries  

   Internet-based illness reporting  

   Animal illnesses or deaths  

 

The primary objective of syndromic surveillance is to identify trends or clusters early and 

before diagnoses or laboratory tests are confirmed for timely public health response to reduce 

morbidity and mortality. The classic depiction of the potential advantages to syndromic 

surveillance is shown in Figure 1-1. The figure shows epidemic curves for individuals from 

symptom onset to severe illness for a hypothetical outbreak. The time between identification of 
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increases in symptom onset for the population and the subsequent patient visits to a health-

care facility to obtain a laboratory test or physician diagnosis is denoted by t. The aim of 

syndromic surveillance is to identify the increases in symptom onset t days earlier than 

identification of increases in confirmed cases, allowing public health to respond t days earlier 

than just using traditional public health surveillance. The size of t depends on many factors, 

including the type and size of the outbreak, data source, analysis approach, and case threshold 

determination. 

 

Figure 1-1. Identification of symptom onset may detect adverse events earlier than identification of increases in 
severe illness (Hennig, 2004). 

There are several key features of syndromic surveillance systems. As pre-diagnostic 

indicators of illness, data sources are usually only approximations of disease status, such as 

chief complaint, laboratory test requests, absenteeism, and poison center calls (Koutsonanos, 

2014). Data acquisition and analysis is automated or partially automated, and in real-time or 

near-real time (Lawson & Kleinman, 2005). Aberrant trends in the indicator data are identified 

via computerized tools. Syndromic surveillance is considered to be superior to traditional 

surveillance in timeliness and sensitivity (Buehler, Hopkins, Overhage, Sosin, & Tong, 2004; 

Provincial Infectious Diseases Advisory Committee, 2012). However, some authors have 
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questioned the current trend of dramatically increased investment and implementation of 

syndromic surveillance, without clear system capabilities and assessment for system validity, 

especially  considering information sources are opportunistic datasets (Lee, Thacker, Teutsch, & 

Louis, 2010; Chen, Zeng, & Yan, 2010). Nonetheless with the advent of ‘big data’ and rapid 

growth in information technology, syndromic surveillance has moved very quickly from theory 

to public health practice.  

Examples of prominent syndromic surveillance systems include the Electronic 

Surveillance System for the Early Notification of Community-based Epidemics (ESSENCE). 

ESSENCE is considered one of the oldest and most mature syndromic surveillance systems built 

in collaboration between the Johns Hopkins University Applied Physics Laboratory and the 

Walter Reed Army Institute of Research. The system monitors both military and civilian 

healthcare data daily for early outbreak detection and warning, fusing information from 

multiple data sources that vary in medical specificity and time-scale behavior (Lombardo & 

Burkom, 2004; Burkom & Elbert, 2004). Its main source of data is emergency department chief 

compliant data from participating military and civilian medical facilities and the system allows 

for automated aberration detection of outbreaks and web-based visualization of data (Chen, 

Zeng, & Yan, 2010). The system has since been adapted by many state and local public health 

jurisdictions (Florida Surveillance Systems , 2015; Oregon ESSENCE, 2015). Some of these 

adaptations allow the inclusion of other syndromic data sources; Florida’s ESSENCE system 

incorporates chief complaint data and call data from Florida poison centers as a part of its 

syndromic surveillance system (Florida Surveillance Systems , 2015).  
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1.4 Poison center data, operations, and repository 
 

The US has 55 poison centers available free of charge to users 24-hours a day, every day 

of the year, through a national telephone hotline 1-800-222-1222 (American Association of 

Poison Control Centers , 2015). Callers are routed to the appropriate poison center-based on 

the location of the call. These call centers respond to questions from the public and health care 

professionals. The poison centers serve the entire population of the 50 states, American Samoa, 

District of Columbia, Federated States of Micronesia, Guam, Puerto Rico, and the US Virgin 

Islands (American Association of Poison Control Centers , 2015). Encounters with callers involve 

either an exposed human or animal (exposure call) or a request for information with no person 

or animal exposed to any substance (information call). During 2013, US poison centers received 

more than 3 million exposure and information calls (Mowry, Spyker, Cantilena, McMillan, & 

Ford, 2014). Exposures reported by callers to poison centers span the entirety of toxicological 

exposures, including accidental pediatric ingestions, pharmaceutical overdoses, industrial 

accidents, snake bites, and contaminated food incidents (Mowry, Spyker, Cantilena, McMillan, 

& Ford, 2014).  

Calls are managed by health care professionals who have received specialized training in 

clinical toxicology. These providers generally include medical and clinical toxicologists, 

registered nurses, doctors of pharmacy, and pharmacists, and are referred to as specialists in 

poison information (SPIs) (American Association of Poison Control Centers , 2015). They direct 

the public to the most appropriate level of care and provide the most up-to-date management 

recommendations to health care providers caring for exposed patients. Medical toxicologists 

are available on-call to respond for calls from healthcare professionals requesting toxicological 
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consult on a patient. Poison centers undergo an accreditation process administered by the 

American Association of Poison Control Centers (AAPCC) and must be reaccredited every 5 

years (Guyer & Mavor, 2005). 

Data fields from each call are logged in a separate record and stored in local poison 

center servers. SPIs record data from each call using a data entry system. Each data entry 

platform produces call records in a standard format with fields standardized by the American 

Association of Poison Control Centers. Case records undergo variable, poison center-specific 

auditing procedures to ensure appropriate call data management and data capture. Data 

variables collected reflect the primary function of triage and patient management for poison 

centers, which include basic call information (exposure call vs. information call), demographic 

information (age, gender of the exposed individual), caller contact information (name, address, 

phone number, affiliation), scenario information (caller site), exposure information (substance, 

chronicity, clinical effects, duration, site), treatment information (therapy or therapies 

recommended), and medical outcome (American Association of Poison Control Centers , 2015). 

The data entry platforms also provide the SPIs with free-text fields for case notes to transcribe 

the details given by the caller. 

Exposure substances are categorized by a proprietary product database maintained and 

continuously updated by the Micromedex Poisindex System, a subsidiary of Truven Health 

Analytics (Micromedex , 2015). The database contains more than 400,000 products, ranging 

from viral and bacterial agents to commercial and drug products. A generic coding system 

categorizes the database into 1,081 generic codes. These codes are classified under 122 major 
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pharmaceutical categories and 36 major non-pharmaceutical categories, and further classified 

into subcategories (American Association of Poison Control Centers , 2015).  

A de-identified subset of the information fields entered by the SPI in the data collection 

platforms are uploaded to a national data repository and surveillance system called the National Poison 

Data System (NPDS) on average every 8 minutes (National Chemical and Radiological Surveillance 

Program , 2015; American Association of Poison Control Centers , 2015). The uploaded fields include the 

fields relevant to public health, but omit information identifying the patient or caller (name, address). 

Free-text case notes are not uploaded to protect caller privacy concerns and because of system 

limitations. 

The National Poison Data System (NPDS) is a web-based data repository and surveillance 

system consisting of selected data fields of all call records from all US poison centers. 

Nationally, NPDS has been used as an active surveillance system (i.e., collection of clinical 

information through healthcare professional case reporting) and a passive surveillance system 

(i.e., no specific case-reporting for data collection). NPDS has more than 60 million records on 

call records dating back to 2000 (American Association of Poison Control Centers , 2015) 

(National Chemical and Radiological Surveillance Program , 2015). Data within NPDS are owned 

by AAPCC and all use and access to NPDS data are subject to approval by AAPCC.  

The enterprise reporting function of NPDS allows users to query data dating back to 

2000 based on any user-defined parameters. Visualization functions can show queries 

temporally and spatially. The wide array of enterprise reporting options provide immense 

flexibility in reporting and visualization that generates results within seconds to minutes. 

Reports can be exported to a variety of formats for importation into other software programs 

for more complex statistical analysis.  
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1.5 Current use of poison center data for public health surveillance 
 

Poison center data have been used for a variety of public health surveillance purposes at 

the local, state, federal, and international levels (Spiller & Griffith, 2009). Poison center data 

have been used to detect threats or monitor emergence of trends in: 1) cases of drug and 

substance abuse (Law, Schier, Martin, Chang, & Wolkin, 2015; Kasper & Ridpath, 2015; Hughes, 

Bodgan, & Dart, 2007; Rosenson, Smollin, Sporer, Blanc, & Olson, 2007; Dart, Surratt, & Cicero, 

2015), 2) foodborne illness outbreaks (Derby, McNally, & Ranger-Moore, 2005; Wolkin, Martin, 

Law, & Schier, 2011; Gruber, Bailey, & Kowalcyk, 2015), 3) product and medication 

contamination (Wolkin, Martin, Law, & Schier, 2011; Gryzlak, R, Zimmerman, & Nisly, 2007), 

and 4) injuries from commercial and consumer products (Chatham-Stephens, Law, & Taylor, 

2014; Pillai, Law, Beuhler, & Henretig, 2012). Additionally, poison center data have been used 

to monitor selected illnesses in the general population (e.g., influenza), and for situational 

awareness following known man-made or natural disasters (Simone & Spiller, 2010; Kay, 

Blackmore, & Schauben, 2006; Clower, Henretig, & Trella, 2012). 

At the federal level, routine surveillance activities are conducted using NPDS. The web-

based NPDS software offers many surveillance functionalities allowing approved public health 

agencies (e.g., state health departments, CDC) to use NPDS data. Users also can create custom 

surveillance definitions to prospectively monitor NPDS data using a variety of parameters 

(Wolkin, Martin, Law, & Schier, 2011; National Chemical and Radiological Surveillance Program , 

2015). Surveillance activities have been used to identify gas and vapor incidents (e.g., methane 

releases, carbon monoxide incidents) and food-related incidents (Law, Sheikh, & Bronstein, 

2014).  
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1.6 Gaps in syndromic surveillance using poison center data  
 

The immediacy of data availability and pre-diagnostic nature of poison center calls lends 

this dataset well to syndromic surveillance. The data can be uploaded and analyzed in a timely 

manner and the product coding of reported exposures allows for high specificity of the 

implicated substance of exposure. Moreover, the broad range of calls received by poison 

centers allows for surveillance of many exposure categories as evidenced by the description of 

poison center data uses mentioned above. Despite these opportunities, poison center data are 

not yet fully integrated into public health surveillance practice in the US; recent surveys reveal 

52% of state health departments have real time or near real time data access to local poison 

center  data, compared to over 80% for emergency department chief complaint data (Kintziger, 

Miller, Simms, Stanbury, & Watkins, 2012; Assessment Report on the Collaboration between 

Health Departments and Poison Centers, 2015; Chen, Zeng, & Yan, 2010). One contributing 

factor to suboptimal uptake of poison center data for state syndromic surveillance systems is 

that a percentage of public health departments do not yet know how poison center data can 

supplement current state surveillance activities (Assessment Report on the Collaboration 

between Health Departments and Poison Centers, 2015). Better justifications and examples of 

how poison center data can be integrated into public health practice particularly syndromic 

surveillance, perhaps through the ability for poison center data to detect events and trends 

earlier than traditional public health surveillance, can push poison center data further into the 

realm of syndromic surveillance and public health practice.   

Moreover, syndromic surveillance sources such as poison center data are typically 

analyzed using traditional aberration detection methods. Techniques include statistical process 
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control such as the historical limits method and change point analyses (Fricker, 2013). The 

sensitivity, specificity, and timeliness of detection for different techniques vary significantly and 

depend widely upon the desired target of the researcher. Consequently, many of these 

techniques are only effective for detecting sudden major changes in time series data and have 

limited ability to identify subtle and potentially important changes in time series trends. The 

studies described below examine using novel approaches for earlier detection of public health 

threats and changes in trends.  

1.7 Studies 
 

This dissertation will focus on novel approaches to using poison center data for 

identification of emerging public health threats and changes in trends. The first study will add 

to the understanding of how poison center data can be best incorporated into syndromic 

surveillance through comparisons with ‘gold standard’ traditional public health surveillance 

systems. The second and third studies push the traditional paradigm of using syndromic 

surveillance data for aberration detection into more sophisticated time-series designs for the 

purpose of early detection of subtle trends following public health interventions and state 

legislation.  

 

Study #1 - Using poison center data for noninfectious foodborne illness surveillance 
 

Foodborne disease is a pervasive problem caused by consumption of contaminated food 

or drink. An estimated 48 million foodborne illnesses occur annually in the United States (US), 

resulting in over 128,000 hospitalizations and 3,000 deaths (CDC, 2016). A foodborne disease 

outbreak (FBDO) is defined as an incident in which two or more persons experience a similar 
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illness resulting from the ingestion of a common food (CDC, 2000). While a majority of FBDOs 

can be traced to an infectious source, noninfectious agents can also contaminate food products 

and cause adverse health effects including severe illness and death (CDC, 2013). The Centers for 

Disease Control and Prevention tracks investigations of noninfectious FBDOs in the US through 

the Foodborne Disease Outbreak Surveillance System (FDOSS) (CDC, 2013). FDOSS constitutes 

the most comprehensive repository of confirmed noninfectious FBDOs in the US but data 

collection lacks timeliness. A supplemental and timely data source for noninfectious FBDO 

surveillance is warranted to reduce morbidity and mortality from noninfectious FBDOs and 

reduce noninfectious FBDO events.  

The first objective of this study was to assess whether poison center records can be 

used for surveillance of noninfectious FBDOs. I assessed feasibility by determining whether 

confirmed outbreaks captured in FDOSS were also captured in a timelier manner by poison 

center records. The second objective was to assess whether certain features of poison center 

records were more likely associated with a confirmed noninfectious FBDO reported to FDOSS. I 

matched poison center records to outbreaks reported in FDOSS by etiology, state, and call date 

or date of first reported illness (±7 days) to identify events reported to FDOSS captured by 

NPDS. We used multiple logistic regression on poison center records to assess the relationship 

between a poison center record that matched a confirmed noninfectious FBDO and healthcare 

facility caller and case severity.  

Among noninfectious FBDOs reported to FDOSS, 31% (188 of 614) of outbreaks were 

matched to 5% (468 of 8,773) poison center records by matching criteria. These findings 

suggest that NPDS does capture a significant percentage of noninfectious foodborne outbreak 
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events and illnesses. Given the timeliness and availability of data capture, NPDS data can be 

used as a timely supplemental surveillance system for noninfectious foodborne outbreaks. The 

multivariable logistic regression model selection indicated statistically significant predictors of 

concordance of NPDS and FDOSS: severity, healthcare facility caller, etiology, and age. The 

findings from the logistic regression model predictors suggest there are particular features of 

NPDS records that may be more indicative of a confirmed noninfectious FBDO.  

Study #2 – Effect of prescription drug monitoring program implementation on opioid- and 
heroin-associated exposures called to poison centers 
 

Prescription opioid abuse is the intentional, non-medical use of an opioid to obtain a 

euphoric or psychotropic effect. Abuse of prescription opioids is a substantial public health 

problem in the United States (US); an estimated 1.9 million people suffered from substance 

abuse related to prescription opioids in 2013 an estimated sixteen thousand people died in the 

US due to prescription opioid medications in 2010 (Dart, Surratt, & Cicero, 2015; SAMHSA, 

2014). One type of intervention cited as having significant potential in reducing opioid abuse 

and misuse is prescription drug monitoring programs (PDMPs). PDMPs are statewide electronic 

databases that collect prescription data from prescribers and dispensers on medications 

classified as federal controlled substances. PDMPs are designed to assist in detecting and 

preventing abuse, misuse, and diversion of controlled substances by reducing the incidence of 

‘doctor shopping’. This occurs when patients see multiple providers and pharmacies with the 

intent of obtaining controlled substances for misuse. States have yet to publish the 

effectiveness of PDMPs on opioid-related illnesses and deaths resulting from abuse. Moreover, 

no studies have examined the relationship between prescription opioid abuse and heroin use at 
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the state level. The objective of this study was to use poison center records to assess whether 

PDMP implementation is associated with a reduction in the time trend of opioid-associated 

calls and an increase in the time trend of heroin-associated calls. We conducted a time series 

analysis of opioid and heroin use and abuse captured by poison center records, defined in this 

study as the ratio of monthly opioid- or heroin-associated calls to non-steroidal anti-

inflammatory drug-associated (NSAID) calls within the state. Two states were chosen as a part 

of this analysis; the first state implemented a state-wide PDMP in the winter of 2011 and is the 

intervention state in this study. A second state was chosen (the control state) which 

implemented a PDMP after November 2013 outside the study period.  

The findings of the study included the intervention state significantly attenuated the 

expected trend of rising opioid trends following implementation of the PDMP. The effect was 

immediate as evidenced by the ratio decrease in the month following implementation. 

Moreover, the effect persisted during the rest of the study period as the trend sloped 

downward in the months following implementation. However, decreased opioid trends 

following implementation seen in state A were also associated with increases in heroin trends. 

The intervention state saw an increase in heroin trends following PDMP implementation and 

this effect persisted during the rest of the study period. The immediate and persistent effects of 

PDMP implementation on the opioid to NSAID ratios in the intervention state suggested that 

PDMP implementation does affect opioid abuse rates at the state level. The associated 

increases in heroin to NSAID ratios following PDMP implementation suggest a substitution 

effect was present as availability of prescription opioids for abuse declines. The approaches in 
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this study provided a framework for detecting changing trends in poison center records for 

assessment of public health interventions such as PDMP implementation. 

Study #3 – Effect of state marijuana legislation on marijuana and synthetic cannabinoid use 
 

Marijuana has long been used for its neuropsychiatric effects including enhanced 

relaxation and perceptual alterations (Green, Kavanagh, & Young, 2003). The primary active 

ingredient of marijuana is Tetrahydrocannabinol (THC), which binds to the cannabinoid 

receptors in the body. Synthetic cannabinoids also bind to the same cannabinoid receptors. 

Synthetic cannabinoids have gained popularity in the past decade as recreational drugs because 

it is believed use of these substances result in a marijuana-like high.  

Currently, marijuana use for any purpose is criminalized at the federal level, although 

there have been piecewise changes at the state level for decriminalization for medical and 

recreational marijuana. There are no published state-specific studies on marijuana use 

following legalization. Alternatively, one of the main drivers of the popularity of synthetic 

cannabinoids is that they are not detectable in typical urine drug screens for marijuana and 

THC. Synthetic cannabinoid use, however, is a more harmful alternative to traditional marijuana 

and its use avoids the legal penalties associated with marijuana use (Bonar, Ashrafioun, & Ilgen, 

2014). Thus, one of the potential effects of recreational and medical marijuana legalization is 

the decrease in synthetic cannabinoid use as those who were using synthetic cannabinoids may 

switch to a legal, regulated, and less harmful alternative. There have not been any studies 

examining the effect of marijuana laws on synthetic cannabinoid use. 

The objective of this study was to assess whether recreational marijuana legalization 

was associated with an increase in marijuana-associated calls and reduction in synthetic 
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cannabinoid-associated calls by using the ratio of synthetic cannabinoid records to marijuana 

records in NPDS. I applied a longitudinal time series design of synthetic cannabinoid to 

marijuana ratio trends captured by poison center records. Three states were chosen as a part of 

this study to reflect the three categorizations of marijuana laws. State A legalized recreational 

marijuana use for people over 21 years old in December 2012 and is the intervention state in 

this study. The second state chosen (state B) legalized medical marijuana and the third state 

chosen (state C) prohibits both medical and recreational marijuana use.  

State A saw a decrease in synthetic cannabinoid to marijuana ratio following legalization 

of recreational marijuana. The effect was immediate as evidenced by the drastic ratio decrease 

in state A in the month following legalization. Alternatively, states B and C did not see any 

significant changes in ratio over the same time period. The immediate effects of recreational 

marijuana legalization on the synthetic cannabinoid to marijuana ratios in state A suggested 

that relaxing marijuana laws attenuated the substitution of marijuana for synthetic marijuana 

at the state level. The approaches in this paper provided a framework for detecting changing 

trends in NPDS records for assessment of state policies such as marijuana legalization. 
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Chapter 2: Using Poison Center Data for Noninfectious Foodborne Illness Surveillance  

 
 
2.1 Introduction  

Foodborne disease is a pervasive problem caused by consumption of contaminated food 

or drink. An estimated 48 million foodborne illnesses occur annually in the United States (US), 

resulting in over 128,000 hospitalizations and 3,000 deaths (CDC, 2016). Much of these illnesses 

occur as a result of a foodborne disease outbreak. A foodborne disease outbreak (FBDO) is 

defined as an incident in which two or more persons experience a similar illness resulting from 

the ingestion of a common food at a comparable time and place (CDC, 2000). Foods and 

beverages can be contaminated with infectious agents (e.g., Salmonella, Campylobacter) or 

noninfectious agents (e.g., Scombroid toxin, heavy metals). While a majority of FBDOs can be 

traced to an infectious source, noninfectious agents can also contaminate food products and 

cause adverse health effects including severe illness and death (CDC, 2013). Noninfectious 

agents implicated in FBDOs include marine toxins (e.g., Ciguatera, paralytic shellfish), 

mushroom toxins (e.g., muscinol, amanita), heavy metals (e.g., arsenic, mercury), and food 

additives (e.g., monosodium glutamate).  

Surveillance of FBDOs is critical in responding to and preventing foodborne disease 

illnesses. Investigations during and following surveillance can identify common or rare foods 

associated with FBDOs. Data from outbreaks provide information on sources of foods where 

outbreaks occur. This information can help target interventions to reduce foodborne diseases. 

Data from outbreaks also can help researchers identify changes over time in commonly 

reported foods and provide insight into the effectiveness of regulations and control measures 

(CDC, 2013).  
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Many national foodborne disease surveillance systems such as the Foodborne Diseases 

Active Surveillance Network (FoodNet) and the Molecular Subtyping Network for Foodborne 

Disease Surveillance (PulseNet) focus on timely identification of infectious FBDOs through 

microbial identification and laboratory confirmation of bacterial and parasitic contaminants 

(CDC, 2013; CDC, 2016). However, these national surveillance systems do not track 

noninfectious FBDOs. The Centers for Disease Control and Prevention tracks investigations of 

infectious and noninfectious FBDOs in the US through the Foodborne Disease Outbreak 

Surveillance System (CDC, 2016). CDC collects reports of FBDOs from state, local, and territorial 

public health agencies; the Foodborne Disease Outbreak Surveillance System (FDOSS) serves as 

the repository for investigations initiated by state, local, or territorial public health agencies 

related to FBDOs.  

Approximately 5% of FBDOs in FDOSS are attributed to noninfectious agents (CDC, 

2013). Despite this low percentage, noninfectious FBDOs account for a significant amount of 

food-related illnesses and hospitalizations. Studies estimate ciguatera and scombroid 

poisonings, which constitute only two of the many noninfectious agents that may be associated 

with a foodborne outbreak, account for over 50,000 illness (estimated from the number of 

individuals that seek treatment from a physician) and 500 hospitalizations in the US annually 

(Pennotti, Scallan, & Backer, 2013).  

FDOSS constitutes the most comprehensive repository of confirmed noninfectious 

FBDOs in the US but data collection lacks timeliness. Confirmation of the outbreak may take 

days to weeks depending on the resources needed to respond, and reporting from state and 

local public health departments often occurs in bulk and can take months. As a result, 
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information collection critical to noninfectious FBDO surveillance such as commonly implicated 

food sources and outbreak settings is delayed, which delays national public health assessment 

and response (CDC, 2013). A supplemental data source for timely surveillance of noninfectious 

FBDOs is warranted to reduce morbidity and mortality from noninfectious FBDOs.  

United States poison centers offer free, confidential medical advice 24 hours a day, 

seven days a week through a national helpline to assist in poison exposures. Poison centers 

receive calls from both healthcare providers and the public, with 15% of call from healthcare 

providers and 85% of call from the public (Mowry , Spyker , & Cantilena, 2014). While utilization 

of poison centers are dependent on demographic characteristics, studies estimate that about 

seven per thousand population use poison center services annually (Litovitz & Benson, 2010). 

Reported exposures include noninfectious foodborne exposures. Call data are transmitted and 

stored in an electronic database every eight minutes to the National Poison Data System 

(NPDS), which can be used for near-real-time surveillance for disease conditions or exposures 

and to provide situational awareness during incidents of public health significance (Wolkin, 

Martin, & Law , 2012). Previous studies have shown that NPDS-based syndromic surveillance 

may be a useful addition to surveillance data reported to state public health agencies for the 

early detection of infectious FBDOs, but no studies have assessed using NPDS records for 

national surveillance of noninfectious FBDOs (Derby, McNally, & Ranger-Moore, 2005). NPDS 

may be a useful and timely supplemental tool in conducting surveillance of noninfectious 

FBDOs because of the specificity of the implicated substance of exposure and timeliness of data 

collection. If the data are reliable, NPDS records may be ideal for timely assessment of time, 

location, and spread of a noninfectious FBDO. Moreover, timelier collection of FBDO 
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information for surveillance can reduce intervention delay and reduce the incidence of 

noninfectious foodborne illnesses in the US. However it remains to be seen whether NPDS 

captures the same events as those confirmed to be noninfectious FBDOs in FDOSS.  

The first objective of this study was to assess whether NPDS records can be used for 

surveillance of noninfectious FBDOs. I assessed feasibility of using NPDS records for 

noninfectious FBDO surveillance by determining whether confirmed outbreaks eventually 

recorded in FDOSS (the gold standard of noninfectious FBDOs) were also captured in a timelier 

manner by NPDS records. Contaminants implicated in noninfectious FBDOs include marine 

toxins (ciguatera, scombroid, and shellfish neurotoxin), heavy metals, monosodium glutamate 

(MSG), and mushroom toxins (Scallan, Griffin, & Angulo , 2010). The second objective was to 

assess whether certain features of NPDS records were more likely associated with a confirmed 

noninfectious FBDO reported to FDOSS.  

2.2 Methods 

Data Sources  

FDOSS 

State, local, and territorial public health departments identify and investigate outbreaks 

and voluntarily report outbreaks using a standard, internet-based form to FDOSS. Outbreaks 

reported to FDOSS are confirmed by public health departments, and therefore are considered a 

gold standard for tracking noninfectious FBDOs (CDC, 2013). Data collected for each outbreak 

include the date of first reported illness, location of the outbreak, estimated number of 

individuals affected, and FBDO etiology. Outbreak reporting depends on the public health 

department, but generally occurs within one to three months Annual summaries and analyses 
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of FDOSS reports are used to provide updates on the human health impact of FBDOs (CDC, 

2016). We reviewed all outbreaks reported to FDOSS with a noninfectious etiology from 2000–

2010. Outbreaks with unknown chemical or toxic etiology were excluded from the analysis due 

to the inability to find a corresponding NPDS etiology category for matching. Information 

collected for each outbreak for descriptive analysis and matching included outbreak etiology, 

date of illness onset, reporting state, and number of individuals affected. Outbreak information 

in FDOSS included the number of individuals affected, so each outbreak record may be 

associated with multiple illnesses.  

NPDS 

Healthcare professionals and the public call poison centers for consultation of poison 

exposures. A subset of data collected by poison centers is uploaded to NPDS every eight 

minutes. NPDS captures standardized information on each call received by a poison center 

including the implicated substance of exposure, patient demographics (age and sex), and 

clinical and case management data. Each NPDS record is assigned a specific substance code to 

identify the substance(s) of exposure and enable surveillance. NPDS users can query the data 

using a combination of substance codes, clinical data, and health outcomes. We queried all 

NPDS records whose implicated substance matched the list of noninfectious FBDO etiologies in 

FDOSS data. Substances included scombroid toxins, ciguatera toxins, paralytic shellfish poison 

(PSP), monosodium glutamate (MSG), amanita, heavy metals (selenium, chromium, and 

cadmium), methomyl, and tetrodotoxin. Data were queried for 2000–2010. Animal-related 

exposure records and records confirmed as non-exposures by poison center staff were 

excluded from the analysis. Information collected by each NPDS record for descriptive analysis 
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and matching included date of call, gender and age of exposed, state, whether the call was 

made by a healthcare professional, and severity of medical outcome (Mowry , Spyker , & 

Cantilena, 2014). As opposed to FDOSS outbreak data, each NPDS record represents one 

individual, so each record is associated with only one illness. Also, one call may include involve 

multiple exposures (e.g., when a physician calls to report three separate exposures), which is 

transcribed as multiple separate NPDS records.  

Matching poison center reported exposures to FDOSS outbreaks  

I matched NPDS records to outbreaks reported in FDOSS by etiology, state, and call date 

or date of first reported illness (±7 days) to identify events reported to FDOSS captured by 

NPDS. Seven days before or after the date of first reported illness was used as the time window 

for matching as a conservative estimate between onset of a foodborne illness as reported to 

FDOSS and call to the poison center (Begier, Backer , & Weisman, 2006; Derby, McNally, & 

Ranger-Moore, 2005). An NPDS record was coded as ‘1’ if the call matched an outbreak 

reported to FDOSS by etiology, state and date of illness (±7 days) and ‘0’ if the call did not 

match an FDOSS outbreak. 

For sensitivity analysis, matching was also conducted for smaller temporal windows (±1 

day, ±3 days, and ±5 days) to see the differences in matching percentage from the 7 day 

criterion.  

Measures 

The dependent variable was the dichotomous variable whether the NPDS record was 

matched to an FDOSS outbreak by etiology, state and date of illness (±7 days) versus not 

matched.  
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There were two main independent variables in the study.  The first independent variable 

was healthcare facility caller as identified in NPDS records, coded as ‘1’ if the call regarding the 

noninfectious foodborne case originated from a healthcare provider and ‘0’ if the call was from 

the public. Healthcare facility calls to poison centers are referred to the poison center medical 

toxicologist for toxicology consultation; reliability of this variable is high. The second 

independent variable was case severity, which is ascertained by poison center staff in a follow 

up call after treatment recommendations were given during the initial communication with the 

poison center. Case severity was defined as ‘death’, ‘major effect’ (the patient has exhibited 

symptoms as a result of the exposure which were life-threatening or resulted in significant 

residual disability or disfigurement), ‘moderate effect’ (the patient exhibited symptoms as a 

result of the exposure which are more pronounced than minor symptoms), ‘minor effect’ (the 

patient exhibited some symptoms that were minimally bothersome to the patient), ‘no effect’ 

(the patient developed no symptoms as a result of the exposure), and ‘not followed’ (the 

patient was not followed because the exposure was likely to result in only minimal toxicity). 

Poison centers have nationally standardized guidelines for determining case severity so coding 

of this variable is consistent across all poison centers. A restricted definition of case severity 

was tested in the model, with ‘severe’ defined as any reported illness resulting in death or 

major effect and ‘non-severe’ defined as any illness resulting in moderate effect, minor effect, 

no effect, or not followed because minimal health effects expected.  

Covariates included etiology and age. Because of the numerous etiology types and 

different age coding schemes in NPDS, etiology was transformed to a dichotomous variable, 

which was coded ‘1’ as marine-related (defined as cases related to scombroid toxin, ciguatera 
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toxin, tetrodotoxin, or PSP) and ‘0’ as non-marine related. Age was transformed to a 

dichotomous variable ‘adult’ with patients aged 18 years or older coded as ‘1’ and patients 

younger than 18 coded as ‘0’. A flow diagram summarizing the steps to obtain the measures for 

logistic regression is presented in Figure 2-1. 

 

NPDS = National Poison Data System; FDOSS = Foodborne Disease Outbreak Surveillance System 

Figure 2-1. Flow diagram of obtaining measures for logistic regression.  
Analytic Approach  

I addressed the first objective by assessing the percent concordance of NPDS records 

with FDOSS outbreaks using temporal, spatial, and etiologic matching. I hypothesized a high 

percentage of capture of FDOSS outbreaks with NPDS exposures. 
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I addressed the second objective by using multiple logistic regression on NPDS records 

to assess the relationship between a NPDS record that matched a confirmed noninfectious 

FBDO (dependent variable) and healthcare facility caller and case severity (two main 

independent variables). The specific logistic regression model fitted to the data was:  

Logit (NPDS and FBDO match versus not matched) = b0 + b1(Healthcare facility) + b2(Severity) + 

b3(Etiology) + b4(Age)   

Where b0 is a constant, and b1,…b4 are logistic regression coefficients or estimates for 

the parameters, β1,…β4.  

The hypothesis was calls to poison centers from healthcare facilities instead of the 

public may be more indicative of a reported noninfectious FBDO; these calls may have a higher 

case confirmation accuracy compared to self-reported exposures from the public and 

healthcare professionals may be more likely to report a potential FBDO to public health 

authorities  (Begier, Backer , & Weisman, 2006). Also, I hypothesized NPDS records where the 

exposure had a severe medical outcome may be more likely related to a reported noninfectious 

FBDO since these exposures may more likely to initiate emergency and public health response. 

Covariates and interactions between predictors were tested in the model. Model 

selection was determined using the Akaike information criterion (AIC) (Agresti, 2007). Odds 

ratios were calculated for predictors in the model with 95% confidence interval. The Hosmer-

Lemeshow test was used to assess goodness of fit. Collinearity diagnostics were performed to 

ensure no multicollinearity existed amongst predictors. A p-value 0.05 was considered 

significant and all analyses were conducted using SAS 9.3 (SAS Institute, Cary, NC).  
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2.3 Results 

Characteristics of FDOSS outbreaks  

From 2000–2010, 614 noninfectious FBDOs were captured in FDOSS. Of these, 80.0% 

(491 of 614) had a known etiology. Most outbreaks of known etiology were due to scombroid 

toxin (58.5%, 287 of 614) or ciguatera toxin (32.3%, 159 of 614). The median outbreak size was 

3 (range: 2–166) estimated persons ill per outbreak.  

Characteristics of NPDS exposure calls  

From 2000–2010, 8,773 records of noninfectious FBDO were captured in NPDS. Of 

these, 24% (2,124 of 8,773) involved an exposure to scombroid toxin and 21% (1,143 of 8,773) 

to paralytic shellfish poison (Table 2-1). Most callers were from the public (80.6%, 7,071 of 

8,773) as opposed to from a healthcare facility (19.0%, 1,702 of 8,773). For case severity, most 

reports were not followed by the poison center because the exposure was likely due to only 

minimal toxicity (47.8%, 4,193 of 8,773).  

Results from matching FDOSS outbreaks to NPDS records  

Among NPDS records, 5% (468 of 8,773) were matched to a confirmed noninfectious 

FBDOs reported to FDOSS. These records represented 31% (188 of 614) of outbreaks in FDOSS. 

Among matched NPDS records, scombroid toxin and ciguatera toxin accounted for 53% (248 of 

468) and 35% (162 of 468) of records, respectively (Table 2-2).  

Matching using smaller temporal windows showed 56.4% 79.1%, 91.5% of NPDS records 

that matched in the 7-day window also matched the 1-, 3-, and 5-day windows, respectively 

(Table 2-3). Descriptive statistics of variables in NPDS records stratified by matching are shown 

in Table 2-4.  
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Of the 426 outbreaks in FDOSS which did not match to a NPDS record, 20% (124 of 426) 

involved etiologies such as an unspecified brand of cleaning agents for which no corresponding 

exposure code in NPDS could be identified. 

Results from logistic regression analysis  

The multivariable logistic regression model selection indicated statistically significant 

(p≤0.05) predictors of concordance of NPDS and FDOSS: severity, healthcare facility caller, 

etiology, and age. There was a significant association between the severity of the illness called 

to the poison center and the exposure record being matched to a confirmed FBDO in FDOSS 

(p=0.0019). Calls related to a more severe case have a much higher odds to be related to a 

noninfectious FBDO than calls related to a less severe care (OR: 2.39; 95% CI: [1.39, 4.13]). 

There was a statistically significant association between a healthcare facility calling the poison 

center and the exposure record being matched to a confirmed FBDO in FDOSS (p<0.0001). Calls 

originating from a healthcare facility have a much higher odds to be related to a noninfectious 

FBDO than calls originating from the public (OR: 2.95; 95% CI: [2.73, 3.68]). There was also a 

statistically significant association between marine toxin-related exposures and the record 

being matched to a confirmed FBDO (p<0.0001). Calls related to marine-toxin exposures have a 

much higher odds to be related to a noninfectious FBDO than calls not related to a marine toxin 

exposure (OR: 19.53; 95% CI: [11.91, 32.02]).The odds ratios and 95% confidence intervals of 

independent variables are reported in Table 2-5.  

All model predictor condition indices were low (1 to 4), suggesting no collinearity in the 

model predictors. The Hosmer-Lemeshow goodness of fit test suggested good fit (p = 0.369).  
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2.4 Discussion  

In this study, I examined whether NPDS records can be used for surveillance of 

noninfectious FBDOs by comparing noninfectious foodborne-related calls to confirmed 

noninfectious FBDO events collected by FDOSS. Over the ten-year study period, we found that 

NPDS records matched with 31% of noninfectious outbreaks reported to FDOSS by location, 

etiology, and time. These findings suggest that NPDS does capture a significant percentage of 

noninfectious foodborne outbreak events and illnesses. These findings are consistent with 

Derby and colleagues (2005) that NPDS records can be used for timely surveillance of infectious 

foodborne illnesses. Although NPDS records represent only individual reported exposures or 

illnesses and may not be indicative of an outbreak, the specificity of data collected and the 

timeliness of data for public health utilization allows for public health officials to respond to 

potential outbreaks sooner than surveillance of other data sources.  

The findings from the logistic regression model predictors suggest there are particular 

features of NPDS records that may be more indicative of a confirmed noninfectious FBDO. 

NPDS records about marine toxins have much higher odds to be related to a noninfectious 

FBDO than records to other noninfectious agents, holding other variables constant. Marine 

toxin exposures are the most common causes of fish-related illness in the US and may be more 

traditionally attributed to a FBDO, resulting in actions that may more likely initiate public health 

response (Pennotti, Scallan, & Backer, 2013). As hypothesized, NPDS records resulting in more 

severe outcomes have higher odds to be related to a noninfectious FBDO than records resulting 

in less severe outcomes. Also as hypothesized, NPDS records called by the healthcare facility 

have higher odds to be related to a noninfectious FBDO than those called by the public. 
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Although clinical validation is necessary to determine the exact etiology and confirm illnesses 

called to poison centers and determine whether the case warrants public health investigation, 

our analysis suggests marine toxin exposure calls, severe outcome calls, and calls made by the 

healthcare facility should be particular features that public health officials should focus on 

when conducting surveillance for noninfectious FBDOs using NPDS records. Additionally, using 

these features to retroactively identify subsets of NPDS records with noninfectious foodborne 

etiology that did not match an FDOSS outbreak may plausibly identify suspect cases of 

noninfectious foodborne illness and noninfectious FBDOs that were not reported to FDOSS.   

Public health officials may not have the resources to investigate every poison center call 

with a noninfectious source. This is an important point considering our study found that 

although NPDS captured many FBDOs reported to FDOSS, only 5% of NPDS records were 

matched to an event in FDOSS and ninety five percent of NPDS records with noninfectious 

foodborne etiology were not related to a confirmed event. While the NPDS records not related 

to a confirmed event may be sporadic cases of noninfectious foodborne disease or clusters of 

cases related to a FBDO not captured by FDOSS, they could also be calls from the public with 

unrelated or unconfirmed illness that should not warrant further public health action. Such a 

high percentage of records potentially not related to a noninfectious FBDO may affect the 

timing, efficiency, and effectiveness of public health response using NPDS. Careful 

consideration should be made for determination of the types of NPDS records that may be 

indicative of a noninfectious FBDO and warrant further investigation. The results from this 

study provide information on features of calls more likely associated to a confirmed 

noninfectious FBDO and a framework for assessing which types of calls public health officials 
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may want to investigate further. More work is needed to identify other features of calls such as 

reported signs and symptoms which may further narrow the scope of calls for investigation.  

Noninfectious foodborne illnesses are regularly reported in calls to poison centers. 

While frequently reported, these represent a fraction of all illnesses as only a small subset of 

the US population seeks medical care by calling a poison center. Alternatively for an illness to 

be reported to FDOSS, the illness must be a part of an outbreak that is recognized and reported 

to public health authorities. Because noninfectious FBDOs, particularly marine toxin outbreaks, 

typically affect a small number of people, they may be hard to detect and will therefore be 

unreported to FDOSS. Thus, both systems have their own limitations to representativeness. This 

study focused on validating NPDS by assessing its ability to capture FDOSS outbreaks, but based 

on the two system’s inherent limitations it is likely that both surveillance systems are capturing 

different populations and different FBDOs. The potential complementarity of the two 

surveillance systems is depicted in Figure 2-2. While each individual surveillance system may 

capture a different subset of all noninfectious foodborne illnesses in the US, quantifying the 

capture and overlap of the two systems is critical to understanding how both systems fit in 

identification of and response to noninfectious FBDOs. Further studies are necessary to assess 

surveillance system representativeness and to assess how best utilize NPDS for noninfectious 

foodborne surveillance.  
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Figure 2-2. Schematic of total foodborne illnesses due to noninfectious agents and the 
proportion of illnesses reported to poison centers and the Foodborne Disease Outbreak 
Surveillance System (FDOSS). Adapted from (Pennotti, Scallan, & Backer, 2013). 
 

Since FDOSS only captures the first date of illness onset, the study matching criteria 

NPDS records received more than 7 days after the earliest onset date would not temporally 

match the outbreak.  Because many noninfectious etiologies, including scombroid toxin and 

ciguatera toxin, have short times between ingestion and onset of clinical symptoms, it is not 

surprising that NPDS received more than 50% of records within 1 day of the earliest illness 

onset date captured in FDOSS (Derby, McNally, & Ranger-Moore, 2005).  However, outbreaks 

involving etiologies such as chronic heavy metal exposure may warrant a longer window of time 

for NPDS records and it may be more appropriate to tailor the exposure window to each 

etiology of interest.    

This is one of the first analyses assessing the ability for NPDS to capture noninfectious 

FBDOs by linking two national noninfectious FBDO surveillance systems. There are several 

limitations to our analysis.  Since noninfectious outbreaks tend to be small in size, they may not 



46 
 

be detected or investigated by health departments and thus were not included in this analysis 

(Pennotti, Scallan, & Backer, 2013). Alternatively, sporadic cases of noninfectious disease may 

be more common than outbreak-related cases since illnesses may involve exposure of a single 

person to a discrete contaminated food (e.g. a single fish with high levels of scombroid toxin). 

Since the analysis was limited by matching NPDS records to outbreaks on the basis of etiology, 

state and date of call, we cannot conclude that identified NPDS records were definitively linked 

to an FDOSS outbreak. Moreover, many records in NPDS rely on self-reported data from an 

exposed person or family member and are not confirmed exposures. 

Despite these limitations, NPDS is a potential source of near-real time surveillance data 

to detect non-infectious foodborne illnesses and outbreaks. Further work is needed to 

determine how best to identify records most likely to indicate an outbreak. 
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Table 2-1. Etiology of outbreaks reported to the Foodborne Disease Outbreak Surveillance 
System (FDOSS) and exposure calls to the National Poison Data System (NPDS).  
Etiology  FDOSS outbreaks NPDS exposure calls 

N (%) N (%) 

Total 491 8773 

Scombroid toxin  287 (58.5) 2124 (24.2) 

Ciguatera toxin  159 (32.4) 1143 (13.0) 

Amanita 18 (3.7) 621 (7.1) 

Paralytic shellfish poison 12 (2.4) 1827 (20.8) 

Heavy metals 10 (2.0) 1371 (15.6) 

Tetrodotoxin 2 (0.4) 126 (1.4) 

Methomyl 2 (0.4) 203 (2.3) 

Monosodium glutamate 1 (0.2) 1358 (15.5) 

 
Table 2-2. Etiology of outbreaks and estimated persons ill reported to the Foodborne Disease 
Outbreak Surveillance System (FDOSS) and exposure calls the National Poison Data System 
(NPDS) after matching by etiology, location, and time.  
Etiology FDOSS NPDS 

Outbreaks Exposure calls 

N (%) N (%) 

Total 188 468 

Scombroid toxin  102 (54.3) 249 (53.1) 

Ciguatera toxin 69 (36.7) 162 (34.5) 

Paralytic shellfish poison  9 (4.8) 40 (8.5) 

Amanita  6 (3.2) 15 (3.2) 

Monosodium glutamate 1 (0.5) 2 (0.4) 

Tetrodotoxin 1 (0.5) 1 (0.2) 

 
Table 2-3. Matching based on changes in temporal proximity of Foodborne Disease Outbreak 
Surveillance System (FDOSS) first-reported illness date and National Poison Data System (NPDS) 
call date with outbreaks and NPDS calls matched by etiology, location, and time. 

Etiology 
Matched outbreaks in 

FDOSS 
Matched NPDS records 

Total  188 468 

± 5 days 171 428 

± 3 days 152 370 
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± 1 days 108 264 

 
 
Table 2-4. Characteristics of exposure calls in the National Poison Data System matched to a 
noninfectious outbreak reported in the Foodborne Disease Outbreak Surveillance System.  

Characteristic  

Matched  Unmatched  Total 

N (%) N (%) N (%) 

Total 468 8305 8773 

Etiology 

Amanita 15 (3.2) 606 (7.3) 621 (7.1) 

Ciguatera toxin 162 (34.5) 981 (11.8) 1143 (13.0) 

Methomyl 0 203 (2.4) 203 (2.3) 

Monosodium glutamate 2 (0.4) 1356 (16.3) 1358 (15.5) 

Heavy metals 0 1371 (16.5) 1371 (15.6) 

Paralytic shellfish poison 40 (8.5) 1787 (21.5) 1827 (20.8) 

Scombroid toxin 249 (53.1) 1875 (22.6) 2124 (24.2) 

Tetrodoxin 1 (0.2) 125 (1.5) 126 (1.4) 

 
Outcome 

Death 0 21 (0.3) 21 (0.2) 

Major effect 18 (3.8) 138 (1.7) 156 (1.8) 

Moderate effect 152 (32.4) 1411 (17.0) 1563 (17.8) 

Minor effect 121 (25.8) 1992 (24.0) 2113 (24.1) 

No effect 14 (3.0) 715 (8.6) 729 (8.3) 

Not followed / unable to be 
followed 

164 (35.0) 4027 (48.5) 4191 (47.8) 

 
Caller  

Non-healthcare professional 322 (68.7) 6749 (81.3) 7071 (80.6) 

Healthcare professional 146 (31.1) 1521 (18.3) 1667 (19.0) 

Unknown 1 (0.2) 34 (0.4) 35 (0.4) 

 
Gender  

Male 205 (43.7) 3927 (47.3) 4132 (47.1) 

Female 217 (46.3) 4257 (51.3) 4474 (51.0) 

Unknown 47 (10.0) 120 (1.4) 167 (1.9) 

 
Age category (years)  

0 to 18 35 (7.5) 1701 (20.5) 1736 (19.8) 

Greater than 18 331 (70.5) 5205 (62.7) 5536 (63.1) 

Unknown 103 (22.0) 1398 (16.8) 1501 (17.1) 
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Table 2-5. Logistic regression model parameter estimates and odds ratios for matching NPDS 
records to an outbreak reported to the Foodborne Disease Outbreak Surveillance System 
(FDOSS).  
Outcome: matching an 
FDOSS outbreak 

Regression Coefficient Chi-square P-value Odds ratio (95% CI) 

Intercept -6.115 460.475 <0.0001 -  

Outcome severity 0.870 9.670 0.0019 2.386 (1.379, 4.127) 

Healthcare facility caller 1.083 94.095 <0.0001 2.953 (2.373, 3.676) 

Marine etiology 2.972 138.845 <0.0001 19.531 (11.913, 32.020) 

Age 0.482 7.619 0.0058 1.619 (1.150, 2.279) 
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Chapter 3: Effect of Prescription Drug Monitoring Program Implementation on Opioid- and 

Heroin-associated Exposures Called to Poison Centers 

 
 
3.1 Introduction  

Prescription opioid abuse is the intentional, non-medical use of an opioid to obtain a 

euphoric or psychotropic effect. Abuse of prescription opioids is a substantial public health 

problem in the United States (US); an estimated 1.9 million people suffered from substance 

abuse related to prescription opioids in 2013. An estimated sixteen thousand people died in the 

US due to prescription opioid medications in 2010 (Dart, Surratt, & Cicero, 2015; SAMHSA, 

2014).  

Many federal regulations such as educational initiatives and abuse-deterrent 

formulations of opioid analgesics have been implemented to limit abuse of opioids (NIDA, 

2016). States have also taken additional legislative actions to reduce opioid abuse by 

monitoring and controlling the dispensing and prescribing of these substances. One type of 

intervention cited as having significant potential in reducing opioid abuse and misuse is 

prescription drug monitoring programs (PDMPs). PDMPs use statewide electronic databases 

that collect prescription data from prescribers and dispensers on medications classified as 

federal controlled substances. Programmatic details differ among states, but PDMPs are 

designed to assist in detecting and preventing abuse, misuse, and diversion of controlled 

substances. Specifically, programs are targeted toward reducing the incidence of ‘doctor 

shopping’ which occurs when patients see multiple providers and pharmacies with the intent of 

obtaining controlled substances for misuse (Blumenschein, Fink, & Freeman, 2010). As of 2015, 

49 states have enacted laws allowing for creation of PDMPs (NAMSDL, 2014). Many states 
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already have active programs while some states are in the process of implementing programs 

and initiating data collection; lack of state funding towards these programs oftentimes hinders 

or delays implementation.  

Many national studies using a variety of data sources have sought to assess whether 

PDMPs have affected morbidity and mortality attributable to opioid abuse. Simeone and 

Holland (2006) used multilevel modeling of prescription drug shipments in states with and 

without PDMP implementation to show that per capita supply of prescription pain relievers to 

PDMP states decreased after implementation of the PDMP and in doing so reduced the 

probability of abuse by users for these drugs. A follow-up study showed decreases in supply of 

prescription drugs found in states with active PDMP programs were associated with lower rates 

of opioid-related admissions to emergency departments (Reismann, Shenoy, & Atherly, 2009). 

Reifler, Droz, and Bailey (2012) studied pre- and post-implementation of PDMP in an 

aggregated number of states and found opioid abuse rates in the population was reduced after 

implementation. 

States have yet to publish well designed quasi-experimental studies on the effectiveness 

of PDMPs on opioid-related illnesses and deaths resulting from abuse. State PDMP data have 

been shown to change doctor prescribing behavior once providers are able to access a patient’s 

information in a PDMP database (Baeren, Marco, & Droz, 2010). A few states have evaluated 

PDMP performance using end-user satisfaction surveys, but have not yet tied these evaluations 

to changes in opioid abuse trends (PDMP evaluations, 2016). While these studies suggest the 

possible effects of PDMP implementation on opioid abuse, there are no state-level studies 

examining the impact of PDMPs on opioid abuse rates. Surveys to states have noted that more 



53 
 

state-specific studies of the effect of PDMP implementation on the opioid epidemic are 

recommended to justify continued funding and implementation (Katz & Houle, 2008).  

Moreover, no studies have examined the relationship between prescription opioid 

abuse and heroin use at the state level. An estimated 517,000 people suffered from a heroin 

use disorder in 2013 (SAMHSA, 2014). Research suggests almost half of young people who 

inject heroin reported abusing prescription opioids before starting to use heroin. These 

individuals reported switching to heroin because it is cheaper and easier to obtain than 

prescription opioids (Cicero, Ellis, & Surratt, 2012; Pollini, Banta-Green, & Cuevas-Mota, 2011). 

One of the potential effects of policies such as PDMP implementation to reduce opioid abuse 

may be an increase of heroin use as individuals choose an alternative once doctor shopping for 

opioids becomes regulated (Dart, Surratt, & Cicero, 2015). State-specific studies examining the 

effect of PDMP implementation on heroin use rates are needed to adequately study and 

predict the potential negative effects of PDMP implementation.  

United States poison centers offer free, confidential medical advice 24 hours a day, 

seven days a week through a national help line to assist in poison exposures. Call data are 

transmitted and stored in an electronic database every eight minutes to the National Poison 

Data System (NPDS), which can be used for near-real-time surveillance for disease conditions or 

exposures and to provide situational awareness during incidents of public health significance 

(Wolkin, Martin, & Law , 2012). Poison centers receive calls from both healthcare providers and 

the public, with 15% of call from healthcare providers and 85% of call from the public (Mowry, 

Spyker, Cantilena, McMillan, & Ford, 2014). While utilization of poison centers are dependent 

on demographic characteristics, studies estimate that about seven per thousand population use 



54 
 

poison center services annually (Litovitz & Benson, 2010). Reported exposures include opioid- 

and heroin-associated symptoms. Previous studies have described opioid- and heroin-related 

calls to poison centers (Davis, Severtson, & Bucher-Bartelson, 2014; Spiller, Lorenz, & Bailey, 

2009). These studies have shown that not only have opioid-related calls increased, but 

increases in poison center calls related to opioids were correlated with increases in prescription 

opioid-related emergency department visits. Also, studies have shown that pharmaceutical 

reformulations of certain opioids to reduce the potential for abuse are correlated with 

increases in heroin overdoses (Dart, Surratt, & Cicero, 2015). There has yet to be a state-level 

analysis of PDMP effectiveness using NPDS records. Having a framework for using NPDS records 

to evaluate state PDMP effectiveness can aid states in generating the critically important 

information needed to support and improve PDMP operations.  

The objective of this study was to use NPDS records to assess whether PDMP 

implementation is associated with a reduction of opioid-associated calls and an increase of 

heroin-associated calls. I analyzed a time series of opioid and heroin use and abuse captured by 

NPDS records, defined in this study as the ratio of monthly opioid- or heroin-associated calls to 

non-steroidal anti-inflammatory drug-associated calls. This analysis was conducted in one state 

that implemented a PDMP within the study period compared to a state that did not implement 

a PDMP during within the study period. The working hypotheses were that 1) trends in opioid-

related calls to NPDS would be attenuated upon PDMP implementation but should be 

unaffected in the absence of PDMP implementation and 2) trends in heroin-related calls to 

NPDS would increase upon PDMP implementation but should be unaffected in the absence of 

PDMP implementation.  
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3.2 Methods  

Study Location 

Since PDMP implementation occurs at the state level, comparisons can be made within 

the state (pre- and post-implementation) and between states with and without PDMP 

programs in place. Two states were chosen as a part of this study. The first state implemented a 

state-wide PDMP in the winter of 2011 and is the intervention state in this study. To ensure 

there was enough time series data, twenty four months before and after the date of the 

intervention state PDMP implementation was chosen as the study period, from November 1, 

2009 to October 31, 2013. A second state was chosen which implemented a PDMP after 

November 2013 outside the study period. This state is geographically close in proximity to the 

intervention state and was chosen as a control state for this study. Both states have 

comparable racial and age demographics and similar poison center utilization rates per 100,000 

population (Table 1) (Quickfacts, 2016).  

Data  

NPDS 

NPDS captures standardized information on each call received by a poison center 

including the implicated substance of exposure, patient demographics, and clinical and case 

management data. Each NPDS record is assigned a specific substance code to identify the 

substance(s) of exposure and enable surveillance. NPDS users can query the data using a 

combination of substance codes, clinical data, and health outcomes (Mowry, Spyker, Cantilena, 

McMillan, & Ford, 2014). For this study, monthly opioid-associated calls were queried from 

NPDS for the 48-month study period, from November 1, 2009 to October 31, 2013, by state. 
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Monthly heroin-associated calls and non-steroidal anti-inflammatory drug (NSAID) associated 

calls were also queried for the study period. Calls included both from healthcare providers and 

the general public. Calls reporting exposure to multiple substances and calls deemed to be 

confirmed non-exposures by poison center staff were excluded from the study.  

NAMSDL 

The National Alliance for Model State Drug Laws (NAMSDL) collects information on state 

PDMP programs, including date of legislative enactment of PDMP and date of user access to the 

PDMP (NAMSDL, 2014). All information is reported by the state program that oversees PDMP 

implementation. Data are collected every two to five years. Information used in the NAMSDL 

database for this study included the PDMP implementation date, which is defined in this study 

as the month and year the state PDMP program allowed access to the PDMP by prescribers 

(physicians) and dispersers (pharmacies).  

Measures  

There were two primary dependent variables for this study. The first dependent variable 

was the ratio of opioid-associated records and NSAID-associated records per month for the 

state. An opioid-associated record was defined as an NPDS record where the patient reported 

exposure to an opioid. An NSAID-associated record was defined as an NPDS record where the 

patient reported exposure to an NSAID. For example, if the poison center that services the 

intervention state received 10 opioid records and 100 NSAID records in a month, then the ratio 

would be 0.1 opioid-associated exposures per NSAID-associated exposure that month. Using 

this ratio as the dependent variable has several advantages compared to absolute counts. 

Poison center utilization varies by time and state so absolute counts or rates by population 
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would be highly dependent upon the number of people who know about poison centers and 

choose to use poison centers when seeking healthcare advice. Using a group of substances that 

would not be affected by PDMP implementation, such as NSAIDs, as a denominator can provide 

a background rate of calls that addresses changes in overall poison center utilization. This 

measure allows for a more valid and stable comparison between pre- and post-intervention 

periods and between states.  

The second dependent variable was the ratio of heroin-associated records and NSAID-

associated records per month for the state. A heroin-associated record was defined as an NPDS 

record where the patient reported exposure to heroin. 

The independent variable was the implementation of the PDMP in the intervention 

state defined as the month and year the PDMP allowed user access to the PDMP database. This 

date was obtained from NAMSDL data.  

Analysis 

I estimated segmented time series regressions on trends in the opioid to NSAID ratio 

and the heroin to NSAID ratio over the 48-month study period. Model specification included a 

constant and terms for: pre-intervention trend in ratio, change in ratio during the intervention 

month, and change in trend between the pre- and post- intervention periods. First-order 

autocorrelated errors were assumed in model specification. The specific regression model fitted 

to the data was:  
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Ratiot= β0 + β1*timet + β2*interventiont + β3*time after interventiont + et      for the intervention state 

Where: 

 Ratiot is the ratio of opioid-associated NPDS records to NSAID-associated NPDS records 

 β0 estimates the baseline ratio at the beginning of the study period 

 β1 estimates the change in ratios that occur with each month during the pre-intervention period 

 Timet is a continuous variable indicating the number of months into the study period. The total 
study period was 48 months.  

 β2 estimates that change in the ratio immediately following PDMP implementation 

 β3 estimates the change in trend after PDMP implementation compared to the slope before 
implementation 

 Time after interventiont is a continuous variable indicating the number of months after PDMP 
implementation. This is coded as zero during the pre-intervention period.  

 et represents the random error.   
 

An equivalent regression model was specified and estimated for the heroin to NSAID 

ratio. For the control state an equivalent regression model was specified and estimated for 

both opioids and heroin. An alpha level of 0.05 was considered significant. The intervention 

month for the control state was defined as the mid-point of the 48 month time series (October 

2011).  

We hypothesized that for opioids: 1) the ratios would not significantly decrease each 

month among both states during the pre-intervention period, 2) the ratios in the intervention 

month would not significantly decrease and the pre-intervention trend will be sustained in the 

post-intervention period for the control state with no PDMP implementation (control state), 

and 3) the ratio in the intervention month would significantly decrease and the pre-

intervention trend will be attenuated in the post-intervention period for the state with PDMP 

implementation (implementation state).  

We hypothesized that for heroin: 1) the ratios would not significantly change each 

month among both states during the pre-intervention period, 2) the ratios in the intervention 
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month would not significantly increase and the pre-intervention trend will be sustained in the 

post-intervention period for the control state, and 3) the ratio in the intervention month would 

significantly increase and the pre-intervention trend will increase in the post-intervention 

period for the intervention state.  

Data management and analysis were performed in SAS 9.3 (SAS Institute, Cary, NC). 

3.3 Results  

Opioids 

There were a total of 1,312 opioid-associated calls in state A and 770 in the control state 

during the study period. There were a total of 14,253 NSAID-associated calls in the intervention 

state and 9,442 in the control state. The monthly opioid ratio for the intervention state ranged 

between 0.052 and 0.125 opioid records per NSAID record with a median of 0.087. The monthly 

opioid ratio for the control state ranged between 0.042 and 0.128 opioid records per NSAID 

record with a median of 0.083. The ratio of opioid to NSAID records was highest in the month of 

August 2011 for the intervention state and June 2010 for the control state. The monthly ratios 

of opioid ratios and heroin ratios for both states during the study period are displayed in Figure 

3-1.   

The time series regression estimates and 95% confidence intervals of opioid to NSAID 

ratio per month for the two time series are displayed in Figure 3-2. In the 24-month pre-

intervention period, there was some variability between the trends seen between states. The 

ratio increased by 0.001 per month for the intervention state (p<0.001) while the ratio 

decreased by -0.0004 per month for the control state (p<0.001). These estimates suggest that 
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during the pre-intervention period, the intervention state had an increasing ratio of opioid calls 

to NSAID calls while the control state had a slightly decreasing ratio.  

The pre-intervention trend of opioid to NSAID ratios was significantly attenuated in the 

post-intervention period for the intervention state. While the trend in the intervention state 

was an increase of 0.001 per month in the pre-intervention period, the trend was a decrease of 

-0.002 per month in the post-intervention period (p<0.001), which yielded a net loss of -0.001 

per month following intervention. Because of this, the post-intervention trend in the 

intervention state declined during the rest of the study period.  

The effect of PDMP implementation in the intervention state on the opioid to NSAID 

ratio was immediate. In the PDMP implementation month (month 25), the intervention state 

saw a -0.017 decrease in the ratio (p <0.001, Figure 3-2). This effect was not seen in the non 

PDMP implementation state; the control state saw a 0.003 increase in the ratio and this 

estimate was not statistically significant (p=0.13).  

Alternatively similar trends were not found in the control state. The effect size of all 

three estimates (pre-intervention trend, implementation month change, and post-intervention 

trend) was comparatively small so the overall trend of the opioid to NSAID ratio stayed 

relatively constant throughout the study period. The trend in the control state was a decrease 

of -0.0004 per month in the pre-intervention period (p<0.001) and an increase in 0.0007 per 

month in the post-intervention period (p<0.001). Figure 3-3 displays the observed 48-month 

trends in opioid ratio and the pre-intervention trends (months 1-24) projected into the post-

intervention study period for the intervention state. Twenty-four months after PDMP 
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implementation, the observed ratio was 47.2% less than the projected ratio. For the control 

state, the observed ratio was higher than projected.  

Heroin  

For heroin-associated calls, there were a total of 188 in the intervention state and 202 

for the control state. The heroin ratio for the intervention state ranged between 0.003 and 

0.047 heroin records per NSAID record with a median of 0.013. The heroin ratio for the control 

state ranged between 0.004 and 0.063 with a median of 0.022. The ratio of heroin to NSAID 

records was highest in the month of September 2013 for both states (Figure 3-1). 

The heroin ratio trends were very similar between states in the 24-month pre-

intervention period. The ratio increased by 0.00007 per month for the intervention state 

(p=0.52) while the ratio increased by 0.0003 per month for the control state (p<0.001). These 

estimates suggest that during the pre-intervention period, both states had a very slightly 

increasing ratio of heroin calls to NSAID calls.  

The pre-intervention trend of heroin to NSAID ratios was significantly increased in the 

post-intervention period for the intervention state. While the trend in the intervention state 

was a slight increase of 0.00007 per month in the pre-intervention period, the trend was an 

increase of 0.0008 per month in the post-intervention period (p<0.001). Because of this, the 

post-intervention trend in the intervention state increased during the rest of the study period.  

Alternatively we did not see similar trends in the control state. While the trend in the 

control state was a slight increase of 0.0003 per month in the pre-intervention period, the trend 

was a slight decrease of -0.0003 per month in the post-intervention period (p<0.001).  
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Figure 3-3 displays the observed 48-month trends in heroin ratio and the pre-

intervention trends (months 1-24) projected into the post-intervention study period for the 

intervention state. Twenty-four months after PDMP implementation, the observed ratio was 

136% more than the projected ratio. For the control state, the observed ratio was lower than 

projected.  

3.4 Discussion  

The objective of this study was to use NPDS records to assess whether PDMP 

implementation is associated with a reduction in the time trend of opioid-associated calls and 

an increase in time trend of heroin-associated calls. Instead of absolute counts I used ratios of 

NPDS records to account for differences in poison center utilization and population over time 

and between states. For comparison, I observed trends in a state with PDMP implementation 

and a neighboring state with no PDMP implementation within the 48-month study period.  

 The intervention state significantly attenuated the expected trend of rising opioid trends 

following implementation of the PDMP. The effect was immediate as evidenced by the ratio 

decrease in the month following implementation. Moreover, the effect persisted during the 

rest of the study period as the trend sloped downward in the months following 

implementation. When I projected the pre-intervention trend into the post-intervention period 

for the intervention state, I found the projected ratio in the last month of the study period to be 

almost twice as high as what was observed. These findings suggest that if NSAID calls remained 

relatively stable during the study period, there would be an expected twice as many opioid-

related NPDS records in the last month of the study period had the intervention state not 

implemented a PDMP. While there have not been similar studies at the individual state level, 
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these findings corroborate studies at the national level that opioid-related calls decrease after 

PDMP implementation (Reifler, Droz, & Bailey, 2012). Alternatively, the control state did not 

see similar decreases in the post-intervention period. The absence of a similar trend in the 

control state suggests that the decreases in trend following PDMP implementation in the 

intervention state were unlikely due to other external factors that would also affect the control 

state, such as national opioid drug reformulations put in place to reduce opioid abuse (Coplan, 

Kale, & Sandstrom, 2013).  

 However, decreased opioid trends following implementation seen in the intervention 

state were also associated with increases in heroin trends. The intervention state saw an 

increase in heroin trends following PDMP implementation and this effect persisted during the 

rest of the study period. When projecting the pre-intervention trends into the post-intervention 

period for the intervention state, the heroin to NSAID ratio was twice the amount as what was 

projected in the last month of the study period. Just as there would be an expected twice as 

many opioid-related records if the intervention state had not implemented a PDMP, there 

would be half as many heroin-related records in the absence of a PDMP. These results when 

paired with trends seen in opioids in the intervention state suggest there may have been a 

substitution effect of individuals switching to heroin once doctor shopping for opioids becomes 

a less available option. These findings corroborate national studies looking at substitution of 

heroin for opioids as accessibility of opioids decreases (Dart, Surratt, & Cicero, 2015). More 

studies are needed to assess the amount of substitution to expect when implementing policies 

and programs that decrease the availability of obtaining opioids for abuse.  
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 There are policy implications for the findings in this study. Evaluation of the effects of 

PDMP implementation provides the necessary context and evidence for federal and state 

legislators to make sound public health decisions on addressing the opioid and heroin epidemic. 

This is timely as the US Congress hopes to pass a bill to combat the prescription opioid and 

heroin epidemic for fiscal year 2017 (New York Times , 2016). Moreover, public health officials 

should prepare for the substitution of opioid abuse to heroin use suggested in this study upon 

implementation or enhancement of state PDMPs.  

In this study, it was demonstrated that a quasi-experimental time series design using a 

comparison group on NPDS records could be used to assess the effects of state intervention 

policies and programs. This type of study design was also rigorous enough to rule out many 

factors other than the PDMP implementation that would have led to changing trends. I also 

created a new measure – the ratio of records in NPDS – that adjusts for many different factors 

such as poison center utilization and changing population rates that can account for variation in 

monthly absolute counts of opioid- and heroin-associated records.   

Using segmented time series designs to study NPDS records may improve the ability to 

assess and detect subtle trends such as the effect and effectiveness of interventions. Syndromic 

surveillance data such as NPDS records are typically analyzed using traditional aberration 

detection methods. Techniques include statistical process control such as the historical limits 

method and change point analyses (Fricker, 2013). The sensitivity, specificity, and timeliness of 

detection for different techniques vary significantly and depend widely upon the desired focus 

of the researcher. Consequently, many of these techniques are only effective for detecting 

sudden major changes in time series data and have limited ability to identify subtle and 
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potentially important changes in time series trends. Detecting changes in trend using 

techniques like segmented time series could be a critical tool to inform public health decision-

making. This study provides a basic framework for study design and how to create valid 

measures for future studies examining changing trends from state-level interventions using 

NPDS records.  

There are several limitations to the study. For opioids, the trends for the intervention 

and control states were not similar prior to PDMP implementation which may suggest that the 

comparison state was not experiencing similar opioid use trends during the pre-intervention 

period. Moreover, there may be some unmeasurable interaction between the states not taken 

into account in this study. In particular, it is plausible that stricter prescription opioid abuse 

policies like implementation of PDMPs in one state may drive opioid abusers to neighboring 

states with less strict opioid prescribing in the absence of a PDMP. This phenomenon, while not 

specifically studied, is similar to switching from prescription opioid abuse to heroin abuse when 

stricter opioid regulations are enacted. If the slight increases in opioid to NSAID ratios seen in 

the control state in the post-intervention may be partially accounted for by decreases in opioid 

ratio in the intervention state, then the comparison between states overestimates the effect of 

PDMP implementation on opioid to NSAID ratios seen in the intervention state. Further studies 

using multiple states as controls may explain whether this phenomenon is present in this study.  

The immediate and persistent effects of PDMP implementation on the opioid to NSAID 

ratios in state A suggest that PDMP implementation does affect opioid abuse rates at the state 

level. The associated increases in heroin to NSAID ratios following PDMP implementation 

suggest a substitution effect is present as availability of prescription opioids for abuse declines. 
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The approaches in this paper provide a framework for detecting changing trends in NPDS 

records for assessment of public health interventions such as PDMP implementation. Future 

research should focus identifying particular features of state PDMPs that are more effective in 

contributing to decreasing opioid abuse trends.  
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Table 3-1. Demographic and Poison center utilization characteristics of states in the study.* 
State Characteristic  Implementation state 

(PDMP state) 
Control state  
(non-PDMP state) 

Population 18 million 10 million 

Age   

     Persons under 5, percent 5.5% 6.6% 

     Persons over 18, percent 21.3% 24.7% 

Race   

     White, percent 75.0% 62.1% 

     Black, percent 17% 30.0% 

Economy   

     Median household income, dollars $47,000 $49,000 

     Persons in poverty, percent 16.5% 18.3% 

     Total unemployment rate, percent 6.3% 7.1% 

Poison center utilization per year (per 100,000 
population)  

1,005 1,132 

*Data obtained from the 2010 United States Census Bureau and Bureau of Labor Statistics. 
PDMP = prescription drug monitoring program 
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(A) Opioid to NSAID ratio 

 

(B) Heroin to NSAID ratio 

 
NSAID = non-steroidal anti-inflammatory drug; PDMP = prescription drug monitoring program 

Figure 3-1. Observed trends in ratios in a state with prescription drug monitoring program 
(PDMP) implementation and a state without PDMP implementation over a 48-month study 
period. (A) Opioid to non-steroidal anti-inflammatory drug (NSAID) ratio. (B) Heroin to NSAID 
ratio. 
(A) Opioid to NSAID ratio 
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(B) Heroin to NSAID ratio 

 
NSAID = non-steroidal anti-inflammatory drug  
 

Figure 3-2. Estimates for the effects of prescription drug monitoring program (PDMP) 
implementation on (A) opioid and (B) heroin ratios in a state with PDMP implementation and a 
state without PDMP implementation over a 48-month study period.  
(A) Opioid to NSAID ratio 
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(B) Heroin to NSAID ratio 

NSAID = non-steroidal anti-inflammatory drug; PDMP = prescription drug monitoring program 

Figure 3-3. Observed trends in ratios and projected trends based on pre-intervention ratios for 
the state with prescription drug monitoring program implementation. (A) Opioid to non-
steroidal anti-inflammatory drug (NSAID) ratio. (B) Heroin to NSAID ratio. 
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Chapter 4: Effect of State Marijuana Legislation on Marijuana and Synthetic Cannabinoid Use  

 
 
4.1 Introduction 

Marijuana has long been used for its neuropsychiatric effects including enhanced 

relaxation and perceptual alterations (Green, Kavanagh, & Young, 2003). The primary active 

ingredient of marijuana is Tetrahydrocannabinol (THC), which binds to the cannabinoid 

receptors in the body.  

Synthetic cannabinoids also bind to the same cannabinoid receptors. These substances 

were initially created as pharmaceutical agents attempting to mimic the clinical attributes of 

marijuana and THC. However, synthetic cannabinoids have gained popularity in the past decade 

as recreational drugs because it is believed use of these substances result in a marijuana-like 

high.  

Synthetic cannabinoids, also called spice or K2, are man-made compounds that are 

sprayed onto shredded plant material so they can be smoked. These products are often 

marketed as safe and legal even though the Drug Enforcement Administration has banned the 

marketing and sale of these substances in the United States (Drug Fact Sheet: Spice, 2016). 

Despite these bans, synthetic cannabinoid use continues to be popular among youth and has 

recently been implicated in numerous outbreaks in the United States (Law, Schier, & Martin, 

2015; Kasper, Ridpath, & Arnold, 2015; CDC, 2013; CDC, 2013).  

Currently, marijuana is still criminalized at the federal level, although there have been 

piecewise changes at the state level for decriminalization and broadening use of medical and 

recreational marijuana. Currently, 22 states have passed legislation allowing medical marijuana 

use. Four states and the District of Columbia have allowed the use of recreational marijuana for 
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people over 21 years old (Governing Magazine, 2016). Even though there has been fierce 

political debate on recreational and medical marijuana legalization, there have been few 

studies looking at the effect of these types of legislation on marijuana use rates. Moreover, the 

conclusions to published studies were mixed. Two studies showed that marijuana use did not 

increase in adolescents or adults following legislation on medical marijuana use (Choo, Benz, & 

Zaller, 2014; Harper, Strumpf, & Kaufman, 2012) while three studies showed that marijuana use 

increased following medical marijuana legalization (Wang, Roosevelt, & Le Lait, 2014; Cerda, 

Wall, & Keyes, 2011; Wall, Poh, & Galea, 2011). All of these studies were conducted at the 

national or multi-state level. There are no published state-specific studies on marijuana use 

following legalization. These types of studies are critically needed to inform policy-makers of 

the effects of marijuana legalization on marijuana use rates.  

Moreover, there have not been any studies examining the effect of marijuana laws on 

synthetic cannabinoid use. Because of the similarity of active ingredients, synthetic 

cannabinoids are often misleadingly called synthetic marijuana, even though studies have 

shown the adverse effects of synthetic cannabinoids are very different and often more 

damaging than the effects of marijuana (Forrester, Kleinschmidt, & Schwarz, 2011). One of the 

main drivers of the popularity of synthetic cannabinoids is that they are not detectable in 

typical urine drug screens for marijuana and THC (Kirstin & Lauritsen, 2016). A survey of 

Maryland synthetic cannabinoid users showed that 71% of users cited the main reason for using 

synthetic cannabinoids was to get high without having a positive drug test (Bonar, Ashrafioun, 

& Ilgen, 2014). Synthetic cannabinoid users were opting for a more harmful alternative to 

traditional marijuana to avoid the legal ramifications of marijuana use. Thus, one of the 
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potential effects of recreational and medical marijuana legalization is the decrease in synthetic 

cannabinoid use as those who were using synthetic cannabinoids may switch to a legal, 

regulated, and less harmful alternative to get high. The policy implications of this finding would 

be substantial considering many state and federal policies and public health interventions have 

not been able to curb synthetic cannabinoid use.  

United States poison centers offer free, confidential medical advice 24 hours a day, 

seven days a week through a national help line to assist in poison exposures. Call data are 

transmitted and stored in an electronic database every eight minutes to the National Poison 

Data System (NPDS), which can be used for near-real-time surveillance for disease conditions or 

exposures and to provide situational awareness during incidents of public health significance 

(Wolkin, Martin, & Law , 2012). While utilization of poison centers are dependent on 

demographic characteristics, studies estimate that about seven per thousand population use 

poison center services annually (Litovitz & Benson, 2010). Reported exposures include 

marijuana- and synthetic cannabinoid-associated calls. NPDS records have been used to track 

national marijuana and synthetic cannabinoid exposure trends (Forrester, Kleinschmidt, & 

Schwarz, 2011). However, there has yet to be a state-level analysis using NPDS records 

examining the effects of marijuana laws on marijuana and synthetic cannabinoid use rates. 

Having a framework for using NPDS records to evaluate the effect of marijuana laws on these 

substances can aid states in generating the critically important information for planning and 

responding to the effects of medical and recreational marijuana legalization.  

The objective of this study was to assess whether recreational marijuana legalization 

was associated with an increase in marijuana-associated calls and reduction in synthetic 
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cannabinoid-associated calls by using the ratio of synthetic cannabinoid records to marijuana 

records in NPDS. I applied a longitudinal time series design to synthetic cannabinoid to 

marijuana ratio trends captured by NPDS records. Our working hypotheses are that trends in 

marijuana-related NPDS records would increase upon recreational marijuana legalization and 

that synthetic cannabinoid-related NPDS records would be attenuated during the same period.  

4.2 Methods  

Study location  

With the exception of several large cities, recreational marijuana use laws are enacted 

and enforced at the state level, so comparisons can be made within the state (pre- and post- 

intervention) and among states with and without recreational marijuana laws. There are three 

main categorizations of marijuana use laws across the country. The most lenient of marijuana 

laws is the legalization of recreational marijuana, which allows for licensed retailers to sell 

regulated marijuana within the state. States that pass recreational marijuana laws also 

generally allow individuals to grow their own marijuana. Other states have opted for a more 

restrictive approach and only legalize the use of marijuana for medical purposes. States that 

enact medical marijuana laws also generally decriminalize the possession of marijuana up to a 

certain amount. States that have not passed any recreational or medical marijuana laws are 

considered ‘marijuana prohibition states’, and do not allow the use, possession, or sale of 

marijuana products in the state.  

Three states were chosen as a part of this study to reflect the three categorizations of 

marijuana laws. State A legalized recreational marijuana use for people over 21 years old in 

December 2012 and is the intervention state in this study. Twenty four months before and after 
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the date of state A recreational marijuana legalization was chosen as the study period, from 

January 1, 2010 to December 31, 2014. The second state chosen (state B) legalized medical 

marijuana use in winter 2009 which is outside of the study period. State B still prohibits 

recreational use of marijuana and was chosen as one of the control states for this study. The 

third state chosen (state C) prohibits both medical and recreational marijuana use and was 

chosen as the other control state for this study. All three states are close in proximity and have 

comparable demographics and poison center utilization rates per 100,000 population (Table 4-

1).  

Data Source 

NPDS captures standardized information on each call received by a poison center 

including the implicated substance of exposure, patient demographics, and clinical and case 

management data. Each NPDS record is assigned a specific substance code to identify the 

substance(s) of exposure and enable surveillance. NPDS users can query the data using a 

combination of substance codes, clinical data, and health outcomes (Mowry, Spyker, Cantilena, 

McMillan, & Ford, 2014). For this study, monthly marijuana-associated calls and synthetic 

cannabinoid-associated calls were queried from NPDS for the 48-month study period, from 

January 1, 2010 to December 31, 2014, by state. Calls reporting exposure to multiple 

substances and calls deemed to be confirmed non-exposures by poison center staff were 

excluded from the study. 

Measures  

 The dependent variable for this study was the ratio of synthetic cannabinoid-associated 

records to marijuana-associated records per month for each state. A synthetic cannabinoid-
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associated record was defined as an NPDS record where the patient reported exposure to a 

synthetic cannabinoid substance, including K2, Spice, JWH-018, etc. A marijuana-associated 

NPDS record was defined as an NPDS record where the patient reported exposure to a 

marijuana substance, such as marijuana edibles or marijuana smoke. Using a ratio as the 

dependent variable has several advantages compared to using absolute counts or call rates per 

population. Poison center utilization varies by time and state so absolute counts or rates by 

population would be highly dependent upon the number of people who know about poison 

centers and choose to use poison centers when seeking healthcare. A ratio of the two groups of 

substances will allow for a measure that inherently addresses changes in overall poison center 

utilization. This measure allows for a more valid comparison between pre- and post-

intervention periods and among states. Moreover, the effect of the substitution of synthetic 

cannabinoids to marijuana following recreational marijuana legalization in each state can be 

measured using the magnitude of change in ratio. 

The independent variable was the month and year that recreational marijuana 

legislation was applied in state A.  

Analysis 

Our approach to analysis was the estimation of segmented time series regressions on 

trends in the synthetic cannabinoid to marijuana ratio over a 48-month study period. A time 

series of 48 months of ratios was computed for all three states. Equivalent regression models 

were also specified and estimated for all three states. The intervention month for state B and C 

was defined as the mid-point of the 48 month time series (December 2012). 
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Model specification included a constant and terms for: pre-intervention trend in ratio, 

change in ratio during the intervention month, and change in trend between the pre- and post- 

intervention periods. First-order autocorrelated errors were assumed in model specification. 

The specific regression model fitted to the data was:  

Ratiot= β0 + β1*timet + β2*interventiont + β3*time after interventiont + et  for state A 

Where: 

 Ratiot is the ratio of synthetic cannabinoid to marijuana-associated NPDS records  

 β0 estimates the baseline ratio at the beginning of the study period 

 β1 estimates the change in ratios that occur with each month during the pre-intervention period 

 Timet is a continuous variable indicating the number of months into the study period. The total 
study period was 48 months.  

 β2 estimates that change in the ratio immediately following recreational marijuana legalization 

 β3 estimates the change in trend after legalization compared to the slope before legalization 

 Time after interventiont is a continuous variable indicating the number of months after 
legalization. This is coded as zero during the pre-intervention period.  

 et represents the random error.   
 

The hypotheses for this study include: 1) the ratio would not significantly change each 

month among all three states during the pre-intervention period, 2) the ratio in the 

intervention month would not significantly decrease and the pre-intervention trend will be 

sustained in the post-intervention period for the state with medical marijuana legalization 

(state B) and marijuana prohibition (state C), and 3) the ratio in the intervention month would 

significantly decrease and the pre-intervention trend will be attenuated in the post-intervention 

period for the state with recreational marijuana legalization (state A). An alpha level of 0.05 was 

considered significant. Data management and analysis were performed in SAS 9.3 (SAS 

Institute, Cary, NC). 
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4.3 Results  

There were a total of 425 synthetic cannabinoid-associated calls in state A, 153 in state 

B, and 207 in state C during the study period. There were a total of 662 marijuana-associated 

calls in state A, 115 in state B, and 178 in state C. The monthly synthetic cannabinoid to 

marijuana ratio for state A ranged between 0.071 and 2.00 synthetic cannabinoid records per 

marijuana record with a median of 0.60. The monthly ratio for state B ranged between 0.25 and 

3.00 with a median of 1.58. The monthly ratio for state C ranged between 0.14 and 3.33 with a 

median of 1.50. The monthly ratios for states A, B, and C during the study period are displayed 

in Figure 4-1.   

The corresponding estimates and 95% confidence intervals of the synthetic cannabinoid 

to marijuana ratio per month for the time series are displayed in Figure 4-2. In the 24-month 

pre-intervention period, there was some variability between the trends seen in the states 

studied. The ratio decreased by -0.010 per month for state A (p=0.001) while the ratio 

increased by 0.010 per month for state B (p=0.047). The ratio increased by 0.012 per month for 

state C during the same period but this trend was not statistically significant (p=0.66). These 

estimates suggest that during the pre-intervention period, state A had a decreasing ratio of 

records while state B had a slightly increasing ratio during the pre-intervention period.  

The effect of recreational marijuana legalization in state A on the synthetic cannabinoid 

to marijuana ratio was immediate. In the recreational marijuana legalization month (month 25), 

state A had a drastic -0.52 decrease in the ratio (p <0.001, Figure 4-2). This finding suggests 

there may be a substitution effect directly following legalization as synthetic cannabinoid-

associated records decreased and marijuana-associated records increased. A similar smaller 
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effect was seen in both of the control states but both findings were not significant. State B saw 

a -0.015 decrease in the ratio (p=0.87) and state C saw a -0.11 decrease in ratio (p=0.81).  

The pre-intervention trend of synthetic cannabinoid to marijuana ratios was not 

attenuated in the post-intervention period for state A. While the trend in state A was a 

decrease of -0.01 per month in the pre-intervention period, the trend was an increase of 0.002 

per month in the post-intervention period, although this finding was not significant (p=0.65). 

These results suggest that the immediate effect of recreational marijuana legalization in state A 

was not persistent in the post-intervention period.  

The pre-intervention trend of synthetic cannabinoid to marijuana ratios was attenuated 

in the post-intervention for state B (the medical marijuana legalization state). While the trend 

in state B was an increase of -0.01 per month in the pre-intervention period, the trend was a 

decrease of -0.026 per month in the post-intervention period (p<0.001). State C also had a 

slight decrease in ratio of -0.008 in the post-intervention period but this finding was not 

significant (p=0.84).  

Figure 4-3 displays the observed 48-month trends in synthetic cannabinoid to marijuana 

ratio and the pre-intervention trends (months 1-24) projected into the post-intervention study 

period for state A. Twenty-four months after recreational marijuana legalization, the observed 

ratio was 54.3% less than the projected ratio. For both states B and C, the observed ratio was 

higher than projected.  
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4.4 Discussion 

The objective of this study was to use NPDS records to assess whether recreational 

marijuana legalization is associated with a reduction in synthetic cannabinoid- associated calls 

and an increase in marijuana- associated calls. Instead of absolute counts we used ratios of 

NPDS records to assess the amount of substitution from synthetic cannabinoids to marijuana. 

This measure also accounted for differences in poison center utilization and population over 

time among states. For comparison, I observed trends in a state with existing medical marijuana 

legislation and a state with marijuana prohibition during the 48-month study period.  

 State A saw a decrease in synthetic cannabinoid to marijuana ratio following legalization 

of recreational marijuana. The effect was immediate as evidenced by the drastic ratio decrease 

in state A in the month following legalization. However, the effect was not persistent as the 

trend slightly increased during the months after legalization.  Despite the lack of a persistent 

effect, there was an overall decrease in ratio over the 48-month study period as a result of 

legalization. When the pre-intervention trend was projected into the post-intervention period 

for state A, the projected ratio in the last month of the study period was found to be more than 

twice as high as what was observed.  

Alternatively, there were no significant changes in trend in states B and C in the month 

following legalization. The absence of a similar trend in the comparison states suggests that the 

immediate decreases in trend following legalization in state A are unlikely due to other external 

factors that would also affect states B and C.  

 There have not been similar studies examining the relationship between synthetic 

cannabinoids and marijuana at the individual state level, but these findings corroborate studies 
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examining the substitution effect of other drugs of abuse. For example, studies have shown 

that state policies leading to reductions in the availability of prescription opioids for abuse were 

associated with increases in heroin use trends (Dart, Surratt, & Cicero, 2015; Blumenschein, 

Fink, & Freeman, 2010). Individuals looking for a similar high, either in the case of opioids and 

heroin or synthetic cannabinoids and marijuana, may likely choose the least restricted and 

more freely available option amid changing state laws and policies. More studies are needed to 

assess the amount of expected substitution from synthetic cannabinoids to marijuana as a 

consequence of marijuana legislation and whether this phenomenon is present at the national 

level.  

 In this study, I demonstrated that a quasi-experimental time series design using multiple 

comparison groups on NPDS records could be used to assess the effects of state legislation on 

licit and illicit drug use. This type of study design is also rigorous enough to rule out many 

factors other than recreational marijuana legalization that would have led to changing trends. A 

new measure was also created – the ratio of records in NPDS – that adjusts for many different 

factors such as poison center utilization and changing population rates that can account for 

variation in monthly synthetic cannabinoid- and heroin-associated records. This study provides 

a basic framework for study design and how to create valid measures for future studies 

examining changing trends from state legislation using NPDS records. 

There are several limitations to the study. The trends for the intervention and control 

states were not similar during the pre-intervention phase which may suggest that the 

comparison states may not have been experiencing similar synthetic cannabinoid and 

marijuana trends before legalization. Moreover, state B saw a persistent change in ratio in the 
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post-intervention period. This may reflect a delayed or gradual shift to marijuana from 

synthetic cannabinoids following medical marijuana legalization. Further studies examining 

state-specific trends in comparison to all state public health interventions or policies that may 

affect synthetic cannabinoid or marijuana use is needed to clarify this uncertainty.  

The immediate effects of recreational marijuana legalization on the synthetic 

cannabinoid to marijuana ratios in state A suggest that relaxing marijuana laws may attenuate 

the substitution of marijuana for synthetic marijuana at the state level. The approaches in this 

paper provide a framework for detecting changing trends in NPDS records for assessment of 

state policies such as marijuana legalization. Future research should focus identifying particular 

state policies that are more effective in contributing to decreasing synthetic cannabinoid 

trends. 
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Table 4-1. Demographic and Poison center utilization characteristics of states in the study.* 
State Characteristic  Intervention State A 

(Recreational MJ) 
Control State B 
(Medical MJ) 

Control State C 
(MJ Prohibition) 

Population 6.7 million 2.9 million 3.0 million 

Age    

     Persons under 5, percent 6.5% 6.9% 8.4% 

     Persons over 18, percent 23.5% 24.6% 30.5% 

Race    

     White, percent 77.3% 66.2% 86.1% 

     Black, percent 3.6% 8.1% 1.3% 

Economy    

     Median household income, dollars $60,000 $52,000 $60,000 

     Persons in poverty, percent 13.2% 15.2% 11.7% 

     Total unemployment rate, percent 8.1% 11.2% 5.4% 

Poison center utilization per year for 
2010 (per 100,000 population)  

1,159 1,939 1,890 

*Data obtained from the 2010 United States Census Bureau and Bureau of Labor Statistics. 
MJ = marijuana  
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Figure 4-1. Observed trends in synthetic cannabinoid to marijuana ratios in a state that 
legalized recreational marijuana (State A), a state that legalized medical marijuana (State B), 
and a state with marijuana prohibition (State C).   
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Figure 4-2. Estimates for the effects of legalizing recreational marijuana on synthetic 
cannabinoid and marijuana ratios in a state that legalized recreational marijuana (State A), a 
state that legalized medical marijuana (State B), and a state with marijuana prohibition (State 
C).   
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Figure 4-3. Observed trends in synthetic cannabinoid and marijuana ratios and projected trends 
based on pre-intervention ratios for the state with legalizing recreational marijuana.  
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Chapter 5: Summary 

 
 
5.1 Summary 

 The studies presented in the dissertation explore new ways for poison center records to 

be used for early identification of public health threats. Syndromic surveillance is a high priority 

for public health officials at the local, state, and federal level in prospectively identifying threats 

and initiating a timely public health response. Use of a syndromic surveillance data source such 

as poison center records allows for timely accessibility and interpretation of data for public 

health decision-making. 

 The studies presented also explore ways for poison center records to be used for 

evaluating policy and program impact by identifying changing trends in poison center records. 

This is very different from detecting acute threats as changing trends may be subtle and be over 

longer time periods. Validation of these approaches in using poison center data for 

identification of changing trends allows for timely evaluation of policies and programs, which is 

critical for informing researchers, policy-makers, and public health of the intended and 

unintended consequences of public health and policy actions.  

The goals of the studies were 1) to assess whether poison center records can be used 

for surveillance of noninfectious FBDOs and assess whether certain features of poison center 

records are more likely associated with a confirmed noninfectious FBDO, 2) to assess whether 

state public health interventions such as prescription drug monitoring programs were 

associated with a reduction in opioid use trends, and 3) to assess whether state legislation such 

as recreational marijuana legalization was associated with an increase in marijuana and 

reduction in synthetic cannabinoid use trends. 
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The results of the first study indicated that NPDS did capture a significant percentage of 

noninfectious foodborne outbreak events and illnesses. Over the ten-year study period, I found 

that 31% of noninfectious FBDOs in a national dataset of confirmed noninfectious outbreaks 

corresponded with a NPDS record by location, etiology, and time. The particular features more 

likely related to a confirmed FBDO included records that were related to marine toxins, had 

more severe outcomes, and had healthcare professional callers instead of the lay public. 

Detection of noninfectious FBDOs using poison center records is representative of and timelier 

than other established surveillance systems. Thus, poison center records could be used for 

rapid detections of and response to potentially serious noninfectious FBDOs.  

In the second and third studies, I demonstrated that a quasi-experimental time series 

design with a comparison group using poison center records could be used to assess the effects 

of state intervention policies and legislative changes. This type of study design is also rigorous 

enough to rule out many factors other than the intervention that would have led to changing 

trends. A new measure was also created – the ratio of records – that adjusted for many 

different factors such as poison center utilization and changing population rates.   

The results of the second study showed that poison center records were able to detect 

an immediate and persistent decreasing trend of opioid-related records in a state following 

state-wide implementation of a prescription drug monitoring program. The findings suggested 

we would expect twice as many opioid-related calls to poison centers had the state not 

implemented the program. However, the decrease in opioid trend was associated with an 

increase in a heroin trend. This analysis demonstrated the use of poison center records as a 

means to assess the intended impact of a PDMP but also an important unintended effect – that 
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is, the increased use of an illegal drug for which other surveillance data are not readily 

available.    

The results of the third study showed that poison center records were able to detect an 

immediate decrease in trend of synthetic cannabinoid-related records in a state following state 

legalization of recreational marijuana use. This analysis demonstrated the use of poison center 

records as a means to assess an unintended effect of decreased illegal drug use for which other 

surveillance data may likely not capture.  

The approach and findings from these three studies expand upon current knowledge of 

how poison center records can be used for syndromic surveillance and provide evidence that 

justifies expansion of poison center surveillance into avenues not yet explored by local, state, 

and federal public health.  

5.2 Implications for future research  

The existing literature shows many examples how poison centers in their routine 

operations collect information that is vital to public health surveillance and response. Examples 

include a variety of public health surveillance purposes at the local, state, federal, and 

international levels (Spiller & Griffith, 2009). Poison center records have been used to detect 

threats or monitor emergence of trends in: 1) cases of drug and substance abuse (Law, Schier, 

Martin, Chang, & Wolkin, 2015; Kasper & Ridpath, 2015; Hughes, Bodgan, & Dart, 2007; 

Rosenson, Smollin, Sporer, Blanc, & Olson, 2007; Dart, Surratt, & Cicero, 2015 ), 2) foodborne 

illness outbreaks (Derby, McNally, & Ranger-Moore, 2005; Wolkin, Martin, Law, & Schier, 2011; 

Gruber, Bailey, & Kowalcyk, 2015), 3) product and medication contamination (Wolkin, Martin, 

Law, & Schier, 2011; Gryzlak, R, Zimmerman, & Nisly, 2007), and 4) injuries from commercial 
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and consumer products (Chatham-Stephens, Law, & Taylor, 2014; Pillai, Law, Beuhler, & 

Henretig, 2012). Additionally, poison center records have been used to monitor selected 

illnesses in the general population (e.g., influenza), and for situational awareness following 

known man-made or natural disasters (Simone & Spiller, 2010; Kay, Blackmore, & Schauben, 

2006; Clower, Henretig, & Trella, 2012).  

The studies above cite the many strengths to using poison center records for syndromic 

surveillance. One major strength is that poison centers capture a population that is not 

captured in traditional surveillance systems. Traditional systems rely on collection of data from 

a person at a time and location when the person presents to an outpatient clinic or emergency 

room for treatment. Poison centers capture health data from a portion of the population that 

have not yet or may not ever see a physician or go to the emergency room for an illness (Derby, 

McNally, & Ranger-Moore, 2005; Spiller & Griffith, 2009). Thus the uniqueness of poison center 

records is to have information not necessarily available in other surveillance systems and to 

have it in a timely manner. The studies provide basic frameworks for interpreting this 

information in poison center records for public health decision-making. Future studies should 

focus on further understanding the population captured by poison center records and how to 

best leverage this data source for both identification of threats not captured in other systems 

and timelier capture of known public health threats.  

Syndromic surveillance data such as data collected by poison centers are typically 

analyzed using traditional aberration detection methods (Fricker, 2013). Techniques include 

statistical process control such as the historical limits method, cumulative sum (CUSUM) 

method, and change point analyses (Hennig, 2004; Provincial Infectious Diseases Advisory 
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Committee, 2012). The studies I conducted demonstrate that these data can be evaluated and 

provide insight into population health trends by using health services research methods such as 

interrupted time series. The knowledge gained opens the door for many research opportunities 

including: evaluation of public health intervention effectiveness, assessment of intended and 

unintended consequences following state legislative or public health actions, assessment of 

differences in state trends following national legislative or public health actions, and 

comparative analyses between states.  

5.3 Future research directions  

Poison center data representativeness 

There are 55 poison centers which service all of the United States and US territories. 

Poison centers are available to residents of all state and territories and civilian and military 

personnel abroad, as long as they have telephone access. Geographically, poison center service 

area and resultant poison center records are fully representative.  

There have been many studies examining the correlations between the rate of poison 

center calls and health outcomes such as emergency department encounter rates and death 

rates. Studies have shown that poison center calls and emergency department encounters are 

highly correlated for a variety of exposure types, including disaster-related exposures (Clower, 

Henretig, & Trella, 2012; Kay, Blackmore, & Schauben, 2006), and pharmaceutical drugs (Naun, 

Olsen, & Dean, 2011). Specifically for this dissertation, increases in poison center calls related to 

pharmaceutical opioids and heroin are correlated with increases in emergency department 

visits for these substances (Dart, Surratt, & Cicero, 2015 ). There are similar findings in studies 

examining synthetic cannabinoid and marijuana exposures (Kasper & Ridpath, 2015).  
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However, the literature is less clear regarding the proportion of poison center calls that 

represent the universe of exposures that occur in the US. For example, if there are 50 callers to 

poison centers about illness from synthetic cannabinoids, we ideally could estimate how many 

exposures are occurring in the population. Persons exposed to a toxic substance do not 

necessarily seek care by calling poison centers. In exposures with very severe clinical effects, 

care is more likely sought at emergency departments and not routinely reported to poison 

centers unless the attending physician requires toxicological consultation from the poison 

center. Moreover, poison centers are called for acute exposures and are less likely called for 

more chronic exposures. Thus, poison centers do not capture all exposure events; the ability to 

capture depends on whether users call and depends on the implicated substance in question.  

A broad set of published studies helps bridge the gap between poison center utilization 

and its representativeness to the population. From an Institute of Medicine report (2005), 

direct review of hospital charts demonstrated that about 20 to 30 percent of poisoning cases 

managed in the emergency department are reported to poison centers. From a Consumer 

Product Safety Commission report (2000) on the National Electronic Injury Surveillance System 

(NEISS), a poison center was called before a hospital visit in one-third of children’s poisonings 

treated in an emergency department. The findings of Setlik at al. (2010) suggest that poison 

center data are very representative for unintentional pharmaceutical exposures in children less 

than four years of age. In examining health care facility records from 2001–2003, the authors 

found that the number of poison center records was actually greater than the NEISS point 

estimate for the number of exposures in the United States, but within the 95% confidence 

interval.  
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Another important consideration for representativeness is poison center use across 

different population segments. Litovitz et al. (2010) sought positive and negative factors 

affecting use of a poison center. Negative predictors included inability to speak English well and 

black/African American race. Positive predictors included the percentage of the population 

aged less than five years, percentage of the adult population with a bachelor’s degree, Asian 

population percentage, and population density. Kelly et al. (1997) corroborated those findings. 

They identified two factors associated with not using poison center services: black/African 

American race and schooling outside the United States.  

Thus, even though poison centers cover a service area that spans the entire US, not all 

exposures are called to poison centers. Representativeness issues arise and certain population 

segments are over- or under-represented based on substance of exposure and determinants to 

use. Studies show strong correlations between poison center call volumes and health 

outcomes, which can provide the necessary context in deriving conclusions when analyzing and 

interpreting poison center data. But deriving estimations of the proportions of the population 

affected by using poison center records is a direction for future research. Given these 

considerations, further research should focus on quantifying the representativeness of poison 

center data on exposures in the US and other health outcomes such as emergency department 

visits and deaths. 

Creation and evaluation of multivariate algorithms for syndromic surveillance  

The first study provided evidence that certain features of poison center records are 

more likely related to an outbreak such as case severity. The value of poison center records is 

that these types of records may aid in more timely capture of outbreaks. This is likely the case 
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for not only noninfectious foodborne illnesses, as records related to illicit drugs, infectious 

foodborne exposures and toxic gas-related exposures may also have underlying features that 

make them more likely related to an incident that requires public health action (Derby, 

McNally, & Ranger-Moore, 2005; Wolkin, Martin, Law, & Schier, 2011; Law, Schier, Martin, 

Chang, & Wolkin, 2015). However, determination of outbreaks just by examining features of 

individual records does not account for temporal clustering of records which may also be an 

important indication of an outbreak. Combining these two variables, specific features of records 

and clustering of related records, to create multivariate algorithms as a part of syndromic 

surveillance analyses may improve outbreak detection capabilities (Syndromic Surveillance, 

2015; Corberan-Vallet, 2012; Vial, Wei, & Held, 2015). Public health surveillance officials should 

incorporate both the temporal clustering of calls using existing statistical control methods and 

the particular features of calls as a part of automated syndromic surveillance algorithms to 

improve outbreak detection. These types of procedures are already being tested using other 

data sources, such as emergency department chief complaint data; compared to non-

multivariate algorithms, multivariate algorithms perform better in sensitivity and timeliness 

while reducing the number of false positive alerts (Burkom, Elbert, & Feldman, 2004; 

Hefferman & Mostashari, 2004).  

Currently, national surveillance activities using poison center records only use temporal 

clustering for outbreak detection, and some states are starting to use multivariate algorithms 

for syndromic surveillance (Wolkin, Martin, Law, & Schier, 2011; Florida Surveillance Systems , 

2015; Oregon ESSENCE, 2015). Future research directions should evaluate which temporal 

clustering parameters and poison center record features will result in the highest sensitivity in 
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outbreak detection while minimizing alert burden, keeping in mind that these parameters may 

differ depending on the implicated substance of the outbreak.  

Incorporating multiple data streams in syndromic surveillance   

Syndromic surveillance, while timely in data collection and analysis, lacks case 

confirmation compared to data collected by traditional surveillance data sources. Thus, 

indications or alerts of an outbreak identified by syndromic surveillance may require validation 

by an experienced surveillance system user in order to determine the necessity of public health 

action (Mandl, et al., 2004; Provincial Infectious Diseases Advisory Committee, 2012). Validation 

activities include confirmation of data accuracy and assessment of the likelihood the alert is a 

true incident. For national syndromic surveillance activities using poison center records, 

validation of automated alerts generated by the national surveillance system currently follows a 

two-step process (National Chemical and Radiological Surveillance Program , 2015). In the first 

step, each alert needs to be verified for accuracy to ensure the data related to a cluster of calls 

were not collected or reported in error. This step requires reaching back to the poison center 

that collected the data. In the second step, a team of poison center directors work together to 

determine, using a standardized public health incident criteria, whether the alert elevates to a 

categorization of an incident of public health significance. Alerts identified as incidents of public 

health significance are relayed back to the state epidemiologist where the incident originated 

for public health action as needed. In this example, validation activities can become time-

consuming and resource-intensive, particularly if the number of alerts generated by the 

syndromic surveillance system is high.  
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Increasing the confidence that an alert is related to an incident of public health 

significance will reduce the need for intensive validation, thereby freeing up resources for other 

surveillance or response activities. Incorporating multiple syndromic surveillance data streams 

may provide greater confidence of the presence of an outbreak. Examples of other syndromic 

surveillance data streams that may complement poison center records include: internet-based 

illness reporting, insurance triage hotlines, emergency department chief complaints, and over-

the-counter medication sales (Syndromic Surveillance, 2015). Incorporation of multiple data 

streams for surveillance is being tested with varying complexity (from parallel analyses to 

Bayesian modeling) in certain state and international systems. Results from studies assessing 

the benefits of incorporating multiple data streams for surveillance have been generally 

positive (Corberan-Vallet, 2012; Vial, Wei, & Held, 2015; Faverjon, Andersson, & Decors, 2016). 

Using multiple data streams as opposed to single data streams has shown to increase detection 

sensitivity while keeping alert burden stable (Rolka, Burkom, & Cooper, 2008). However, 

algorithms with high complexity modeling such as Bayesian modeling have shown to have 

diminishing returns in providing better detection capabilities compared to simpler models 

because the more complex models require more computing power and longer run time (Wong 

& Cooper, 2005). Moreover, the potential value of poison center records has not been 

considered in these assessments. Future research directions in assessing effectiveness of 

multiple data streams should include poison center records as a part of the evaluation, and 

efforts in improving state and national syndromic surveillance should focus on incorporating 

evidence-based approaches to using multiple data streams.  

Timely evaluation of state programs, policies and interventions  
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In my studies, state names were not used in order to maintain privacy of state-specific 

data. However, the methods and approaches presented here can be conducted by any state for 

timely evaluation of state policies and interventions. For segmented time series, the 

recommended number of time observations for robustness and validity of results is between 

fifty to one hundred observations. In the second and third study, a total time period of four 

years (48 months) was used to ensure validity of parameter estimates. For timelier analyses, 

researchers can also use weekly, daily, or even hourly observations instead of monthly 

observations, cutting the time to yield robust results from two years after the intervention to 

only days to weeks. As public health continues to move toward implementation of evidence-

based programs and creating feedback mechanisms to evaluate program effectiveness, public 

health officials should consider poison center records as a potential source for evaluation of 

policies, programs, and interventions.    

5.4 Conclusion 

There has been a gradual shift toward using non-traditional but rapidly available 

syndromic surveillance data such as poison center records in routine detection of public health 

issues (Derby, McNally, & Ranger-Moore, 2005; Hughes, Bodgan, & Dart, 2007). Researchers 

and public health officials understand that innovation and adaptation of new data sources into 

public health surveillance is necessary as electronic medical record systems evolve and health 

information represents care provided outside hospital and clinic settings. My studies 

demonstrated how poison center records can be better integrated to syndromic surveillance 

research. Continued work to integrate ‘non-hospital’ data into syndromic surveillance will lead 



102 
 

to more responsive and informed public health systems and will move us towards the ultimate 

goal of reducing morbidity and mortality and improving population health outcomes.   
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