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RESEARCH ARTICLE

Tonic 5nM DA Stabilizes Neuronal Output by
Enabling Bidirectional Activity-Dependent
Regulation of the Hyperpolarization
Activated Current via PKA and Calcineurin
Wulf-Dieter C. Krenz, EdmundW. Rodgers, Deborah J. Baro*

Department of Biology, Georgia State University, Atlanta, Georgia, United States of America

* dbaro@gsu.edu

Abstract
Volume transmission results in phasic and tonic modulatory signals. The actions of tonic do-

pamine (DA) at type 1 DA receptors (D1Rs) are largely undefined. Here we show that tonic

5nM DA acts at D1Rs to stabilize neuronal output over minutes by enabling activity-

dependent regulation of the hyperpolarization activated current (I h). In the presence but not

absence of 5nM DA, I h maximal conductance (G max) was adjusted according to changes in

slow wave activity in order to maintain spike timing. Our study on the lateral pyloric neuron

(LP), which undergoes rhythmic oscillations in membrane potential with depolarized pla-

teaus, demonstrated that incremental, bi-directional changes in plateau duration produced

corresponding alterations in LP I hG max when preparations were superfused with saline con-

taining 5nM DA. However, when preparations were superfused with saline alone there was

no linear correlation between LP I hGmax and duty cycle. Thus, tonic nM DAmodulated the

capacity for activity to modulate LP I h G max; this exemplifies metamodulation (modulation of

modulation). Pretreatment with the Ca2+-chelator, BAPTA, or the specific PKA inhibitor, PKI,

prevented all changes in LP I h in 5nM DA. Calcineurin inhibitors blocked activity-dependent

changes enabled by DA and revealed a PKA-mediated, activity-independent enhancement

of LP I hG max. These data suggested that tonic 5nM DA produced two simultaneous, PKA-

dependent effects: a direct increase in LP I h G max and a priming event that permitted calci-

neurin regulation of LP I h. The latter produced graded reductions in LP I hG max with increas-

ing duty cycles. We also demonstrated that this metamodulation preserved the timing of LP’s

first spike when network output was perturbed with bath-applied 4AP. In sum, 5nM DA per-

mits slow wave activity to provide feedback that maintains spike timing, suggesting that one

function of low-level, tonic modulation is to stabilize specific features of a dynamic output.
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Introduction
Homeostatic mechanisms stabilize neuronal firing patterns [1]. Hyperpolarization activated,
cyclic nucleotide gated (HCN) channels that mediate Ih are often the target of such mecha-
nisms because of their wide-ranging influence on synaptic integration and neuronal excitability
[2–5]. A number of homeostatic mechanisms in a variety of cell types produce transient or per-
sistent alterations in Ih to maintain neuronal function [6–15]. Cognitive impairment associated
with Fragile X Syndrome [16] and the loss of pacemaking in Parkinson’s disease [17] can be
linked to improper homeostatic regulation of Ih.

HCN channels influence several activity features that shape neuronal excitability and synap-
tic integration including membrane potential, firing threshold, resonance frequency, temporal
summation and synaptic strength [5,18–20]. Each activity feature can be underpinned by the
balance of two or more conductances [21]; for example, GABAA receptors and HCN1 channels
co-vary to preserve hippocampal neuron resting membrane potential [22], but in cortical pyra-
midal neurons, these two conductances vary inversely to sustain excitatory post synaptic po-
tential summation [23]. KCNE2 and HCN channels may also be co-regulated to uphold
ventrobasal and cortical layer 6 pyramidal neuron excitability [24]. In stomatogastric pyloric
neurons, Kv4 channels that mediate the transient potassium current (IA) co-vary with HCN
channels to maintain the timing of neuronal activity [14,15,25].

The homeostatic mechanisms that preserve activity features by maintaining their underly-
ing conductance correlations are largely undefined. We have been addressing their organiza-
tion using an invertebrate model. The pyloric network generates a continuous rhythmic motor
output within a limited frequency range (Fig. 1). The proper frequency range is preserved, in
part, by the lateral pyloric neuron (LP) [26]. The timing of LP activity is critical for this func-
tion [27,28], and the ratio of LP IA:Ih is one of the factors that determines the timing of neuro-
nal activity [29,30]. Population studies indicate that the timing of LP activity [29,31] and the
LP IA:Ih ratio [32] are conserved across individuals. Moreover, if LP IA is experimentally per-
turbed, then there is a compensatory alteration in LP Ih to preserve the timing of LP activity
[14,15]. Together the data suggest that homeostatic mechanisms exist to sustain a positive cor-
relation between LP IA and Ih in order to maintain the timing of LP activity, and hence, an ap-
propriate network output frequency. Tonic 5nM DAmay enable such mechanisms.

In discussing DA-enabled homeostasis we employ the terms metaplasticity and metamodu-
lation; therefore, we define these terms here. The prefix “meta” comes from the Greek preposi-
tion/prefix meaning beyond (among other things), and “meta” is often used to indicate a
second order process. For example, metadata refers to data about data, metamodulation de-
notes modulation of modulation and metaplasticity means plasticity of plasticity. Here we
broadly define modulation as a slow (seconds to minutes), stimulus-induced change in func-
tion that does not significantly outlast the stimulus, while plasticity is defined as a slow, stimu-
lus-induced change in function that significantly outlasts the stimulus [33]. According to these
definitions, many types of stimuli can produce both modulation and plasticity, including
monoamines and neuronal activity. The same types of stimuli can also produce metamodula-
tion and metaplasticity. Metamodulation and metaplasticity occur when one stimulus alters
the ability of a second stimulus to produce a change in function or alters the modulation/ plas-
ticity normally elicited by that second stimulus [34–41].

Low-level, tonic modulation may stabilize neuronal and circuit output by evoking metaplasti-
city and metamodulation. We previously demonstrated that tonic 5nM DA altered the capacity
of activity to produce a persistent change in LP Ih Gmax (metaplasticity) by enabling a mecha-
nism that relied on the RNAi pathway and mTOR-dependent translation [42,43]. Interestingly,
the same mechanism persistently regulated LP IA Gmax [43–45], suggesting that this mechanism
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may co-regulate these two conductances to preserve the LP IA:Ih ratio over the long-term. In this
manuscript we demonstrate that tonic 5nM DA changes the capacity for activity to modulate Ih
Gmax (metamodulation). Together with previous work [15,42], the data presented here indicate
that this metamodulation maintains the LP IA:Ih ratio and the timing of LP activity over the
short-term, and they suggest a simple working model for the molecular mechanism involved.

Materials and Methods

Animals
California spiny lobsters, Panulirus interruptus, were purchased fromMarinus Scientific (Long
Beach, CA) and Catalina Offshore Products (San Diego, CA). Lobsters were maintained at 18°
C in aerated and filtered seawater. Animals were anesthetized on ice before dissection.

Fig 1. The experimental model. (A) In situ preparation. The STNS is dissected & pinned in a dish. The commissural ganglia (CoGs) contain DA neurons
that project to the STG (black) and L-cells, which are the source of neurohormonal DA (gold). The well surrounding the STG (blue rectangle) is continuously
superfused with saline (in/out arrows). There are ~30 neurons in the STG; 2 are drawn: pyloric dilator (PD), lateral pyloric (LP). Network neurons interact
locally within the STG neuropil and can project axons to striated muscles surrounding the foregut. The diagram shows that PD & LP neurons project their
axons through identified nerves to innervate muscles (rectangles). (B) Spontaneous pyloric network output. The top 2 traces are intra-cellular recordings
from the in situ preparation diagrammed in A. The bottom 2 traces represent extra-cellular recordings from identified motor nerves containing pyloric neuron
axons. The spikes from three pyloric neurons are indicated on lvn. These simultaneous recordings demonstrate the spontaneous, recurrent, rhythmic motor
pattern produced by the circuit; scale bars, 10mV & 500ms. (C) The pyloric circuit. The pyloric network comprises 14 neurons. The diagram represents
pyloric neuron interactions within the STG. Open circles represent the 6 cell types, numbers indicate more than 1 cell within a cell type: anterior burster (AB),
inferior cardiac (IC), ventricular dilator (VD); pyloric constrictor (PY); filled circles, inhibitory chemical synapses; resistors & diodes, electrical coupling; red,
pacemaker kernel and its output connections. (D) Two electrode voltage clamp experiment. Top: Typical LP Ih recording; Bottom: voltage protocol; scale
bars, 500ms and 5nA.

doi:10.1371/journal.pone.0117965.g001
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Chemicals and peptides
Tetrodotoxin (TTX), myristoylated PKI(14–22) and calcineurin autoinhibitory peptide (CiP) were
purchased from Tocris Bioscience (Bristol, UK). BAPTA-AM, ryanodine and xestospongin C were
fromCayman Chemical (Ann Arbor, MI). All other chemicals were purchased from Sigma-Aldrich
(St. Louis, MI). DA was made fresh every 30min to minimize oxidation. PKI is an effective blocker
of the PKA catalytic subunit in crustaceans [43,46,47]. CiP and FK506 block calcineurin activity in
crustacean neurons at the indicated dosages [48–50]. In the spiny lobster, BAPTA, ryanodine and
xestospongin C disrupt Ca2+ dynamics at the indicated dosages by chelating Ca2+, blocking ryano-
dine receptor function and inhibiting IP3 receptor function, respectively [51].

Experimental Preparation
The STNS was dissected and pinned in a Sylgard lined Petri dish using standard techniques
[52]. The stomatogastric ganglion (STG) was desheathed and isolated with a Vaseline well. The
STG was superfused with saline consisting of (in mM) 479 NaCl, 12.8 KCl, 13.7 CaCl2, 39
Na2SO4, 10 MgSO4, 2 glucose, 4.99 HEPES, 5 TES at pH 7.4. Extracellular recordings from the
pyloric dilator nerve (pdn) and lateral ventricular nerve (lvn) were obtained with stainless steel
pin electrodes and a differential AC amplifier (A-M Systems, Everett, WA) as previously de-
scribed [53]. Intracellular somatic recordings were obtained using glass microelectrodes filled
with 3M KCl (20–30 MO) and Axoclamp 2B or 900A amplifiers (Molecular Devices, Foster
City, CA). Neurons were identified by correlating action potentials from somatic intracellular
recordings with extracellularly recorded action potentials on identified motor nerves, and by
their characteristic shape and timing of oscillations.

Somatic two-electrode voltage clamp (TEVC)
For TEVC of LP Ih, the LP neuron was impaled with two micropipettes (8–10 MO when filled
with 3 M KCl) connected to Axoclamp 2B or 900A amplifiers (Molecular Devices, Foster City,
CA). The well surrounding the STG was superfused with saline containing TTX for 5min. The
LP was clamped to a-50mV holding potential using pClamp software. Ih was elicited using a se-
ries of 4s hyperpolarizing voltage steps, from-60mV to-120mV in 10mV increments with 6s
between steps. Steady state peak currents were measured by fitting the current trace back to the
beginning of the hyperpolarizing voltage step or by subtracting the initial fast leak current
from the slowly developing peak of Ih at the end of each negative voltage step. Currents were
converted to conductance (G = Ipeak/(Vm-Vrev) and fitted to a 1

st order Boltzmann equation.
Vrev Ih = -35mV [54]. TEVC experiments were done at 19–22°C as measured with a probe in
the bath. Temperature did not change by more than 1°C during any given experiment.

Peptide injection
The calcineurin autoinhibitory peptide (CiP) was diluted in water to a working concentration
of 50μg/ml and fast green was added to 0.04% to visualize injections. Microloaders (Eppendorf)
were used to directly fill glass pipettes with the solution (8–15 MO when filled with 3M KCl).
Because of the high resistance and viscosity of the peptide solution, pipette tips were broken be-
fore injection by gently touching a Kim wipe. The peptide was pressure injected into LP neu-
rons using a Picospritzer III (General Valve/Parker Hannifin). Only two pressure pulses (on
average 28psi and 30ms) separated by 30s were applied. Intracellular recording during the in-
jection showed that the injection procedure had no effect on the LP voltage envelope and firing
properties. Extracellular recordings were used to continuously monitor the activity of the LP
neuron before, during and for 10–20min after peptide injection.
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Statistical analyses
The data were checked for normality and analyzed using parametric statistics. In the one case
where data were not normally distributed, non-parametric tests were used. All data were ana-
lyzed using Prism Statistical software package (Graphpad). Significance threshold was set at
p<0.05 in all cases. Statistical outliers were excluded if their values fell outside the range delim-
ited by the mean±(2×stdev). Means and standard errors are presented unless otherwise noted.
ANOVAs were usually followed by either Dunnett’s post-hoc tests that compare all columns to
a single column or Tukey’s post-hoc tests that make all pairwise comparisons.

Results

The experimental model
Our model system is the crustacean STNS (Fig. 1A), which contains several pattern generators
that control the movements of the crustacean foregut [55]. The 14-neuron pyloric pattern gen-
erator, located in the stomatogastric ganglion (STG), is a recurrent inhibitory circuit that gen-
erates a continuous rhythmic motor pattern in vivo [56] and in situ (Fig. 1B). Pyloric network
output is tempered by over 30 modulators, including DA [55]. DA projection neurons in the
commissural ganglia (COGs) use volume transmission to release DA into the STG neuropil
(Fig. 1A) [57]. Thus, targets of DA projection neurons experience two types of transmission: a
transient increase in DA (~μM) near projection neuron release sites and tonic exposure to
~nM DA [58,59]. In addition, the STG is exposed to neurohormonal DA [55]. Bath application
of μM but not nM DA produces immediate and reversible alterations in circuit output, includ-
ing an increase in cycle frequency, a decrease in LP burst duration, an LP phase advance and
an increase in LP intraburst spike frequency (Fig. 1B). Studies show that μMDA generates
these changes by altering pyloric neuron synaptic strengths, Ca2+ dynamics and the biophysical
properties of their ion channels [30,36,51,60–75]. On the other hand, little is known about the
functions of tonic nM DA. Previous work showed that tonic nM DA could regulate pyloric
neuron peripheral spiking and improves the temporal fidelity of axonal spike propagation
[76–78]. In order to further examine the function of tonic nM DA, we performed experiments
wherein the STNS was dissected out, pinned in a dish and constantly superfused to prevent the
accumulation of tonic modulators; then, 5nM DA was added back to the superfusate (Fig. 1A).
In this manuscript we examined the effects of tonic DA on LP Ih, where LP Ih was measured
with a standard TEVC protocol (Fig. 1D). LP expresses type 1 DA receptors (D1Rs) but not
type 2 [47]. STNS DA receptors can act through canonical pathways [79] and behave like their
mammalian counterparts when expressed in human cell lines [80,81].

Tonic 5nM DA stabilizes LP activity phase
A previous study from our lab suggested that bath applied 5μMDA acted at low and high affinity
receptors to simultaneously alter and stabilize network output, respectively [15]. The pyloric net-
work operates within a limited range of cycle frequencies. Multiple network interactions main-
tain output within this optimal range; for example, the LP slows increasing network cycle
frequencies by inhibiting the pacemaker kernel (Fig. 1C) [26]. The timing of LP inhibition onto
the pacemaker is critical for this function [27]. Timing is regulated, in part, by the ratio of LP IA:
Ih [30]. Bath application of 5μMDA affected both conductances: It reduced LP IA Gmax [47], and
it endowed LP Ih with activity dependence [15]. As a result, the reduction in IA produced changes
in activity that drove a compensatory decrease in Ih, which in turn, maintained the LP IA:Ih ratio
and the timing of LP activity. The threshold concentrations of DA required for altering the prop-
erties of LP IA and Ih were μM and nM, respectively. This work suggested that the role of tonic
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nMDAmay be to stabilize network function by maintaining conductance correlations over the
short term. To further test this hypothesis here, changes in circuit output were examined in the
presence and absence of DA while superfusing the preparation with 1mM 4-AP, an IA blocker
that was previously shown to significantly alter network activity at this concentration [82].

The STNS was dissected, pinned in a dish and continuously superfused with saline (Fig. 1A).
Extracellular recordings from the lvn and pdn were used to record activity throughout the ex-
periment. At t = 0, 5nM DA was or was not (control) added to the superfusate along with 1mM
4-AP to reduce peak IA by ~20%. Previous work indicated that bath application of 5nMDA had
no immediate effect on motor output relative to saline controls [42], and this can also be ob-
served in Fig. 1B. In contrast, as previously reported [82], a 1min bath application of 1mM 4AP
altered network cycle frequency and neuronal phasing, burst durations and intraburst spike fre-
quencies in both DA-treated and control preparations (Fig. 2A-B). Measurements indicated
that the changes in cycle frequency, LP burst duration and LP intraburst spike frequency per-
sisted throughout the 4AP application for both treatment groups (Fig. 2C); on the other hand,
LP-on phase (the point in the cycle where LP begins firing) recovered over minutes in the DA-
treated but not control preparations (Fig. 2B), and by 20min the change in LP-on phase was sig-
nificantly greater in control relative to DA-treated preparations (Fig. 2C). These data indicated
that 5nM DA could stabilize the timing of LP activity phase when network output was altered.

Using dynamic clamp we previously ablated DA-induced changes in LP Ih Gmax and showed that
they were responsible for LP-on phase recovery in 5μMDA [15]. In order to determine if Ih was nec-
essary for the DA-dependent stabilization of LP-on phase in 4AP, experiments in 4AP were repeated
but 0.5mMCsCl was also added to the superfusate at t = 0 to block Ih by ~30% [42]. Under these
conditions LP-on phase was not maintained in the DA treatment group. At t = 20min in 5nMDA
+1mM 4AP+ 0.5mMCsCl, the mean absolute percent change in LP-on phase was 32±20, and there
was no difference in the change in phase between preparations superfused with 4AP vs. 4AP+5nM
DA+ 0.5mMCsCl (Two way ANOVA: Time, F(2,26) = 12.88, p = 0. 0001; Treatment, F(1,13) =
1.520, p = 0.2394; interaction F(2,26) = 1.995, p = 0.1563). In sum, the data suggest that when circuit
output is altered by reducing IA, tonic nMDA enables an Ih-dependent mechanism to stabilize LP
activity phase. We next investigated the mechanism involved.

Tonic 5nM DA-enables bi-directional activity-dependent regulation of LP
Ih
We previously observed a significant increase in LP Ih Gmax after a 10min activity blockade in
the presence but not absence of 5nM DA, and in neither case was the voltage dependence of LP
Ih altered [15]. Furthermore, in the absence of activity blockade, tonic 5nM DA had no signifi-
cant effect on LP Ih Gmax. Thus, tonic 5nM DA changed the capacity of the modulator (neuro-
nal activity) to alter LP Ih Gmax. Here we extend those studies to better understand how tonic
5nM DA regulates the activity dependence of LP Ih Gmax.

A prominent feature of pyloric neurons is their slow wave voltage oscillations with depolar-
ized plateaus (Fig. 1B). During the oscillation, LP membrane potential ranges from roughly-
62mV to-42mV, and spikes ride on top of the depolarized plateau. The timing of the spikes de-
pends upon the rising phase of the voltage oscillation, and the IA:Ih ratio regulates the slope of
the rising phase, among other things [30]. Thus, it seemed reasonable to think that slow wave ac-
tivity might somehow provide feedback to maintain the IA:Ih ratio and the timing of LP activity.

We first examined if/how slow wave activity regulated LP Ih Gmax in the presence and ab-
sence of tonic 5nM DA by constructing LP Ih Gmax activity-dependence curves (Fig. 3). The ex-
perimental logic for obtaining activity-dependence curves is shown in Fig. 3A. A recurrent
voltage step was used to mimic LP slow wave oscillations. Frequency, duration, and amplitude
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Fig 2. Tonic nM DA stabilizes the timing of LP activity over the short term. (A) Pyloric output is altered by 1mM 4AP. Representative experiments
showing the motor output at three time points for a preparation continuously superfused with 1mM 4AP (blue) or 1mM 4AP + 5nM DA (green) beginning at t =
0. Each trace from one preparation represents the same length of time. Cycle period is measured as the last spike in a PD burst to the last spike in the
subsequent PD burst and is indicated by “a” in each trace. LP burst duration is indicated by “b”, and LP-on delay, which is the time between the last PD spike
and the first LP spike, is indicated by “c”. Intraburst spike frequency is the number of spikes per burst divided by burst duration. (B) The timing of LP activity
is stabilized by 5nMDA. In order to visually compare the timing of LP activity at t = 0,1min and 20min, we performed the following manipulations on each the
two sets of traces shown in panel A. First, we aligned one cycle period for each of the three time points (dashed lines below traces) by the last spike in the
preceding PD burst. Second, the horizontal axes of the 1min and 20min traces were scaled to match the length of the t = 0 trace. The red line marks the point
in the cycle when the first LP spike occurs for the t = 0 trace. Note that in both preparations a 1min 1mM 4AP bath application caused LP activity to occur
earlier in the cycle. LP activity remained phase advanced only in the absence of 5nM DA. (C) 5nM DA preserves the timing of LP activity phase but not
cycle frequency, or LP burst duration and intraburst spike frequency. The absolute value of the percent change in cycle period, LP burst duration, LP-on
phase (c�a) and LP intraburst spike frequency is plotted (mean+stdev) at 1min,5min and 20min for preparations superfused with 1mM 4AP (blue) or 1mM
4AP+5nMDA (green). Asterisks indicate significant differences between treatment groups as determined using 2-way ANOVAs with post-hoc Bonferroni’s
multiple comparisons tests. Cycle period: Time, F(2,38) = 47.62, p<0.0001; Treatment, F(1,19) = 0.1388, p = 0.7136; Interaction F(2,38) = 0.3760, p =
0.6891. LP burst duration: Time, F(2,38) = 9.257, p = 0.0005; Treatment, F(1,19) = 0.4796, p = 0.4970; Interaction, F(2,38) = 1.876, p = 0.1672. LP phase:
Time, F(2,36) = 10.46, p = 0. 0003; Treatment, F(1,18) = 4.659, p = 0.0446; interaction F(2,36) = 2.645, p = 0.0848. LP intraburst spike frequency: Time, F
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of the recurrent steps were chosen for each preparation individually depending upon measured
activity at t = -10min. For example, to mimic slow wave activity exactly (0% change in duty
cycle) the frequency and duration of the recurrent step corresponded to average cycle frequen-
cy and LP burst duration at t = -10min, respectively; the step and holding potentials corre-
sponded to the average peak and nadir of the LP oscillation at t = -10min, respectively. As
shown in Fig. 3A, burst duration was altered by increasing or decreasing the length of the depo-
larizing step, but not its frequency, or the step or holding potentials. LP duty cycle is the frac-
tion of the cycle over which the neuron is active (burst duration divided by cycle period; i.e.,
b�a in Fig. 2A); because cycle period was maintained constant in these manipulations, both
burst duration and duty cycle were altered to the same extent. In the absence of a recurring
voltage step, LP was held at its initial resting membrane potential in TTX (-59mV on average).

The basic experiment is as follows: After dissection and cell identification, the STG was
superfused with TTX for 5min to block spike and slow wave activity, and TTX was present
throughout the remainder of the experiment. Next, at t = 0, LP Ih was measured with somatic
two electrode voltage clamp (TEVC). After the first measure of LP Ih, DA was (Fig. 3B) or was
not (Fig. 3C) added to the superfusate and LP Ih was re-measured after 10min. The voltage of
LP was continuously controlled with TEVC throughout the experiment. In the 10min between
measures of LP Ih, a recurrent step was (-75 to +50) or was not (-100) implemented.

To obtain an activity dependence curve, the basic experiment was repeated on different prepa-
rations, but burst duration was incrementally altered as shown in Fig. 3A. The changes ranged
from a 100% decrease in burst duration/duty cycle (-100, complete activity blockade in TTX) to a
50% increase in burst duration/duty cycle (+50). A single datum was obtained from each prepara-
tion. Previous work suggested that LP Ih was modulated by changes in duty cycle, rather than sim-
ply burst duration [15], and so duty cycle is represented on the x-axes of the activity-dependence
curves. The changes in Gmax vs. duty cycle were plotted, rather than absolute Gmax vs. duty cycle,
because LP Ih Gmax is known to vary across individuals by> 3-fold, and we thought it was possi-
ble that this large variability could obscure a subtler regulation. The plotted data were analyzed
with linear regressions. These analyses indicated that in the presence of 5nMDA, LP Ih Gmax var-
ied linearly and bi-directionally according to changes in LP duty cycle. Conversely, in the absence
of tonic nMDA, LP Ih Gmax did not change according to activity. In sum, tonic 5nMDA enabled
a mechanism wherein bi-directional changes in LP duty cycle modified LP Ih Gmax. In other
words, tonic 5nMDA changed the capacity of the modulator (duty cycle) to alter LP Ih Gmax.

Additional experiments were performed to determine the time course of the DA-enabled
change in LP Ih at-100 (complete activity blockade with TTX). After dissection and cell identifi-
cation, the STG was superfused with saline containing TTX for 5min. LP Ih was measured with
TEVC and 5nM DA was added to the superfusate at t = 0. LP Ih was re-measured at various
time points thereafter. The mean fold-changes in LP Ih Gmax were plotted against time, and the
time constants (Ƭ) for the change in LP Ih Gmax were estimated by fitting an exponential equa-
tion to the means (Fig. 4A). The data could not be fitted with a single exponential, but were well
fitted with a double exponential, yielding an estimated very fast Ƭ of ~24sec and a fast Ƭ of
9.9min. Note that the very fast Ƭ reflects a best estimate because the first data point was obtained
well after 24sec; as such, the rapid process underpinning the very fast Ƭ will not be considered
further here, and this study will concentrate only on the mechanism responsible for the fast Ƭ.

(2,36) = 51.99, p<0.0001; Treatment, F(1,18) = 1.291, p = 0.2708; Interaction F(2,36) = 1.387, p = 0.2627. Note that absolute values were chosen because in
some cases a given parameter could increase or decrease over time according to the preparation, so averaging did not reflect the degree of change that
was observed.

doi:10.1371/journal.pone.0117965.g002
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Metaplasticity persists beyond the initiating stimulus; metamodulation does not. Next we
examined if the change in LP Ih Gmax at-100 persisted upon DA washout. The experiment is di-
agrammed in the inset of Fig. 4B. After dissection and cell identification, the preparation was
superfused with saline containing TTX for 5min. At t = 0, LP Ih was measured with TEVC and
then 5nM DA was immediately added to the superfusate. At t = 30min LP Ih was re-measured
and DA was then removed from the superfusate. LP Ih was subsequently re-measured at the in-
dicated times during the DA washout. The data suggested that the DA-enabled, activity

Fig 3. Tonic 5nM DA endows LP Ih with activity dependence. (A) Experimental protocol. Activity was recorded with extracellular electrodes throughout
the experiment. Measures of activity were obtained at t = -10min. The diagram shows how these measures were used in conjunction with TEVC to create a
recurring voltage step that mimicked slow oscillatory activity at t = -10min. A change in LP burst duration was created by varying the length of the depolarizing
step, as shown. Note that cycle period was maintained regardless of the change in burst duration; i.e., a change in burst duration was accompanied by a
corresponding change in interburst duration. Duty cycle is defined as burst duration/cycle period; thus, our manipulations altered burst duration and duty
cycle to the same extent. At t = -5min TTX was added to the superfusate. At t = 0, LP Ih was measured with TEVC (black asterisk). Afterward, from t = 0 to
10min, 5nM DA was (B) or was not (C) added to the superfusate and TEVC was used to either hold the cell at its initial membrane potential in TTX (-100), or
implement a recurrent voltage step (-75 to +50). At t = 10min, LP Ih was again measured with TEVC (black asterisk). The experiment terminated at this point
and a single preparation was not used further for additional experiments. (B-C) LP Ih activity dependence curves. For every experiment in 5nM DA (B) or
saline (C), the fold-change in LP Ih Gmax at t = 10min (i.e. Gmax at t = 10�Gmax at t = 0) was plotted against the % change in LP duty cycle and a linear
regression was used to fit the data. Each data point on the plots represents one experiment and 51 animals were used to obtain the data shown in the plots;
-100 on the x-axis represents experiments in TTX without a recurring step, i.e., complete activity blockade. Each line represents a linear regression analysis
and the resulting R2 and p values are shown on the graph. Red asterisk indicates that LP Ih Gmax was significantly different at-100 and +50 in the presence
but not absence of 5nM DA as determined using one-way ANOVAs with Tukey’s multiple comparisons post hoc tests to analyze the-100, 0, and +50 groups
(5nM DA: F(2,17) = 8.464; p = 0.0035; saline: F(2,22) = 2.326; p = 0.1236).

doi:10.1371/journal.pone.0117965.g003
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dependent change was reversible and disappeared within minutes of DA removal (Fig. 4B).
Thus, this is an example of metamodulation of LP Ih in tonic nM DA.

Metamodulation of LP Ih could explain why LP-on phase is stabilized in the presence but
not absence of DA during 4AP bath application (Fig. 2). Under our experimental conditions, a
1min bath application of 1mM 4-AP produced a significant 15.13±0.06% increase in LP duty
cycle by reducing IA (paired t-test, duty cycle at t = 0 vs. t = 1min, p = 0.0175, n = 19). Accord-
ing to the activity dependence curve in 5nM DA (Fig. 3B), the increase in duty cycle will pro-
duce a compensatory decrease in LP Ih Gmax. This, in turn, will help to maintain the LP IA:Ih
ratio, which regulates LP-on phase [30]. Since there is no compensatory decrease in LP Ih in
the absence of DA, LP-on phase is not maintained and instead, the uncompensated decrease in
LP IA contributes to a persistent phase advance.

Fig 4. LP Ih metamodulation is rapid and reversible. (A) The time course for metamodulation in 5nM
DA. Experiments measured the fold-change in LP Ih Gmax at 1, 2, 5 and 10min, and every 10min thereafter,
up to 60min after addition of 5nM DA. The protocol is as follows: At t = -5min TTX was added to the
superfusate bathing the preparation diagramed in Fig. 1A. LP Ih was measured at t = 0. The TTX containing
superfusate was then supplemented with 5nM DA, and LP Ih was re-measured at the indicated time point.
One time point was obtained per experiment for 1,2, and 5min. Data for10–60 min represent repeated
measures from the same experiment (i.e., in one experiment Ih was measured every 10min beginning at t =
10min and ending at t = 60min). Data were plotted as the mean±SEM, n�4 per time point. The data were best
fitted with a double exponential equation yielding time constants of 24sec and 9.9min. (B) Removing DA
rapidly abolished LP Ih metamodulation. The experiment is diagrammed in the inset; d&i, dissection and
cell identification; asterisks indicate measures of LP Ih with TEVC. The percent change in LP Ih Gmax relative
to t = 0 is plotted (mean±SEM, increases are positive, decreases are negative). Asterisks indicate
significantly different from t = 30min as determined using a repeated measures ANOVA with Dunnett’s post-
hoc tests that compared all time points to t = 30min, F(5,5) = 2.677, p = 0.0453.

doi:10.1371/journal.pone.0117965.g004
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PKAmediates metamodulation of LP Ih in tonic 5nM DA
LP expresses D1Rs. In general, D1Rs can act through the canonical pathway to increase cAMP
and activate PKA and/or through any number of other signaling pathways that may or may not
involve cAMP [83]. The molecular mechanisms generating metamodulation of LP Ih in 5nM DA
may change with activity; for example, one set of pathways may be employed at-100 (complete
activity blockade in TTX, Fig. 3B) and another may operate at +50 (TTX plus recurring voltage
step to mimic a 50% increase in LP duty cycle, Fig. 3B). We next asked if the canonical pathway
involving the D1R-PKA axis was necessary for metamodulation in tonic 5nM DA at the two ex-
tremes of the activity dependence curve, (i.e. Fig. 3B, -100 and +50). The first series of experi-
ments determined the effect of PKA inhibition on LP Ih Gmax (Fig. 5 panel i). The preparation in
Fig. 1A was superfused with saline containing TTX for 5min and LP Ih was then measured with
TEVC at t = 0. Next, the specific PKA inhibitor, PKI, was added to the superfusate, and LP Ih
was re-measured at t = 10min. From 0 to 10min, LP did (+50 OSC) or did not receive a recurrent
voltage step mimicking a 50% increase in LP duty cycle, as described for Fig. 3. The data indicat-
ed that global inhibition of PKA significantly increased LP Ih Gmax by 7.5+3.1% when LP activity
was blocked but not when LP underwent slow voltage oscillations. This result suggests that in the
absence of tonic modulation, PKA influences LP Ih Gmax in an activity-dependent manner. The
second series of experiments tested whether DA could induce LP Ih metamodulation when PKA
activity was inhibited by PKI (Fig. 5 panel ii). The preparation shown in Fig. 1A was pretreated
with TTX and PKI at t = -5min. LP Ih was measured at t = 0 and 5nM DAwas subsequently
added to the superfusate. LP was superfused for an additional 10min either with (+50 OSC) or
without a recurrent voltage step. LP Ih was then re-measured. The data showed that preapplica-
tion of PKI prevented metamodulation of LP Ih under both-100 and +50 conditions; thus, tonic
5nMDA acted through PKA to sculpt the LP Ih Gmax activity-dependence curve. In sum, at-100
PKA activation suppressed or enhanced LP Ih Gmax depending upon the absence or presence of
5nMDA, respectively; whereas at +50, PKA had no effect or decreased LP Ih Gmax in the absence
or presence of 5nM DA, respectively. These data suggest that PKA regulation of LP Ih Gmax com-
prises diverse pathways and that PKA is necessary for LP Ih metamodulation.

Changes in Ca2+ concentration underpin activity-dependent alterations
in LP Ih Gmax

It is generally accepted that activity-dependent modifications are driven, at least in part, by al-
tered Ca2+ dynamics. The purpose of the next set of experiments (n = 5) was to determine if
the slope of the activity-dependence curve shown in Fig. 3B reflected changes in Ca2+ concen-
tration. The usual experiments to measure LP Ih Gmax at-100 and +50 (Fig. 3A) were repeated
for the 5nM DA treatment group except, the preparations were pre-treated with the Ca2+ che-
lator, BAPTA for 20min. A plot of the fold change in LP Ih Gmax at-100 and +50 followed by
linear regression analysis showed that changes in Ca2+ concentration were necessary to pro-
duce activity-dependent alterations in LP Ih Gmax in 5nM DA (Fig. 6). A 20min pre-treatment
with BAPTA did not appear to alter the mean LP Ih Gmax at t = 0 (mean±stdev: 0.087±0.003μS,
n = 5) relative to untreated controls (0.107+0.028μS, n = 44) (MannWhitney test, p = 0.062);
however, it did significantly alter the variance of Ih Gmax (F test, p = 0.003). Two additional sets
of experiments (n = 5 each) were performed to determine if the Ca2+ pool being sampled by
the DA-enabled mechanism could be influenced by Ca2+ entry and/or store release. The usual
experiments were performed to measure LP Ih Gmax in 5nM DA at-100 and +50 (Fig. 3A), but
either Ca2+ entry was blocked with continuous bath application of 0.6mM CdCl2 beginning at
t = -5min; or, store release was inhibited with continuous bath application of a combination of
10nM ryanodine and 10μM xestospongin C beginning at t = -20min. Note that the latter
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Fig 5. PKA is necessary for metamodulation of LP Ih in 5nM DA. Experiments were performed to
determine if the specific PKA inhibitor, PKI, blocked metamodulation of LP Ih observed at the two extremes of
the LP Ih activity-dependence curve shown in Fig. 3B; i.e., -100 (TTX alone) or +50 (TTX plus a recurring
voltage step mimicking a 50% increase in LP duty cycle, termed +50 OSC). The changes in activity were
implemented as previously described for Fig. 3. Two sets of experiments (i & ii) were performed. The purpose
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treatment, which blocks ryanodine and IP3 receptors, should result in the emptying of stores.
Linear regression analyses of the data indicated that under either of the two conditions, the LP
Ih Gmax activity dependence curve had a zero slope. The mean Gmax at t = 0 for preparations
pre-treated with CdCl2 (0.105+0.018μS, n = 5) or ryanodine +xestospongin (0.108+0.029μS, n
= 5) was not significantly different than untreated control preparations (t-tests, p> 0.05). To-
gether the data show that the activity-dependent mechanism regulating LP Ih in the presence
of 5nM DA senses changes in Ca2+ concentration.

Tonic 5nM DA simultaneously enables an activity-independent
augmentation and a calcineurin-dependent diminution of LP Ih Gmax

The opposing actions of kinases and phosphatases may be responsible for activity-dependence,
and recent work shows that PKA and the Ca2+-dependent phosphatase, calcineurin, are often
comprised by the same signalplex to regulate ion current density [84]. In order to determine
calcineurin involvement in LP Ih metamodulation in tonic 5nM DA, the pharmacological ex-
periments described for Fig. 5 were repeated with calcineurin inhibitors rather than PKI.

In the first study (Fig. 7Ai), bath application of FK506 was used to block calcineurin during
the usual experiments to measure changes in LP Ih after a 10min activity blockade (-100) or a
10min 50% increase in LP duty cycle (+50). DA was not present in this set of experiments. In
the absence of DA, bath application of FK506 did not significantly alter LP Ih Gmax at-100 or
+50. We interpret the data to mean that in the absence of DA, calcineurin does not influence
LP Ih Gmax, regardless of LP activity.

Repeating the FK506 experiment in the presence of 5nM DA (Fig. 7Aii) indicated that DA
permitted calcineurin to regulate LP Ih Gmax in an activity-dependent fashion. We pre-applied
FK506 with TTX for 5min and then performed the usual experiments to measure changes in
LP Ih Gmax at-100 and +50 in 5nM DA. Blocking calcineurin with FK506 had no significant ef-
fect on metamodulation of LP Ih at-100; but, it reversed the direction of the change observed at
+50. Thus, there was a significant increase in LP Ih Gmax at both-100 and +50 when FK506 was
included in the superfusate along with 5nM DA. This augmentation of LP Ih Gmax was not sig-
nificantly different from that observed at-100 in the presence of DA but absence of FK506;
however, it was significantly different from the decrease normally observed at +50 in the pres-
ence of DA but absence of FK506. These data indicated that calcineurin regulated LP Ih Gmax

in an activity-dependent fashion in the presence of 5nM DA; they suggested that calcineurin
functioned as the activity sensor in the machinery mediating metamodulation of LP Ih. Togeth-
er with the previous set of experiments, these data indicated that DA enabled the activity sen-
sor. The data also revealed that when the activity sensor was disabled with FK506, 5nM DA
increased LP Ih Gmax to the same extent at-100 and +50.

Because FK506 can also alter store release [85], another set of experiments was performed
with a second calcineurin inhibitor, calcineurin autoinhibitory peptide (CiP) (Fig. 7B). The
usual experiments to measure changes in LP Ih at-100 and +50 were repeated in 5nM DA, but
instead of bath application of FK506, CiP was injected into LP 20min prior to performing the
experiment. The results of blocking calcineurin with CiP injection were comparable to the data
obtained from the FK506 experiments: In the absence of calcineurin, 5nM DA did not enable

of the first set (i) was to test the effect of a 10min PKI application and the second set (ii) determined if PKI
could block the DA effect. The major differences between the two types of experiments were: 1) PKI was
applied at t = 0 in the first set vs. pre-applied at t = -5min in the second set and 2) DA was applied in the
second set of experiments. The percent change in LP Ih Gmax at t = 10min relative to t = 0 was plotted (mean
+SEM). Paired t-tests compared t = 10min vs. t = 0 within each treatment group; green asterisk, p<0.05. The
results show that PKI blocked metamodulation of LP Ih in 5nM DA at both-100 and +50.

doi:10.1371/journal.pone.0117965.g005
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activity-dependent regulation of LP Ih Gmax, but instead produced an activity-independent en-
hancement of LP Ih Gmax. In sum, the data indicated that 5nM DA performed two functions:
First, it permitted calcineurin to regulate Ih Gmax in an activity-dependent fashion; and second,
it increased LP Ih Gmax in an activity-independent fashion.

Discussion
This study uses a model circuit to examine if/howmodulatory tone stabilizes network output
over the short-term. The 14-neuron pyloric pattern generator produces a constant rhythmic out-
put. Specific features of the motor pattern are conserved throughout time and across individuals,
including the timing of neuronal activity. In all individuals, the Lateral Pyloric neuron (LP) fires
a burst of action potentials at the same point in each cycle of the persistent rhythmic motor out-
put. The main finding of the work presented here is that tonic 5nMDA enables activity-depen-
dent regulation of LP Ih Gmax to stabilize the timing of LP activity. This PKA- and calcineurin-
dependent mechanism senses the changes in Ca2+ concentration that accompany alterations in
slow wave activity, which consists of continuous ~1–2Hz voltage oscillations with depolarized
plateaus and a ~20mV voltage trajectory ranging from ~-62 to-42mV (Fig. 3). This mechanism
results in linear, bi-directional regulation of LP Ih Gmax according to neuronal duty cycle (defined
here as the fraction of the cycle period over which LP exhibits a depolarized plateau). In the ab-
sence of tonic DA, slow wave activity does not regulate LP Ih Gmax, and the DA effect disappears
upon DA washout. In sum, tonic nMDA stabilizes neuronal output by enabling activity depen-
dent regulation of LP Ih Gmax. This non-persistent effect represents LP Ih metamodulation.

Fig 6. The slope of the LP Ih activity-dependence curve in 5nM DA reflects changes in Ca2+.
Experiments described in Fig. 3B were repeated for-100 and +50, except that an additional drug(s) to disrupt
Ca2+ dynamics was also continuously superfused beginning at t = -20min (BAPTA or xestospongin C +
ryanodine) or t = -5min (CdCl2). The fold-changes in LP Ih Gmax (mean+SEM) were plotted for each of the
three treatment groups. Linear regression analyses and paired t-tests for each treatment group showed that
in every case, the slope of the line was not significantly different from zero and the fold changes at-100 and
+50 were not statistically significant. The original experiment from Fig. 3B (dashed line) is shown
for comparison.

doi:10.1371/journal.pone.0117965.g006
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A working model of the mechanism underpinning LP Ih metamodulation
Tonic 5nM DA permits changes in slow wave activity to drive bi-directional alterations in LP
Ih Gmax. In the presence of 5nM DA, a 10min alteration in LP duty cycle produced a graded
change in LP Ih Gmax. The LP Ih Gmax activity dependence curve is an x-y plot of the percent
change in LP duty cycle vs. fold-change in LP Ih Gmax. The two extremes of the curve, -100 and
+50, represent complete activity blockade in TTX and a 50% increase in LP duty cycle, respec-
tively. In the absence of DA, the slope of the activity dependence curve is zero (Fig. 3C). In the
presence of tonic 5nM DA, the activity-dependence curve has a negative slope with the two ex-
tremes showing a ~10% increase (-100) or decrease (+50) in LP Ih Gmax (Figs. 3B and 8). The
results of our experiments suggest a straightforward mechanism to generate this activity-
dependence curve, as diagrammed in Fig. 8.

In our working model, DA acts through PKA to produce two simultaneous effects: A “prim-
ing event” that enables calcineurin regulation of LP Ih Gmax and an increase in LP Ih Gmax. In the
simplest case, the effects are due to direct PKA phosphorylation of calcineurin and an unknown
protein (blue cylinder in Fig. 8). Activity-independent PKA phosphorylation of the unknown

Fig 7. Calcineurin acts as a Ca2+ sensor for metamodulation of LP Ih in 5nM DA. (A) The effect of blocking calcineurin with bath applied FK506.
Experiments were performed as described for Fig. 5 using the calcineurin inhibitor, FK506. The percent change in LP Ih Gmax at t = 10min relative to t = 0
(mean+SEM) was plotted. Paired t-tests compared t = 10min vs. t = 0 within each treatment group; green asterisk, p<0.05. Black asterisks indicate that a
one-way ANOVA on the four DA-treatment groups with Tukey’s post hoc tests that made all pair wise comparisons showed that the decrease observed for
the TTX + DA + (+50 OSC) treatment group was significantly different from the other three DA treatment groups, and that those three DA treatment groups
[(TTX+DA, TTX+DA+FK506, TTX+DA+FK506+(+50 OSC)] were not significantly different from one another: (F (3,26) = 11.08; p = 0.0001). There were no
significant differences between the 4 treatment groups that did not receive DA, One way ANOVA, F(3,24) = 0.7714, p = 0.5229. (B) The effect of calcineurin
autoinhibitory peptide (CiP) injections. Experiments in Fig. 5 were repeated except PKI was omitted and CiP was injected into LP at-20min. Paired t-tests
compared t = 10min vs. t = 0 within each treatment group; green asterisk, p<0.05. Black asterisks indicate that a one-way ANOVA on the four DA-treatment
groups with Tukey’s post hoc tests that made all pair wise comparisons showed that the decrease observed for the TTX + DA + (+50 OSC) treatment group
was significantly different from the other three DA treatment groups, and that those three DA treatment groups [(TTX+DA, TTX+DA+CiP, TTX+DA+CiP+(+50
OSC)] were not significantly different from one another: (F (3,18) = 8.71; p = 0.0014). There were no significant differences between the 4 treatment groups
that did not receive DA, One way ANOVA, F(3,24) = 1.024, p = 0.4019.

doi:10.1371/journal.pone.0117965.g007
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protein increases LP Ih Gmax. Calcineurin opposes the increase in LP Ih Gmax by dephosphorylat-
ing the unknown protein. Once the priming event occurs, calcineurin activity is defined by Ca2+

concentration, which in turn, is influenced by LP slow wave activity. Based on data showing cal-
cineurin inhibition has no effect at-100 but abolishes the decrease in LP Ih Gmax at +50, the
model assumes that-100 represents the lowest Ca2+ concentration and the least calcineurin activ-
ity. The model also predicts that the unknown protein can be partially phosphorylated at base-
line (0, x-axis). The DA-independent mechanism(s) that regulates baseline phosphorylation is
unknown, but differences in baseline phosphorylation could account for the variability of indi-
vidual responses [86]. For example, in some cases an individual showed very little change in LP
Ih Gmax in response to a 50% increase in duty cycle or complete activity blockade (examine actual
data points at +50 and-100 in Fig. 3B). It may be that baseline phosphorylation varies, and for
those individuals showing little response, the unknown protein was almost completely dephos-
phorylated or phosphorylated under baseline conditions, respectively.

Our data suggest that calcineurin and PKA have opposing actions on LP Ih Gmax. The work-
ing model depicts this in the simplest way, but it is always possible that calcineurin and PKA do
not regulate the same phosphorylation site on the unknown protein, or even the same protein.
The unknown protein could be an HCN channel. A-kinase anchoring proteins (AKAPs) are
scaffolds that organize multi-protein complexes containing G-protein coupled receptors, ion
channels and enzymes [84,87]. The biophysical properties and surface expression of ion chan-
nels can be locally regulated by AKAP signalplexes containing PKA and calcineurin [88–93].
When such AKAP signalplexes are anchored to L-type Ca2+ channels, they bi-directionally regu-
late channel phosphorylation state and mean open time [92,94,95]. In this case, the components
of the regulatory machinery are highly co-localized with the channel, and it is thought that the
mechanism senses local changes in Ca2+ concentration resulting from L-type Ca2+ channel
opening and closing. Regulation of LP Ih Gmax is slow relative to L-type Ca2+ channels, with the
peak effect occurring ~20 vs. 3min after the initiating stimulus, respectively. This might suggest
that the Ca2+ pool sensed by the Ih mechanism changes more slowly, and/or that the process(es)
regulating LP Ih Gmax may be slower; for example, LP Ih Gmax regulation could involve channel
recycling rather than gating. In this regard, it is noteworthy that under certain conditions HCN
channel surface expression can be regulated over minutes by neuronal activity [96,97].

A single cell contains a mixture of signaling complexes that can generate either local or glob-
al signals [98]. Unlike fast and transient phasic modulation, tonic signaling may not be tempo-
rally or spatially constrained, and tonic signalplexes could be designed for global regulation. LP
D1Rs are located on fine neurites and terminals [47,79] and a study on the Pyloric Dilator neu-
ron demonstrated that DA receptors were only on 40% of the neurites [57]. It will be interest-
ing to determine if the HCN channels being regulated are restricted to the vicinity of the high
affinity D1Rs, or neuritic compartments containing D1Rs or if tonic nM DA confers activity-
dependence on all HCN channels.

The experimental data suggested that high affinity LP D1Rs acted through PKA to permit
calcineurin regulation of LP Ih Gmax. In our simplest case model, PKA was depicted as acting
directly on calcineurin (Fig. 8), but this was not experimentally demonstrated. PKA priming
could also be indirect; for example, PKA could act on a calcineurin regulatory protein or HCN
channels to permit calcineurin regulation of Ih. Alternatively, 5μMDA increases store release
in the pyloric Anterior Burster neuron [51], and such a mechanism might also indirectly influ-
ence calcineurin activity.

Pharmacological experiments using BAPTA, Cd2+, ryanodine and xestospongin C to dis-
rupt normal LP Ca2+ dynamics showed that the negative slope of the LP Ih Gmax activity-de-
pendence curve reflected changes in Ca2+ concentration; furthermore, both store release and
Ca2+ entry could influence the pool of Ca2+ being sensed. Consistent with these findings, 5μM
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Fig 8. The simplest workingmodel for how tonic nM DA acts through PKA and calcineurin to enable
bi-directional, activity-dependent regulation of LP Ih Gmax. The graph represents the LP Ih Gmax activity
dependence curve in 5nM DA (taken from Fig. 3B). The line indicates the idealized fold change in LP Ih Gmax
observed in response to a 10min alteration in LP duty cycle. The boxed inset shows the putative molecular
mechanism that is activated by tonic 5nM DA. First, DA acts through LP D1Rs to activate PKA. In turn, PKA
phosphorylates an unknown protein (blue cylinder) to increase LP Ih Gmax. PKA also phosphorylates
calcineurin, a phosphatase that is regulated by the Ca2+-calmodulin complex. PKA phosphorylation permits
calcineurin regulation of LP Ih Gmax. When calcineurin is activated by both PKA and Ca2+-calmodulin, it
dephosphorylates the unknown protein to reduce LP Ih Gmax. In the absence of PKA, calcineurin cannot
influence LP Ih Gmax. The phosphorylation state of the unknown protein is superimposed upon the LP Ih
Gmax activity-dependence curve in 5nM DA. Ca2+ is lowest at-100 and highest at +50, and the gradient
below the graph indicates how calcineurin activity changes with LP duty cycle. PKA activity is constant
because 5nM DA is tonically present (red bar). The unknown protein is fully phosphorylated at-100 because
PKA is active but calcineurin is not. At +50 the unknown protein is completely dephosphorylated because
calcineurin activity is maximal. In the idealized state, the unknown protein is partially phosphorylated at
baseline (0). This phosphorylation is not DA-dependent. Instead, DA acts to increase baseline
phosphorylation of the unknown protein through PKA and to enable activity-dependent regulation of the
unknown protein’s phosphorylation state by calcineurin. In the absence of DA, the unknown protein maintains
its baseline phosphorylation regardless of LP activity.

doi:10.1371/journal.pone.0117965.g008
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DA, which modulates Ca2+ entry and release [51,65,69], transformed the linear activity depen-
dence curve obtained in 5nM DA into a sigmoid function [15]. Ca2+ entry may be through T-
type Ca2+ channels (CaV3) which are known to be present in crustaceans [99]. A CaV3 win-
dow current exists in the voltage range traversed by the slow waves, and this tonic current can
be blocked by the high Cd2+ concentrations used in our study [100,101]. Entry could also be
voltage insensitive, e.g., store operated channels. We previously demonstrated that spike activi-
ty may also influence the pool of Ca2+ being sensed [15]. In 5μMDA, a 10min 25% reduction
in LP duty cycle produced a ~12% reduction in LP Ih Gmax. Including spikes on top of the slow
voltage oscillations slowed the rate of change in LP Ih Gmax by ~6-fold. We interpreted this
finding to mean that spike activity opposed the decrease in average steady-state Ca2+ elicited
by the change in slow wave activity. It may be that spike activity only affects the apposite Ca2+

pool in the presence of μMDA because, the change in Ih Gmax in 5nM DA appeared to follow a
similar time course in the presence (Fig. 2) or absence (Fig. 4) of spiking.

Consider that enzymes have different affinities for the Ca2+-calmodulin complex (CAM):
Calcineurin has a relatively high affinity for CaM, while other proteins, like CAM kinases, have
lower affinities [102]. Thus, as the Ca2+ concentration rises, calmodulin activity will saturate
and the activity of low affinity proteins will increase. This predicts that the metamodulatory
mechanism represented by the model (Fig. 8) may only operate within a specific range of Ca2+

concentrations and duty cycles. Consistent with this idea, our unpublished preliminary data
suggest the linear relationship between LP Ih Gmax and duty cycle may be lost or reset when
duty cycle is increased beyond 75%. Perhaps other modulators enable different compensatory
mechanisms that function during longer duty cycles; but then again, LP duty cycle is another
activity feature that is preserved [29].

LP Ih metamodulation stabilizes the timing of LP activity
Studies on LP Ih indicate that DA effects vary according to DA concentration. Our experiments
revealed that bath application of 5nM DA+TTX enhanced LP Ih Gmax without changing volt-
age dependence, whereas a previous study demonstrated that bath application of 100μMDA in
TTX decreased the mean LP Ih Gmax by ~20% and shifted the current’s voltage dependence
[30]. These data suggest that high and low affinity LP D1Rs have distinct functions.

Our overarching hypothesis is that high concentrations of modulators resulting from phasic
release (~μM), act at low affinity receptors and modify circuit output to fit the situation at hand,
while low-level tonic modulation (~nM) acts at high affinity receptors to stabilize circuit output
by maintaining conductance correlations. Consistent with this idea, here we showed that reduc-
ing IA with 4AP increased LP duty cycle and advanced the timing of LP activity phase; however,
the timing of LP activity phase was restored in preparations superfused with 5nM DA because,
as indicated by the activity-dependence curve (Fig. 8), the increased duty cycle drove a compen-
satory decrease in LP Ih. LP duty cycle may be altered by mechanisms that do not involve modi-
fications to Kv4 channels. In these cases, LP Ih metamodulation could theoretically distort rather
than preserve the IA:Ih ratio. We think this is unlikely and speculate that future studies may re-
veal that duty cycle influences the IA window current resulting from Kv4 channel kinetics and
voltage dependencies of activation and inactivation; and therefore, under normal circumstances
LP Ih metamodulation may compensate for dynamic, activity-dependent changes in the tonic IA.
Alternatively, AKAP signaling complexes are known to influence Kv4 channel trafficking
[90,103], and activity may control Kv4 surface expression in the presence and/or absence of DA.

Normally LP acts to slow pyloric cycle frequency by inhibiting the pacemaker kernel
through the LP-PD synapse (Fig. 1C) [26]. The timing of LP inhibition during the PD oscilla-
tion is critical for this function, and an LP phase advance during an ongoing rhythm can block
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or even reverse normal LP function, i.e. cause an increase in cycle frequency [27,28]. Given that
the timing of LP activity was restored in the 4AP+5nM DA treatment group, one might expect
cycle frequency would also be reinstated, but this was not observed. The LP-PD synapse should
influence cycle period at the very fast cycle frequencies (�2Hz) observed in our 4AP experi-
ments [26,28]; however, other neurons and LP conductances can influence cycle period, and
4AP produces alterations in the firing properties of all pyloric neurons [82]. It is likely that
multiple modulators regulate numerous conductance correlations in a cell specific manner
[21,32,104], and restoration of additional correlations is necessary to restore cycle frequency.

Multiple homeostatic mechanisms acting over distinct time courses
maintain conductance correlations to stabilize neuronal activity features
Every biological cell-type has invariant characteristics that are sustained by feedback mecha-
nisms, and this gives rise to the phenotype that identifies each cell-type. A synthesis of numer-
ous parallel lines of inquiry led to the emergent idea that conductance correlations define
neuronal activity features, and feedback mechanisms preserve invariant activity features by
maintaining their underlying conductance correlations [105]. Multiple cell-type specific con-
ductance correlations have been observed in the stomatogastric nervous system, and recent
studies focus on identifying the correlation(s) underpinning a given activity feature and on
modeling the homeostats [21,104,106–110].

The homeostatic mechanisms that operate to maintain conductance correlations and invari-
ant activity features are largely undefined. Studies on the stomatogastric nervous system indi-
cate that these mechanisms are modulator-dependent [15,32,43,111–113]. Some conductance
correlations persist when descending modulatory input is removed by cutting the stn (Fig. 1),
suggesting modulator-independent homeostatic mechanisms may also exist [32,112]; however,
other sources of tonic modulation are present under these conditions, including the STG neu-
rons themselves [114] and peripheral inputs [115].

Experimental and computational studies suggest that conductance correlations are under-
pinned by correlations between their ion channel transcript numbers [106,107,116–118]. Typi-
cally, mechanisms that regulate protein expression at the level of the transcript are fairly slow.
We previously demonstrated that tonic 5nM DA could enable co-regulation of LP IA and Ih
through a relatively slow process (~2–3hrs from stimulus to peak change in current) that re-
quired microRNA transcription and mTOR-dependent translation [42–45]. This mechanism
evoked LP IA plasticity and Ih metaplasticity wherein DA once again permitted changes in ac-
tivity to alter Ih Gmax. MicroRNAs are regularly incorporated into feedback loops that control
the expression of given proteins; these microRNAs frequently regulate the translation of
mRNAs encoding transcription factors, which in turn, influence the expression of these given
proteins’ genes [119–121]. Thus, the slow DA-enabled mechanism we described might regulate
the translation of a transcription factor(s), which in turn, would control the transcription of
Kv4 and HCN channel genes. Since a given microRNA coregulates the translation of multiple
transcripts [122], this DA-enabled mechanism might also influence the translation of Kv4 and
HCN ion channel transcripts in addition to, or instead of, transcription factor mRNA.

Slow processes to maintain transcript numbers may establish limits for ion channel expres-
sion and long-term coordination between ion channels; but, faster mechanisms must also oper-
ate to maintain the conductance correlation when one of the correlated currents is rapidly
altered. Indeed, LP Kv4 and HCN transcript numbers are known to be positively correlated
[32]; however, here we have shown that LP Ih Gmax varies across individuals by>330% when
LP Ca2+ concentration is not experimentally constrained (Ih Gmax ranges from 0.047–0.156μS),
but if Ca2+ is clamped to the BAPTA EC50 in all LP neurons, then within 20min variability
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across neurons is reduced to<7% (Ih Gmax ranges from 0.085–0.091μS)! This indicates that
HCN transcript number alone does not determine LP Ih Gmax; Ca

2+-dependent post-transcrip-
tional mechanisms are also in play, including the relatively fast metamodulatory mechanism
described here (~20min from stimulus to peak change in current). The relatively fast and slow
5nM DA-dependent processes are both mediated by PKA; but, it is not clear if they are sequen-
tial or simultaneous and/or can be uncoupled.

We have described two DA-enabled mechanisms for coregulating LP IA and Ih, but other
mechanisms exist as well. Overexpression of Kv4 channels in LP neurons over days in culture
produced a compensatory increase in LP Ih, but unlike DA-enabled metaplasticity, the machin-
ery involved was not activity- or transcription-dependent [14,25]. The authors did not ascer-
tain if modulators enabled this mechanism.

Tonic and phasic DA modulation have distinct functions. It was previously suggested that
tonic modulation can set the gain of the response to phasic modulation through processes like
receptor desensitization [123]. Our studies show that tonic nM DA can also determine the re-
sponse to phasic DA by regulating ionic current densities over multiple time scales. If the ef-
fects of DA on LP Ih can be generalized to other modulators and conductances, then this would
suggest that low-level modulatory tone stabilizes neuronal identity by permitting activity-de-
pendent regulation of ion channels to maintain conductance correlations, and this would en-
able neurons and circuits made from disparate components to similarly respond to a given
perturbation that acts on one or more of the disparate components [86,124,125].
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