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Neuromodulators alter network output and have the potential to destabilize a circuit. The
mechanisms maintaining stability in the face of neuromodulation are not well described.
Using the pyloric network in the crustacean stomatogastric nervous system, we show
that dopamine (DA) does not simply alter circuit output, but activates a closed loop in
which DA-induced alterations in circuit output consequently drive a change in an ionic
conductance to preserve a conductance ratio and its activity correlate. DA acted at low
affinity type 1 receptors (D1Rs) to induce an immediate modulatory decrease in the
transient potassium current (IA) of a pyloric neuron.This, in turn, advanced the activity phase
of that component neuron, which disrupted its network function and thereby destabilized
the circuit. DA simultaneously acted at high affinity D1Rs on the same neuron to confer
activity-dependence upon the hyperpolarization activated current (Ih) such that the DA-
induced changes in activity subsequently reduced Ih. This DA-enabled, activity-dependent,
intrinsic plasticity exactly compensated for the modulatory decrease in IA to restore the
IA:Ih ratio and neuronal activity phase, thereby closing an open loop created by the
modulator. Activation of closed loops to preserve conductance ratios may represent a
fundamental operating principle neuromodulatory systems use to ensure stability in their
target networks.

Keywords: activity-dependent intrinsic plasticity, metaplasticity, metamodulation, HCN channel, stomatogastric,

pyloric network

INTRODUCTION
Neuromodulators reconfigure circuit output; but, they must
confer stability as well as flexibility in order to maintain the
functionality of a target network. Our knowledge of modulatory
stabilizing mechanisms is limited. We suggest that modulators
stabilize circuits by activating feedback loops that preserve con-
ductance ratios and their activity correlates. Many cells maintain
conductance ratios (Linsdell and Moody, 1994; MacLean et al.,
2003; Schulz et al., 2006; Peng and Wu, 2007), and it is generally
thought that a given conductance ratio sustains a specific activ-
ity parameter(s) (Marder and Goaillard, 2006; Hudson and Prinz,
2010; Soofi et al., 2012). A neuromodulator could establish a feed-
back loop if it modulated one of the conductances in the pair and
conferred activity dependence on the other. In this case, modula-
tion of the first current would contribute to changes in neuronal
and circuit output that, in turn, would drive a change in the sec-
ond current to restore the ratio and the activity feature. The work
presented here establishes, for the first time, the existence of such
a feedback loop.

The 14-neuron pyloric circuit in the spiny lobster, Pan-
ulirus interruptus, is a small central pattern generator (CPG)
that drives the striated muscles surrounding the pylorus to pro-
duce an ordered series of contractions (Marder and Bucher,
2007). One cycle of contractions is continuously repeated to

produce constant filtering of the foregut contents. The repeti-
tive cycle of muscle contractions is underpinned by the recur-
rent output of the pyloric CPG, which stems from a pace-
maker kernel that rhythmically inhibits four follower neuron
cell types. The follower neurons then display post-inhibitory
rebound (PIR), and differences in their rates of PIR, together
with the synaptic architecture, produce a tri-phasic motor pattern
(Figure 1).

Follower neuron cell types have specific activity phases, mean-
ing that a given cell type fires a burst of action potentials at the
same point in each reiteration of the cyclic network output. The
timing of neuronal activity phases is determined, in part, by their
rate of PIR. IA and Ih are opposing subthreshold conductances
whose ratio regulates the rate of PIR (Harris-Warrick et al., 1995).
Population studies on other species of crustaceans showed that
pyloric neuron activity phases (Bucher et al., 2005; Goaillard et al.,
2009) and their IA:Ih ratios (Temporal et al., 2012) were invari-
ant across individuals and lifetimes, suggesting compensatory
mechanisms may exist to maintain the IA:Ih ratio and its activ-
ity correlates. Such a compensatory mechanism(s) was revealed
by overexpressing the Kv4 channels mediating IA throughout days
in organ culture. Overexpression of IA in pyloric neurons resulted
in compensatory increases in Ih that maintained the rates of PIR
(MacLean et al., 2003, 2005).
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FIGURE 1 | Phase recovery in the pyloric network. (A) In situ preparation:
the stomatogastric nervous system (STNS) is dissected and pinned in a dish.
The commissural ganglia (CoGs) contain DA neurons that project to the STG
(black) and L-cells, which are the source of neurohormonal DA (purple). The
well surrounding the STG (blue rectangle) is continuously superfused with
saline (in/out arrows). There are ∼30 neurons in the STG. The pyloric network
comprises 14 STG neurons; two are drawn: pyloric dilator (PD, red), lateral
pyloric (LP, blue). Network neurons interact locally within the STG and can
project axons to striated muscles surrounding the foregut. The diagram
shows that PD and LP neurons project their axons through identified nerves
to innervate muscles (rectangles). (B) Spontaneous pyloric network output
from one experiment during a 1 h 5 μM DA application: one set of traces
comprises two intra-cellular recordings (top) and two extra-cellular recordings
(bottom) from the in situ preparation diagrammed in (A). The three sets of
traces represent recordings from the indicated time points, in minutes,
directly before and after the start of DA application. Red and blue dashed lines
reveal how cycle period and LP-on delay change with time. The two red lines
demarcate one cycle. Cycle period (a) is defined as the time between the last
spike in one PD burst and the last spike in the subsequent PD burst. Note
that for each time point the last spike in the first PD burst is aligned with the
first red line; however, the last spike in the second PD burst is not aligned
with the second red line except at t = 0. This is because 5 μM DA produces a

sustained average 10% reduction in cycle period. Thus, for t = 10 and 60 min,
the spike in the second PD burst occurs prior to the second red line. Within
the indicated cycle, a blue line aligns with the first spike in LP at t = 0. The
time between the last spike in PD and the first spike in LP (b) represents
LP-on delay, and LP-on phase is: b/a. Note that for the t = 10 min cycle, the
first spike in LP occurs well before the blue line. This is because DA produces
an average∼20% LP-on phase advance. LP-on phase recovery can be seen in
the cycle at t = 60 min because the first LP spike is again aligned with the
blue line. Measures of pyloric output parameters can be obtained from either
intra- or extra-cellular traces, and LP burst duration is indicated by (c) on the
extracellular traces; scale bars: 20 mV and 500 ms. (C) The pyloric circuit: the
diagram represents pyloric neuron interactions within the STG. Open circles
represent the six cell types, numbers indicate more than one cell within a cell
type: anterior burster (AB), inferior cardiac (IC), ventricular dilator (VD); filled
circles, inhibitory chemical synapses; resistors and diodes, electrical coupling;
red, pacemaker kernel and its output connections. (D) Phase recovery: the
preparation shown in (A) was superfused with one of the two indicated
treatments for 1 h and LP on-phase was measured every 10 min throughout
the experiment (n ≥ 6/treatment). Average fold-changes in LP on-phase are
plotted for each group; yellow asterisks, significantly different from t = 0, data
taken from Rodgers et al. (2011a). Note that phase recovery in 5 μM DA was
blocked by Cs.
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We suggest that a mechanism to maintain the IA:Ih ratio
may also prevail during DA modulation of pyloric neurons
(Rodgers et al., 2011a): there is a single LP follower neuron
in the pyloric network, and it contributes to cycle frequency
regulation (Weaver and Hooper, 2003). The timing of the LP
activity phase is critical for this function (Johnson et al., 2011).
LP expresses D1Rs but not D2Rs (Zhang et al., 2010), and
a 10 min bath application of 5 μM DA can disrupt the LP
IA:Ih ratio and induce an LP phase advance largely by decreas-
ing LP IA (Harris-Warrick et al., 1995). DA modulation also
decreases LP burst duration and increases pyloric cycle fre-
quency through intrinsic and network effects (Harris-Warrick
et al., 1998; Rodgers et al., 2011a). During continuous DA appli-
cation, the timing of LP activity phase is restored, while the
DA-induced changes in burst duration and cycle frequency are
maintained (Rodgers et al., 2011a); thus, a compensatory mech-
anism operates to restore neuronal activity phase during neu-
romodulation. Here we investigate this mechanism and show
that LP phase recovery involves a DA- and activity-dependent
(DAD) decrease in LP Ih that compensates for the modulatory
decrease in LP IA to restore the LP IA:Ih ratio and LP activity
phase.

MATERIALS AND METHODS
ANIMALS AND DRUGS
California spiny lobsters, Panulirus interruptus, were purchased
from Catalina Offshore Products (San Diego, CA, USA) and Mar-
inus Scientific (Long Beach, CA, USA) and housed at 16–18◦C in
saltwater aquaria at Georgia State University (Atlanta, GA, USA).
Animals of both sexes were used in these experiments. TTX was
from Tocris (Ellisville, MO, USA), all other reagents were from
Sigma (St. Louis, MO, USA). Solutions containing DA were made
fresh every 30 min in saline to prevent oxidation and reduced DA
activity.

PHYSIOLOGICAL RECORDINGS
Lobsters were anesthetized on ice for at least 30 min, followed
by dissection of the stomatogastric nervous system (Figure 1), as
previously described (Panchin et al., 1993). A Vaseline well was
constructed around the stomatogastric ganglion (STG) which was
continuously superfused for the remainder of the experiment with
Panulirus (P.) saline (in mM: 479 NaCl, 12.8 KCl, 13.7 CaCl2,
39 Na2SO4, 10 MgSO4, 2 glucose, 4.99 HEPES, 5 TES; pH 7.4).
Experiments were conducted at room temperature (19–21◦C).
Temperature was continuously monitored with a miniature probe
inside the well. Temperatures changed by less than 1◦C throughout
the course of the day.

Cells were identified by combining standard intracellular and
extracellular recording techniques. Lateral pyloric (LP) neurons
were identified by their distinct waveforms, the timing of their
voltage oscillations, and correlation of spikes on the extracellular
and intracellular recordings. Intracellular somatic LP recordings
were obtained using 20–40 M� glass microelectrodes filled with
3 M KCl connected to Axoclamp 2B or 900A amplifiers (Molec-
ular Devices, Foster City, CA, USA). Extracellular recordings of
identified motor neurons were obtained using a model 1700 dif-
ferential AC amplifier (A-M Systems, Everett, WA, USA) and

stainless steel pin electrodes on the lateral ventricular nerve (lvn)
and pyloric dilator nerve (pdn) and recorded with Axoscope v8.2
software (Molecular Devices, Foster City, CA, USA). Extracellular
recordings were analyzed using DataView v6.3.2 (Heitler, 2009) to
determine cycle period, spike frequency, burst duration, LP-on/off
delays, and LP activity phase as previously described (Rodgers
et al., 2011a). Reported values for all parameters represent a 10
cycle average.

Experiments in TTX blocked action potential firing and slow
voltage oscillations in STG neurons. Under these conditions, the
resting membrane potential of most pyloric neurons is between
∼ −52 and −62 mV. Pyloric neuron input/output curves suggest
that graded transmitter release will be minimal to non-existent
at these voltages (Johnson et al., 1991, 1995). DA (100 μM) can
shift the curves (Johnson and Harris-Warrick, 1990), but a 10-fold
lower concentration has a minimal effect on the strength of graded
release (Kvarta et al., 2012). Pyloric neurons can oscillate in TTX if
bathed in 100 μM DA, but we do not observe pyloric oscillations
in TTX at ≤5 μM DA.

TWO-ELECTRODE VOLTAGE CLAMP (TEVC)
For TEVC of LP Ih, the LP neuron was impaled with two
micropipettes (8–10 MΩ when filled with 3 M KCl) connected
to Axoclamp 2B or 900A amplifiers (Molecular Devices, Foster
City, CA, USA). The well surrounding the STG was superfused
with P. saline containing 100 nM TTX for ≥5 min. LP was
clamped to a −50 mV holding potential using pClamp software.
Ih was elicited using a series of 4 s hyperpolarizing voltage steps,
from −60 to −120 mV in 10 mV increments with 6 s between
steps. Steady-state peak currents were measured by fitting the cur-
rent trace back to the beginning of the hyperpolarizing voltage
step using a single exponential equation. In some experiments
small oscillations interrupted the current trace at t = 0 (e.g.,
Figure 2) and prevented curve fitting. In those experiments,
peak Ih was measured by subtracting the initial fast leak cur-
rent from the slowly developing peak of Ih at the end of each
negative voltage step. Currents were converted to conductance
using (G = Ipeak/(V m − V rev) and fitted to a first-order Boltz-
mann equation. V rev Ih = −35 mV (Kiehn and Harris-Warrick,
1992). For TEVC measurement of peak IA the command poten-
tial was stepped from −50 to −90 mV for 200 ms to remove
resting inactivation. The deinactivating prepulse was immediately
followed by an activation pulse to 60 mV for 400 ms to ensure
that channels were maximally activated and observed changes
could not be due to alterations in voltage dependence (Zhang
et al., 2010). To subtract the leak current the hyperpolarizing pre-
pulse was omitted and instead the prepulse was set to −40 mV
to remove IA activation from the −50 mV holding potential.
For recordings to measure the LP IA:Ih ratio in 5 μM DA, the
saline also contained 20 μM TEA and 1 μM PTX to block DA-
induced modulatory changes in other conductances that could
interfere with measures of peak currents. Recurring voltage steps
to mimic slow wave oscillations and action potentials were con-
structed with pClamp software. When currents were not being
measured, and recurring steps were not being implemented, LP
was held at its initial resting membrane potential in TTX (on
average, −59 mV).
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FIGURE 2 | DA-enables activity-dependent alterations in LP Ih. (A) The
protocols used to measure DA- and/or activity-induced changes in LP Ih
are diagramed in the top two panels. Asterisks indicate points where TEVC
measures of LP Ih were made. Bottom panels show typical LP Ih
recordings at t = 0 and t = 10 min for each of the four the indicated
treatment groups; scale bars: 500 ms and 5 nA. Note that distal
compartments of LP neurons are not completely space clamped and
oscillatory activity at t = 0 was observed in all treatment groups in ∼20%

of the experiments due to the short exposure to TTX (example seen in TTX
group); nevertheless, Ih could be measured from the traces. (B,C) Plots of
the fold-changes in LP Ih Gmax in each treatment group at t = 10 min.
Each symbol represents one experiment; solid lines indicate the means;
*p < 0.05, t -tests. (D) Typical LP Ih recordings for additional experiments
in 5 nM DA. (E) Plots of the fold-changes in LP Ih Gmax in each treatment
group in 5 nM DA at t = 10 min. Each symbol represents one experiment;
solid lines represent means *p < 0.05, t -test.

DYNAMIC CLAMP
We used the dynamic clamp to introduce an artificial injection
current (I inj) specified to counteract the metaplastic (DA mod-
ulation of activity dependent (AD) intrinsic plasticity) change
in Ih in LP neurons during ongoing rhythmic pyloric activity
following bath application of 5 μM DA (Sharp et al., 1993a,b;
Prinz et al., 2004a). The membrane potential of the LP soma
was amplified, fed into a PCI-6052E DAQ board (National
Instruments, Austin, TX, USA), and digitized at 20 kHz. The
dynamic clamp program was written in the C programming
language and designed to use the real time Linux dynamic
controller (Dorval et al., 2001). This dynamic clamp software
calculated the I inj that would be active at the measured mem-
brane potential (V m) given a set of model parameters as
follows:

Iinj = Gmaxm (Vm − Erev) ,

where m changed according to dm/dt = (m∞ − m)/τm, computed
numerically using the first-order forward Euler method, and m∞
was given by m∞ = 1/(1 + exp((V m − V ½)/V slope). Erev was set
to −35 mV (Kiehn and Harris-Warrick, 1992). Values for Ih τm

represent average TEVC measures from 12 experiments. LP Ih was
measured in each LP neuron before the dynamic clamp experiment
and Gmax, V ½, and V slope were determined from a Boltzmann
fit as described above. The predicted metaplastic change in LP
Ih Gmax was determined using the activity-dependence curve in
Figure 3 and the measured change in LP burst duration after
a 10 min application of 5 μM DA. The predicted metaplastic
change in Ih conductance was subtracted with the dynamic clamp,
which calculated and continuously injected current according to
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FIGURE 3 | LP Ih activity-dependence curve in 5 μM DA. (A)

Experimental protocol: TEVC was used to create a recurring voltage step
that mimicked slow wave activity at t = −10 min, except the length of
the depolarizing step varied across experiments to alter burst duration.
Examples are shown for how the length of the step corresponded to no
change, a reduction or an increase in burst duration. There was no

change in cycle period. (B) Plot of fold-changes in LP Ih Gmax for the
10 min time point; −100 on the x -axis represents experiments in TTX
without a recurring step; vertical dashed line marks 30% reduction in
burst duration (i.e., average 5 μM DA-induced change) each diamond
represents one experiment; data were fitted with a Boltzmann sigmoidal
equation.

the above model, where Gmax = measured LP Ih Gmax × predicted
metaplastic change in LP Ih Gmax. Intracellular and extracellular
recordings of LP activity throughout the experiment were obtained
using a separate computer equipped with Axoscope and Clampex
9.2 software (Axon Instruments).

STATISTICAL ANALYSIS
Data were checked for normal distribution and analyzed using
parametric statistical tests with Prism software package v5.01
(GraphPad, La Jolla, CA, USA). Significance was set at p < 0.05
in all cases. Individual samples that were more than 2 standard
deviations from the mean were excluded from the analyses after
determining the mean. This eliminated two experiments. ANOVAs
are followed by post hoc tests that make all possible comparisons
between columns (Tukey’s) or that compare all columns to a single
column, usually t = 0 (Dunnett’s). Means are followed by standard
errors.

RESULTS
THE EXPERIMENTAL MODEL
The pyloric circuit is located in the crustacean STG (Figure 1A),
and it produces a rhythmic motor output in situ. Each pyloric cell
type displays repetitive oscillations in membrane potential with
a burst of spikes riding on the depolarized plateau (Figure 1B).
The circuit comprises six oscillatory cell types coupled by fast
inhibitory synapses and/or gap junctions (Figure 1C). The pace-
maker kernel (anterior burster (AB) + 2 PD neurons) rhythmically
inhibits the four follower neuron cell types, which then display dif-
ferent rates of PIR. The different rates of PIR are due, in part, to
differences in the expression of IA in each follower neuron (Baro
et al., 1997, 2000). IA delays pyloric neuron PIR (Tierney and
Harris-Warrick, 1992): the hyperpolarizing phase of the mem-
brane potential oscillation removes resting inactivation from the
Kv4 channels mediating IA and activates the hyperpolarization
activated cyclic nucleotide (HCN) gated channels mediating the
depolarizing inward Ih. The subsequent depolarization activates
Kv4 channels, and the resulting outward potassium current slows

the rate of depolarization. In this way, the ratio of IA:Ih can
influence when LP activity phase begins (termed LP-on phase).
Figure 1B shows intra- and extra-cellular recordings from a typ-
ical experiment where the STG was superfused with 5 μM DA
for 1 h: DA was applied after the initial recording at t = 0. By
10 min, DA increased pyloric network cycle frequency by reducing
the inherent period of the pacemaker AB neuron (Harris-Warrick
et al., 1998; Rodgers et al., 2011a). DA application also reduced LP
burst duration and advanced LP firing phase. The traces indicate
that by 60 min in DA, network cycle frequency was still increased
and LP burst duration was still decreased, but LP-on phase was
restored. In previous experiments we clearly demonstrated that
phase recovery was AD: if the experiment shown in Figure 1B was
repeated with continuous injection of a depolarizing bias current
into LP to block the DA-induced decrease in LP burst duration,
then the LP phase advance occurred, but phase recovery did not
(Rodgers et al., 2011a). We also showed that phase recovery in the
presence of 5 μM DA could be blocked by bath application of CsCl
to reduce Ih (Figure 1D).

DA- AND ACTIVITY-DEPENDENT (DAD) REGULATION OF LP I h

IN 5 μM DA
We first tested the idea that DA conferred activity-dependence
upon LP Ih by measuring Ih in LP neurons that showed different
activity patterns. In these experiments, LP neurons have one of two
activity patterns: either LP activity is completely blocked (TTX), or
LP displays normal slow wave but not spike activity (TTX + OSC).
LP Ih is measured in each of these two groups in the presence and
absence of DA resulting in four treatment groups. The experi-
ment, which is diagrammed in Figure 2A, was as follows: after
dissection and cell identification, the STG was superfused with
TTX for 5 min to block spike and slow wave activity, and the TTX
was present throughout the remainder of the experiment. Next,
at t = 0, LP Ih was measured with somatic TEVC. After the first
measure of LP Ih, DA was or was not added to the superfusate
and LP Ih was re-measured after 10 min. The voltage of LP was
continuously controlled with TEVC throughout the experiment.
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Between measures of LP Ih, a recurrent step mimicking LP slow
oscillatory activity at t = −10 min was (TTX + OSC) or was
not (TTX) implemented. Frequency, duration, and amplitude of
the recurrent steps were chosen for each preparation individually
depending upon measured activity at t = −10 min: frequency and
duration of the recurrent step corresponded to average cycle fre-
quency and LP burst duration at t = −10 min, respectively; the
step and holding potentials corresponded to the average peak and
nadir of the LP oscillation at t = −10 min, respectively. In the
absence of the recurring voltage step, LP was held at its initial rest-
ing membrane potential in TTX (−59 mV on average). Typical LP
Ih recordings for each treatment group are shown in Figure 2A.

The results indicated that DA conferred activity dependence
upon LP Ih: in the presence of DA, the fold-change in LP Ih Gmax

varied according to LP activity (Figure 2B; t-test, p < 0.004); by
10 min in 5 μM DA average LP Ih Gmax was significantly decreased
in preparations with the slow wave LP activity pattern (paired t-
test, t = 0 vs. 10 min, p = 0.0491) and significantly increased in
preparations showing no LP activity (paired t-test, p = 0.0285).
In the absence of DA the fold-change in LP Ih Gmax was not sig-
nificantly different between treatment groups (Figure 2C, t-test,
p = 0.256) and there was no significant change in LP Ih Gmax

by t = 10 min relative to t = 0 in preparations where slow wave
activity was mimicked (paired t-test, p = 0.1166) or activity was
completely blocked (Wilcoxon matched pairs signed rank test,
p = 0.2969). We previously demonstrated that 5 nM DA acting
at high affinity LP D1Rs permitted a decrease in LP burst dura-
tion to produce an increase in LP Ih Gmax that persisted well
beyond DA washout (Rodgers et al., 2011a). This suggested that
perhaps high affinity D1Rs receptors might also mediate the more
rapid DAD regulation of LP Ih Gmax observed in Figure 2B. To
test this hypothesis, we repeated the experiments diagrammed in
Figure 2A, but applied 5 nM rather than 5 μM DA (Figure 2D).
The results were consistent with the hypothesis; in the presence
of 5 nM DA, the fold-change in LP Ih Gmax at t = 10 min varied
according to activity (Figure 2E, t-test, p = 0.0321). Interestingly,
LP Ih Gmax did not change over time in 5 nM DA preparations
where slow wave activity was mimicked (paired t-test, t = 0 vs.
10 min, p = 0.5962); however, a complete block of activity pro-
duced a clear trend toward an increase in LP Ih Gmax (paired t-test,
p = 0.0596), and the magnitude of the increase was similar to that
observed in 5 μM DA (compare Figures 2B vs. 2E). The difference
in the TTX + OSC treatment groups in 5 nM DA (no change in
Gmax) vs. 5 μM DA (decrease in Gmax) may be due to the fact that
micromolar DA can regulate calcium dynamics during oscillations
in membrane potential (Johnson et al., 2003; Kadiri et al., 2011).
For all treatment groups the voltages of half activation changed by
≤2.3 mV on average, and LP Ih voltage dependence is not con-
sidered further here. In sum, ≥5 nM DA permitted activity to
differentially regulate LP Ih Gmax; but, neither 5 nM DA alone nor
changes in activity alone significantly altered LP Ih Gmax; i.e., DA
did not modulate LP Ih, but conferred activity-dependence upon
LP Ih.

DAD REGULATION OF LP I h IS NECESSARY FOR PHASE RECOVERY
Our previous study suggested that LP phase recovery during sus-
tained DA modulation was triggered by a change in LP burst

duration (Rodgers et al., 2011a). In order to understand if and
how DAD regulation of LP Ih restored the timing of the LP activ-
ity phase in 5 μM DA, it was necessary to determine how LP
Ih varied according to changes in LP burst duration. An LP Ih

activity-dependence curve for changes in burst duration was con-
structed by repeating the previous experiments in 5 μM DA for the
TTX + OSC treatment group, except that the length of the depo-
larizing step varied across experiments to mimic a change in burst
duration (Figure 3A). A plot of the fold-change in LP Ih Gmax vs.
percent change in LP burst duration at t = 10 min was best-fitted
with a Boltzmann sigmoidal equation. DA (5 μM) produced an
average 30% decrease in LP burst duration (Rodgers et al., 2011a),
and so, according to the activity-dependence curve, LP Ih Gmax

should be reduced by ∼6% in 5 μM DA during on-going activity
(Figure 3B, dashed line). This decrease in LP Ih is consistent with
our hypothesis that DAD regulation of LP Ih compensates for the
DA-induced modulatory decrease in LP IA to restore the IA:Ih

ratio and the timing of LP activity phase.
In order to determine if DAD regulation of LP Ih was necessary

for phase restoration, we used the activity-dependence curve in
conjunction with dynamic clamp experiments to abrogate DAD
regulation of LP Ih (Figure 4). The experimental preparation was
as shown in Figure 1A. After dissection and cell identification
the STG was superfused with TTX for 5 min; LP Ih was measured
with TEVC and values for Gmax, V 1/2and Vslope were subsequently
incorporated into the dynamic clamp model for I inj (see Section
“Materials and Methods”). TTX was immediately washed out with
saline for 90 min. LP burst duration was measured at the end of
the wash followed by application of 5 μM DA from t = 0–60 min.
The predicted fold-change in LP Ih Gmax due to DAD regulation
was determined using the activity-dependence curve in Figure 3

FIGURE 4 | DAD regulation of LP Ih is necessary for phase recovery in

5 μM. Plots of fold-changes in LP-on phase over time for dynamic clamp
(solid lines) and control (dashed line) experiments indicate that introduction
of a dynamic clamp current to abrogate DAD regulation of LP Ih prevents
phase recovery; thin lines, individual experiments with dynamic clamp
(n = 5); thick line, average for experiments with dynamic clamp; dashed
line, control experiment that was exactly the same as the dynamic clamp
experiments except that the dynamic clamp was turned off during the 1 h
superfusion with 5 μM DA. Repeated measures ANOVA with Dunnett’s
post hoc tests that compared all time points to t = 0 showed that average
LP-on phase did not recover in experimental preparations, F (6,4) = 16.04,
p < 0.0001; *p < 0.05. Note that phase did recover in the control
experiment.
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and the measured change in LP burst duration from t = 0 to
t = 10 min, and was subsequently incorporated into the dynamic
clamp model for I inj (see Section “Materials and Methods”). From
∼t = 10 to 60 min, dynamic clamp was used to remove the pre-
dicted DAD regulation of LP Ih, i.e., to add back, in the form
of dynamic clamp current, the same amount of Ih that was pre-
dicted to have been lost because of DAD regulation. LP-on phase
was subsequently measured every 10 min from t = 0–60 min.
Plots of the fold-change in LP-on phase over the course of the
experiment demonstrated that 5 μM DA-induced the usual phase
advance, but removing DAD regulation of LP Ih prevented LP-on
phase recovery (compare Figures 4 vs. 1D). It also prevented LP-
off phase recovery [repeated measures ANOVA: F(6,4) = 3.119,
p = 0.0210]. However, it should be noted that the recovery of LP-
off phase may be complicated by the PY cell activity phase. The
PY-LP synapse contributes to the timing of LP-off phase, especially
in DA; thus, any change in LP-on phase that subsequently alters
the timing of PY activity through the LP–PY synapse may also
indirectly affect LP-off phase (Johnson et al., 2011). From these
experiments we conclude that DAD regulation of LP Ih Gmax is
necessary for LP-on phase restoration.

DAD REGULATION OF LP I h COMPENSATES FOR MODULATORY
CHANGES IN LP I A TO RESTORE I A :I h

Thus far the data are consistent with our working model for how
phase advance and recovery occur in 5 μM DA: 5 μM DA ini-
tially alters the LP IA:Ih ratio by decreasing LP IA, and this creates
a phase advance (Harris-Warrick et al., 1995; Zhang et al., 2010).
DA (5 μM) also produces a 30% reduction in LP burst duration,
and this subsequently initiates a process that generates a compen-
satory decrease in LP Ih to restore the LP IA:Ih ratio and produce
phase recovery. In order to further test this hypothesis, we repeat-
edly measured the LP IA:Ih ratio during a 1 h 5 μM DA application
accompanied by a recurrent step that mimicked a 30% reduction
in LP burst duration. At t = 0, peak LP IA was measured at +60 mV
and peak LP Ih was measured at −120 mV. DA (5 μM) was imme-
diately applied for 1 h and peak currents were re-measured at
t = 10, 30, and 60 min. During the DA application, whenever peak
currents were not measured, LP received a recurring step. Plots of
the average fold-changes in the peak IA:Ih ratio (Figure 5A) and
average peak IA and Ih (Figure 5B) suggested that our hypothesis
was incorrect or incomplete. The average IA:Ih ratio significantly
decreased over time (Figure 5A) because the decreases in peak
LP Ih did not fully compensate for the decreases in peak LP IA

(Figure 5B).
It is noteworthy that DA-induced a change in both LP burst

duration and cycle period (Rodgers et al., 2011a), but our step
only mimicked the change in burst duration. We next asked if the
DA-induced increase in cycle frequency contributed to DAD reg-
ulation of LP Ih Gmax, by repeating the experiments to measure
the LP IA:Ih ratio but using a recurring voltage step that mimicked
both the average 30% decrease in LP burst duration and the 10%
increase in cycle frequency. In this case, the average IA:Ih ratio did
not change significantly throughout the experiment [Figure 5C,
repeated measures ANOVA, F(3,4) = 2.161, p = 0.1457], despite
the fact that by 10 min, average peak LP IA was significantly
and stably reduced to 81 ± 4% of its initial value [Figure 5D,

repeated measures ANOVA, F(3,4) = 16.91, p = 0.0001]. The
ratio did not change because by 10 min in DA, average peak LP
Ih was significantly and stably reduced to 87 ± 3% of its origi-
nal value [Figure 5D, repeated measures ANOVA, F(3,4) = 6.983,
p = 0.0057]. We conclude that the AD mechanism that regulates
LP Ih Gmax in the presence of DA integrates information on both
neuronal burst duration and cycle period.

SPIKE ACTIVITY DELAYS THE EFFECT OF CHANGES IN SLOW WAVE
ACTIVITY
Overall, the data supported our hypothesis: in the presence of
5 μM DA and average DA-induced changes in LP slow wave activ-
ity, the DA-induced fold-change in LP IA was compensated by a
similar fold-change in LP Ih. However, one aspect of the data did
not fit with our working model. The ratio could be restored by
10 min (Figure 5), but phase recovery required 60 min on aver-
age (Figures 1B,D). It is possible that restoration of the LP IA:Ih

ratio was necessary (Figure 4) but not sufficient for phase recov-
ery, and that one or more unidentified slower processes were also
involved. Alternatively, one major difference between the exper-
iments shown in Figures 1 vs. 5 was the presence vs. absence
of spike activity. If a Ca2+ sensor participated in this homeo-
static mechanism to maintain the LP IA:Ih ratio (Gunay and Prinz,
2010), then spike activity and DA-induced changes in slow wave
activity might have opposing effects on steady-state Ca2+, and
spike activity could delay the compensatory decrease in LP Ih by
slowing the rate of change of steady-state Ca2+. To investigate this
idea, we repeated experiments to measure the LP IA:Ih ratio using
a recurring step that mimicked not only slow wave activity, but
also, spike activity.

During normal LP activity, spikes passively spread to the soma
and neuropil from a distal spike initiation zone (siz). We mimicked
spike activity generated at the siz with depolarizing current injec-
tions into the soma. We reasoned that LP HCN channels, which
are located in the neuropil (Goeritz et al., 2011), will experience a
similar depolarization regardless of whether the spikes initiate at
the soma or siz, because the two structures are roughly equidistant
from the neuropil. This logic rests on the untested assumption
that the electrotonic properties and protein composition of the
entire primary neurite membrane between soma and spike initia-
tion zone are homogeneous and that electrotonic potentials spread
with similar efficiency in both directions. We also made untested
assumptions about LP spike amplitude and duration. Peak voltage
(+40 mV) and duration (2 ms) of PD spikes have been directly
measured from intra-axonal recordings (Ballo et al., 2012). We
assumed LP and PD spikes would be similar and used these values
here.

Previous work suggested that activity-dependent regulation can
be coded by the pattern of spike activity and not simply the total
amount of depolarization (Gorbunova and Spitzer, 2002). We per-
formed two series of experiments to determine if spike activity
influenced the LP IA:Ih ratio either by the total amount of depo-
larization produced or by the pattern of depolarization. The total
amount of depolarization was mimicked with a step to +40 mV
whose duration equaled the average number of spikes per burst
multiplied by 2 ms. Patterned spike activity was mimicked by 2 ms
depolarizations to +40 mV separated by the average interspike
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FIGURE 5 |The LP IA:Ih ratio is maintained in 5 μM DA when DA

application is accompanied by DA-induced changes in slow wave

activity. (A) A plot of the fold-changes in the LP IA:Ihratio (mean ± SEM)
throughout a 1 h superfusion with 5 μM DA and implementation of a
recurring voltage step that mimicked the DA-induced 30% decrease in LP
burst duration, but no change in cycle frequency. The ratio significantly
decreased with time; repeated measures ANOVA with Dunnett’s post hoc
tests that compare all time points to t = 0, F (3,4) = 7.322, p = 0.0032. (B)

Plots of the fold-changes in peak LP IA and Ih (mean ± SEM) from the same
experiments as in (A). Repeated measures ANOVAs with Dunnett’s post hoc
tests that compare all time points to t = 0 indicate that only LP IA was

significantly decreased [LP IA: F (3,4) = 19.66, p < 0.0001; LP Ih,
F (3,4) = 1.218, p = 0.3456]. *p < 0.05. (C) Plot of the fold-changes in the LP
IA:Ihratio (mean ± SEM) throughout a 1 h superfusion with 5 μM DA and
implementation of a recurring voltage step that mimicked the DA-induced
30% decrease in LP burst duration and a 10% increase in cycle frequency.
The ratio did not change significantly over time (repeated measures ANOVA,
see text). (D) Plots of the fold-changes in peak LP IA and Ih (mean ± SEM)
from the same experiments as in (C) show that both currents are stably
altered by 10 min; a and b indicate a significant change in LP IA and Ih,
respectively, based on repeated measures ANOVA with Dunnett’s post hoc
tests that compare all time points to t = 0, p < 0.05 (see text).

interval (ISI), and the number of depolarizations was equal to the
average number of spikes per burst.

In the first set of experiments a depolarizing step to +40 mV
was superimposed upon the recurrent voltage step that mimicked
LP slow wave activity in 5 μM DA (Figure 6A). The duration
of the step to +40 mV corresponded to the average number of
spikes per burst at t = −10 min multiplied by 2 ms. Note that the
average number of spikes per burst does not change significantly
during a 1 h 5 μM DA application [repeated measures ANOVA,
F(6,8) = 0.8920, p = 0.5083, data not shown]. Surprisingly, this
short depolarization on top of the usual recurrent voltage step that
mimicked a 30% decrease in LP burst duration and a 10% increase
in cycle frequency completely abolished the effect of DA-induced
changes in slow wave activity upon LP peak Ih. The LP IA:Ih

ratio significantly decreased under these conditions [Figure 6C;
repeated measures ANOVA: F(3,3) = 6.114, p = 0.0149] because,
there was no reduction in LP Ih (Figure 6D, mean ± SEM fold-
change in LP peak Ih at 10 min = 1.008 ± 0.010). The insignificant
change in LP Ih throughout the 1 h 5 μM DA application could
not compensate for the significant decrease in LP IA [Figure 6D;
repeated measures ANOVAs: Ih, F(3,4) = 0.1801, p = 0.9078;
IA, F(3,3) = 5.251, p = 0.0228]. Note that the change in LP
IA was not significantly different between experiments that did

(Figure 6D) vs. did not (Figure 5D) mimic spike activity along
with DA-induced changes in slow wave activity [two-way ANOVA:
treatment, F(1,28) = 0.08, p = 0.7789; time, F(3,28) = 6.83,
p = 0.0014; interaction, F(3,28) = 0.33, p = 0.8065].

We next asked if we could delay, but not abolish the com-
pensatory decrease in LP Ih Gmax by better mimicking the spike
pattern (Figure 6B). To do this, we included an ISI in between
each 2 ms depolarization to +40 mV that was equal to the aver-
age ISI at t = −10 min multiplied by 0.66, because a 1 h 5 μM
DA application reduced the mean ISI to 66% of its initial value
[repeated measures ANOVA: F(6,4) = 4.002, p = 0.0065, data
not shown]. Including patterned spike activity in the recurrent
voltage step delayed the compensatory reduction in LP Ih Gmax

(Figure 6F). By 10 min in 5 μM DA, the compensatory reduc-
tion in LP peak Ih was significantly smaller for protocols that
did (Figure 6F) vs. did not (Figure 5D) include patterned spike
activity on top of the slow wave (Student’s t-test, p = 0.0014).
Although a delayed and slowly developing compensatory reduc-
tion in LP Ih Gmax was elicited with protocol B, it was not large
enough to compensate for the decrease in LP IA, even by 2 h
(Figure 6E). This is because the patterned spike activity also
unexpectedly regulated LP IA: the reduction in peak LP IA was
significantly larger for protocols that did (Figure 6F) vs. did not
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FIGURE 6 | Spike activity influences the LP IA:Ih ratio in 5 μM DA. (A,B)

Diagrams of recurrent voltage steps that were applied during 5 μM DA
application. Spikes are not drawn to scale. Note the recurrent step mimicked
the DA-induced decrease in LP burst duration and cycle period. In addition, it
mimicked spike activity. In (A), spike activity is represented as a single
depolarizing step to +40 mV. The duration of the step = 6 spikes × 2
ms = 12 ms. In (B), the six spikes are represented as 6, 2 ms depolarizations
to +40 mV. The time between each depolarization is 0.66 x average ISI in ms
at t = −10 min. (C) Plot of the fold-changes in the LP IA:Ihratio (mean ±
SEM) throughout a 1 h superfusion with 5 μM DA and implementation of the
recurrent voltage step indicated by protocol A. The ratio significantly
decreased with time; *p < 0.05, repeated measures ANOVA with Dunnett’s
post hoc tests that compare all time points to t = 0 (see text). (D) Plots of the

fold-changes in peak LP IA and Ih (mean ± SEM) from the same experiments
as in (C); *p < 0.05 for IA only, repeated measures ANOVAs with Dunnett’s
post hoc tests (see text). (E) Plot of the fold-changes in the LP IA:Ihratio
(mean ± SEM) throughout a 2 h superfusion with 5 μM DA and
implementation of a recurring voltage step indicated by protocol B. The ratio
significantly decreased with time; *p < 0.05, repeated measures ANOVA
with Dunnett’s post hoc tests that compare all time points to t = 0,
F (5,4) = 8.728, p = 0.0002. (F) Plots of the fold-changes in peak LP IA and Ih
(mean ± SEM) from the same experiments as in (E). Note that although LP Ih
is slowly reduced, repeated measures ANOVAs with Dunnett’s post hoc tests
that compare all time points to t = 0 indicate that only the decrease in LP IA
is statistically significant [LP IA: F (3,4) = 19.66, p < 0.0001; LP Ih,
F (3,4) = 1.218, p = 0.3456]; *p < 0.05.

(Figure 5D) include patterned spike activity on top of the slow
wave [two-way ANOVA, treatment, F(1,32) = 25.76, p < 0.0001;
time, F(3,32) = 38.53, p < 0.0001; interaction, F(3,32) = 3.45,
p = 0.0278]. This large decrease in LP IA was most likely a technical
artifact. Kv4 channels are located throughout the LP somatoden-
dritic membrane (Baro et al., 2000). According to our untested
assumption, Kv4 channels in the neuropil will experience typical
changes in membrane potential with each spike mimic; however,
this is not true for somatic Kv4 channels. The average LP mem-
brane potential typically recorded at the soma at the peak of spike
activity is −36 ± 4 mV because spikes are severely attenuated as
they passively spread to the soma. Thus, a +40 mV depolarization
at the soma is unrealistic and most likely generates an artificially
large decrease in the somatic LP IA. Nonetheless, based on these
experiments we can conclude that DAD regulation of LP Ih Gmax

integrates information on burst duration, cycle period, and spike
activity.

DISCUSSION
The principal finding of our study is that 5 μM DA simultaneously
creates flexibility and stability in a rhythmically active neural net-
work by activating a closed loop (Figure 7). DA acts at both low
and high affinity D1Rs to alter activity and enable AD intrinsic

plasticity, respectively. The feedback loop re-established a con-
ductance ratio that was modified by DA, and thereby restored a
neuronal phase relationship during a sustained increase in cycle
frequency. The generation of closed loops via modulator-enabled
AD intrinsic plasticity may represent a fundamental organizing
principle used by modulatory systems to preserve conductance
ratios and their associated activity correlates, while at the same
time altering other aspects of circuit output.

DA SIMULTANEOUSLY GENERATES FLEXIBILITY AND STABILITY BY
ACTIVATING HIGH AND LOW AFFINITY D1Rs
Like most systems, DA transmission takes two forms in the stom-
atogastric nervous system, tonic, and phasic. DA neurons in the
commissural ganglia project to the STG and release DA into open
synapses; DA then diffuses to its sites of action before re-uptake
(Oginsky et al., 2010). To the best of our knowledge, DA levels
have not been measured in the STG, but in other systems that
use volume transmission, DA is tonically present at ∼nM levels
(range: 0.1–100 nM) and can transiently increase to ∼μM levels
(range: 0.1–100 μM) near the release sites of bursting DA neurons
(Zoli et al., 1998; Schultz, 2007; Fuxe et al., 2010). In addition, the
STG is located in a blood vessel and is bathed by neurohormonal
DA (Sullivan et al., 1977; Marder and Bucher, 2007). Generally
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FIGURE 7 | DA (5 μM) activates a closed loop. DA (5 μM) acts at high
affinity D1Rs to confer activity-dependence upon LP Ih (DAD regulation,
coral). In addition, 5 μM DA acts at low affinity D1Rs to modulate LP IA and
circuit output (DA modulation, green). Note that the D1R high affinity (coral)
and low affinity (green) effects each provide an arm of a closed loop. DA
(5 μM) initially increases network cycle frequency, decreases LP burst
duration and advances LP activity phase. The latter is due to a decrease in
LP IA. The phase advance not only prevents LP network function, which is
to act as a brake on increasing cycle frequencies, but may even drive
further increases in cycle frequency. DAD regulation permits these
DA-induced changes in activity to subsequently produce a compensatory
decrease in LP Ih Gmax. This restores the LP IA:Ih conductance ratio and
the timing of LP activity phase at the increased cycle frequency and
decreased burst duration. This will stabilize circuit output by limiting further
increases in cycle frequency.

speaking, high affinity receptors respond to ∼nM DA (tonic) and
low affinity receptors respond to ∼μM DA (phasic). We have pre-
viously shown that LP possesses both high and low affinity D1Rs
that mediate different effects on IA. High affinity receptors were
activated by a tonic 1 h application of 0.5 nM but not 0.05 nM
DA and produced a persistent (i.e., non-reversible) increase in LP
IA through a translation-dependent mechanism (Rodgers et al.,
2011b, in press). On the other hand, low affinity D1Rs responded
to bath application of ∼μM DA and immediately and reversibly
decreased LP IA by altering its biophysical properties (Zhang et al.,
2010). In this study we showed that high affinity D1Rs do not sim-
ply act through slow mechanisms (hours) to produce persistent
changes in ionic currents, but can also rapidly (seconds to min-
utes) confer activity-dependence upon an ionic conductance to
generate a feedback loop.

Concomitant stimulation of both low and high affinity LP
D1Rs activates a closed loop that maintains neuronal activity phase
while other aspects of neuronal output are altered (Figure 7). A
5 μM but not 5 nM DA application alters pyloric network activity
(Rodgers et al., 2011a); therefore, DA acts at low affinity receptors
to modulate circuit output. At least three key aspects of pyloric
network output are modulated by DA (Rodgers et al., 2011a): on
average, cycle frequency is increased by ∼10%, LP burst duration
is decreased by 30% and LP firing phase is advanced by ∼20%.
The LP phase advance is largely due to a DA-induced reduction
in LP IA (Harris-Warrick et al., 1995; Zhang et al., 2010). These
alterations in network output disrupt LP network function (John-
son et al., 2011). Normally, LP acts through the LP–PD synapse
to slow increasing cycle frequencies (Nadim et al., 1999; Weaver

and Hooper, 2003; Mamiya and Nadim, 2004, 2005; Johnson et al.,
2011). The timing of LP activity phase is critical for this func-
tion because, LP inhibition has different effects according to when
it occurs during the pacemaker oscillation, and a phase advance
can even increase cycle frequency (Thirumalai et al., 2006; John-
son et al., 2011). This creates a potential for spiraling changes
in network output that would destabilize the system. However,
besides eliciting these alterations in network activity, DA acts at
high affinity D1Rs to permit AD regulation of LP Ih. This allows
the DA-induced changes in cycle frequency and LP burst duration
to subsequently elicit a reduction in LP Ih that exactly compensates
for the modulatory decrease in LP IA to restore the timing of LP
activity phase. Restoring LP firing phase re-establishes LP network
function which is to slow increasing cycle frequency (Johnson et al.,
2011). This could limit the DA-induced increase in cycle frequency
driven by DA actions on the pacemaker and stabilize circuit per-
formance at the increased network cycle frequency, decreased LP
burst duration, and potentially altered LP input:output gain (Bur-
dakov, 2005). It should also restore the initial phasing of rhythmic
pyloric muscle contractions, but at an increased cycle frequency.
Interestingly, burst duration and on/off-delays scale with cycle
period in the natural population throughout development and
over a wide range of temperatures (Bucher et al., 2005; Goaillard
et al., 2009; Tang et al., 2010). Thus, the closed loop uncovered
here may be part of a more extensive control system that synchro-
nizes these network characteristics over multiple time scales and
through multiple mechanisms.

DOPAMINERGIC TONE MIGHT MAINTAIN THE I A :Ih RATIO DURING
NON-DOPAMINERGIC PERTURBATIONS TO ACTIVITY
Landmark studies from the Marder group demonstrated equiva-
lent neuronal and network firing patterns can arise from different
sets of intrinsic and synaptic conductances (Golowasch et al.,
1999a,b; Prinz et al., 2004b; Schulz et al., 2006, 2007). This work
led to the idea that conductances co-vary over time in order
to maintain a particular activity feature, an idea that was sup-
ported by existing ion channel overexpression studies (MacLean
et al., 2003, 2005). These findings were unexpected and caused the
Selverston group to ask: can the output of a network made up of
disparate components be robust to perturbation (Szucs and Selver-
ston, 2006)? Within a population, peak PD IA and PD Ih each
varies by >3-fold across individuals; but, all individuals main-
tain the same PD IA:Ih ratio (Temporal et al., 2012). Selverston’s
group reasoned that if PD IA were blocked with 4-AP in multi-
ple preparations, then PD Ih would no longer be balanced in any
preparation, and the variable amounts of PD Ih in each prepa-
ration would be revealed in distinct PD activity patterns (Szucs
and Selverston, 2006; Nowotny et al., 2007). To their surprise, all
blocked neurons produced similar activity patterns, suggesting
either that the pyloric network is not made up of disparate compo-
nents in each individual or that rapid compensatory mechanisms
must exist to maintain activity. Our findings suggest the latter may
be true: modulator-enabled, AD feedback loops could have pro-
duced compensatory changes in Ih Gmax that maintained activity
in the Selverston group’s experiments. Indeed, modulatory inputs
were intact in the latter studies (Szucs and Selverston, 2006), and
4-AP significantly alters pyloric cycle period and neuronal burst
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durations (Tierney and Harris-Warrick, 1992). Together, the data
imply that modulatory tone could enable multiple AD feedback
loops that maintain conductance ratios and their activity correlates
under a variety of conditions.

PHASE MAINTENANCE
Both intrinsic and synaptic mechanisms can operate over differ-
ent time scales to maintain pyloric neuron phase relationships
when cycle frequency varies. Synaptic depression rapidly pro-
motes phase maintenance by proportionately delaying neuronal
firing as synapses increasingly recover from depression with longer
cycle periods (Nadim et al., 1999, 2003; Manor et al., 2003). DA
can modulate synaptic dynamics to promote phase maintenance:
10 μM DA decreased the time constants of short-term depression
and its recovery at the PD–LP graded synapse, thus contributing
to phase maintenance with changing network frequency (Kvarta
et al., 2012). It is also worth noting that PY inhibition onto LP plays
an important role in determining LP off-phase and this impact
is enhanced in DA (Johnson et al., 1993, 1995), contributing to
the shortening and stabilization of LP activity phase (Johnson
et al., 2011). Fast intrinsic conductances, including IA, can act in
conjunction with synaptic mechanisms to promote phase mainte-
nance in pyloric neurons (Bose et al., 2004; Greenberg and Manor,
2005; Rabbah and Nadim, 2005). Slower processes can also play a
role in pyloric neuron phase maintenance. In a combined phys-
iological and computational study on the spiny lobster, Hooper
et al. (2009) demonstrated that a conductance with slow activat-
ing and inactivating kinetics (seconds to minutes) could explain
adjustment of PIR and phase maintenance in PY neurons in the
presence of altered cycle period. Goaillard et al. (2010) showed the
crab LP neuron possessed a similar mechanism. Neither of these
studies identified the slow conductance. Ih was considered, but
blocking Ih did not terminate the mechanism. The authors sug-
gested the conductance could be an unidentified slow potassium
or calcium conductance, deinactivation of a fast sodium current,
a pump current or a combination of opposing currents with fast
kinetics. Our research extends these previous findings by revealing
the existence of a DA-enabled mechanism(s) for phase mainte-
nance that involves preserving the IA:Ih ratio. DAD regulation of
Ih may contribute to phase maintenance in other rhythmically
active systems where phase relationships are maintained amidst
changes in cycle frequency (Dicaprio et al., 1997; Jacobson et al.,
2009).

MECHANISM OF DAD REGULATION OF LP I h

DAD regulation of LP Ih Gmax integrates information on mul-
tiple aspects of activity. The neurons under study exhibit slow
membrane potential oscillations (∼20 mV at 1–2 Hz) and action
potentials riding on the depolarized plateau of each oscilla-
tion. DAD regulation integrated information on cycle period and
burst duration, as well as spike activity. Integration may be an

epi-phenomenon created by voltage clamp measures of the entire
population of HCN channels, and it is possible that distinct sub-
cellular populations of HCN channels are differentially regulated
by different types of activity.

It is not clear if DAD regulation of LP Ih represents a single inte-
grator that is influenced by multiple types of activity; or, if multiple
molecular integrators exist, each of which is sensitive to a distinct
aspect of activity. AD mechanisms that regulate Ih density could
rely on both Ca2+ release and Ca2+ entry. It is tempting to specu-
late that the mechanism(s) that is sensitive to burst duration and
cycle frequency senses Ca2+ release from stores while the mech-
anism(s) that is sensitive to spiking senses Ca2+ entry through
voltage-gated calcium channels. It was previously noted that Ca2+
release from stores can regulate Ih density in hippocampal neurons
(Narayanan et al., 2010), and that in the pyloric AB neuron, Ca2+
release oscillates with oscillations in membrane potential (Kadiri
et al., 2011). Thus, changes in cycle frequency and burst duration
could alter steady-state Ca2+ contributed by store release. In addi-
tion, Ca2+ entry through glutamate receptors can regulate surface
expression of HCN channels over minutes in cultured hippocam-
pal neurons (Noam et al., 2010). Perhaps this mechanism may be
generalized to Ca2+ entry through other types of channels, such as
high threshold voltage-gated Ca2+ channels that open maximally
during spike activity. In this case, spike frequency could also influ-
ence steady-state Ca2+. Previous studies show that micromolar
DA can enhance LP voltage-gated Ca2+ currents (Johnson et al.,
2003; Kloppenburg et al., 2007), and in the AB neuron micromolar
DA can act on IP3 receptors to increase release from stores (Kadiri
et al., 2011). Since higher concentrations of DA can alter Ca2+
dynamics, these data suggest that DAD regulation of LP Ih may
vary according to DA concentrations as well as activity patterns.

The mechanisms by which high affinity D1Rs permit AD reg-
ulation of LP Ih Gmax are not known. Traditionally, D1Rs are
thought to act through Gαs to regulate adenylyl cyclase activ-
ity and thereby cAMP levels, which in turn regulate PKA. D1R
induced increases in PKA activity can regulate surface expression
of cortical neuron glutamate receptors (Sun et al., 2005). Thus,
in one scenario, a cAMP-PKA signaling pathway may modulate
AD surface expression of HCN channels. Indeed such a pathway
can regulate AD Kv4 channel trafficking in hippocampal neurons
(Hammond et al., 2008). One of the invertebrate adenylyl cyclases,
rutabaga, is a known coincidence detector that can be influenced
by both Gαs and Ca2+ (Tomchik and Davis, 2009; Gervasi et al.,
2010), and rutabaga could underpin DA’s permissive effect.
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