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Abstract 

Inflammatory bowel disease (IBD) continues to affect millions worldwide, with an 

increasing prevalence that highlights the urgent need for deeper understanding of its 

underlying immune mechanisms. The cytokine interactions, especially those mediated 

by cells from the TH1 and TH17 lymphocyte subsets, are crucial in orchestrating the 

immune landscape of IBD. TH1 cells are well known for producing TNF-α and IFNγ, 

which have been extensively studied for their roles in conjunction with each other within 

the context of IBD (Fish, 1999). TH17 cells secrete IL-22 and IL-17, with existing studies 

primarily focusing on IL-22’s interaction with IL-17 rather than its interplay with other 

cytokines such as IFNγ. Our study focuses on the co-stimulatory effects of IL-22 and 

IFNγ using organoids derived from mouse small intestines to model epithelial 

interactions. We found that IFNγ interferes with the capacity of IL-22 to up-regulate 

antimicrobial peptides, which is essential in mucosal defense. Additionally, higher 

concentrations of IL-22 enhance IFNγ's ability to stimulate TNF-α gene expression and 

CXCL10 protein production, indicating a dose-dependent relationship. This co-

stimulation also led to an increased rate of cell death, influenced partly by TNF-α. These 

findings suggest that IL-22, typically seen as an anti-inflammatory agent, can assume a 

pro-inflammatory role when combined with IFNγ, complicating its effects on epithelial 

cells. This study highlights the need to consider specific cytokine interactions in 

developing more effective IBD treatments. 
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1. Introduction 

1.1 Inflammatory Bowel Disease  

Inflammatory Bowel Disease (IBD) includes Crohn's disease (CD) and ulcerative 

colitis (UC), both of which are marked by persistent inflammation within the 

gastrointestinal (GI) tract (McDowell, 2023). CD manifests anywhere along the GI tract 

but predominantly targets the small intestine, whereas UC specifically affects the large 

intestine. The etiology of IBD has been attributed to a complex interplay of factors, 

including microbiota dysbiosis, genetic predispositions, immune system dysregulation, 

and environmental factors (McDowell, 2023; Hu, 2024).   

The prevalence of IBD is notably higher in Western societies, with newly 

industrialized regions experiencing a rise in incidence rates (Ng et al., 2017). Lifestyle 

differences, such as diet, are suspected to drive this trend (Chiba, 2019). In the United 

States, the impact of IBD on society is profound, with annual direct and indirect costs 

per patient ranging between $7,000 and $41,000 (Kahn-Boesel, 2023; Burisch, 2023). 

Considering a prevalence rate surpassing 0.7% of the population, IBD poses a 

significant public health challenge (Lewis, 2023).      

1.2 Factors of IBD 

Environmental factors contributing to the risk of developing IBD include obesity, 

stress, antibiotic use, diet, and exercise. Obesity shares a positive correlation with the 

increased risk of IBD, potentially elucidating the escalating prevalence of IBD in the 

USA alongside rising obesity rates (Carreras-Torres, 2022; NIH, 2021). Conversely, 

exercise is negatively associated with the risk of IBD. Individuals with IBD face a 
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heightened risk of colorectal cancer and psychological comorbidities, including anxiety 

and depression (Shah, 2022; Barberio, 2021). 

The disease's complex pathology is reflected in identifying over 240 gene loci 

associated with IBD (Liu, 2023). A range of susceptibility genes, such as NOD2, 

ATG16L1, CARD9, IL-23R, and CLEC7A, play a significant role in barrier defense and 

are instrumental in immune pathways that ensure a balanced relationship with the 

microbiota (Cohen, 2021; Lang, 2019; Santana, 2019; Zhang, 2015; Jarmakiewicz-

Czaja, 2022).  

The microbiota's involvement in IBD is scrutinized as a causative agent and a 

focal point for therapeutic intervention. Dysbiosis is a common observation in IBD 

cases, prompting numerous studies to delve into the microbiota's impact on IBD 

pathology and how various factors influence this dynamic. Alpha diversity decreases in 

the microbiota of patients with IBD, and fluctuations in composition occur more often 

compared to controls (Qui2022, Abdel-Rahman, 2023). Reducing commensal bacteria 

and increasing pathogenic bacteria further drive an environment prone to excess 

inflammation. (Qui, 2022). Fecal matter transplantation is among the innovative 

treatments under investigation for IBD (Kedia, 2022). The relationship between diet, the 

microbiota, and human health is an area of research that is of great interest. Research 

indicates Westernized diets are more prone to dysbiosis, and diets rich in fiber are 

conducive to microbiomes with more diversity and a higher ratio of commensal bacteria 

(Martinez, 2021) 

At the core of IBD lies a sustained pro-inflammatory response. Pinpointing the 

origins of this response and devising strategies for its management are needed. The 
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epithelial barrier is the critical juncture where the principal contributing factors of IBD—

host genetics, the microbiota, environmental triggers, and the host immune system—

converge. A deeper understanding of the intricate interplay among these elements is 

crucial for developing efficacious treatment modalities for IBD. Subsequent sections will 

further explore contributing factors. 

 

 

 

 

 

 

 

 

Figure 1. The Etiology of IBD is Multifactorial.  
Environment, genetic predisposition, immune dysregulation and microbiota dysbiosis all play a 
part in pathogenesis. 

1.3 Epithelial Barrier Function and Components  

The intestinal epithelium absorbs nutrients and water, eliminates waste, and acts 

as a barrier between the intestinal lumen and the immune system beneath it (Odenwald, 

2017). This barrier's selective permeability is maintained by a layer of varied epithelial 

cells linked by tight junctions, including claudins, occludins, and junction adhesion 

molecules, ensuring compartmentalization (Otani, 2020). The surface facing the lumen 

is shielded by a mucus layer, predominantly produced by goblet cells situated within the 

epithelial layer. These cells are essential for generating mucins that contribute to the 

mucus layer's consistency and thickness, a feature that varies between the small and 
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large intestines and is influenced by the gut microbiota (Gierynska, 2022). Located 

beneath the epithelial cells, on the side facing the host, is the lamina propria—a 

connective tissue enriched with diverse immune cells (Buckley, 2018). The integrity of 

the epithelial and mucus layers is vital to prevent detrimental interactions between the 

microbiota, other luminal substances, and the immune system. 

1.4 Epithelial Barrier and IBD Susceptibility Genes  

IBD susceptibility genes impact barrier integrity through various mechanisms. E-

cadherin, a critical adherens junction protein, is essential for maintaining cell-cell 

adhesion and tight junction formation (Barret, 2009). Specific haplotypes of CDH1 are 

associated with UC and are linked to increased cytoplasmic localization of E-cadherin, 

leading to junctional disruption, a common feature in inflammation (Muise, 2009; 

McCole, 2014). The SNP rs2542151 in protein tyrosine phosphatase non-receptor type 

2 (PTPN2) is strongly associated with IBD, where the gene product, T-cell protein 

tyrosine phosphatase (TCPTP), is elevated in patients with active CD. Knockdown of 

PTPN2 results in a barrier defect driven by IFN-γ (Scharl, 2009). Alleles of Muc3A 

produce proteins with altered conformations that may be more susceptible to 

degradation by bacterial proteases, weakening the barrier (Kyo, 2001; Van den Steen, 

1998). Additionally, CARD15/NOD2 mutations correlate with increased intestinal 

permeability in CD patients (Buhner, 2006). 

1.5 Epithelial Barrier and the Microbiota in IBD 

The epithelial barrier shapes the microbiota composition through mechanisms 

such as autophagy, peptide secretion, dispersion of microRNAs, and provision of 

alternative energy sources (Kwon, 2019; Salzman, 2010; Liu, 2016; Goto, 2016). The 
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microbiota, in turn, sustains barrier function by providing microbial metabolites that 

enhance nutrient and drug metabolism, activate NOD-like and Toll-like receptors, and 

produce antimicrobial substances (Cheng, 2008; Ey, 2009; Ghosh, 2021) 

A symbiotic microbial environment is crucial for the barrier's function and 

modulation of the immune response. In IBD, microbiota composition and displacement 

changes are expected (Okumura, 2018). Both experimental setups and clinical samples 

have detected bacteria in the typically germ-free inner mucus layer, contributing to an 

inappropriate immune response and exacerbating inflammation (Linares, 2021; 

Okumura, 2018). Pathogenic shifts include displacing commensal bacteria like 

Roseburia intestinalis by pathogenic species such as Bacteroides fragilis (Vich Vila, 

2018). Adherent-invasive Escherichia coli (AIEC) is particularly implicated in IBD due to 

its ability to adhere to epithelial cells and evade autophagy (Pamela, 2018). In 

CEABAC10 mice, a Western diet promotes AIEC colonization, which is associated with 

mucus layer thinning, increased intestinal permeability, and elevated TNFα (Martinez, 

2014). The role of dysbiosis in IBD as either a consequence or contributor to altered 

barrier function varies and is case-dependent, yet invariably leads to immune activation 

and a pro-inflammatory environment. 

1.6 Epithelial Barrier and Immune Response Relationship  

The epithelial barrier significantly modulates the immune response. Intestinal 

epithelial cells (IECs) secrete critical factors like transforming growth factor (TGF)-β and 

retinoic acid, which are both important in the development of Foxp3+ regulatory t cells 

(Tregs) (Coombes, 2007). The presentation of microbial antigens by IECs is key in 
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activating Tregs. Tregs must mature for immune tolerance (Atarashi, 2013; Arpaia, 

2013; Smith, 2013; Soderholm, 2019). 

In its interaction with the barrier, the immune system triggers differentiation, 

proliferation, and inflammatory responses. Receptors on the epithelial cells' apical and 

basolateral sides participate in various activities. Releasing cytokines and chemokines 

from immune cells that bind to these receptors on epithelial cells amplifies the immune 

response (citation). 

Understanding IBD necessitates a comprehensive grasp of the immune system's 

role, which is characterized by an intricate network of cytokines and chemokines. 

Numerous cytokines and chemokines engage in complex interactions involving a variety 

of cells and multiple immune factors, implicating them in IBD.  

1.7 IL-22  

Interleukin-22 (IL-22), belonging to the IL-10 cytokine family, plays a vital role in 

maintaining and repairing epithelial barriers, which is essential for protecting mucosal 

surfaces against microbial invasion and promoting tissue repair (Kier, 2020). Produced 

by various immune cells, including Th17, Th22, dendritic cells (DCs), and Group 3 

innate lymphoid cells (ILC3), IL-22 acts on epithelial cells through the IL-22R1 receptor, 

predominantly triggering the JAK-STAT signaling pathway. This action results in the 

phosphorylation, dimerization, and nuclear translocation of STAT3. IL-22 activates the 

PSTAT1 and PSTAT5 pathways to a lesser extent (Horn, 2024). 

1.8 IL-22 in IBD 

In healthy individuals, IL-22 is typically absent from the large intestine but is 

constitutively present in the small intestine (Mizoguchi, 2018). Researchers have 
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observed elevated levels of IL-22 in samples from both UC and CD patients. CD IL-22-

related pathology is largely part of a TH1/ TH17 response. In UC, the dominant relevant 

response is a TH2 response, and there are lower levels of IL22 compared to a 

TH1/TH17 response (Mizoguchi, 2018; Abraham, 2009).  

1.9 IL-22 at the Epithelial Barrier 

IL-22 is crucial in maintaining the integrity of the epithelial barrier by stimulating 

mucin and antimicrobial peptide (AMP) production. This cytokine not only induces mucin 

production but also promotes the proliferation of goblet cells (Kier, 2020). IL-22 is vital 

for tissue repair following acute injury. The absence of IL-22 impairs tissue regeneration 

(Aparicio-Domingo, 2015), and IL-22-deficient mice exhibit increased susceptibility to 

Citrobacter rodentium infection, highlighting its protective role in host defense (Zheng, 

2008). While IL-22 contributes to maintaining intestinal homeostasis and modulating the 

immune environment through its various functions, the transition to the role of another 

critical cytokine, IFN-γ, highlights a different aspect of immune regulation.  

1.10 IFNy  

IFN-γ is the only type 2 interferon and is produced by TH1, CD8+ T cells, NK 

cells, and ILC1 (Murray, 2002; Conlon, 2021) Binding of IFN-γ to its receptor activates 

the JAK1 and JAK2 pathways, resulting in the phosphorylation and dimerization of 

STAT1. These homodimers then translocate to the nucleus to bind to IFN-γ activated 

site (GAS) elements on IFN-stimulated genes (ISGs), initiating transcription (Platanias, 

2005). Interferon-gamma is crucial for defending against intracellular bacterial and viral 

pathogens. Deficiencies in IFN-γ significantly increase susceptibility to infections by 

organisms such as Salmonella and HSV-1 (Perez-Toledo, 2020; Kim, 2022). 
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Figure 2. STAT Signaling Pathways. 
IL-22 primarily signals through STAT3 and IFNy primarily signals through STAT1.  

1.11 IFN-γ in IBD 

IFN-γ often plays a detrimental role in inflammatory bowel disease (IBD). The 

polymorphism IFNG rs1861494 is associated with increased IFN-γ secretion and more 

severe IBD symptoms (Gonsky, 2014). Transcriptomic studies have found elevated 

IFNg gene expression in UC patients (Gao, 2022). 

IFN-γ contributes negatively in several colitis models, enhancing cell 

apoptosis/necroptosis and inflammatory cytokine production. In the DSS colitis model, 

IFN-γ knockout mice do not develop colitis, unlike their wild-type counterparts (Ito, 

2006). Cigarette smoke-induced colitis shows that IFN-γ knockout mice experience less 

TNF-α elevation, reduced weight loss, and better colon length preservation than 

heterozygous mice (Nava, 2010). Additionally, IFN-γ has been shown to promote 

bacterial translocation across the intestinal epithelium (Clark, 2005) and works 

synergistically with TNF-α in many models in driving inflammation. 
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1.12 IFN-γ at the Epithelial Barrier 

The influence of IFN-γ on the epithelial barrier is significantly affected by other 

immune mediators. Its pro-inflammatory effects increase in the presence of TNF-α, 

whereas SOCS1 inhibits its signaling pathways (Larkin, 2013). IFN-γ disrupts barrier 

integrity by downregulating junction proteins and promoting bacterial translocation 

(Clark, 2005; Han, 2019). IFN-γ stimulation induces CXCL9, CXCL10, and CXCL11 

secretion from epithelial cells, attracting cytotoxic T cells and NK cells that exacerbate 

inflammation (Suzuki, 2007; Dwinell, 2001; Kulkarni, 2017). 

1.13 IBD Therapeutics and Future Directions  

TNFa is the most targeted factor for therapeutics in IBD treatment, with the 

majority of IBD treatments being biologics against TNFa; as many as a third of IBD 

patients are primary non-responders to TNFa and about half of those that initially 

respond to treatment end up secondary non-responders (Kumar, 2024). Despite 

identifying TNFa as a prominent contributor to IBD pathology, targeting TNFa alone is 

not an adequate treatment.  

1.14 CXCR3 and its Ligands  

Targeting CXCR3 and its ligand CXCL10 is a promising approach in chemokine 

therapy for IBD (Trivedi, 2018). High CXCR3 expression on activated T-cells has been 

observed in IBD patient tissue biopsies, with increased CXCL10 potentially leading to 

epithelial cell death. The chemokines CXCL9, CXCL10, and CXCL11 are all elevated in 

preclinical models of UC, with CXCR3 ligands attracting CD4+CXCR3+ T cells to the 

epithelial barrier, exacerbating inflammation (Suzuki, 2007; Dwinell, 2001; Kulkarni, 

2017). While these chemokines are often grouped, they play different roles in the 



EFFECTS OF IFN-γ and IL-22 ON INTESTINAL EPITHELIAL CELLS 10 

immune response. CXCL10 only binds to CXCR3 and is noted as particularly important 

in its involvement in autoimmunity(Christen, 2003). 

1.15 Inhibition of IL-23/IL12 

The inhibition of IL-23 and IL-12 is a targeted strategy for treating inflammatory 

bowel disease (IBD), with several FDA-approved biologics designed to suppress the 

effects of these cytokines. However, the clinical outcomes of targeting both or either 

cytokine have shown variable efficacy. This variability underscores the importance of 

understanding the complex downstream interactions mediated by IL-12 and IL-23 in IBD 

pathogenesis. 

Upon stimulation by environmental factors and microbial antigens, dendritic cells, 

and macrophages produce IL-12 and IL-23, essential in differentiating naïve T-cells into 

TH1 and TH17 cells. TH1 cells primarily produce TNF-α and IFN-γ, while TH17 cells 

secrete IL-22 and IL-17 (Roda, 2020). While extensive research has focused on the 

impact of TNF-α and IFN-γ on epithelial cells, and some studies have explored the 

effects of IL-22 and IL-17, the simultaneous influence of IL-22 and IFN-γ on intestinal 

epithelial cells remains unexplored (Woznicki, 2021; Pavlidis, 2022). 

Given the critical roles these cytokines play within the IL-12/IL-23 pathway, 

particularly at the epithelial barrier, it is essential to investigate their combined effects on 

intestinal epithelial cells. Such studies could provide valuable insights into their 

synergistic or antagonistic interactions, potentially leading to more effective therapeutic 

strategies for IBD.  
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Figure 3. IL-22 and IFNy at the Epithelial Barrier. 
IL-22 stimulation induces AMP production and to a lesser degree CXCL10 and TNFa. IFNy 
Stimulation up-regulates CXCL9, CXCL10, CXCL11. 
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2. Modulatory Effects of IFN-γ and IL-22 on Inflammatory Signaling and Cellular 

Responses in Intestinal Epithelial Cells 

2.1 Introduction  

 Understanding IBD necessitates a comprehensive grasp of the immune system's 

role, which is characterized by an intricate network of cytokines and chemokines. The 

cytokine interactions, especially those mediated by cells from the TH1 and TH17 

lymphocyte subsets, are crucial in orchestrating the immune landscape of IBD. TH1 

cells are well known for producing TNF-α and IFNγ, which have been extensively 

studied for their roles in conjunction with each other within the context of IBD (Fish, 

1999). TH17 cells secrete IL-22 and IL-17, with existing studies primarily focusing on IL-

22’s interaction with IL-17 rather than its interplay with other cytokines such as IFNγ.  

Using mouse small intestine derived organoids we explored the effects IL-22 and IFNy 

co-stimulation on epithelial cells.  

2.2 Materials and Methods 

2.2.1 Animal Procurement and Housing 

Male and female B6 mice aged 8-12 weeks were obtained from Jackson 

Laboratories. Animals were housed under controlled conditions with a 12-hour light/dark 

cycle, temperature maintained at 22 ± 2°C. They were given access to standard 

laboratory chow and water ad libitum throughout the study period. 

All animal experiments were conducted in strict accordance with the 

recommendations in the Guide for the Care and Use of Laboratory Animals of the 

National Institutes of Health. The protocol was approved by the Institutional Animal Care 
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and Use Committee (IACUC) of the host institution. All efforts were made to minimize 

animal suffering and to reduce the number of animals used. 

2.2.2 Crypt Isolation and Organoid Culture Maintenance  

Intestinal crypt isolation was performed using B6 mice. The intestine was 

removed and flushed with Dulbecco's Phosphate Buffered Saline (GIBCO) containing 

0.1% Bovine Serum Albumin (DPBS 0.1% BSA (Sigma Aldrich)). The intestines were 

then sectioned into 3 mm pieces and washed with DPBS 0.1% BSA. The tissue 

segments were incubated at 37°C with Gentle Cell Dissociation Reagent (Stemcell 

Technologies) for 5 minutes while shaking at 100 rpm. Subsequently, the tissue was 

subjected to vigorous manual shaking for 15 seconds and then briefly vortexed. The 

supernatant was discarded, and fresh 37°C Gentle Cell Dissociation Reagent was 

added before placing the tissue back in the shaker for an additional 15 minutes. This 

was followed by a 15–20-minute incubation at room temperature without shaking. The 

tissue was then vigorously shaken by hand for 15 seconds, and the supernatant was 

filtered through a 100 µm cell strainer. DPBS 0.1% BSA was added, and the process 

was repeated twice more. The final supernatant, containing the isolated crypts, was 

passed through a 70 µm filter. The crypts were resuspended in a solution of Matrigel 

(Corning Cat #354248) and Murine IntestiCult (Stemcell Technologies) at a 

concentration of 60 crypts per 10 µl and seeded into a 96-well plate. Matrigel was 

diluted to 1x concentration using DMEM (Corning) supplemented with 50ug/mL 

gentamycin (Gibco).  

Organoid cultures were maintained by refreshing the media every two to three 

days. The cultures were initially passaged on day six following seeding, with 
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subsequent passages taking place every three to four days thereafter. Experiments 

were conducted on organoids within three passages from primary isolation to ensure 

consistency and viability of the samples. 

2.2.3 Mode-K Cell Culture  

Mode-K cells were retrieved from liquid nitrogen storage and cultured in T75 

flasks. The culture media were replenished every 2 to 3 days, and the cells were 

passaged at 6-day intervals. The Mode-K culture medium consisted of Dulbecco's 

Modified Eagle Medium (DMEM) supplemented with 5% fetal bovine serum (FBS), 1% 

HEPES buffer (Gibco), 1% sodium pyruvate (Corning) 0.1% beta-mercaptoethanol 

(Gibco), and penicillin/streptomycin. For experiments, Mode-K cells were seeded into 96 

or 12 well TC treated plates.  

2.2.4 Propidium Iodide/ Hoechst Live Dead Staining 

Organoids and Mode-K cells were incubated at 37°C with 5% CO₂ in culture 

media supplemented with 5 µg/mL PureBlu Hoechst (Bio-Rad) and 5 µg/mL Propidium 

Iodide, for a duration of 45 minutes. Following incubation, the culture media was 

discarded, and the cells were washed with pre-warmed PBS. The plates were then 

analyzed using a Cytation 5 imaging reader (Agilent Technologies). A 7x7 area scan 

was conducted for fluorescence detection at the following settings: Excitation at 535/20 

nm and Emission at 617/20 nm for Propidium Iodide, and Excitation at 361/20 nm and 

Emission at 486/20 nm for Hoechst staining. 

2.2.5 ELISA 

ELISAs for CXCL10 and TNF-alpha were performed using Duo-set kits from R&D 

Systems following the manufacturer’s guidelines. The assays included multiple wash 
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steps performed on a designated machine with a bottom wash followed by three 

additional washes. The blocking step involved reagent diluents at 5% concentration. 

Absorbance was measured using a Cytation 5 imaging reader (Agilent Technologies) at 

450 nm, with 570 nm serving as the reference wavelength. 

2.2.6 Immunofluorescence Microscopy 

The culture medium was discarded, and the cells were washed with PBS. Cells 

were then fixed and permeabilized in 100% ice-cold methanol at -20°C for 4-5 minutes. 

After the removal of methanol, cells were washed again with PBS and subsequently 

blocked with 5% goat serum for 1 hour at room temperature with gentle shaking. 

Following another PBS wash, primary antibodies (Phospho-Stat3 (Tyr705) (D3A7) XP® 

Rabbit mAb #9145 and Phospho-Stat1 (Tyr701) (58D6) Rabbit mAb #9167, Cell 

Signaling) were diluted at a ratio of 1:200 and applied to the cells, which were then left 

to incubate overnight at 4°C.  

The next day, the primary antibody solution was removed, and cells were 

washed with PBS. Secondary antibodies (Goat anti-Rabbit IgG (H+L) Highly Cross-

Adsorbed Secondary Antibody, Alexa Fluor™ Plus 555, Invitrogen) were diluted 

between 1:500 and 1:1000 and added to the wells. Cells were incubated for 1 hour with 

gentle shaking in the dark. Afterward, the secondary antibody was discarded, and cells 

were stained with DAPI in PBS for 15 minutes with shaking at room temperature. A final 

wash with PBS was performed before acquiring images on a Cytation 5 imaging 

system. Analysis was performed using Gen5 Software by Biotek (Agilent). 

2.2.7 RNA Isolation and cDNA Synthesis 
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Total RNA was extracted from tissue samples using Qiagen’s RNeasy Mini Spin 

Columns, incorporating an on-column DNase digestion to eliminate genomic DNA 

contamination. cDNA was synthesized using the SuperScript IV Reverse Transcriptase 

kit from Thermo Fisher Scientific, with a modified protocol that included an extended 

incubation at 50°C to improve transcript yield. 

2.2.8 Quantitative PCR 

Gene expression levels were quantified by qPCR using iTaq Universal SYBR 

Green Supermix (Bio-Rad). Specific primers for each gene, detailed in Table [Table 

Name], were used. Reactions were performed on a QuantStudio 5 Real-Time PCR 

System according to the standard SYBR Green protocol. All samples were analyzed in 

duplicate to ensure accuracy and reproducibility. 

2.2.9 Scratch Assay 

The scratch assay was performed on mode-k cells that were cultured to near or 

full confluency in 96-well plates. A sterile 1000 µl pipette tip connected to a vacuum 

system was used to create a uniform scratch across the cell monolayer. Subsequent to 

the scratch, cells were maintained in their growth medium under standard culture 

conditions. Brightfield microscopy images were captured at 0 and 36 hours post-scratch 

using a Cytation 5 Imaging Reader. Image analysis for quantifying wound closure was 

conducted using ImageJ software, employing the Scratch Wound Assay Macro 

developed by the MRI Group. This analysis provided quantitative data on cell migration 

and wound healing over time. 
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2.2.9 qPCR Primers  

Primers 5’ Forward 3’ 5’Reverse3’ 

GAPDH CGACTTCAACAGCAACTCCCACTCTTCC TGGGTGGTCCAGGGTTTCTTACTCTT 

REG3y TTCCTGTCCTCCATGATCAAAA CATCCACCTCTGTTGGGTTCA 

REG3b ATGCTGCTCTCCTGCCTGATG CTAATGCGTGCGGAGGGTATATTC 

CXCL10 GGATGGCTGTCCTAGCTCTG TGAGCTAGGGAGGACAAGGA 

TNFa CGATCACCCCGAAGTTCAGTA CAGGCGGTGCCTATGTCTC 

Table 1. QPCR Primer Sequences. 

2.2.10 Statistical Analysis  

All statistical analysis were performed using Graphpad Prism 10.1.2. Ordinary 

One-Way ANOVA followed by Tukey’s Multi-Comparisons tests. T-test were used for 

groups of two. ns=not significant.  

2.2.11 Use of AI Language Model 

ChatGPT, an AI language model developed by OpenAI, was utilized during the 

preparation of this draft. The general workflow was as follows: First, a human writes a 

draft with all the information. The draft is given to ChatGPT with the prompt: “Please 

rewrite the following so it flows better. Put the in-text citations into APA format. Do not 

remove or add any information. In-text citations need to remain with their facts. Please 

do not use the word “pivotal.” Please correct spelling and grammar mistakes. Avoid 

introductory clauses”. The author would take the rewritten content and edit what 

ChatGPT wrote because, invariably, it has failed some of the requests in the prompt. In 

a second method, ChatGPT would be given the main ideas wanted in a section and 

asked to write that section. The output was typically exceptionally unfit, but the general 

structure was useful. So, the author would use the structure to write their content and 
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then employ method one. The author does not think the process was faster than writing 

without ai assistance, but the manuscript is probably less painful for others to read.  

2.3 Results 

REG3b, REG3g, TNFa, and CXCL10, selected for their relevance to inflammatory 

bowel disease (IBD) and robust expression in small intestine (SI) derived organoids, 

were investigated in response to stimulation by IFNy and IL-22 (Fig.4). 

2.3.1 IFNy Dampens IL-22 Up Regulation of REG3b and REG3y 

To explore the co-stimulatory effects of IFNγ and IL-22 on Intestinal epithelial 

cells, we stimulated small intestine-derived organoids with cytokines for 24 hours and 

evaluated gene expression by QPCR. After 48 hours of stimulation, we evaluated 

protein levels in the supernatant by ELISA. IL-22 stimulation increased REG3b and 

REG3y expression at doses of 1ng/mL and 10ng/mL (Fig4.1.A,B). When 1ng/mL of 

IFNγ was added to the organoids along with IL-22, a significant reduction in REG3b and 

REG3y expression was observed (Fig.4.A,B).  

2.3.2 IL-22 Amplifies IFNy-induced TNFa Gene Expression and Protein 

Induction in a Dose-dependent Manner 

Organoids co-stimulated with 1ng/mL of IFNγ and 1ng/mL of IL-22 did not 

express TNFα significantly more than organoids stimulated with IFNγ alone (Fig.4.2A). 

In contrast, combining 1ng/mL IFNγ with 10ng/mL IL-22 significantly increased TNFα 

expression (Fig.4.2A). Next we confirmed the QPCR data by ELISA. When 1ng/mL IL-

22 was added to the 1ng/mL IFNγ stimulation, TNFα levels showed a significant 

increase compared to the levels induced by either cytokine alone (Fig.4.2B). Further 

enhancement of TNFα expression was observed when the concentration of IL-22 was 
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increased to 10ng/mL while maintaining IFNγ at 1ng/mL. The TNFα levels in this 

condition were significantly higher than those observed with the lower dose combination 

of 1ng/mL IL-22 and 1ng/mL IFNγ (Fig.4.2B).  

2.3.3 Higher Concentrations of IL-22 Amplify the CXCL10 Protein Induction 

Capabilities of IFNy 

Previous studies have shown IFNy and TNFa co-stimulation of epithelial cells 

upregulates ISGs including CXCL10 (Oslund, 2014). Having confirmed a significant 

increase of TNFa in the supernatant of the organoids co-stimulated with IFNy and IL-22, 

we predicted these conditions would increase concentrations of CXCL10. To test this 

we employed the same experimental design as when evaluating for TNFa, but used a 

lower dose of IFNy.  

Administration of 0.1ng/mL IFNγ alone did not induce a significant amount of 

CXCL10 compared to PBS control (Fig.4.3). When 1ng/mL IL-22 was combined with 

0.1ng/mL IFNγ, there was a significant enhancement in CXCL10 levels compared to the 

stimulation with IL-22 alone (Fig.4.3). However, this combination did not result in a 

statistically significant difference from the CXCL10 levels induced by IFNγ alone. The 

most notable increase in CXCL10 protein levels occurred when 0.1ng/mL IFNγ was 

combined with 10ng/mL IL-22 (Fig.4.3). This combination significantly elevated CXCL10 

induction above all other tested conditions. 

2.3.4 Barrier Integrity  

An essential aspect of epithelial barrier defense and IBD pathology is cell death. 

A breakdown in the barrier allows for the contents of the lumen and the immune system 

to come into contact, risking elevated immune activation and perpetuation of 
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inflammation (Odenwald, 2017). IFNγ is known to induce cell death through 

apoptosis/necroptosis. TNFa has also been studied as a factor capable of inducing cell 

death in epithelial cells (Woznicki, 2021). Given the results showing an increase in 

TNFa in the combined co-stimulatory conditions, we were interested in exploring 

possible effects on cell viability. We employed a propidium iodide and Hoechst staining 

assay (modified from Bode 2019) to quantitatively measure cell death in mouse 

intestinal organoids following exposure to varying concentrations of the cytokines over 

48 hours.  

The percentage of cell death in the organoids demonstrated a dose-dependent 

increase when stimulated with IFNγ. The cell death rate escalated with higher doses of 

IFNγ and reached a plateau at 10ng/mL, where it stabilized at approximately 60% 

mortality (Fig.4.6A). In contrast, organoids stimulated with IL-22 exhibited a different 

pattern of cell death. The mortality rate increased with escalating doses of IL-22 but 

reached a plateau at a lower concentration of 5ng/mL, where cell death accounted for 

about 20% of the population (Fig.4.6B).  

2.3.5 Il-22 and IFNy Synergize, Enhancing Cell Death in Organoids  

Organoids treated with 0.1ng/mL IFNγ alone caused minimal cell death 

(Fig.4.8A). Co-stimulation with IL-22 at 1ng/mL and IFNγ at 0.1ng/mL resulted in a 

significant increase in cell death compared to IFNγ alone (Fig.4.8A). A more 

pronounced cytotoxic effect was observed when the concentration of IL-22 was 

increased to 10ng/mL while maintaining IFNγ at 0.1ng/mL. Under these conditions, 

approximately 50% of the organoid(s) underwent cell death after 48 hours of stimulation 

(Fig.4.8A).  
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The same experiment was conducted but with IFNγ at 1ng/mL, with similar 

results. IFNγ alone induced substantial cell death, which was augmented by co-

stimulation with IL-22 (Fig.4.8B). In this experiment, the co-stimulatory conditions 

exhibited significantly more cell death than the cytokines individually (Fig.4.8B). 

Additionally, the higher dose of IL-22 resulted in more cell death than the lower dose of 

IL-22 in the combined conditions (Fig.4.8B).  

2.3.6 Anti-TNFa Partially Ameliorates Cytokine-induced Cell Death 

Next, we investigated TNFa as a possible contributor to the increase in cell death 

observed in the co-stimulatory conditions. Organoids were stimulated with 0.1ng/mL of 

IFNγ and 10ng/mL of IL-22 for 48 hours. One group of organoids was also treated with 

anti-TNFα. The anti-TNFα-treated group exhibited significantly reduced cell death 

compared to the group that did not receive anti-TNFα (Fig.4.9A). 

In the IL-22 experiments for cell death, at varying doses, after a concentration of 

5ng/ml, around 20%, cell death invariably occurs in organoids (Fig.4.6B). We predicted 

this cytotoxicity to be partially attributed to TNFa, so we mirrored the last experiment. 

However, we focused on IL-22 10ng/mL stimulated organoids. The group treated with 

anti-TNFα showed significantly less cell death than the untreated group (Fig.4.9B).  

Since we also observed an increase in CXCL10 and previous studies have 

shown that CXCL10 can induce cell death (Singh, 2009), we explored CXCL10's 

potential contribution to cell death. We tested responses to combined IL-22 and IFNγ 

co-stimulation under four different conditions: no inhibitors, anti-TNFα, anti-CXCL10, 

and a combination of both inhibitors. The introduction of anti-TNFα alone markedly 

decreased cell death compared to the untreated control (Fig.4.9C). Conversely, anti-
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CXCL10, whether alone or combined with anti-TNFα, did not significantly affect cell 

death (Fig.4.9C). 

2.3.7 IL-22 and IFNy Co-stimulation Slows Wound Closure  

Further investigating the effects of co-stimulation of IFNγ and IL22 and barrier 

integrity, we used mode-k cells to perform a scratch/wound healing assay. Previous 

studies have found that IL-22 generally accelerates the rate of wound closure through 

proliferation and migration (Avitibile, 2015). IFNγ in wound healing assays promotes 

closure through migration in certain cell types at specific doses (He, 2017).  

In this experiment, mode-k cells were grown to/near confluence, a scratch was 

made in the monolayer, and after 36 hours, the scratch was assessed for percent 

closure. Prior to the scratch, the cells were pre-stimulated with cytokines. 

IL-22 at higher doses (10ng/mL) accelerated wound closure compared to PBS 

(Fig.4.11A), while IFNγ slowed wound closure (Fig.4.11B). Co-stimulation with IL-22 

and IFNγ impaired wound healing more than IFNγ alone (Fig.4.11B).  

2.3.8 IL-22 and IFNy Interfere with the Other's Signaling Pathway  

Pickert 2009 linked IL-22 and phosphorylated STAT3 (PSTAT3) to mucosal 

wound healing, with the absence of STAT3 in IECs significantly impairing healing 

capabilities. Given the results of the scratch assays, we predicted IL-22 would enhance 

Phosphorylated STAT3, and co-stimulation with IFNγ would negate IL-22-stimulated 

elevated PSTAT3 levels. Mode-K cells were stimulated with cytokines for 24 hours and 

then evaluated for PSTAT3 and PSTAT1 via immunofluorescence.  

When Mode-K cells were stimulated with IL-22 at 10ng/mL, the number of 

PSTAT3-positive cells compared to the baseline and other experimental groups was 
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pronouncedly increased (Fig.3E) IF Images (Fig.S1A). Co-stimulation of cells with IL-22 

at 10ng/mL and IFNγ at 1ng/mL reduced the number of pSTAT3-positive cells, reverting 

to baseline levels (Fig.3E). 

Stimulation of Mode-K cells with IFNγ alone significantly increased the presence 

of pSTAT1-positive cells (Fig.3F). IL-22 at 10ng/mL was introduced alongside IFNγ, 

there was a noticeable reduction in pSTAT1-positive cells, although levels remained 

above baseline (Fig.3F) IF Images (Fig.S1B). 

2.3.8 Mode-k Cells Do Not Reflect the Results Observed in Organoids  

Mode-k cells were stimulated for 24 hours then gene expression was evaluated 

by QPCR. Supernatant protein levels were assessed after 48 hours of stimulation by 

ELISA. Mode-k cells showed no detectable gene expression for REG3b and REG3y (no 

graph due to complete lack of detection). Mode-k cells showed no basal or stimulus-

induced TNFα gene expression above levels comparable to PBS controls (Fig.4.14A). 

However, CXCL10 is expressed constitutively in Mode-k cells, with IFNγ further 

upregulating CXCL10 (Fig.4.14B). ELISA confirmed high basal levels of CXCL10 

protein (Fig.4.14C). Notably, the co-stimulation of Mode-k cells with IFNγ and IL-22 did 

not synergistically enhance CXCL10 levels (Fig.4.14C).  

2.3.9 TNFα Does Not Inhibit IL-22-induced AMP Expression 

Since the data thus far provides a potential role for TNFa in the unexpected 

effects IL-22 has on epithelial cells, in the presence of IFNy, we wanted to explore co-

stimulation of IL-22 and TNFa on organoids. 

 Organoids from small intestines were stimulated with TNFα and IL-22 for 24 

hours, and gene expression was evaluated by QPCR. Unlike IFN-γ, TNFα did not 
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suppress the up-regulation of AMP gene expression induced by IL-22 (Fig.4.14A,B). 

Co-stimulation with IL-22 and TNFa significantly enhanced CXCL10 expression 

compared to other conditions (Fig.4.14C), while TNFα expression in co-stimulated 

organoids was not distinct from TNFα alone (Fig.4.14D). Apart from REG3y expression, 

these results are preliminary and warrant further verification. 

 

 

 

 

 

 

 

 

 

Figure 4. Organoid Gene Expression in Response to IFNy and IL-22 Stimulation. 
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Figure 4.1. IL-22 and IFNy Co-stimulatory Effects on AMP Expression. 
Organoids were stimulated for 24 hour and evaluated for gene expression by QPCR. (A,B) IFNy 
dampens IL-22 stimulated upregulation of AMPs. QPCR samples ran in technical duplicates and 
collected from >3 experiments. Ordinary one-way ANOVA followed by Tukey’s multiple comparisons 
test and expressed as mean +/- SD. 

Figure 4.2. IL-22 and IFNy Co-stimulatory Effects on TNFa Gene Expression and Protein 
Induction. 
Organoids were stimulated for 24 hours and evaluated for gene expression by QPCR. Protein 
expression was assessed at 48 hours via ELISA. (A) IL-22 amplifies IFNy-induced TNFa gene 
expression. (B) IL-22 amplifies IFNy induced TNFa protein levels, in supernatant, in a dose-
dependent manner. QPCR samples were ran in technical duplicates and collected from >3 
experiments. ELISA data point represent independent biological samples collected from ≥ 3 
experiments. Ordinary one-way ANOVA followed by Tukey’s multiple comparisons test and 
expressed as mean +/- SD. 
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Figure 4.3. IFNy and IL-22 Co-stimulation on CXCL10 Protein Levels in Organoid Culture 
Media. 
IL-22 and IFNy synergize increasing CXCL10 protein concentration in a dose-dependent manner. 
Data point represent independent biological samples collected from 4 experiments. Ordinary one-
way ANOVA followed by Tukey’s multiple comparisons test and expressed as mean +/- SD. 
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Figure 4.4.  PI/H Image of Organoids Treated with IFNy at Different Concentrations for 48 
Hours. 
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Figure 4.5. PI/H Images of Organoids Treated with IL-22 at Different Concentrations for 48 
Hours. 
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Figure 4.6. Cytokine Stimulation on Organoid Cell Viability. 
SI organoids were stimulated for 48 hours then evaluated by PI/H for cell death (A,B) Increasing 
concentration of cytokine increases cell death. Data points are representative of one well and were 
collected over >3 experiments. Significance was determined using Ordinary one-way ANOVA 
followed by Tukey’s multiple comparisons test and expressed as mean +/- SD. 
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Figure 4.7. PI/H Images of Organoids After 48 Hours of Stimulation. 
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Figure 4.8. IFNy and IL-22 Co-stimulation on Cell Viability of Organoids. 
SI organoids were stimulated for 48 hours then evaluated by PI/H for cell death. (A,B) IL-22 and 
IFNy synergize, enhancing cell death in organoids. Data points are representative of one well and 
were collected over ≥3 experiments. Significance was determined using Ordinary one-way ANOVA 
followed by Tukey’s multiple comparisons test and expressed as mean +/- SD. 

 

Figure 4.9. Anti-TNFa on Organoid Cell Viability. 
SI organoids were stimulated with cytokines and anti-bodies for 48 hours then evaluated by PI/H for 
cell death. (A) anti-TNFa reduces cell death in organoids co-stimulated with IL-22 and IFNy. (B) anti-
TNFa reduces cell death in organoids stimulated with 10ng/mL IL-22. (C) anti-CXCL10 does not 
significantly reduce cell death compared to untreated groups. Data points are representative of one 
well and were collected over ≥ 3 experiments (C’s data is from 1 experiment). Significance was 
determined using Ordinary one-way ANOVA followed by Tukey’s multiple comparisons test and 
expressed as mean +/- SD. Groups of two evaluated by T-tests. 
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Figure 4.10. Digital Phase Contrast Images of Scratch Assay on Mode-k Cells. 

 

Figure 4.11. IL-22 and IFNy Co-stimulation in Wound Healing. 
Scratch assay was performed on mode-k cells with a 24 hours of stimulation prior to (and during) the 
scratch and evaluation 36 hours post scratch. (A). Higher dose IL-22 accelerates wound. (B) IL-22 
and IFNy co-stimulation slows wound closure compared to PBS. data points represent 1 well 
collected from 3 experiments. Significance was determined using Ordinary one-way ANOVA 
followed by Tukey’s multiple comparisons test and expressed as mean +/- SD. 
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Figure 4.12. Immunofluorescence of Phospho-STATS in Mode-K Cells. 
(A) PSTAT3 IF images (B) PSTAT1 IF images (C) Isotype control. 

 

Figure 4.13. Mode-k Cells PSTATs in Response to Cytokine Stimulation. 
Mode-k cells’ PSTAT3 and PSTAT1 was evaluated by immunofluorescence after 24 hours of 
stimulation. stimulation (E). IL-22 increased PSTAT3. Co-stimulation of IL-22 with IFNy significantly 
reduced PSTAT3 levels, compared to Il-22 alone. (F) IFNy stimulation significantly increases 
PSTAT1. Co-stimulation with IL-22 significantly decreases PSTAT1, compared to IFNy alone. Data 
points representative of 1 image collected over 1 experiment for PSTAT3 and 2 for experiments 
PSTAT1. Significance was determined using Ordinary one-way ANOVA followed by Tukey’s multiple 
comparisons test and expressed as mean +/- SD. 

C 
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Figure 4.14. IL-22 and IFNy Stimulatione Effects on Mode-k Cells. 
Mode-k cells were stimulated with cytokines for 24 hours and gene expression was evaluated by 
QPCR. (A) Mode-k cells do not express significant amounts of TNFa under any conditions. (B) IL-22 
and IFNy and IL-22 co-stimulation does not synergistically increase CXCL10 gene expression. 
Mode-k cells constitutively express CXCL10. (C) IL-22 and IFNy and IL-22 co-stimulation does not 
synergistically increase CXCL10 protein concentration. Mode-k cells constitutively express CXCL10 
at high levels. QPCR samples ran in technical duplicates and collected from 1 experiment. ELISA 
data points represent independent biological samples collected from 4 experiments. Ordinary one-
way ANOVA followed by Tukey’s multiple comparisons test and expressed as mean +/- SD. 

Figure 4.15. IL-22 and TNFa Co-stimulation of Organoids. 
Organoids were stimulated for 24 hours and gene expression was evaluated by QPCR. (A,B) TNFa 
does not downregulate IL-22 stimulated AMP expression. (C.) TNFa and IL-22 co-stimulation 
synergistically upregulates CXCL10 expression. (D) TNFa and IL-22 co-stimulation did not enhance 
TNFa gene expression compared to TNFa alone. QPCR samples ran in technical duplicates and 
collected from 1 experiment. Ordinary one-way ANOVA followed by Tukey’s multiple comparisons 
test and expressed as mean +/- SD. 
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3. Conclusion 

This study investigated the interactions between IL-22 and IFNγ on epithelial 

cells, particularly concerning cytokine-driven gene expression and cellular responses, 

including cytotoxicity and wound healing. The findings reveal intricate interactions 

between these cytokines that affect cellular processes relevant to IBD pathogenesis. 

IL-22 and IFNγ traditionally have opposing roles, with IL-22 typically promoting 

regenerative responses and IFNγ mediating inflammatory actions. This study shows 

that co-stimulation with IFNγ can convert the usually protective effects of IL-22 into a 

pro-inflammatory response. 

IFNγ dampens IL-22-induced REG3b and REG3y expression, which is crucial for 

mucosal healing and antimicrobial defense. This interaction suggests a dominant 

inhibitory role of IFNγ over the beneficial effects of IL-22 in epithelial repair and 

maintenance. The synergistic effect of IL-22 and IFNγ on the induction of TNFα and 

CXCL10 further demonstrates the complexity of cytokine interactions. Surprisingly, 

higher doses of IL-22 further enhanced the induction of TNFa and CXCL10. The 

elevated levels of TNFa are notably problematic as elevated TNFa is one of the most 

prominent characteristics of IBD. TNFα synergizes with IFNγ, acting on epithelial cells 

which produce elevated levels of CXCL9, CXCL10, CXCL11, and TNFα. CXCL9, 

CXCL10, and CXCL11, through chemotaxis, attract CD8 cytotoxic T cells and NK cells, 

which produce IFNγ and TNFα, creating a feedforward loop that further promotes a pro-

inflammatory environment (Suzuki, 2007; Dwinell;2001 Kulkarni 2017). CXCR3 and its 

ligand, particularly CXCL10, are being investigated as therapeutic targets in 

autoimmunity (Christen, 2003). Co-stimulation of IL-22 and IFNγ in mode-k cells did not 
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upregulate CXCL10 significantly from IFNγ alone. Mode-k cells also did not increase 

TNFa gene expression in response to any stimuli. IL-22 and TNFa co-stimulation of 

organoids did significantly upregulate CXCL10. These results suggest TNFa is an 

integral component of upregulation of CXCL10 in the co-stimulatory conditions.  

The cytotoxic effects induced by co-stimulation with IFNy and IL-22 in intestinal 

organoids and the partial mitigation of these effects by anti-TNFα treatment underscore 

TNFα's critical role in cytokine-induced epithelial damage. This finding is consistent with 

the known pro-apoptotic functions of TNFα and supports ongoing therapeutic strategies 

targeting TNFα in IBD. The lack of significant impact of anti-CXCL10 treatment on cell 

viability indicates a secondary role of CXCL10 in cytokine-induced cytotoxicity despite 

its upregulation in inflammatory conditions.  

In the context of epithelial barrier integrity, the inhibition of wound closure by 

IFNγ highlights the challenges in managing IBD, where healing of mucosal lesions is 

crucial. IFNy and IL-22 co-stimulation further inhibiting wound closure is particularly 

problematic, as IL-22 is critical in wound healing.   

Lastly, the alterations in STAT signaling induced by cytokine co-stimulation 

provide a molecular basis for the observed cellular responses. The reduction of 

PSTAT3-positive cells in the presence of IFNγ, even with high levels of IL-22, reveals a 

competitive antagonism between these cytokines at the signaling level. Conversely, the 

decrease in PSTAT1 expression with IL-22 addition suggests a partial counter-

regulatory mechanism, though insufficient to reverse IFNγ effects fully. The reduction of 

STAT1 without a reduction in CXCL10 gene transcription or protein induction could 

indicate CXCL10 gene transcription is primarily using another pathway, such as PI3K.  
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An essential insight from this study, with significant therapeutic implications, is 

the critical role of cytokine dosage. We observed that problematic interactions between 

these cytokines predominantly occurred at higher concentrations and in combination. 

This underscores the importance of not only discerning the interactions between 

cytokines but also understanding how these interactions vary with concentration. Such 

knowledge can refine our approaches to treatment. This nuanced understanding of 

dosage effects highlights the need for precision in cytokine modulation strategies in 

clinical and research settings. These findings also demonstrate that IL-22, typically seen 

as an anti-inflammatory agent, can assume a pro-inflammatory role when combined 

with IFNγ, complicating its effects on epithelial cells. This study highlights the need to 

consider specific cytokine interactions in developing more effective IBD treatments. 
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