
Georgia State University Georgia State University

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University

Computer Science Theses Department of Computer Science

1-12-2006

A System for Rapid Configuration of Distributed Workflows over A System for Rapid Configuration of Distributed Workflows over

Web Services and their Handheld-Based Coordination Web Services and their Handheld-Based Coordination

Jaimini Joshi

Follow this and additional works at: https://scholarworks.gsu.edu/cs_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Joshi, Jaimini, "A System for Rapid Configuration of Distributed Workflows over Web Services and their
Handheld-Based Coordination." Thesis, Georgia State University, 2006.
doi: https://doi.org/10.57709/1059363

This Thesis is brought to you for free and open access by the Department of Computer Science at ScholarWorks @
Georgia State University. It has been accepted for inclusion in Computer Science Theses by an authorized
administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/cs_theses
https://scholarworks.gsu.edu/computer_science
https://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.57709/1059363
mailto:scholarworks@gsu.edu

A SYSTEM FOR RAPID CONFIGURATION OF DISTRIBUTED WORKFLOWS

OVER WEB SERVICES AND THEIR HANDHELD-BASED COORDINATION

by

JAIMINI JOSHI

Under the Direction of Sushil K. Prasad

ABSTRACT

Web services technology has lately stirred tremendous interest in industry as well as

the academia. Web services are self-contained, platform independent functionality which

is available over the internet. Web services are defined, discovered & accessed using a

standard protocols like WSDL, UDDI & SOAP. With the advent of Service-Oriented

Architecture and need for more complex application, it became eminent to have a way in

which these independent entities could collaborate in a coherent manner to provide a high

level functionality. But the problem of service composition is not an easy one. One

reason being the self-contained and loosely coupled interaction style, which happens to

be the single most important reason for its popularity. We are proposing a prototype

system for distributed coordination of web services. This system is based on the Web

Bonds model for coordination.

 The system, dubbed BondFlow system, allows configuration and execution of

workflows configured over web services. Presently BondFlow system allows both

centralized as well as distributed coordination of workflows over handhelds, which we

claim as an engineering feet and is currently a unique work in this area.

Index words: Web services, coordination, composition of web services, BondFlow, Web

Bonds, distributed systems

A SYSTEM FOR RAPID CONFIGURATION OF DISTRIBUTED WORKFLOWS

OVER WEB SERVICES AND THEIR HANDHELD-BASED COORDINATION

by

JAIMINI JOSHI

A Thesis presented in partial fulfillment of requirements for the Degree of

Master of Science

in the College of Arts and Sciences

 Georgia State University

2005

Copyright by

Jaimini L. Joshi

Master of Science (Computer Science)

2005

A SYSTEM FOR RAPID CONFIGURATION OF DISTRIBUTED WORKFLOWS

OVER WEB SERVICES AND THEIR HANDHELD-BASED COORDINATION

by

JAIMINI JOSHI

Major Professor: Sushil K. Prasad

Committee: Alex Zelikovsky

 Raj Sunderraman

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

December 2005

iv

Dedicated to everyone who was part of this

For all the support

v

Acknowledgements

I would like to thank my advisor, Dr. Sushil K .Prasad, for his expert guidance.

He was always receptive to new ideas and ready to explore options. He always helped me

see the bigger picture thus helping me focus on the main issues in the system.

A special thanks to Janaka Balasooriya. He was a constant source of information

and advice during the research.

Dr. Raj Suderraman & Dr. Alex Zelikovsky were kind enough to review the

manuscript and provide me with fine pointers to meet the standards.

vi

Table of contents

Acknowledgements ... v

List of Tables .. viii

List of Figures... ix

1 INTRODUCTION... 1

1.1 Motivation... 1

1.2 Specific contributions ... 2

1.3 Organization of thesis ... 3

2 WEB SERVICES & THE PROBLEM OF COMPOSITION 4

2.1 SOAP .. 4

2.2 WSDL ... 6

2.3 UDDI... 7

2.4 Problem of Service Composition.. 8

2.5 Current Standards & their limitations ... 8

3 BACKGROUND ... 11

3.1 Web coordination bonds ... 11

3.2 SyD Middleware Framework.. 12

4 BONDFLOW SYSTEM: ARCHITECTURE & DESIGN.................................. 14

4.1 BondFlow Configuration System ... 15

4.2 BondFlow Runtime... 22

5 BENCHMARK WORKFLOW PATTERNS & USER DEFINED

CONSTRUCTS ... 31

5.1 Control Flow Patterns ... 31

vii

5.2 Extended Coordination Manager .. 35

6 FLAVORS OF BONDFLOW SYSTEM... 40

6.1 Centralized PC based .. 40

6.2 Centralized iPAQ based.. 40

6.3 Distributed iPAQ based .. 41

7 SYSTEM EVALUATION.. 43

8 CONCLUSION & FUTURE WORK.. 48

9 BIBLIOGRAPHY... 49

viii

List of Tables

Table 1. WSDL Definition sections... 7

Table 2. WSCP Generation Scenario.. 16

Table 3. Workflow Creation Scenario .. 18

Table 4. MarkAndLock Messages ... 27

Table 5. EnforceSubscriptionBond Messages... 29

Table 6. Configuring Extended Coordination Manager... 37

Table 7. Performance Measurements ... 47

ix

List of Figures

Figure 1. SOAP components interaction .. 6

Figure 2. BondFlow Configuration System Modules ... 16

Figure 3. BondFlow Runtime System Architecture... 22

Figure 4. Coordination Manager Interactions ... 24

Figure 5. State/Instance Handler working.. 25

Figure 6. Partial flow of activities for enforcing Pre-Negotiation Bond 26

Figure 7. ECM deployment flow of activities ... 38

Figure 9. Online Book purchase workflow... 44

Figure 10. Puchase Order Workflow[BPEL spec] ... 45

Figure 11. Purchase order workflow modeled using Web Bonds 46

1

1 INTRODUCTION

Web service choreography has spurred a lot of interest and attracting researchers

from industry and university equally. It stands proven that web services can prove to be a

good building block for complex application and allows high-level of customization.

BondFlow system provides a rapid configuration and deployment environment of

workflow over web services. BondFlow system is based on the Web Bonds Model [26].

The system allows expert users with high level of flexibility and novice user have ease of

configuration. It is a good blend of abstraction and low-level artifacts. The system

currently can be deployed in variety of target environment including handhelds.

1.1 Motivation

There is a need for a platform which allows user to easily configure and deploy

complex workflow over web services. Web services are often seen as independent self

contained entities. Coordination among these entities would require defining a layer of

middleware which provides the necessary booking keeping services. Further the need of

the day calls for distributed coordination of web services as oppose to centralized

coordination, for reason such as bottleneck due to centralized control, lack of fault

tolerance. The industry is divided among the proponent for centralized and distributed

coordination. These models are generally known as Web services orchestration and web

services choreography respectively. The main of the system was to provide easy

configuration and deployment capabilities. Most of the current systems either are too

complex, requiring expert knowledge, or just too high level, thus cutting on the level of

flexibility. BondFlow system tries to strike a balance between the two extremes.

2

1.2 Specific contributions

BondFlow system claims to be unique in terms of implementing web services

coordination over web services. Previous work [28] related to developing a wrapper

based framework which can further be developed to provide true distributed coordination

among web services. Further the current work also includes a innovation design for

handling control flow patterns in workflows.

The listed below are the few contributions made by the work:

1) Prototype implementation of the Web Bonds Model i.e. Bonds, Coordination

Context, WSCP.

2) BondFlow Pattern APIs for creating known control flow patterns and also

arbitrary patterns.

3) Framework for configuring and deploying benchmark control flow patterns.

4) BondFlow Runtime ported over iPAQs for centralized coordination of web

services

5) Integration of BondFlow Runtime with SyD Middleware allowing truly

distributed workflow execution over web services.

6) Currently, BondFlow system prototypes are implemented for all the following

target environments

a. Centralized coordination over PC

b. Centralized coordination over iPAQs

c. Distributed coordination over iPAQs

7) A comparative view of the system with respect to BPEL.

3

1.3 Organization of thesis

In the next section, we talk about the various technologies involved and the current

solutions to the problem of service composition. Section 3, discusses the architecture of

the system in detail. Section 6 is devoted to the framework of implementing workflow

patterns. We end the thesis, by providing system performance measurement in section 6

and conclusion in section 7.

4

2 WEB SERVICES & THE PROBLEM OF COMPOSITION

In its simple form a web service would mean service available over the internet. A

functionality provided by a service provider which can be accessed in a standard and a

platform independent way.

From this it has evolved in a fundamental building block used to create distributed

applications. Lately, a new paradigm of software engineering has picked up interest; this

is Software oriented architecture. As per this model each component in the system is

modeled as a service which is self-contained and can be accessed using a set of standard

protocols. Web services fit perfectly in this definition. Thus, allowing Web Services to

become the platform for application integration. Applications are constructed using

multiple Web Services from various sources that work together regardless of where they

reside or how they were implemented. Web services mainly constitute of a set of

standard protocols.

The main components of the web services model are the various protocols it

supports. SOAP, WSDL and UDDI are the few commonly used ones. These protocols

have been around since long now but have found it use more appropriate in web services

stack. We take some time off to understand how these protocols work and how they come

together in the web services architecture

2.1 SOAP

SOAP stands for Simple Object Access Protocol [19]. It is an XML-based messaging

protocol which is used to access objects and services over the internet. The fact that XML

is used as the method of communication makes it platform independent. Moreover, XML

5

is widely used as standard for exchange of information. SOAP was design with the

following goals in mind [19]:

1) Simple one-way communication of messages packaged in XML

2) Use this paradigm to provide for RPC-type interactions, thus allowing

synchronous request-reply mode of communication

3) Provide for allowing SOAP messages to the transported using the current

transport protocols like HTTP, SMTP, etc.

The basic unit of exchange in SOAP is a SOAP message. A SOAP message consists of

an optional header part and a required body part. A SOAP header contains various flags

which may be used by intermediate node during the routing of the message. SOAP allows

full freedom as to the contents of the SOAP body. Generally the contents of the body of

the message are governed by the SOAP router and the application sending the message.

In a typical web service call the SOAP message contains the name of the operation along

with the serialized parameters for the operation.

SOAP allows two types of interaction styles, RPC-style and Document-style.

RPC-style is used when an application wants to have synchronous operation call over the

internet. The message body, in this case, would contain the method name and the

parameter values for the operation. The other type of interaction style is Document-style.

Document-style message exchanges have a fixed format for defining the data being

exchanged and this is generally modeled as a document e.g. purchase order, invoice

receipt, etc. The format of the document is predefined and agreed upon by the interacting

parties. The actual way the data is formatted in XML is defined by the encoding rules

6

used in the SOAP message. SOAP supports two types of encoding, literal and SOAP

encoding. But applications have are allowed to use different encoding rules if the need

be.

Figure 1. SOAP components interaction

2.2 WSDL

Web Service Definition Language. It is the IDL for web services. WSDL defines the

operation a web service exposes in a platform independent way. The documents

describing a web service is divided into part, abstract part and the concrete part. The

abstract part defines the types, messages, operation and port types of the service. And the

concrete part actually binds each of the port type defined in the abstract part to actual

service ports i.e. to a fixed implementation of the service. Let us discuss each of the

above mentioned part in detail.

Sender

SOAP Stub

XML Document

SOAP Envelope

HTTP/SMT

P

Receiver

SOAP

Router

XML Document

SOAP Envelope

HTTP/SMT

P

Transport

Message

Transport

Message

Internet

7

Table 1. WSDL Definition sections

2.3 UDDI

Universal Description Discovery & Integration service is a discovery service for web

services. Web services when registered with the directory service are available for search

and use by end users. UDDI stores service information including service metadata which

can facilitate criterion based service search. UDDI defines set of APIs for publishing and

querying the registry, also provides with a set of data structures which are involved in

these operations. It should be noted that UDDI registry is also exposed as a web service

and the WSDL of which is easily available.

Type Simple & Complex data types defined using XML Schema

Messages Message definition and their format

Operation Operation definition(name and input-output messages)

Abstract

Part

Port

Types

Logical grouping of operation into port types

Bindings Provide binding information to actual communication protocol

(e.g. SOAP), transport protocol, encoding style and interaction

style

Concrete

Part

Ports Provide actual network address for each port type

 Service Logical grouping of ports

8

2.4 Problem of Service Composition

Web service composition means grouping of related basic services to provide high

level functionality. With the advent of internet and web services, we now have a plethora

of services which provide different type of services like payment service, stock quote

service, air ticket booking service, etc. Now what if we could put these services together

in some particular order and provide a new service which provides a high level

functionality. E.g. we compose a new service air ticket booking and payment service.

This new service uses an air ticket booking service which books a ticket and then the

payment details are transferred to the payment settlement service. Once the payment is

settled the user is informed about the flight details. This is a simple case of web service

composition but it gives a good overview of how well we can model the various business

processes of an organization. Service composition strives to provide the end user with

high level of customization and state-of-the-art services to satisfy the requirements. The

trend in service composition, now days, is to provide for automatic or on-the-fly

composition. This are the cases when the services to be used are not known until unless

the runtime. The service instead of being statically bound are discovered at runtime and

executed then. Such discovery of services is based on various utility measuring criterions

such as QoS, cost, effectiveness to the problem at hand and other.

2.5 Current Standards & their limitations

Service composition, especially web service composition, has attracted industry

attention since late. This is partly because of the sudden increase in deployed web

services available for use to the end user. We have seen a lot of attempts by different

groups to come up with a good solution to the problem of service composition. Each one

9

claiming to be better than the other but essentially saying the same thing with different

set of words. Currently, we have some widely used service composition languages like

Business Process Execution Language (BPEL), Yet Another Workflow Language

(YAWL), Web Service Choreography. Apart from this there are certain standards which

are still in being formalized like Web service coordination framework (WS-CF), Web

Service – Choreography Description Language (WS-CDL). Most of the standards overlap

in the domain of problem covered. Of all these, BPEL is de facto for web service

composition. BPEL specification defines an XML-based language for service

composition. BPEL working can easily be understood by comparing it with the

traditional structured programming model. A basic unit of execution in BPEL is BPEL

Process. A BPEL process is defined with the help of an XML formatted file using the

constructs provided by the BPEL specifications. This specification has all the basic

constructs which a programming language has like loops, conditional block execution,

switch statements, etc. A BPEL process is allowed to make calls to other BPEL processes

and other independent web services. BPEL process itself is modeled a web service, thus

associated with a BPEL process we have a WSDL file which defines abstract part of

process. The actual binding information is available only at deploy time. A BPEL engine

provides the runtime and deployment environment for a BPEL process. It is the BPEL

engine which provides the BPEL process with the actual binding information. One of the

main reasons for BPEL’s success is because it is a convergence of two different standards

provided by two big software giants, XLANG from Microsoft and Web Service Flow

Language from IBM. And further its use of widely used standards like XML Schema,

WSDL also attribute to the success. But what BPEL tries achieve is what we call Web

10

service orchestration. Thus we have a problem of centralized controller, which in case of

BPEL is the BPEL process. YAWL is also one graphical workflow language with support

for web services. YAWL does not use XML for process definition rather uses a

proprietary method of object persistence. YAWL was designed based on an extensive

research on control and data flow patterns. The research group has proposed an

exhaustive set of control flow patterns [29]. YAWL, thus, has special constructs for each

of this pattern and thus is restricted by it. The same is with BPEL specification. Most of

the composition languages tend to restrict the user to the constructs available in the

language and provide less of flexibility in terms of scalability. BondFlow system tries to

overcome this by providing an easy to use plug-in based architecture [section 5] to

support not only the known control flow patterns but also provide for arbitrary patterns in

the workflow.

11

3 BACKGROUND

Here, we briefly discuss web coordination bonds and the SyD middleware framework.

3.1 Web coordination bonds

Web coordination bonds [4, 26] are a set of primitives for web service

coordination/choreography. Web bonds enable applications to create contracts between

entities and enforce interdependencies and constraints, and carry out atomic transactions

spanning over a group of Web entities/processes. While it is convenient to think of an

entity as a row, a column, a table, or a set of tables in a data-store, the concept transcends

these to any object or software component, and here we specifically consider web

services. There are two types of web bonds: subscription bonds and negotiation bonds.

Subscription bonds allow automatic flow of information and control from a source entity

to other entities that subscribe to it. This can be employed for synchronization as well as

more complex changes, needing data or event flows.

Let an entity A be bonded to entities B and C, which may in turn be bonded to

other entities. A change in A may trigger changes in B and C, or A can change only if B

and C can be successfully changed. In the following, the phrase "Change X" is employed

to refer to an action on X (action usually is a particular method invocation on Web

Service X with specified set of parameters); "Mark X" refers to an attempted change,

which triggers any associated bond without an actual change on X.

Subscription Bond: Mark A; If successful, Change A then Try: Change B, Change C. A

``try" may not succeed.

12

Negotiation-and Bond: Change A only if B and C can be successfully changed.

(Implements atomic transaction with "and" logic).

Similar semantics can be defined for Negotiation-or and “xor” bonds. Likewise, these

logical primitives are available for subscription bonds. Additionally, user defined rules

and evaluating conditions can be incorporated. The “and” logic is the default constraint,

if unspecified. Formal treatment of Web bonds and their firing rules are discussed in [26].

We have established that web bonds have the modeling power of extended Petri

nets and they can express all the benchmark patterns for workflow and for inter-process

communication; a feat that almost all previously proposed artifacts and languages are not

capable of comprehensively, thus proving that web bonds are superior despite their

simplicity [26].

3.2 SyD Middleware Framework

System on Mobile Devices (SyD) middleware [1] is a new platform technology that

addresses the key problems of heterogeneity of device, data format and network, and of

mobility. SyD combines ease of application development, mobility of code, application,

data and users, independence from network and geographical location, and the scalability

required of large enterprise applications concurrently with the small footprint required by

handheld devices. SyD separates device management from management of groups of

users and/or data stores. Each device is managed by a SyD deviceware that encapsulates

it to present a uniform and persistent object view of the device data and methods. Groups

of SyD devices are managed by the SyD groupware that brokers all inter-device

activities, and presents a uniform world-view to the SyD application. The SyD groupware

directory service enables SyD applications to dynamically form groups of objects hosted

13

by devices. The SyD deviceware enables group communication and using SyD listener.

The footprint of the entire SyD kernel code is 112 KB, out of which only 76 KB is

currently device-resident; the rest is for directory and global event handling. For even

smaller devices, this can be further reduced to 42 KB. The execution time workspace

used by SyD is 4-8 MB, exclusive of JVM and OS. Web bonds have been employed to

model and enforce work workflow control flow/data and other dependencies in our

BondFlow system whilst SyD middleware has been employed as a workflow deployment

and execution platform for handheld devices.

14

4 BONDFLOW SYSTEM: ARCHITECTURE & DESIGN

BondFlow system is a realization of Web Coordination Management Architecture

proposed in [26] using Web Bonds. BondFlow system proposes a coordination

management system over web services, services in general sense, for implementing

distributed workflows. We propose that by abstracting the user from various requirements

necessary for distributed coordination of entities, we can dramatically reduce the

programming exercise involved in developing distributed systems over the internet.

BondFlow system allows novice as well as expert users to configure and deploy

workflows over web services. We claim that the basic artifacts defined by the web bonds

model are abstract enough to provide both ease of use & flexibility for modeling complex

workflows. Furthermore, the design of the system makes a clear separation between the

configuration and executions of the workflows. Thus, allowing us to provide support for

various runtime environments without changing the configured workflows. At present we

have three different target environment of the runtime system namely, centralized

coordination over PCs, centralized coordination over iPAQs and distributed coordination

over iPAQs.

At the heart of our system is a Web Service Coordination Proxy. WSCP is a

software abstraction over a web service. WSCP object represents the actual web service

in the workflow. The proxy has the intelligence of managing the bonds dynamically and

enforcing dependencies to cater to the needs of a particular workflow. All invocations on

a web service have to pass through the BondFlow system generated WSCP. It is this

indirection that allows us to bring transparency to the system and hide the necessary

15

coordination and communication logic behind it. WSCP itself provides the same interface

what the web service provides to the outer world. These WSCPs are generated for each of

the services which are added to the system. The process of WSCP generation takes

negligible time and has small footprints [28], small enough to be ported on to handhelds.

BondFlow Architecture Overview:

The BondFlow system is a platform which allows distributed execution and coordination

of workflows over web services. As described before it works on the principle of

indirection by creating a software abstraction over web services which allows us to

embed the coordination logic between actual web service calls. The core of the system

consists of a runtime execution environment, BondFlow Runtime, for executing these

software WSCPs. One other sub-system of BondFlow system is the BondFlow

Configuration System (BCS) which handles the workflow creation and deployment. BCS

is the interface of the BondFlow system to the user.

4.1 BondFlow Configuration System

BCS is the point of interaction between the end user and the system. BCS allows

creation of new workflows and deploying them over-the-network (optional). The BCS

takes care of the following tasks: Web Service Coordination Proxy Object (WSCP)

generation, creation of workflows, deploying workflows and editing existing workflows.

We explain each of these tasks in detail.

16

Figure 2. WSCP Generation Scenario

WSCP Generation Task:

This scenario depicts the process when a new service is added to the system in

order to be part of some collaborative application. Collaboration over a set of services is

only possible if they have a corresponding WSCP associated with them. Thus, it is a

necessary registration procedure a web service needs to pass through so as to be available

for use within the system.

Table 2. WSCP Generation Task

Modules : WS Locator, WSCP Generator

Input : WSDL URL

Output : WSCP Java File & Class File, Service XML file

Process:

1. WS Locator module uses the WSDL URL to obtain the WSDL file.

17

2. Once the WSDL file is available, the WSCP Generator parses this file to obtain

the service specific information e.g. Operations names, parameters, return

types. The extracted information is then stored in the XML repository for the

service. The parsing of WSDL is accomplished using the WSDL4J APIs.

3. Using the parsed information and a pre-defined template a WSCP class is

created. The web service operations have one to one correspondence with the

method of the WSCP class. The name of the WSCP class is same as that of the

web service it encapsulates.

Format of Service XML file:

<WebService>

 <WSDef>

 <WsdlUrl>http://www.xmethods.net/sd/2001/

 CurrencyExchangeService.wsdl</WsdlUrl>

 <WSName>CurrencyExchangeService</WSName>

<LocationURI>http://services.xmethods.net:80/soap</LocationURI>

 <NamespaceURI>urn:xmethods-CurrencyExchange</NamespaceURI>

 <Method mid="1">

 <MethodName>getRate</MethodName>

 <ParamType>string country1</ParamType>

 <ParamType>string country2</ParamType>

 <ReturnType>float Result</ReturnType>

 </Method>

 </WSDef>

18

</WebService>

The WSCP generation process depends on the target deployment configuration.

In BPEL:

BPEL also defines similar construct for allowing the necessary abstraction to web

services by defining a BPEL process. Each BPEL process is a special web service

defined using WSDL but it only contains the definition for port types and no binding

information. Actual binding information is added later by the BPEL engine, which further

provides implementation of each port type as defined by the workflow specification file.

Workflow Creation Task:

With the help of Subscription and Negotiation bonds, we can model the control

and data dependencies among the web services. More details on web bonds model is

available in our previous work in [4]. Workflow configuration process starts by creating

bonds among methods of selected web services through the proxy object to reflect

dependencies. Bonded web services represent a configured workflow with substantial

coordination logic embedded. In BondFlow architecture, each proxy object has its

corresponding “Bond” repository to reflect its own dependencies. Bond constraints are

specified while creating and necessary information is stored in persistent XML files.

Table 3. Workflow Creation Task

Modules : Bond Creation

Input : Bond Type and other parameters

Output : Generate CoordinationContext for each service

19

Process:

1. User is prompted to put in the name of the workflow.

2. User is than is asked for a pair of web service names & respective methods

which would act as source and destination methods for a bond and various

other parameters as type of bond, trigger, and boolean logic.

3. All this information become part of the coordination context of the source web

service as its coordination manager is responsible to enforce these bonds. The

coordination context of a service is stored in the XML repository for that

particular service.

4. Step 2-3 goes until whole of the workflow is not fully modeled.

Format of Service XML file containing the coordination context information:

<WebService>

 <WSDef>...</WSDef>

 <CoordinationContext>

 <Application name="TestApp">

 <Bond bid="1" status="true">

 <SrcMethod>getRate</SrcMethod>

 <DestMethods>

 <DestMethod>StockQuoteService.getQuote</DestMethod>

 </DestMethods>

 <Type>S</Type>

 <Boolean>AND<Boolean>

 <Trigger>Y</Trigger>

20

 </Bond>

 </Application>

 </CoordinationContext>

</WebService>

In BPEL: BPEL is a XML based definition language. In order to define a BPEL process,

a user needs to create a BPEL file which contains the flow specification in XML format.

BPEL models the control flow between activities using links. Service link types are

special types of links which allows the user to assign specific roles to a service which it

may assume during an interaction. User can define partners to a service using the service

link types. It should be noted that actual binding of partner links to a service

implementation is done at runtime and it is a feature which a BPEL implementation needs

to support.

Deploying Workflows:

BondFlow system can be deployed under various different coordination and

hardware configurations. To classify according to mode of communication, Wired &

Wireless. Furthermore, we can have both centralized as well as distributed coordination

WSCP deployment scenarios. It should be noted that the way the workflow is configured

does not depend on the deployment configuration. Only the WSCP creation process is

deployment configuration specific.

The BondFlow system boasts of distributed coordination among web services.

This is achieved by distributing each of the generated WSCPs over the network.

However, the WSCPs should also be accompanied by the service XML file as it contains

21

the coordination context for the service. We can understand the relation between this two

as, WSCP knows how to enforce a bond and coordination context tells it when. The

process of deploying the WSCP and the service xml file can be done offline e.g. one way

of doing this would be hosting on a machine connected to the internet using FTP. It

should be noted that the machine hosting the WSCP needs to have BondFlow Runtime

environment installed. Further a WSCP must be registered with a pre-known directory

service, in order to allow location dependents communication between WSCPs. As will

be discussed further current implementation uses the directory service provide by the

SyD middleware [1] for registering the WSCP. WSCP are modeled as SyD Application

Objects (SyDAppO) which are then registered with SyDDirectory service.

Communication between these SyDAppOs is facilitated by SyDListener and SyDEngine.

The design of the system abstracts the protocol used between WSCPs. Given that, it is

also possible use other messaging protocols like SOAP to implement Inter-WSCP

communication. For centralized runtime system, the Inter-WSCP communication is

modeled as in-memory calls of the process. More detail on different flavors of the system

is given in section 6.

In BPEL: Once BPEL process is defined and all the dependencies collected. A BPEL

engine can be used to deploy a BPEL process. BPEL Engine is generally available web

application run on an application server. And the actual steps needed to deploy a BPEL

process depends on the implementation of the engine. When a BPEL process is deployed

all references to services needs to be resolved by providing the WSDL file of the actual

service implementation. Due to the centralized nature of BPEL process, it becomes each

to incorporate auditing and monitoring features in the system. These features are at the

22

discretion of the BPEL Engine vendor and no way part of the specification but prove as a

handy tool when deploying long running processes spanning over multiple web services.

4.2 BondFlow Runtime

BondFlow runtime is a realization of the web bonds model as proposed in [4]. It

enforces control and data dependencies modeled using web bonds on a web service.

BondFlow WSCP uses the coordination context information stored in the service XML

file and calls system routines on BR to enforce this coordination constraints. The runtime

environment of the system essentially consists of the specific modules and the WSCP

class interacting in a defined manner.

Figure 3. BondFlow Runtime System Architecture

Application Context Manager:

Responsibility: Application context manager allows us to define multiple workflows over

a same web service WSCP. It is responsible to provide the WSCP class and all other

modules of the system with an application specific view.

Software Implementation: WSCP class

Application Context Manager

Service Information Runtime Information

State/Instance Handler Coordination Manager

Message

Handler

23

BondFlow system allows different workflows to be deployed over a web service

thus allowing more multiple applications sharing the BR on a machine. Application

Context manager logically divides the BR for each of the applications running under the

system. Context information for an application would include a unique identifier appid.

Further, it also includes application specific parameters which may have been defined

prior to deployment of workflow. Currently the application context manager is in the

minimalist form and work is undergoing as to what all can be the part of this structure.

Coordination Manager:

Responsibility: Coordination manager is responsible for enforcing the web bonds defined

on a service. For this, the module uses the coordination context information available

from the service XML file.

Software Implementation: WSCP class, Engine Package in BR class hierarchy, AXIS

APIs, NanoXML Parser

Each operation of a web service may have a set of bonds defined over it. This

information along with other parameters, as defined in section 2, is stored in the service

XML file. This information essentially forms the coordination context of a method.

Coordination manager is responsible for enforcing these bonds over the method

depending on the coordination context. Coordination manager looks up the bond

information defined over the web service method for a particular application. Depending

on the type of bond appropriate BR system call are made to enforce them. Coordination

manager uses the message handler module to send out messages to BR of the destination

web service for a particular bond. Further coordination manager also interacts with the

24

state and instance handler to update the state information of a method of the web service

of the WSCP.

Figure 4. Coordination Manager Interactions

State/Instance Handler:

Responsibilities: State/Instance handler is responsible for maintaining state information

for operations of web service and also the instance related information for a web service.

This information is needed to provide for certain patterns in workflows.

Software Implementation: WSCP classes, Service runtime XML, NanoXML.

BondFlow system needs to maintain runtime state information of each of the

methods. The state information for a method consists of execution status, method return

Coordination

Manager

Message handler

WS

4. AXIS SOAP Method call

2.sendMsgTo(B)

BR of Web Service A

BR -

Web Service B

3. SOAP/SyD Msg

Coordination

Context

1. hasBonds() Sub Bond on B State

Handler

5. Update State

25

values under the current run, lock status of method, etc. This state information relate to a

particular run of the workflow. The state information helps the coordination manager

enforce bonds on particular method of a web service. State/Instance handler stores all the

state information for the web service as a XML file under /runtime directory with the

name of the service.

Figure 5. State/Instance Handler working

The <wsname>.xml files for the current scenario shown in Listing 1.

<apps>

 <app name=”TestApp”>

 <getQuote hasExecuted=”true” return=””/>

 <someOther status=”locked”/>

 </app>

</apps>

Listing 1. /runtime/<wsname>.xml file for <WSNAME> web service

State/Instance

Handler

Method State Information Store

Method A

executed

Change state (A,executed) Change state

 (B, locked)

Lock

Method B

Coordination

Manager

Message Handler

MarkAndLock

Message

BR of Web Service

26

Message Handler:

Responsibilities: Message handler is essentially a communication handler for Inter-

WSCP communication. Message Handler is necessary for distributed deployment of

WSCPs. WSCP could implement any of the messaging protocols including SOAP or

SyDDoc.

Software Implementation: XML Message Parser

WSCPs in the BondFlow system communicate by exchanging messages over the

internet. WSCPs use message as a means of passing of control and data. Moreover, it also

has functionality similar to that of an asynchronous RMI handler as it also allows

invoking operation on other WSCPs e.g. WSCP A may send a message to WSCP B

asking it to mark and lock a method. This can be done by sending a MarkAndLock type

message to the message handler of B. These messages are formatted as SOAP messages.

BondFlow system defines various types of messages and formats for each of them. Due

to space considerations, we will illustrate only a few message types here.

Figure 6. Partial flow of activities for enforcing Pre-Negotiation Bond

Message

Handler

Message

Handler

Coordination

Manager

GetExecutionState

Msg

State/Instance

Handler

getStateInfo

 (method b)

hasExecuted

 (WS,method b)

BR of Web Service A BR of Web Service B

27

It should be noted we can have custom messaging solution implemented instead of SOAP

and this is possible with out disrupting the working of other components of the system.

Moreover, if the base platform has support for inter-application communication,

BondFlow system can be made to adapt to use that too. This is would become evident in

the later section on SyD.

Sample BondFlow SOAP Message Formats:

Here we give examples of how a SOAP messages generated by SOAP based message

handler. (Currently our system does not have implementation of a SOAP message

handler)

Table 4. MarkAndLock Messages

MarkAndLockRequest

<env:Envelope xmlns:env=http://www.w3.org/2002/06/soap-

envelope>

 <env:Header>

 <applicationContext

env:role=”http://www.w3.org/2002/06/role/ultimateReceiver

”

 mustUnderstand=”true”>

 <appid>TestApp</appid>

 <source>

 <service>TemperatureService<service>

 <method>getTemp<method>

 </source>

28

 </applicationContext>

 <messageType

env:role=”http://www.w3.org/2002/06/role/ultimateReceiver

”

 mustUnderstand=”true”>

 MarkAndLockRequest

 <messageType>

 </env:Header>

 <env:Body>

 <MethodName>methodName</MethodName>

 <env:Body>

</env:Envelope>

MarkAndLockResponse

<env:Envelope xmlns:env=http://www.w3.org/2002/06/soap-

envelope>

 <env:Header>

 <applicationContext

env:role=”http://www.w3.org/2002/06/role/ultimateReceiver

”

 mustUnderstand=”true”>

 <appid>TestApp</appid>

 <source>

 <service>CurrencyExchangeService<service>

 <method>methodName<method>

29

 </source>

 </applicationContext>

 <messageType

env:role=”http://www.w3.org/2002/06/role/ultimateReceiver

”

 mustUnderstand=”true”>

 MarkAndLockResponse

 <messageType>

 </env:Header>

 <env:Body>

 <status>true<status>

 <env:Body>

</env:Envelope>

Table 5. EnforceSubscriptionBond Messages

<env:Envelope xmlns:env=http://www.w3.org/2002/06/soap-

envelope>

 <env:Header>

 <applicationContext

env:role=”http://www.w3.org/2002/06/role/ultimateReceiver

”

 mustUnderstand=”true”>

 <appid>TestApp</appid>

 <source>

30

 <service>TemperatureService<service>

 <method>getTemp<method>

 </source>

 </applicationContext>

 <messageType

env:role=”http://www.w3.org/2002/06/role/ultimateReceiver

”

 mustUnderstand=”true”>

 EnforceSubscriptionBond

 <messageType>

 </env:Header>

 <env:Body>

 <MethodName>methodName</MethodName>

 <env:Body>

</env:Envelope>

31

5 BENCHMARK WORKFLOW PATTERNS & USER DEFINED

CONSTRUCTS

The theoretical underpinning of the BondFlow system is web coordination bonds.

This section demonstrates modeling benchmark workflow control flow patterns using

web coordination bonds. An attempt is made to provide a comparative view of modeling

these constructs in Web Bonds and BPEL. We note that an existing workflow modeling

framework called “YAML” is also capable of handling all these control flow patterns.

The difference between YAML and Web bonds is that YAML has been specifically

designed to enforce these control flow patterns (by essentially augmenting a Petri net

based system) by adding explicit constructs for each control. In contrast, Web bonds have

been designed as a generic framework for coordination/collaboration among distributed

systems and these happen to be capable of handling these workflow control flow patterns.

In the paper [29], they have come up with a set of control patterns which are claimed to

the exclusive set of constructs that would be needed any workflow. The patterns

classified as per their nature are described below.

5.1 Control Flow Patterns

Basic Control Flow Patterns:

Basics control flow patterns capture basic split and join constructs. These

constructs are relatively easy to implement and almost all the workflow models have

mechanisms to support them. Here we briefly describe each pattern and then the

32

implementation of parallel split and simple merge construct have being presented in this

section.

Sequence: An activity of a workflow is enabled after completion of another activity the

same workflow.

Parallel Split (AND Split): AND split is a point in a workflow where control is passed to

multiple paths and all paths are executed in parallel.

Synchronization: Synchronization is a point in a workflow where multiple control paths

converge into a single control.

Exclusive Choice (XOR Split): XOR-Split is a point in a workflow where one of possible

paths is selected.

Simple Merge (XOR Merge): XOR-merge is a point in a workflow where alternative

branches get together without synchronization.

Advanced Synchronization Patterns:

In advanced synchronization models, the problem arises as the split node can

activate m out of n paths where 0 ≤ m ≤ n. When it comes to the synchronization,

synchronization node needs to know which paths to synchronize or whether

synchronization is needed at all. Some cases, synchronization need to be done based on

different merging criteria. Thus, synchronization is a significant issue in workflow

modeling and has gained considerable attention. There are four advanced synchronization

patterns.

Multi choice: A point in a workflow where one or several paths will be chosen based on

some selection criteria.

33

Synchronous merge: OR-merge is a point in a workflow where several control paths

converge into a single control. If more than one path is active synchronization is required

Multi merge: Multi-merge is a point where several branches merges without

synchronization. Also, for each active path activity followed by merge will be executed

in execution order.

Discriminator: A point in a workflow where it starts the subsequent activity as soon as

one of the incoming paths is completed and waits for other paths to complete and ignore.

Patterns involving multiple instances

Multiple instance patters requires workflow activity to instantiate several instance of the

activity and some cases instances need to be synchronized under various conditions

before proceeding to the next activity of the workflow. There are four patterns involving

multiple instances.

Multiple instances without synchronization: For any workflow activity, multiple

instances of that activity can be created. These activities and independent and do not need

to synchronize.

Multiple instances with prior design time knowledge: For any workflow activity, multiple

instances of that activity can be created. These activities need to synchronize before

starting subsequent activities of the workflow.

Multiple instances with prior runtime knowledge: For any workflow activity, multiple

instances of that activity can be created. These activities need to synchronize before

starting subsequent activities of the workflow. Difficulty here is that numbers of

instances is not known at the design time.

34

Multiple instances without prior runtime knowledge: For any workflow activity, multiple

instances of that activity can be created. These activities need to synchronize before

starting subsequent activities of the workflow. It becomes more difficult due to the fact

that numbers of instances is not known at the design time.

State Based Patterns

Characteristics of state based patterns. Description of three state based patterns.

Milestone: Milestone is a state based control flow pattern where an activity is enabled

only if a certain state has been reached and still not expired. Therefore, to start an activity

that has milestone control dependency it needs to wait for that specified state.

Deferred Choice: A point in a workflow where one of the several possible paths is

chosen. However, deferred choice is different from XOR logic in that choice is made by

the environment (user) not explicitly based on data. Once a particular path is chosen other

branches are withdrawn.

Interleaved Parallel Routing: A point in a workflow where set of activities is executed in

any order. Importantly, all the activities will be executed. Order is not know before

runtime.

Structural Patterns:

Arbitrary Cycle: A point in a workflow where some set of activities (paths) can be

repeated several times.

Implicit terminator: A workflow needs to terminate when there is no other activity to

perform (on other active activity and no other activity can be made active)

35

Cancellation Patterns:

Cancel Activity: Enabled activity is removed from the workflow.

Cancel case: This is an extended version of cancel activity where the whole workflow

instance is removed

Web Bonds claim to be expressive enough to model all of the above patterns a feet only

few workflow system are above to achieve. A detail discussion of the expressive power

of web bonds is available in [26]. As mentioned earlier, workflow systems like YAWL

provide explicit constructs to model and execute these patterns. This limits the system to

the available implementation of these constructs. BondFlow system proposes a scalable

design to provide support for the pattern which allows the a novice user to select from

different implementations of the same construct depending on the requirement of the

application and also always expert user to create new arbitrary patterns specific to an

application. Under this scheme of things, our system allows to extend the default

coordination context manager for certain scenarios. Thus, allowing a plug-in architecture

which extends the scalability of the system.

5.2 Extended Coordination Manager

The Extended coordination manager defines one or more Roles. Each role

performs a set of coordinating activities in order to enforce the semantics of the role.

Furthermore, these roles are to be assigned to specific web services (nodes) in the

workflow thus allowing distributed coordination among this web services. It should be

noted here that the extended coordination manager is just a layer above the system

coordination manager and thus is restricted by the services of the lower layer. Putting it

36

differently, it also will talk in terms of Subscription and Negotiation Bonds. The way

these managers can be developed actually is not difficult or does not require heavy

development exercise. The BondFlow system provides a common interface where new

coordination manager can be plugged-in. This is achieved by providing the developer

with a set of APIs which can be used to gain access to the runtime of the system. These

features of the system greatly reduce the development time. This set of APIs and

interface are defined by classes and interfaces defined in Pattern package in the class

hierarchy.

In terms of implementation, the extended manager is defined a JAR file. This package

contains the following:

1) roles.xml: This file contains definition of all the roles and their binding to specific

manager classes. It also defines a set of properties which the role needs as input.

2) Set of class files: This class files relate to each role defined in roles.xml.

There are no restrictions as to the name of the class files. The mapping between a

class file and the respective role is done in metadata XML file. Each class must

implement from IPattern interface, which defines the various callback

methods for plugging in this manager.

The format of the metadata XML file is as follows:

<patterns>

 <pattern>

 <name> Discriminator </name>

 <desp> This manager allows deploy the discriminator pattern

</desp>

37

 <roles>

 <role>

 <name>Discriminator</name>

 <desp>The node acts as the discriminator node </desp>

 <classfile>NDisc.Disc</classfile>

 <execute>before<execute>

 <properties>

 <property name=”n” type=”java.lang.Integer”>

 </properties>

 </role>

 </roles>

 </pattern>

</patterns>

Listing 3: Role definitions file for Discriminator role.

After preparing the JAR file it is stored in the /plug-ins directory of the BCS. The

BCS could then be used to assign these roles to different web services. Further, the BCS

further allows the user to configure the roles based the properties specified in the

definition file. BCS is responsible for generating dependency.

Table 6. Configuring Extended Coordination Manager

Modules : , Plug-in handler, Main Module, Message handler, UI

Input : Extended Coordination Plug-in,

Output : Updating of Service XML file at the WSCP locations, Deployed dependencies

at the WSCP locations

Process:

38

1. User using UI initiates the Plug-in Handler to use an Extended Coordination

Manager (ECM).

2. Plug-in Handler brings up the UI for configuring the ECM. This configuration

involves assigning roles to web services and providing values for extra

parameters like properties for the role.

3. Plug-in handler than, for each web service which is assigned a role, creates a

dependency store in which its stores the class files needed to execute that role

and role_runtime.xml.

4. These dependencies are then deployed to individual WSCP locations and

placed in /runtime folder of BR.

Figure 7. ECM deployment flow of activities

Plug-in Handler

Dependency

Stores

Configure

coordinator

Message

Handler
Deploy

dependencies

BR of

Service A

BR of

Service A

BR of

Service A

New Coordination
Manager

BR of Web Service A

39

The concept of extended coordination manager is still in its experimental phase and needs

more dwelling into but is quite promising. The design has allowed the BondFlow system

to realize execution of very complex patterns like the Milestone, Discriminator and N of

M pattern.

40

6 FLAVORS OF BONDFLOW SYSTEM

BondFlow system can be deployed in varyingly different configuration environments.

6.1 Centralized PC based

In this configuration, each wrapper is deployed on the same host and

communication among wrappers is carried in form of in-memory calls. The centralized

version, thus, does not have communication over head for Inter-wrapper communication.

This setup allows the user to configure as well as deploy wrappers. Configuration

subsystem of the BondFlow system (BCS) is only available on PC and thus cannot be

used directly on handhelds.

Software Platform: JDK 1.4, Apache AXIS, NanoXML 2.21, WSDL4J

6.2 Centralized iPAQ based

The footprints of WSCP is very small [section 6] thus it is easy to port it to small

devices. Following this, we ported the centralized PC based BondFlow system onto

iPAQ. This required considerable amount of tweaking in the system so as to match the

implementation as per the restrictions on a handheld. This included switching to a

lightweight SOAP handler, ksoap 2. Moreover, the JVM available for iPAQ did not

support JDK 1.4. Thus we had to practically redesign some of the components to fit them

within the API set defined by JDK 1.2. As an end result we had a BondFlow System

which allowed execution of workflows defined over web services on a handheld. Due to

GUI restrictions and difficulty of use, BCS version for handhelds was not forayed.

Software Platform: JDK 1.2, ksoap2, NanoXML 2.21, Jeode JVM

41

6.3 Distributed iPAQ based

The distributed version of BondFlow system was realized by using SyD

middleware [1] as the platform for distributed coordination. The BR used the services

provided by the SyD middleware thus allowing it to register the WSCPs with the SyD

Directory service and accessing them over-the-net in a location independent manner. For

us to achieve this, we modeled the WSCP objects as SyD Application Objects

(SyDAppO). SyDAppO are registered with the SyD Directory service, thus allowing all

other WSCPs (SydAppOs) to access it using the SyDListener service.

SyD listener is a lightweight module in our SyD middleware framework for enabling

mobile devices to host server objects and allow peer-to-peer communications among

them. Different SyD application objects can communicate with each other through

SyDListener. SyDDirectory allows registration of proxies and further lookup of this

proxy objects. SyDDirectory maintains its own database to store information about all the

SyD application objects and delivers location information of devices and services on the

fly. It keeps track of application objects and their associated devices. SyD objects can

lookup for remote objects through SyDDirectory. SyDEngine facilitates the object to

actually invoke a remote objects. SyDListener keeps listening for any connection requests

and delegates the control to SyDEngine module

WSR WSR

Figure 8. Wrapper Object

resides in Java enabled Mobile

Devices

Socket/

other

RPC

42

WSCP Registration with SyDDirectory: This process is done with help of a helper class

ManageWrapper. This class takes in the WSCP name and registers it using

SyDRegistrar service. The SyDRegistrar creates a XML document, SyDDoc, which

contains all the operation names and their parameters. This document is then sent to the

SyDDirectory service.

Invocation of WSCP-over-SyD: Inter-WSCP communication is carried out by invoking

the SyDEngine, which allows objects to make RPC-style calls in a location independent

manner. An invocation call from a WSCP is first sent to SyDDirectory to lookup the

location of the device which is hosting the required service, then the SyDEngine invokes

the SyDListener on the server device and passes it a XML document, SyDDoc, which

contains the operation invocation details. The SyDListener uses the local RMI registry to

locate the object, invokes the required method and return the result to the client device.

Due to the modular design of the BondFlow system it was easy to scale the design to a

distributed environment. The message handler module was implemented to be SyD

aware.

Software Platform: JDK 1.2, SyD Middleware, ksoap2, NanoXML 2.21, Jeode JVM

43

7 SYSTEM EVALUATION

The BondFlow system has been prototyped using Java 1.4 and the footprint of the

BondFlow runtime is 24KB. Additional third party software packages, SOAP client and

XML parser, account for 115KB. Non-device resident configuration module is 28.7 KB.

The footprint of the proxy object is small (~10KB) and typically increases by 0.3 KB per

additional operation (method) of the web service. Intermediate system generated files are

less than 100 KB for a sufficiently large workflow. Typically the footprint of the bond

repository increases 0.3 KB per each additional bond. The execution time workspace

used by the BondFlow system is 5.4 MB including JVM (Jeode for handled version).

Hardware software setup: We ran our experiments on a high performance

SunOS 5.8 server. We built wrappers using JDK 1.4.2. The WSDL parser has been built

using WSDL4J API. WSLD4J API is an IBM reference implementation of the JSR-110

specification (JavaAPI’s for WSDL). NanoXML 2.2.1 is used as the XML parser for

JAVA. Various publicly available web services including Xmethod’s SOAP based web

services (http://www.xmethods.net/) have been used for experiments. For wireless device

experiments we have used HP's iPAQ models 3600 and 3700 with 32 and 64 MB storage

running Windows CE/Pocket PC OS interconnected through IEEE 802.11 adapter cards

and a 11 MB/s Wireless LAN. Jeode EVM personal Java 1.2 compatible has been

employed as the Java Virtual Machine.

Case study workflows: We have developed several workflows to evaluate the

BondFlow system. Here, we illustrates the online book purchase workflow and purchase

order workflow.

44

Online book purchase workflow: For this workflow, we have used real web

services available in xmethods.com and few other service directories. Here,

“Start_book_purchase()” method sends control to both BN and eBay web services to get

book quote (parallel split). Result is fed to the currency exchange web service where each

quote is converted to the local currency. Then if the user is online send an email. Note

that the currency exchange activity is invoked only if both BN and eBay book quotes

have been completed and the user is online. This is captured by three negotiation bonds

from currency exchange activity to each activity with AND logic.

Figure 9. Online Book purchase workflow

Purchase order workflow: On receiving the purchase order the receive purchase

order initiates three concurrent tasks to initiate the price calculation, select a suitable

shipper, and scheduling the production and shipments. Once all three tasks are done,

invoice processing starts task is initiated. We have modeled and implemented this

workflow using the BondFlow framework. Figure 15 illustrates the modeling of purchase

order workflow using web coordination bonds. Similarly, we have modeled several other

45

workflows and carried out various performance measurements. Rest of this section

discusses results of performance measurement.

Figure 10. Puchase Order Workflow[32]

46

Figure 11. Purchase order workflow modeled using Web Bonds

System performance details: We have deployed and executed these workflows on both

wired and wireless infrastructure. Table 1 shows that the workflow execution timings for

the two case study workflows for both wired and wireless settings. Bond related time for

both workflows are approximately ~5% in wired infrastructure. Bond related time

accounts for times taken to check workflow dependencies in bond repository and initiate

appropriate method calls on remote web services (coordinator objects). In case of

wireless devices, workflow execution time is relatively high due the time taken by the

DOM parser we have used. Total time taken for parsing, accounts for ~35% of the

workflow execution time. For this experiment we deployed workflow in a single

BondFlow runtime. Performance data for SyD-based distributed workflow will be

available for the final submission (currently we are setting up a larger collection of

47

iPAQs and choosing workflows with better parallelizability. In SyD middleware we have

used SyDDoc module to handle XML parsing and time taken is quite small [1]. We can

reduce the parsing related time using SyDDoc. In wireless infrastructure, bond related

timing accounts for ~30% once we deduct the XML parsing time. Table2 shows the

footprints of two workflows. The coordinator objects and corresponding bond

repositories, accounts for ~25% and ~75% respectively. Size of the bond repository

increases with number of bonds each web service has. Finally, chart 1 shows the

execution timings for few different workflow benchmark patterns. Time taken in wireless

setting is more mainly due to limited processing power and other resources. Also, the

execution time rapidly increases with number of nodes. This is again due to the XML

parsing. The following tables give a modular view of the various operations of the system

and their performance measures in various configuration environments.

Table 7. Performance Measurements

Head Distributed

Version

(SyD Based)

Centralized

Version

(iPAQ based)

Centralized

Version

(PC based)

Subscription Bond 583 ms 500 ms 15 ms

Mark And Lock a method 3628 ms 1468 ms 109 ms

Change a method 3773 ms 1476 ms 20 ms

PRE Negotiation Bond

(Method not executed)

4863 4529 ms 400 ms

PRE Negotiation Bond

(Method already executed)

2299 ms 1175 ms 78 ms

48

8 CONCLUSION & FUTURE WORK

In the future, we would like to build a complete IDE for BondFlow system. It will

have capabilities of web coordination bonds so that developers can enforce all the

workflow control flow dependencies and distributed communication patterns. Also,

current menu driven system needs to be enhanced towards drag and drop kind of IDE.

Further, we need to enhance the runtime engine of our systems so that users can monitor

the execution and make changes while workflow is active. Finally, we would like to

further investigate the power consumption of workflow execution on small handhelds.

49

9 BIBLIOGRAPHY

1. Sushil K. Prasad, V. Madisetti, Sham Navathe, et al. System on Mobile Devices

(SyD): A Middleware Testbed for Collaborative Applications over Small

Heterogeneous Devices and Data Stores, in Proc. ACM/IFIP/USENIX 5th

International Middleware Conference, Toronto, Ontario, Canada, October 18th -

22, 2004.

2. Dipanjan Chakraborty, Anupam Joshi, Tim Finin, and Yelena Yesha, Service

Composition for Mobile Environments, Journal on Mobile Networking and

Applications, Special Issue on Mobile Services, February, 2004

3. In-Young Ko, Neches, R., “Composing Web Services for Large-Scale Tasks,”

Internet Computing, IEEE, Vol.7 No. 5, Sept.-Oct. 2003, pp. 52 –59

4. Sushil K. Prasad and Janaka Balasooriya, Web Coordination Bonds: A Simple

Enhancement to Web Services Infrastructure for Effective Collaboration, Proc.

37th Hawai'i International Conference on System Sciences, Big Island, Hawaii,

January 5-8, 2004, pp. 70192.1

5. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede, “ Pattern

based analysis of BPEL4WS”, Technical Report FIT-TR-2002-04, QUT,

Queensland University of Technology, 2002.

6. W.M.P. van der Aalst, Workflow patterns,

http:/tmitwww.tm.tue.nl/research/patterns, 2003.

7. Shankar R. Ponnekanti and Armando Fox. Sword: A developer toolkit for web

service composition. In Proceedings of the Eleventh International World Wide

Web Conference, Honolulu, Hawaii, May 2002

8. Indrakanti, S., Varadharajan, V. & Hitchens, M. “Authorization Service for Web

Services and its Application in a Health Care Domain,” International Journal of

Web Services Research, Vol. 2, Issue 4, September 2005, pp. 94 – 119.

50

9. Alonso, G., Casati, F., Kuno, H., Machiraju, V., “Web Services Concepts,

Architectures and Applications Series: Data-Centric Systems and Applications,”

2004, Springer, ISBN: 3-540-44008-9.

10. Girish Chafle, Sunil Chandra, Vijay Mann and Mangala G. Nanda. Decentralized

Orchestration of Composite Web Services. In Proceedings of the Alternate Track

on Web Services at the 13th International World Wide Web Conference (WWW

2004), New York, NY, May 2004.

11. Barros, M. Dumas, and P. Oaks. Standards for Web Service Choreography and

Orchestration: Status and Perspectives. To appear in Proceedings of the

Workshop on Web Services Choreography and Orchestration for Business

Process Management, Nancy, France, September 2005.

12. Boualem Benatallah, Fabio Casati, Daniela Grigori, H. R. Motahari Nezhad and

Farouk Toumani. Developing Adapters for Web Services Integration. Procs of

CAiSE 2005. Porto, Portugal. Jun 2005.

13. F. Leymann, D. Roller, and M.-T. Schmidt, “Web services and business process

management,” IBM systems Journal, Vol 41, No 2, 2002

14. Schmit, B.A., Dustdar, S. (2005). Towards Transactional Web Services. 1st IEEE

International Workshop on Service-oriented Solutions for Cooperative

Organizations (SoS4CO '05), co-located with the 7th International IEEE

Conference on E-Commerce Technology (CEC 2005), 19 July 2005, Munich,

Germany.

15. Portal of NASAs Mars Exploration Rovers Mission,,Elias Sinderson (CSC,

NASA ARC, U.S.), Vish Magapu (SAIC, NASA ARC, U.S.), Ronald Mak

(RIACS, NASA ARC, U.S.), “Middleware and Web Services for the

Collaboratiive Information,” Invited paper, In Proc. ACM/IFIP/USENIX 5th

International Middleware Conference, Toronto, Ontario, Canada, October 18th -

22, 2004. pp 1-17

16. Anand Ranganathan, Scott McFaddin, Using Workflows to Coordinate Web

Services in Pervasive Computing Environments. Proceedings of the IEEE

International Conference on Web Services (ICWS'04), June 6-9, 2004, San Diego,

California, USA. IEEE Computer Society 2004, 288-295

51

17. zur Muehlen, Michael; Stohr, Edward A.: Internet-enabled Workflow

Management. Editorial to the Special Issue of the Business Process Management

Journal 11 (2005)

18. Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony Storey, et al.

Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing,

WS-BPEL, WS-Reliable Messaging and More, Prentice Hall, Paperback,

Published March 2005, 416 pages, ISBN 0131488740.

19. Schahram Dustdar, Harald Gall, Roman Schmidt: Web Services for Groupware in

Distributed and Mobile Collaboration. PDP 2004

20. Adel Ben Mnaouer, Anand Shekhar, Zhao Yi-Liang: A Generic Framework for

Rapid Application Development of Mobile Web Services with Dynamic

Workflow Management. IEEE SCC 2004: 165-171

21. Steele, R. A Web Services-based System for Ad-hoc Mobile Application

Integration, In Proc. of IEEE Intl. Conf. on Information Technology: Coding and

Computing '03, 2003.

22. Hawryszkiewycz, I., Steele, R. Extending Collaboration to Mobile Environments,

In the Proceedings of the International Conference on Web Technologies,

Applications and Services, Calgary, Canada, July 4-6, 2005.

23. S. Gribble, M. Welsh, R. von Behren, E. Brewer, D. Culler, N. Borisov, S.

Czerwinski, R. Gummadi, J. Hill, A. Joseph, R. Katz, Z. Mao, S. Ross, and B.

Zhao. The Ninja Architecture for Robust Internet-Scale Systems and Services.

Computer Networks, Special Issue on Pervasive Computing, 2001.

24. W.M.P. van der Aalst "Don't go with the flow: Web services composition

standards exposed. Web Services - Been there done that?, Trends &

Controversies", Jan/Feb 2003 issue of IEEE Intelligent Systems

25. Sushil K. Prasad and J. Balasoorya, 2005, “Fundamental Capabilities of Web

Coordination Bonds: Modeling Petri Nets and Expressing Workflow and

Communication Patterns over Web Services “, Proc. Hawaii Intl. Conf. in Syst.

Sc. (HICSS-38), Jan., Big Island, January 4-8.

52

26. W.M.P. van der Aalst and A.H.M. ter Hofstede, Workflow Patterns: On the

Expressive Power of (Petri-net-based) Workflow Languages, Proceedings of the

Fourth Workshop on the Practical Use of Coloured Petri Nets and CPN Tools

(CPN 2002), vol. 560 of DAIMI, pp. 1–20, Aarhus, Denmark, August 2002.

27. Janaka Balasooriya, Mohini Padye , Sushil Prasad, and Shamkant B. Navathe

“BondFlow: A System for Distributed Coordination of Workflows over Web

Services,” In 14th HCW in conjunction with IPDPS 2005. Denver, Colorado,

USA, April 4.

28. W.M.P. van der Aalst, L. Aldred, M. Dumas, and A.H.M. ter Hofstede. Design

and Implementation of the YAWL system. To appear in Proc. of The 16th Intel.

Conf. on Advanced Information Systems Engineering (CAiSE 04), Riga, Latvia,

June 2004

29. W. van der Aalst and A. Hofstede, Yawl: Yet another work-flow language, 2002

30. Web Service Composition - Current Solutions and Open Problems - Biplav

Srivastava and Jana Koehler, IBM Research Lab

31. IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems, Business Process

Execution Language for Web Services version 1.1

	A System for Rapid Configuration of Distributed Workflows over Web Services and their Handheld-Based Coordination
	Recommended Citation

	Microsoft Word - Thesis_Doc-2.doc

