
Georgia State University Georgia State University

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University

Computer Science Theses Department of Computer Science

6-9-2006

An Indexation and Discovery Architecture for Semantic Web An Indexation and Discovery Architecture for Semantic Web

Services and its Application in Bioinformatics Services and its Application in Bioinformatics

Liyang Yu

Follow this and additional works at: https://scholarworks.gsu.edu/cs_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Yu, Liyang, "An Indexation and Discovery Architecture for Semantic Web Services and its Application in
Bioinformatics." Thesis, Georgia State University, 2006.
doi: https://doi.org/10.57709/1059365

This Thesis is brought to you for free and open access by the Department of Computer Science at ScholarWorks @
Georgia State University. It has been accepted for inclusion in Computer Science Theses by an authorized
administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/cs_theses
https://scholarworks.gsu.edu/computer_science
https://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.57709/1059365
mailto:scholarworks@gsu.edu

AN INDEXATION AND DISCOVERY ARCHITECTURE FOR SEMANTIC WEB

SERVICES AND ITS APPLICATION IN BIOINFORMATICS

by

Liyang Yu

Under the Direction of Rajshekhar Sunderraman

ABSTRACT

Recently much research effort has been devoted to the discovery of relevant Web services. It is

widely recognized that adding semantics to service description is the solution to this challenge. Web

services with explicit semantic annotation are called Semantic Web Services (SWS). This research

proposes an indexation and discovery architecture for SWS, together with a prototype application in the

area of bioinformatics. In this approach, a SWS repository is created and maintained by crawling both

ontology-oriented UDDI registries and Web sites that hosting SWS. For a given service request, the

proposed system invokes the matching algorithm and a candidate set is returned with different degree of

matching considered. This approach can add more flexibility to the current industry standards by offering

more choices to both the service requesters and publishers. Also, the prototype developed in this research

shows the value can be added by using SWS in application areas such as bioinformatics.

INDEX WORDS: Web service standards, Semantic Web, Semantic Web services, OWL-S, Ontology, Indexation,

Service discovery, Search engine, Web crawler, Bioinformatics applications

AN INDEXATION AND DISCOVERY ARCHITECTURE FOR SEMANTIC WEB

SERVICES AND ITS APPLICATION IN BIOINFORMATICS

by

Liyang Yu

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science

in the College of Arts and Sciences

Georgia State University

2006

Copyright by

Liyang Yu

2006

AN INDEXATION AND DISCOVERY ARCHITECTURE FOR SEMANTIC WEB

SERVICES AND ITS APPLICATION IN BIOINFORMATICS

by

Liyang Yu

Major Professor: Rajshekhar Sunderraman

Yingshu Li

Yanqing Zhang

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

May 2006

iv

Dedicated to my parents,

Hanting Yu and Zaiyun Du

v

ACKNOWLEDGEMENTS

 My gratitude first goes to my adviser, Dr. Rajshekhar Sunderraman, for his intellectual support,

encouragement and patience. During the course of this research, he provided me with clear directions,

detailed instructions; and his understanding of this relatively new area also proves to be valuable. I would

also like to mention that I enjoyed his course, “Database and Web”, a lot; it is my favorite course here in

the Department of Computer in Georgia State University.

 I would also like to thank my parents for their support and understanding, for all their worries

about me as well. My mother keeps wondering why I have to go to school and take so many courses all

the time. Well, I wanted to tell her that I am now done with schools and I enjoyed them very much.

 I owe a special debt of gratitude to Ms. Jin Chen, for her encouragement, understanding and

especially for her ever-lasting confidence in my ability to understand the area and continue the research.

Quite often, she is the one who gets to know my progress first, listens to my boring talks first (and

normally the only one), and suffers my endless complaints first and all by herself. And these days, I

finally can let her rest and be happy for a while.

 Finally, let me thank my fellow graduate students and developers in my work for being my

friends, for participating in interesting discussions and for being patient enough to listen to my talks.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... v

LIST OF TABLES ...viii

LIST OF FIGURES ... ix

CHAPTER 1.. 1

INTRODUCTION... 1

1.1 Motivation ... 1

1.2 Problem Statement .. 6

1.3 The Organization of this Document .. 7

CHAPTER 2.. 8

A BRIEF LITERATURE REVIEW ... 8

2.1 Adding Semantics to WSDL/UDDI .. 8

2.2 Designing Architectures for Semantic Web Services.. 11

2.3 Matching Algorithms .. 13

2.4 Discussion ... 14

CHAPTER 3.. 17

AN INDEXATION AND DISCOVERY ARCHITECTURE FOR SEMANTIC WEB SERVICES.17

3.1 Discussion ... 17

3.2 Architecture of Indexation and Discovery of Semantic Web Services ... 19

3.3 Benefits of the Proposed Architecture... 26

vii

CHAPTER 4.. 28

MATCHMAKING ALGORITHM ... 28

4.1 Basic Assumptions .. 28

4.2 Description of the Matchmaking Algorithm ... 29

4.3 Discussion and Comparison to other Algorithms.. 35

CHAPTER 5.. 37

IMPLEMETATION: A BIOINFORMATICS EXAMPLE.. 37

5.1 Related Development Tools .. 37

5.2 A Simple Bioinformatics Ontology... 40

5.3 Semantic Web Services Based on the Example Ontology .. 42

5.4 Using Web Crawler to Build the SWS Repository ... 50

5.5 Examples of Matching Algorithm’s Results ... 64

CHAPTER 6.. 69

CONCLUSIONS AND FUTURE RESEARCH WORK... 69

6.1 Conclusions and Summary of Contribution .. 69

6.2 Future Research Work... 71

REFERENCE.. 74

APPENDICES... 77

A. A small ontology in the area of Bioinformatics ... 77

B. Classes and Their Relations Parsed by Using Jena APIs ... 82

viii

LIST OF TABLES

Table 1. mainRegistry table in SWS repository... 22

Table 2. Detailed descriptions of mainRegistry table.. 22

Table 3. serviceDetail table in SWS repository .. 23

Table 4. detailed descriptions of serviceDetail table .. 24

Table 5. A list of hypothetical Web services based on the example ontology.. 42

Table 6. mainRegistry table ... 54

Table 7. serviceDetail table... 55

Table 8. public UDDI registries.. 59

ix

LIST OF FIGURES

Fig. 1. Service discovery using a centralized registry... 18

Fig. 2. Architecture of the semantic Web service indexation and discovery .. 20

Fig. 3. Matchmaking Algorithm based on inputs/outputs... 33

Fig. 4. An RDF statement ... 38

Fig. 5. A fragment of the example bioinformatics ontology... 41

Fig. 6. ServiceProfile and service discovery .. 44

Fig. 7. Using OWL-S to describe getGlobalAlignment Web service... 47

Fig. 8. bravoCarRental.owl from OWL-S/UDDI matchmaker Web interface project [38]............. 50

Fig. 9. basic flow of OWL-S crawler .. 51

Fig. 10. Segment of the crawler log .. 53

Fig. 11. IBM's test UDDI registry... 60

Fig. 12. search by using input_tModel as reference... 61

Fig. 13. a web service that has semantic information ... 62

Fig. 14. details of the semantic Web service... 63

Fig. 15. results obtained by using the current UDDI crawler ... 64

Fig. 16. an example of a service request written in OWL-S ... 65

Fig. 17. a screen shot of the matchmaking result.. 68

1

CHAPTER 1

INTRODUCTION

Web Services are considered as the core technology of e-Business platforms. The wide-spreading

of Web services in the Intranets and in the near future in the whole Internet reveals the needs of

sophisticated discovery mechanisms. This research is about finding the desired web services with high

accuracy and efficiency. This chapter presents the motivation for this work by introducing the limitations

of current standards for information and service discovery. The research questions are then introduced

followed by the structure of this document.

1.1 Motivation

1.1.1 Finding Information on World Wide Web

World Wide Web contains virtually boundless information in the form of documents and one can

use computers to search for these documents. For instance, using a common search engine, one can search

the word “SOAP”. Unfortunately, one will find the results hardly helpful: there are listings for dish

detergents, facial soaps, and even soap operas mixed into the results. Only after sifting through multiple

listings and reading through the linked pages is one able to find information about the W3C’s SOAP

specifications.

2

The reason of this situation is that search engines implement their search based on the core

concept of “which documents contain the given key word” – as long as a given document contains the key

word, it will be included in the candidate set that later presented to the user as the search result. It is then

up to the user to read and interpret the result to extrapolate any useful information. To summarize this

situation, computers can present users with information but they cannot understand what the information

is well enough to display the data that is most relevant in a given circumstance.

To address this common difficulty with the World Wide Web, the Semantic Web vision was

conceived by Tim Berners-Lee [1], the inventor of the World Wide Web. Calling it the next step in Web

evolution, Berners-Lee defines the Semantic Web as “a web of data that can be processed directly and

indirectly by machines.” Therefore, semantic Web is about having data as well as documents on the Web

so that machines can process, transform, assemble, and even act on the data in useful ways.

Let us still use the “SOAP” example to illustrate the basic idea. In the above “SOAP” example,

because of the different semantic associations of the word “soap”, the results the user receives are varied

in relevance, and the user still has to do a detailed check to find the information he/she is looking for.

However, if these semantic data is added to all these ordinary Web documents and with the help of these

semantic metadata, machines can act as if they "understand" the information they are carrying.

Now, let us assume that the user is using a Semantic Web agent (a search agent who is capable of

recognizing the newly added semantic metadata) to search the Web for “SOAP” where SOAP is a type of

technology specification used in Web services. This time, the results of the search will be relevant. The

returned results will not contain information such as dish detergents, etc. Based on the semantic

information available for SOAP, the agent can also return a list of related technologies therefore it will

become usefully clear to the user that WSDL, XML, and URI are all technologies related to SOAP.

This small example shows how the semantic Web can potentially change the way of finding

relevant information from the World Wide Web. As a summary, in the semantic Web, data itself becomes

part of the Web and is able to be processed independently of application, platform, or domain. This data is

then used as semantic filter to decide which document should be included in the resulting set.

3

It is then interesting to explore the possibility of adding semantic information to traditional Web

service descriptions and to understand how this added semantic information would change the way of

discovering the desired Web services. This is the main motivation of this research and it is presented in

great detail in the next section.

1.1.2 Discovering Traditional Web services

Web services are modular, self-describing, and self-contained applications that are accessible

over the internet [2]. The core components of the Web services infrastructure are XML based standards

like SOAP [3], WSDL (Web Services Description Language [4]) and UDDI (Universal Description

Discovery and Integration [5]).

SOAP is the standard messaging protocol for Web services. SOAP messages consist of three

parts: an envelop that defines a framework for describing what is in a message and how to process it, a set

of encoding rules for expressing instances of application-defined data types, and a convention for

representing remote procedure calls and responses.

WSDL is an XML format to describe Web services as collections of communication endpoints

that can exchange certain messages. A complete WSDL service description provides two pieces of

information: an application-level service description (or abstract interface), and the specific protocol-

dependent details that users must follow to access the service at a specified concrete service endpoint.

The UDDI specifications offer users a unified and systematic way to find service providers

through a centralized registry of services that is roughly equivalent to an automated online “phone

directory” of Web services. UDDI provides two basic specifications that define a service registry’s

structure and operation. One is a definition of the information to provide about each service and how to

encode it and the other is a publishing and query API for the registry that describes how this information

can be published and accessed.

4

In the space of discovery, UDDI is emerging as the main tool for Web service discovery. Ideally,

for a desired Web service functionality, one should be able to use UDDI to locate a set of Web service

candidates that are qualified for the request; and within this candidate set, UDDI should be able to suggest

the single one service which has the highest QoS. However, the only discovery mechanism provided by

UDDI is a keyword search on the names and features of businesses and services descriptions.

Unfortunately, keyword search fails to recognize the similarities and differences between the

capabilities provided by Web services. Ultimately, UDDI is useful only to find information about known

Web services and it completely fails as a general Web services discovery mechanism.

Given the fact that semantic Web offers new improvements to accomplish more efficient

information retrieval, it is then possible to consider adding semantic information to the traditional Web

services and exploring a new set of discovery methods to facilitate the discovery of Web services. This

introduces the idea of semantic Web services.

1.1.3 Semantic Web Services and Ontology

As we discussed earlier, the current Web is just a collection of documents which are human

readable but not machine processable. In order to remedy this disadvantage, the concept of semantic Web

is proposed to add semantics to the Web to facilitate the information finding, extracting, representing,

interpreting and maintaining. “The semantic Web is an extension of the current Web in which information

is given well-defined meaning, better enabling computers and people to work in cooperation” [1].

The key reason why the current UDDI discovery mechanism fails is because the current Web

services standards are not semantic-oriented and they are awkward for service discovery, invocation and

composition. A seemingly obvious solution then is to combine the semantic Web with traditional Web

services; this further creates the concept of semantic Web services. Web services with explicit semantic

annotation are called Semantic Web Services (SWS) [6] – its vision is the application of semantic

description for Web services in order to provide relevant criteria for their automated discovery.

5

The fundamental concept of semantic Web and semantic Web services is ontology, which

provides the “well-defined meaning” to the information that is contained in the Web. “Ontology is a set of

knowledge terms, including the vocabulary, the semantic interconnections, and some simple rules of

inference and logic for some particular topic” [7]. The main benefit provided by ontology is that different

parties over the internet now have “shared” definitions about certain key concepts.

For semantic Web services, ontology is again one of the core components: 1) using ontology

brings user requirements and service advertisements to a common conceptual space; 2) using ontology

also helps to apply reasoning mechanism to find a better service candidate. All these will be discussed and

illustrated in this research in the later chapters. It will be shown that ontology based semantic Web

services is the solution to the weakness of UDDI when discovering the desired services.

Ontology in industry practice is normally domain-specific so to limit the scope of the ontology. In

this research, we are using bioinformatics as the example domain; therefore, a small ontology in this area

is built to illustrate our contribution, this is also shown in the later chapters.

1.1.4 New Challenge: Semantic Web Service Discovery

After adding semantic information to Web services, the new challenge is how to take advantage

of the semantic information to design a new discovery process. This is the main motivation for this

research. A general discussion is presented in this section, the proposed architecture and methods will be

presented in the following chapters.

Discovery is the process of finding Web services with a given capability. In general, this requires

that Web services advertise their capabilities with a registry, and that requesting services query the

registry for Web services with particular capabilities. Assuming an infrastructure that is based on a

centralized registry, the role of this registry is both to store the advertisements and to perform a match

between the request and the advertisements.

6

Assuming also that a domain specific ontology is built into the registry, this ontology is then used

by both the service provider and requester. For the service provider, by mapping concepts in a service

description to the concepts defined in the ontology, the semantics of the provided service is explicitly

defined. For the service requester, the service request is also expressed using the concepts from the same

ontology in the given domain. The final result is, by having both the service description and service

request explicitly define their semantics, the results from the discovery process will be much more

relevant than the results from simple keyword matching discovery. Therefore, the key to semantic

discovery of Web services is having semantics in the description itself and then using semantic matching

algorithms to find the required services.

Although the above basic idea is widely accepted in the research community, however, much still

needs to be done. For instance, a domain-specific ontology, a registry/repository and a semantic agent

have to be integrated together to implement the discovery process, different matching algorithms have to

be studied. This serves as our main motivation for this research, and a formal problem statement is

presented in the next section.

1.2 Problem Statement

This research will accomplish the following:

• propose an architecture for registration, indexation and discovery of semantic Web services,

including the possible matching algorithms. The registration/indexation and discovery process

should be based on the semantic matching instead of keyword searching as used in the traditional

UDDI discovery mechanism;

• develop a prototyping system which implements the above proposed architecture using

Bioinformatics as the application area to illustrate the interaction of different components in the

7

proposed architecture and how they work together to accomplish the goal of discovering the

desired Web services based on a given service request.

1.3 The Organization of this Document

The rest of this thesis is organized as follows. Chapter 2 presents literature review to summarize

the work that has been done toward the same direction, i.e., discovery of semantic Web services. A

registration/indexation and discovery architecture is proposed in Chapter 3 and detailed discussion of

main components, including the matching algorithm used in this architecture is also presented in the same

chapter. Chapter 4 presents the proposed matching algorithm in more detail, and Chapter 5 summarizes

the implementation techniques, including development tools, examples and other implementation details.

The main contributions and future studies are summarized in Chapter 6.

8

CHAPTER 2

A BRIEF LITERATURE REVIEW

As stated in Chapter 1, to discover the desired Web services accurately and efficiently, current

research trend is to add semantic information to the Web services framework (such as UDDI/WSDL) to

facilitate the discovery and other capabilities such as automatic invocation and composition. This also

includes the focus on designing different matching algorithms. Some related and seemingly popular

approaches are briefly summarized in this Chapter.

2.1 Adding Semantics to WSDL/UDDI

Quite a few research works have been concentrating on directly adding the semantic descriptions

into the WSDL and UDDI standards. The main benefit of this approach is that the existing traditional

Web services infrastructure can be reused.

One such approach is suggested in [8]. More specifically, semantic information is added to both

WSDL and UDDI, and semantic discovery algorithm is then used to find the desired services. This

approach follows the current Web service standard framework by using the extensibility feature of WSDL

and using UDDI data structure to represent grouping of operations with their inputs and outputs. For

instance, each WSDL description may have a number of operations with different functionalities. In order

to add semantics and to find relevant operations, these operations are mapped to concepts in appropriate

DAML+OIL [9] ontology that depicts the functionality of operations. This allows users to search for

operations based on ontological concepts. Also the message parts, i.e., input and output parameters of

9

operations that are defined in WSDL files using XML schema constructs, are mapped

to their appropriate

ontological concepts respectively.

As for the UDDI, semantic information is added by using the tModels. Four different tModels

have been created and registered in [8]: the first tModel represents the ontology of concepts representing

functionality of operations, the second and third represent the ontology of input and output concepts

respectively. Finally, the fourth tModel represents the grouping of each operation with its inputs and

outputs. The concepts that are represented by these tModels can be linked back to the concepts in the

WSDL file, and all this semantic information can be used by the matching algorithm to find the

appropriate candidate set.

Meteor-S [14] is a detailed extension of the work presented in [8]. It proposes a framework for

adding semantics directly to existing Web services standards, such as WSDL and UDDI. It allows users

to semantically annotate their WSDL and UDDI descriptions of their Web services with DAML and

publish these descriptions in their enhanced UDDI. Their matching algorithm extended the work

presented in [10] in two ways. First they extend the subsumption based matching mechanism by adding

information retrieval techniques to find similarity between concepts when it is not explicitly stated in the

ontologies, and secondly they added a mechanism to match on preconditions and effects of service

descriptions.

Another similar solution is discussed in [6]. Instead of using DAML+OIL, OWL-S [11] is used to

describe the semantics of a given Web service. OWL-S “grounding” is proposed to take care of the

mapping from the concepts that describe the inputs and outputs of the services to the inputs and outputs of

the corresponding operations in the WSDL specifications. To facilitate the discovery process, OWL-S

service profile is mapped into UDDI registry in the way quite similar to the approach that is used in [10]

as discussed below. This added semantic layer in UDDI makes it not only a registry for storing the

advertisements of Web services, but also a possible location to perform semantic match between the

request and the service capabilities.

10

A relatively simpler approach is proposed in [10], this solution does not involve the change to

WSDL. In this work, the discovery of Web services is implemented in two steps. The first step is to use

DAML-S upper ontology to describe the semantic representation of the given Web service. More

specifically, “service profile” of DAML-S upper ontology is used to describe the capabilities of the

service in terms of inputs, outputs, preconditions and effects. The given service is considered to be fully

defined after the description of these four aspects of the services is completed.

The second step is to translate the DAML-S representations into UDDI representation, i.e., to

map the description represented by DAML-S upper ontology into UDDI registry. The key in this step is

the UDDI tModel, which is a data structure provided by UDDI and can be used to specify information

about the services. The actual mapping is done by adding a set of 15 UDDI tModels, one for each

attributes of the DAML-S profile representation. One of the tModels, the DAML-S tModel, has a special

meaning: it states that the service advertised has a DAML-S service representation. A simple matching

engine is also proposed in [10]. On top of the UDDI searching APIs, this added matching engine can find

the Web services based on their semantic representations which are embedded in the UDDI registry as

described above.

Quite a few other research efforts are also based on the idea of combining DAML-S/OWL-S and

WSDL/UDDI. For example, the work reported in [12] combines OWL-S and UDDI without changing

WSDL; this is very similar to the work in [10]. However, it also considers the issue of scalability and

performance, a preliminary result on performance issue is reported in [12]. The conclusion is, comparing

the performance of the OWL-S/UDDI registry and a UDDI registry, adding an OWL-S layer and its

corresponding matching component does not hinder the performance and scalability of a UDDI registry.

Another example for a semantic UDDI registry is presented in [13]. This work is based on [10]

but provides an enhancement to the semantic search mechanism presented in [10] in several ways. First, it

extends the UDDI inquiry API by enabling users to specify semantic inquiries based on Web services

capabilities, secondly it enhances the matching algorithm with a planning functionality, which is capable

of satisfying users requests by composing two or more service descriptions.

11

A somewhat different approach without making changes to WSDL/UDDI is the work presented

in [15]. Internet Reasoning Service (IRS-II) introduced in this work shows how to support the publication,

location, composition and execution of heterogeneous semantic rich web services. It uses UPML(Unified

Problem Solving Method Developments Language) framework [16] for the specification of reusability in

knowledge-based systems by defining how we can build elementary components and how these

components can be integrated into one whole system. The IRS-II approach enables applications to

semantically describe and execute Web services. It supports capability-driven service invocation (e.g. find

a service that can solve problem X) because of the explicit separation of task specifications (the problems

which need to be solved), method specifications (the ways to solve problems), and domain models (the

context in which these problems need to be solved).

2.2 Designing Architectures for Semantic Web Services

As discussed in Section 2.1, much of the work on Web services discovery is based on

modifying/extending a centralized registries such as UDDI repository. Although centralized registries are

effective since they guarantee the discovery of services that are registered, they suffer from traditional

problems of centralized systems as bottlenecks and single points of failure. Also, replicating the UDDI

data is not a scalable approach. Therefore, some of the research effort concentrates on alternative

architecture for the discovery of semantic Web services.

One such example is given by the work in [17]. They argue that the trend in integrating UDDI

feature into general purpose enterprise registries results in rapid increase of private registries and limits

the use of public registries. They also state that from discovery perspective, it is impractical to replicate

these private registries in the public counterparts. They propose to deal with this problem by creating a

virtual global registry by connecting all private registries in a P2P network. The support for semantic

based service discovery is done by using DAML-S service descriptions and matchmaking.

12

A similar but extended work is presented in [18]. In this work, multiple public/private registries

are grouped into registry federation. More precisely, a registry federation is a collection of autonomous

but cooperating Web service registries. The goal of a federation can be forming a registry community

serving either a business domain or forming a market place of registries with similar but competing

services. The publication and discovery of semantic Web services requires efficient access to these

federations, and this efficient access is implemented by storing semantic metadata in the form of

Extended Registries Ontology (XTRO), which successfully captures the relationships among these

registries and also categorize the registries on the basis of business domes.

Another federated architecture is presented in [19]. The proposed federated architecture supports

QoS based discovery of services. It has a notion of UX (“UDDI Extension”) server that performs

federated discovery on behalf of a user request and aggregates results before sending them back to the

requester. The paper discusses different ways of maintaining links between the servers and how query is

propagated. It also envisions linking UX servers across different domains. It points out that improvements

could be made using semantic descriptions and matchmaking. In the work presented in [18], this idea is

pushed further, the emphasis is rather on utilizing UDDI data structure to store semantic description of a

service for better service matchmaking, to establish a federation for carrying out discovery process in

multiple registries and in exploiting an ontology for improving the registry selection mechanism for Web

service publication and discovery.

Another P2P example is given in [20] which uses a P2P architecture to facilitate the publication

and discovery of semantic Web services. For a service provider, the semantic description of the service is

coded in such a way that it also identifies the server in which this service will be published; it is the

mechanism for the dissemination of service description in the P2P overlay of the location servers. For a

client, the semantic description of the request is also coded to identify the server that probably contains

the discovery information for the requested service; it is the research mechanism of service description in

the P2P overlay of the location servers. Once the specific server is located, the rest is done by the

proposed matching algorithm.

13

A recent architecture for registration and discovery of the semantic Web services is proposed in

[21]. This architecture includes a web crawler which will not only visit the Web sites that publish

semantic Web services and collect all these service descriptions into its only registry, but will also visit

public/private UDDI registries to search for service advertisements which also have semantic

augmentation. Once these service advertisements are discovered, they are also gathered into the registry

that is maintained by this architecture. A semantic matchmaking engine is provided so for the service

requests, a candidate set will be proposed. To select the “best” candidate from this candidate set, fuzzy

neural networks with Genetic Algorithm is used.

The work in this research is an extension to the work presented in [21] with an application

example in the area of Bioinformatics. The overall architecture, the implementation issues, running

examples and summary of contribution are presented in details in the next few chapters.

2.3 Matching Algorithms

Clearly, the discovery of semantic Web services depends on the semantic match between a

declarative description of the service being sought, and a description of the service being offered.

Therefore, the study of different matching algorithms attracts considerable amount of research effort. This

section presents a brief review of some of the efforts.

The work in [22] considers a setting where the service capabilities are described using DAML-S

upper ontology and the semantic matching is performed between advertisements and requests. More

specifically, DAML-S Service Profiles describe service requests as well as service provided. A request

consists of a description of a hypothetical service that performs a task needed by the requester. Requests

are sent to registries of Web services that match them against the profiles advertised by other services to

identify which services provide the best match. A matching is successful when all the outputs of the

request are matched by the outputs of the advertisement, and all the inputs of the advertisement are

matched by the inputs of the request. The “degree” of matching is decided by whether the matching

14

between concepts is exact or subsume. The main advantage of this algorithm is its simplicity and

therefore easy to be implemented.

Since DAML-S has been updated and renamed to OWL-S, adapting the evolution of DAML+OIL

to OWL [11], some researchers have developed matching algorithms based on OWL-S. One of these

examples is given in [23]. A service provider describes his advertised services in an OWL-S compliant

ontology and a service requester queries for services with an OWL-S ontology expressing his

requirements. The proposed algorithm is divided into four stages: (a). the matching of inputs, (b) the

matching of outputs, (c) the matching of service category, and (d) user-defined constraints or functionality

that can be used to guide the matching process. In this algorithm, the relationship between concepts is

also considered: concept B is subsumed by concept A, meaning that A denotes a more general concept

than B. Although this same relationship is also considered in [22], the service category and user-defined

constraints are not included in the algorithm proposed in [22].

As a summary, all these matching algorithms concentrate on the service profile and its inputs and

outputs for determining matches between requests and advertisements. This decision is shared by many

other matching algorithms that are proposed in related research work, see [20] and [24] for other

examples. Besides the above seemingly popular approach that is based on inputs and outputs, a different

approach is found in [25]: a match maker is designed that covers only the service model of DAML-S. As

pointed out in [26], this service model is not primarily provided to express requirements for finding

matches with advertisements.

2.4 Discussion

This chapter is not intended to be a comprehensive review of the current research efforts; rather,

it only summarizes the seemingly popular results in the area of Web service discovery. Based on this brief

literature review, we have established the following observations:

15

• It is commonly accepted by the academic community that the current de facto Web service

standards, especially UDDI registries, it is not powerful enough to support dynamic discovery of

desired Web services;

• The solution to the above challenge is to add semantics to the descriptions of the given Web

services, i.e., to change the traditional Web services into semantic Web services. A popular way

to implement this is to add semantic information to WSDL and/or UDDI;

• Since the main solution is to add semantics to WSDL/UDDI, the resulting architecture is still the

centralized UDDI registries. However, other alternative, such as P2P structure (UDDI federations)

has been proposed;

• Different matching algorithms have been proposed to facilitate the discovery of semantic Web

services. Matchmaking algorithms is normally proposed in the context where 1) a domain specific

ontology is created to express semantic capabilities of services and these services are described

with their inputs and outputs; 2) for service discovery, clients and providers should use the same

ontology to describe requests and services.

The research work in this thesis is mainly based on the initial work presented in [21]. More

specifically, we propose an architecture that will facilitate the registration/indexation and discovery of

semantic Web services. A Web crawler in this framework will access specific service ontology-oriented

UDDI registries to fetch the service profiles, translate them into the format supported by the repository in

our framework; the crawler will also crawl the semantic Web sites which hosting the specific ontology

based semantic Web services directly to get the service profiles, and save them in our repository. To some

extend, this repository is similar to the index database that is maintained by a traditional keyword based

search engine. Furthermore, this crawler is controlled by a “broker”, who will periodically start the

crawler so the repository is being reasonably up-to-date. Besides this registration and indexation process,

the broker will also frequently receive service requests and therefore start the matching engine to find a

16

“candidate set” of Semantic Web services and return this set to the requestor. This discovery process is

implemented by a proposed matching algorithm between advertisements and requests described in OWL-

S that recognizes various degrees of matching to consider different potentials for maximizing the quality

of service (QoS).

To illustrate this proposed architecture and the matching algorithm, an example in the field of

bioinformatics is implemented. In this example, some frequently used services, such as protein structure

prediction and sequence alignment, are published as semantic Web services, and after receiving a service

request, the broker is able to find the related candidate set and return it to the requestor.

The following chapters will present this research work and implementation example in detail. We

believe the proposed approach in this research can add more flexibility to the current industry standards

and also offer more choices to both the service requestors and publishers. The main contribution from this

research is also summarized in the later chapters.

17

CHAPTER 3

AN INDEXATION AND DISCOVERY ARCHITECTURE FOR SEMANTIC WEB

SERVICES

In this Chapter, the proposed architecture for indexation and discovery of semantic Web services

is presented. The details of each component and the relationship between each component in this

architecture are also discussed here. The key benefits of this architecture are then summarized.

3.1 Discussion

In the Web service architecture description presented by the W3C [27], three main discovery

scenarios are identified: a centralized registry, a peer-to-peer (P2P) scenario and an index registry

scenario.

Perhaps the most popular structure is a registry structure. In such a scenario, a centralized “yellow

book” stores service descriptions which are submitted by service providers. An existing example of such a

repository is obviously UDDI [5]. To add semantics to Web service descriptions, UDDI can be extended

to be compatible with DAML-S or OWL-S. And as stated in Chapter 2, the semantic information is added

into UDDI by creating new tModels. When a service request is submitted, the UDDI server will suggest

the candidate Web services by matching the requirements with the descriptions in the registry based on

some specific domain ontology. Examples of this approach can be found in Chapter 2 and this scenario is

outlined in Figure 1.

18

Fig. 1. Service discovery using a centralized registry

A P2P scenario is just the opposite of the above registry scenario: each Web service is being

discovered dynamically, a service requester queries other nodes in its network or some specific network

domain to find and identify the candidates without the existence of a centralized registry or index. As

summarized in [23], this architecture means more updated service descriptions, but the matching effort

could be more complex. Also, a key issue is where the matchmaking process is performed: it can be

performed either on a centralized server or by individual clients. As an advantage of the server-sided

scenario, the implementation of a client (acting as the service requester), can be kept very simple. Thus,

the effort for finding services on the client side is very low. This issue is a well known important factor

when selecting a server-oriented architecture in general. For instance, a service requester may want to use

his/her own matching algorithm instead of the implementation on a central server. These custom modules

can define constraints that must be satisfied by the OWL-S description of the advertised service. Only

with the client-sided execution of such modules the personalization of the matching process is possible.

Another approach is the index scenario. The index is built by the so-called crawlers or robots [28]

that browse the Web automatically. The difference between the index and the registry approach is that

service providers control what information is put into the registry, whereas the index collects information

on its own, in most cases automatically. The benefit is that the crawlers/robots can decide what

information needs to be gathered based upon the needs of the possible matching algorithms. Also,

UDDI/OWL-S
Registry

UDDI API

service discovery
provider (exteneed UDDI)

Service
provider

1. registers service with
 OWL-S descriptions

matchmaking
engine

Service
requester

2. queries for service
 with OWL-S descriptions

19

compared to the centralized registry such as UDDI, the index approach tends to be more updated since the

crawlers/robots can walk thought the Web periodically to update the index.

In this research, an indexation/repository structure is selected to build the registry. More

specifically, an index of semantic Web service description is created and maintained by a crawler which

visits not only the general Web sites to collect published semantic Web service descriptions, but also the

public/private UDDI registries. A matchmaking engine is then built to represent a single point of contact

between the repository and a service requester; it performs the matchmaking of service advertisements

and requests. Since this engine is located on the server and the process of matchmaking is performed on

the server side, there is very little effort from the clients.

An important feature of the crawler that is obvious from the above description is the

comprehensive coverage: the crawler will not only walk thought the Web to collect all the published Web

service descriptions, but will also visit public/private UDDI registries to search for Web service

descriptions that are semantically enhanced. This means that the service requester using the proposed

system will have a better chance to find the desired service: he is not only searching the UDDI registries,

but also the whole Web for the potential candidates. The proposed architecture is described in the

following section and more discussion of its benefits is presented at the end of this chapter.

3.2 Architecture of Indexation and Discovery of Semantic Web Services

Based on the above discussion, the proposed architecture for indexation and discovery of

Semantic Web services is given in Figure 2. It is built upon specific domain ontology (in this study, we

use bioinformatics as the specific domain, see the Chapter 5 about implementation). This architecture has

the following major components: (a) web crawler; (b) semantic Web service (SWS) repository; (c)

matchmaking engine; (d) broker; (e) domain specific ontology. Each of these main components is

described next.

20

Fig. 2. Architecture of the semantic Web service indexation and discovery

3.2.1 Web Crawler

As shown in Figure 2, the web crawler has two main tasks:

1. Accessing the public/private specific service ontology-oriented UDDI registries using UDDI

query API to fetch the service profiles, transforming them into the format supported by the

proposed repository, and storing them into the repository using the published API of the

repository;

2. Crawling the semantic Web sites hosting the specific ontology based semantic Web services

directly to get the service profiles, transforming them into the format supported by the repository,

and storing them into repository using the published API for the repository.

The reason for proposing such a Web crawler is also quite obvious. Under the current semantic

Web service environment, UDDI registry must be extended to be ontology-compatible which supports

UDDI
Registry

UDDI API

UDDI
Registry

UDDI API

…

SWS
hosting site

OWL-S
serviceProfile

SWS
hosting site

ontology-oriented UDDIs

…

Web crawler mainRegistry

SWS entry

SWS entry

SWS entry

…

…

service detail

service detail

service detail

serviceDetails

broker

SWS Repository

matchmaking
engine

candidate set

service request

domain
Specific
ontology

Web sites hosting specific ontology-based
semantic Web services

OWL-S
serviceProfile

21

semantic matching of semantic Web services’ capabilities. One such approach, as discussed in Chapter 2,

is to map the OWL-S service profiles into current UDDI registry’s data structure. In order to include this

popular solution and to reuse and extend the existing infrastructure, the Web crawler in the proposed

architecture has to be able to visit these public/private UDDI registries to collect the semantic descriptions.

In order to offer more flexibility to both service providers and service requesters, the Web crawler,

besides visiting the UDDI registries, is designed to be able to craw the Web, collecting the semantic Web

service descriptions directly from the hosting Web sites. This directly implies much more flexibility to the

service providers: they can either publish the service profiles of semantic Web services into the

public/private specific service ontology-oriented UDDI registries or directly on their hosting Web sites.

For the service requesters, they now have a better chance to find the desired service: using the proposed

system, the service requesters are not only searching the UDDI registries but also “all” the Web sites

hosting semantic Web services.

After visiting the related sites, the crawler will transform the gathered semantic descriptions into

the format supported by the repository and store them into the repository. When a service request arrives,

the broker will visit this repository and activate the matchmaking engine to recommend a list of

candidates that may satisfy the request.

In this research effort, we are able to fetch quite a few web sites that contain semantic Web

service profiles and therefore the crawler is able to collect these profiles into the repository, however, we

are not able to find any semantic profiles in the UDDI registries except a single testing example. For

details of the implementation work, see Chapter 4.

3.2.2 Semantic Web Service Repository

The specific ontology based semantic Web service repository (SWS repository) is responsible for

storing the service profiles of semantic Web services. As described in Figure 2, its main purpose is to

22

“remember” all the semantic Web service descriptions that are collected by the crawler. The criteria used

to design the structure of the SWS repository can be summarized as follows:

• The description data stored in this repository should be detailed enough that when a service

request arrives, there is enough information for the matchmaking engine to construct the

candidate set;

• The service requester should be able to invoke the selected service based on the information

stored in the repository.

Based on the above considerations, the repository can be implemented using a DBMS, such as

ORACLE and it has two main tables. The first table is shown in Table 1.

Table 1. mainRegistry table in SWS repository

SQL> describe mainregistry;
 Name Null? Type
 --- -------- ------------------
 SERVICEURL NOT NULL VARCHAR2(128)
 ONTOLOGYURL VARCHAR2(128)
 SERVICENAME VARCHAR2(128)
 CONTACTEMAIL VARCHAR2(128)
 UDDIENTRY VARCHAR2(256)

SQL>

The detailed description of each field in Table 1 is summarized in Table 2.

Table 2. Detailed descriptions of mainRegistry table

Field name Description

serviceURL

Key of the mainRegistry table.

If this description (the current record) is added by the crawler as a result of

23

searching the UDDI registry, this field will be the standard UDDI serviceKey

value which can uniquely identifies the give Web service in the UDDI registry

(therefore, when this service is returned as a candidate to the service requester, this

field can be used to easily retrieve the service description from the UDDI registry).

If this record is added by the crawler as a result of visiting a Web site which directly

hosts a semantic Web service (i.e., this description is obtained directly from the

publisher’s site), this field will be the URL of the OWL-S file describing the Web

service.

ontologyURL The URL of the domain specific ontology file.

serviceName The name of the Web service.

contactEmail The Email to contact the provider of this service.

UDDIEntry In the case where this record is added by the crawler as a result of visiting a Web

site which directly hosts a semantic Web service, it can be true that the service

provider elects to not only publish the service on his/her Web site, but also enter the

service description into the UDDI registry. If this is the case, this field will then

serve as a “pointer” which links this semantic description (the OWL file) to the

service details in the UDDI registry, i.e., the serviceKey value used in the UDDI

standards.

If the service provider does not offer an entry in the UDDI registry, then this field

can point to the WSDL file that is associated with the given Web service.

The second table provides more details about a given Web service description, its structure is

given in Table 3.

Table 3. serviceDetail table in SWS repository

SQL> describe serviceDetail;
 Name Null? Type
 --- -------- ------------------
 SERVICEURL NOT NULL VARCHAR2(128)
 PARAMETERTYPE VARCHAR2(16)
 PARAMETERCLASS VARCHAR2(32)

SQL>

Again, the detailed description of each field in the serviceDetail table is presented in Table

4.

24

Table 4. detailed descriptions of serviceDetail table

Field name Description

serviceURL Foreign key which links back to mainRegistry table

parameterType Identifies whether this parameter is input or output parameter

parameterClass Identifies the concept/class that is associated with this parameter. For instance,

the concept/class of a given input parameter could be ProteinStructure,

and clearly, this concept/class has to be defined in the domain specific ontology.

Clearly, mainRegistry and serviceDetail together will record a complete description of

a given Web service. The matchmaking engine will use the description in these two tables when the

matchmaking is implemented. For more details and examples, refer to the later chapters.

3.3.3 Matchmaking Engine

Based on the previous discussion, the proposed architecture can be viewed as a Web wide

infrastructure for semantic Web service descriptions supported by a SWS repository that functions as a

directory. This directory records advertisements of services that come on line or registered in UDDI

registries, and supports the searching of services that provide a set of requested functionalities.

The matchmaking engine is the core component for the search of the semantic Web services. Its

function is to use the built-in algorithm to find the potential Web service candidates based on a given

service request. The followings are the main considerations when designing the engine:

• It has direct access to the SWS repository;

• It has direct access to the domain specific ontology;

• It has the ability to make inferences based on the given ontology;

• Its matching algorithm(s) can be modified, extended, and even “replaced”.

More specifically, for a given service request, the engine will read in the detailed information of

the request, access the SWS repository, use the algorithm to analyze each entry in the repository and

25

decide its qualification based on the algorithm. The matchmaking engine has direct access to the domain-

specific ontology that is used by both the service providers and service requesters.

It is clear that in the proposed design, the matching process is implemented on the server side, i.e.,

the effort of finding the candidate services is very low on the service requester (the client) side. This has

the advantage of an extensible architecture since the matching algorithms in the matchmaking engine can

be added, modified, updated and even streamlined so a better candidate set can be proposed. Also,

different QoS can be implemented to improve the matching quality. This later topic is discussed more in

detail as given in [21].

3.2.4 SWS Broker

The semantic Web service broker is the key component in the proposed architecture, and it has

the following responsibilities:

• Creates and maintains the SWS repository by managing the Web crawler. When informed by the

broker, the Web crawler will walk thought the Web sites and public/private UDDIs to update the

repository periodically;

• Provides a single point of contact between the user and the system: users’ service requests are

received by the broker, and the broker will use the SWS matchmaking engine to access the

repository and provide a candidate set of potential Web services that may satisfy the request, and

return the list to the user.

Other research efforts (for instance, [21]) may use the name “intelligent agent”, “communication

server”, “inquiry server”, etc. For the proposed architecture, the SWS broker assumes all these

responsibilities for the system. It is therefore the component which logically connects all the other

components, such as the crawler, the SWS repository, the matchmaking engine and the domain specific

ontology, to work together for the discovery of relevant Web services.

26

3.2.5 Domain Specific Ontology

As discussed before, the fundamental concept of semantic Web and semantic Web services is

ontology, which provides the “well-defined meaning” to the information that is contained in the Web. For

semantic Web services specifically, the terms (input, output, precondition, effect, for instance) that are

used in both the advertisements and requests have to be defined in an ontology, and this ontology can be

viewed as the “physical storage” of the semantics for each term.

The ontology component that is included in the proposed architecture is the single component that

has to be accessible to all other components in the system. For instance, the crawler needs the ontology to

“understand” a service profile and therefore correctly stores it into the SWS repository, the matchmaking

engine needs the ontology to make inferences about the qualification of a given candidate. The main

benefit provided by ontology is that different parties on the Web now have “shared” definitions and

semantics about certain key concepts/classes; it brings user requirements and service advertisements to a

common conceptual space. Even more important is the fact that using ontology also helps to apply

reasoning mechanism to find a better service candidate (this will become clearer in later chapters).

Ontology in industry practice is normally domain-specific so to limit the scope of the ontology.

Therefore, in the proposed structure, the ontology component has to be domain specific also. In this

research, bioinformatics is used as the example domain; a small ontology in this area is built to illustrate

the implementation details of the proposed system.

3.3 Benefits of the Proposed Architecture

The detailed discussion of the proposed architecture is presented in the earlier sections. In this

section, we briefly summarize the benefits of this structure as follows:

1. More comprehensive coverage.

27

The Web crawler component visits not only the public/private UDDI registries, but also the Web

to find all the Web sites hosting semantic Web services. This implies the directory in the proposed

architecture has more coverage and therefore a search conducted against this directory can provide a

better chance of finding the desired service. On the other hand, the current popular solution is to add

semantic information into WSDL/UDDI (see Chapter 2 for details), in this solution, the matchmaking

process is implemented solely in the scope of the UDDI registries. If a Web services provider decided not

to register the service into UDDI registry but only publish it in his/her own Web site, this searching

algorithm would miss this candidate for sure.

2. More flexibility to service publisher.

Compared to the UDDI registry structure, the proposed structure offers more flexibility to the

service publisher. Besides the option to register the service into UDDI registry (and insert relevant UDDI

tModels to add the semantic descriptions), the publisher can also elect to publish the service profiles on

their Web sites. As long as these profiles are created by following the current standards, such as OWL-S,

the crawler can successfully pick them up and store them into the index table (directory). Meanwhile, this

also means more flexibility to service requestor: as argued above, querying the broker in our framework is

equivalent to querying both UDDI registries and publishers’ Web sites as the same time; the returned

candidate set is more complete.

3. More up-to-date repository.

A centralized UDDI registry always suffers form the possibility of being obsolete, and keeping an

UDDI registry up-to-date has to be done by careful planning and tedious programming work using its

publish APIs. On the other hand, the service descriptions stored in the SWS repository in this structure

can be easily kept to be up-to-date given the fact that the crawler can periodically re-do its visiting work.

4. More transparency to the client.

In this structure, the broker is able to hide the complexity of the matching algorithms. When a

particular service is requested, the effort on the client side can be minimized. However, in the P2P case,

the client is sometimes forced to have its own matching algorithms.

28

CHAPTER 4

MATCHMAKING ALGORITHM

4.1 Basic Assumptions

Matchmaking algorithms is the key to the discovery process of semantic Web services. Much

research effort has been attracted in this area; examples of proposed matching algorithms can be found in

the discussion of Chapter 2. As a summary, matching algorithms are often proposed with the following

assumptions:

• a domain specific ontology is created to express semantic capabilities of services and these

services are described with their inputs and outputs;

• for service discovery, clients and providers should use the same ontology to describe requests and

services.

The matching algorithm that is developed in this research follows these same assumptions and

concentrates on the service profile and its inputs and outputs for determining the degree of matching

between requests and advertisements. This decision is shared by many other matching algorithms

proposed in related research work, see [8], [20], [22], [23] and [24] for examples.

In this research, we also assume that the ontology under consideration is written in OWL and

service providers are assumed to describe the advertised services using OWL-S upper ontology for

service description, the same assumption also holds for service requests, i.e., service requests are also

29

expressed using OWL-S. These are reasonable assumptions because, as pointed out in [11], OWL and

OWL-S are becoming the standards for the semantic Web service descriptions.

4.2 Description of the Matchmaking Algorithm

In this section, we describe the proposed matchmaking algorithm. The basic assumptions of this

algorithm are summarized in Section 4.1. Since both the service requests and service advertisements are

expressed in OWL-S (based on the shared ontology), in this section, the word “input” and “output” both

refer to and are equivalent to the concepts/classes that are defined in the shared domain specific ontology.

Let us start by introducing some notations which will then make the description of the algorithm easier.

IR: the set of all the concepts that are used as inputs of the desired Web service, expressed in

the service request file provided by the service requester;

IP: the set of all the concepts that are used as inputs of the given Web service, expressed in the

service description file presented by service provider;

OR: the set of all the concepts that are used as outputs of the desired Web service, expressed in

the service request file provided by the service requester;

OP: the set of all the concepts that are used as outputs of the given Web service, expressed in

the service description file presented by service provider;

Ω: the set of all the concepts/classes that are defined in the domain-specific ontology.

Given the fact that both the service requests and service advertisements are expressed in OWL-S

using a shared domain specific ontology, every input and output in these description files can be mapped

to one and only one class/concept, denoted by C, defined in the domain specific ontology. The following

can be used to formally express this relationship:

30

define C=C(e), such that ∀e∈(IR∪IP∪OR∪OP), C∈Ω.

We can then define the following mapping functions for the input sets:

finput-exact: a 1-1 mapping from IR → IP: ∀eiR∈IR, ∃eiP∈IP, such that C(eiR)≡C(eiP);

“≡” means the left-hand-side (LHS) concept is equivalent to the right-hand-side

(RHS) concept. Clearly, this implies that IR = IP , i.e., the number of input

parameters required by the desired Web service requested by the server requester

is equal to the number of input parameters required by the Web service provided

by the service publisher.

finput-L1: a 1-1 mapping from IR → IP: ∀eiR∈IR, ∃eiP∈IP, such that either one of the

following relation holds: C(eiR)≡C(eiP), or C(eiR)<C(eiP); and there exists

at least one pair of eiR∈IR, eiP∈IP such that the < relation holds. “<” means

the LHS concept is a sub-concept or sub-class of the RHS concept. Clearly, this

implies that IR = IP ;

finput-L2: a 1-1 mapping from IR → IP: ∀eiR∈IR, ∃eiP∈IP, such that one of the

following relation holds: C(eiR)≡C(eiP)or, C(eiR)<C(eiP) or,

C(eiR)>C(eiP); and there exists at least one pair of eiR∈IR, eiP∈IP such that

the > relation holds. “>” means the LHS concept is a super concept or super

class of the RHS concept. Clearly, this implies that IR = IP .

These 3 mapping functions are defined to test the matching between the provided inputs and the

desired inputs. First of all, notice that each one of these testing function requires the condition IR = IP

. Intuitively, this condition says that if the service requester would like to provide 4 input parameters to

31

accomplish some functionality, then in order for a given Web service to become a potential candidate, it

should at least be able to accept exactly 4 input parameters. Clearly, this is a fundamental condition that

every candidate should satisfy when the matching of the inputs is being tested.

Now, for a given candidate Web service, assume the number of its required input parameters is

equal to the number of input parameters that the service requester is willing to provide (i.e., the above

condition is met), and furthermore, if every input parameter’s concept/class from the input set that the

service requester is providing can find its exact matching counterpart in the given candidate’s required

input parameter set, one can comfortably declare that the input parameters required by the provider are

exactly matching the input parameters offered by the requester. This perfect matching situation is

captured by the mapping function finput-exact.

Sometimes, the exact matching cannot be achieved but an acceptable matching is still possible.

One such situation is where some of the input concepts provided by the service requester cannot find their

exact counterpart classes but can instead locate their super-concepts (super-classes) in the input parameter

set required by a given candidate. For instance, the service requester is willing to provide one input

concept “SUV”, and one candidate can accept “Vehicle” as input, the provided concept is a sub-class of

the required concept (therefore, the provided concept has “more” information than that is actually needed),

this given Web service can still be submitted as a candidate since the service requester in fact can provide

more information to the service provider. This matching relationship is defined by finput-L1 where L1

stands for “Level-1” matching. Clearly exact matching is the perfect matching and more desirable than

a “Level-1” matching.

The last level of matching considered in this matching algorithm is the “Level-2” matching

denoted by finput-L2. This matching happens when some of the input concepts provided by the service

requester can find neither their exact counterpart classes nor their super-class counterparts (the Level-1

matching scenario), but can instead locate their sub-concepts (sub-classes) in the input parameter set

required by a given candidate. Use the same example as above, the service requester is willing to provide

32

one input concept “Vehicle”, and the current candidate requires “SUV” as input class, the provided

concept is a super-class of the required concept. In this situation, the provided concept has “less”

information than the concept that is required by the service provider. However, it could be true that this

“extra” information encapsulated in the sub-class is never really needed by the service, in which case this

given Web service can again be presented as a candidate. In reality, it is very difficult to obtain the

information whether this is the case or not, therefore, “Level-2” matching candidates are presented to

the users as references an should always be used with care. Clearly, “Level-2” matching is less

desirable than “Level-1” matching.

Similarly, to test the matching among the output concepts, the following mapping functions can

be defined:

foutput-exact: a 1-1 mapping from OR → OP: ∀eoR∈OR, ∃eoP∈OP, such that C(eoR)≡C(eoP);

“≡” means the LHS concept is equivalent to the RHS concept. Clearly, this

implies that OR = OP , i.e., the number of output parameters required by the

desired Web service requested by the server requester is equal to the number of

output parameters required by the Web service provided by the service publisher;

foutput-L1: a 1-1 mapping from OR → OP: ∀eoR∈OR, ∃eoP∈OP, such that either one of these

relation holds, C(eoR)≡C(eoP)or, C(eoR)<C(eoP); and there exists at least one

pair of eoR∈OR, eoP∈OP such that the < relation holds. “<” means the LHS

concept is a sub-concept or sub-class of the RHS concept. Clearly, this implies

that OR = OP ;

foutput-L2: a 1-1 mapping from OR → OP: ∀eoR∈OR, ∃eoP∈OP, such that either one of these

relation holds, C(eoR)≡C(eoP)or, C(eoR)<C(eoP)or, C(eoR)>C(eoP); and

there exist at least one pair of eoR∈OR,, eoP∈OP such that the > relation holds.

33

“>” means the LHS concept is a super concept or super class of the RHS

concept. Clearly, this implies that OR = OP .

Again, foutput-exact, foutput-L1 and foutput-L2 have similar implications as the three input-testing

functions. Clearly, an “output-exact” matching is more preferable than an “output-L1” matching,

which is more desirable than an “output-L2” matching.

Based on the above notations, the matching algorithm can then be described in Figure 3:

Algorithm 4.1

Input: Web service request description file (.owl)
current service descriptions from the SWS repository

Output: a string value from the set

{“exact”,”level-1”,”level-2”,”failed”}

Method:

build IR,OR using Web service request description file;
build IP,OP using the current SWS repository;

if IR ≠ IP or OR ≠ OP  return “failed”;

else if (∃finput-exact and ∃foutput-exact) return “exact”;

else if (∃finput-exact and ∃foutput-L1) return “level-1”;

else if (∃finput-L1 and ∃foutput-exact) return “level-1”;

else if (∃finput-L1 and ∃foutput-L1) return “level-1”;

else if (∃finput-exact and ∃foutput-L2) return “level-2”;

else if (∃finput-L1 and ∃foutput-L2) return “level-2”;

else if (∃finput-L2 and ∃foutput-L2) return “level-2”;

else if (∃finput-L2 and ∃foutput-L1) return “level-2”;

else if (∃finput-L2 and ∃foutput-exact) return “level-2”;
else return “failed”;

Fig. 3. Matchmaking Algorithm based on inputs/outputs

The algorithm starts by reading the service request file that is submitted by the service requester.

This file describes the desired Web service using OWL-S (for detail example see Chapter 5), and its input

and output parameters are concepts/classes defined in the shared domain specific ontology. After reading

this requirement description, the matchmaking engine starts to scan the current SWS repository, the first

Web service description is extracted from this directory, the detailed input and output concepts that are

34

supported by this Web service are also read in by the matchmaking engine. At this stage, all the necessary

information is ready for the comparison.

Next, the engine tests how many input parameters that the service requester would like to provide

and how many input parameters are in fact required by the current candidate, if this number does not

match, the matchmaking engine skips this candidate and moves on to the next service description

recorded in the SWS repository. Otherwise, the engine moves on to test the number of output parameters

by checking whether the number of the output parameters required by the service requester is different

from the number of the output parameters given by the current candidate. Again, if this number does not

match, the engine skips this candidate and moves on to the next one.

If the number of input parameters and output parameters are matching, the engine continues to

check the degree of matching by testing “exact” matching first. If it does not exist, “Level-1”

matching is then tested, and “Level-2” matching is finally tested if “Level-1” testing fails.

The current Web service will be added to the candidate set if at least a “Level-2” matching

exists in both the input set and the output set. In the worst case, i.e., “Level-2” matching cannot be

confirmed in either input or output set, the algorithm will declare a “failed” match and will not include

the current Web service into the candidate set. In this case, the engine will move on to the next Web

service description in the current SWS repository. Intuitively, a “failed” match very likely means that

at least one concept from either the input parameter set or the output parameter set (provided by the

service requester) does not have any relationship with the any of the concepts used in the input parameter

set and output parameter set of the current Web service description. Once every Web service description

in the SWS repository is tested, the matchmaking engine stops and returns the resulting candidate set.

35

4.3 Discussion and Comparison to other Algorithms

Clearly, the above proposed matching algorithm considers mainly the matching between inputs

and outputs. Other factors can also be taken into account. For example, in [23], the service category is

also considered as a matching criterion. In the proposed architecture, it is not hard to make this extension.

Also, one might suggest consider preconditions and effects of the Web service, however at this stage, at

pointed out in [23], preconditions and effects are not yet sufficiently standardized for being considered by

a matching algorithm.

“Level-1” and “Level-2” matching results in the proposed algorithm are mainly based on the

results of subsumption relationship of the concepts. Generally, concept A is subsumed by concept B if

concept B denotes a more general concept than A. Therefore, if input A in the request profile is subsumed

by input B in the candidate service profile, it is then clear that input A can provide more specific

information then that is required. It is therefore safe to assume that the service can still be executed

properly. This situation is captured in the “Level-1” matching situation.

It is also clear that the direction of this subsumption relationship is important: in the case where

input A in the request profile subsumes input B in the candidate service profile, it might happen that the

advertised service requires some specific details for the proper execution which input A cannot provide.

For a situation like this, our matching algorithm still includes this service as a potential candidate and let

the service requester to decide whether this service is usable or not. To distinguish this case, we call it

“Level-2” matching, therefore, a Level-2 matching may not be as appropriate as a Level-1

matching. Form this perspective, this matching algorithm can be seen as an extension to the algorithm that

is proposed in [20]. For example, the matching algorithm presented in [20] concludes a partial match as

long as there exists an inheritance relationship between the requester’s concepts and the ones offered by

the service provider (given that these concepts do not equivalent to each other). However, it fails to

consider the direction of this inheritance relationship. As discussed above, this direction directly results in

the difference between the Level-1 and Level-2 matches.

36

As a summary, the output from our matching algorithm is a set of potential candidates. This set

includes exact matching results, Level-1 as well as Level-2 matching results. It is now up to the

requester to decide the QoS of these candidates. A system for measuring the QoS can certainly be

implemented, as suggested in [21]. This is one extensible part of the proposed architecture.

37

CHAPTER 5

IMPLEMETATION: A BIOINFORMATICS EXAMPLE

This chapter presents an implementation of the architecture described in Chapter 3. Since a

domain specific ontology is always needed, a small ontology in the area of bioinformatics is created. The

related development tools are discussed first and each component in the discovery architecture is then

implemented with examples presented. Also, since the idea of semantic Web services is relatively new,

several semantic Web services based on the example bioinformatics ontology are created for the purpose

of prototyping the proposed architecture and simulating the execution of the suggested matchmaking

algorithm. However, the whole architecture and matchmaking algorithm can certainly function for real

life semantic Web services described using practical domain specific ontologies.

5.1 Related Development Tools

As discussed in the previous chapters, current research trend to solve the challenge of Web

service discovery is to add semantic information to the description of a given Web service. As far as the

implementation is concerned, there have been a number of efforts which are quite successful, noticeably

RDF, RDF Schema (RDFS), DAML, OWL and OWL-S. Keeping the concepts straight between RDF,

RDFS, DAML/DAML-OIL, OWL and OWL-S can be difficult, therefore in this section, an overview of

these development tools and languages are presented before the implementation work is discussed in

more detail.

38

The most relevant and most fundamental tool is the Resource Description Framework (RDF) [29]

which is proposed by W3C as a standard for exchanging metadata, and a key technology for the W3C's

Semantic Web initiative. The basic RDF data model consists of three object types: resource, property and

statements. Resources are the central concept of RDF. They are used to describe anything, from Web

pages to human being. Properties express specific aspects, characteristics, attributes, or relations used to

describe a resource. Statements are composed of a specific resource together with a named property and

the value of that property for that resource. The value can be another resource or a literal, which is a

primitive term that is not evaluated by an RDF processor. A RDF model is a set of RDF statements. An

example of a statement is given in Figure 4.

Fig. 4. An RDF statement

RDF was the first language specified by the W3C for representing semantic information about

arbitrary resources. The primary purpose of RDF is to structure and describe existing data and it is

typically enriched by an RDF Schema (RDFS) [30]. RDFS is a W3C candidate recommendation for an

extension to RDF to describe RDF vocabularies. RDFS includes classes and properties, as well as range

and domain constraints on properties. It provides inheritance hierarchies for both classes and properties.

RDFS can be used to create ontologies, but it is purposefully light-weighted with less expressive power.

Upon the release of RDFS, users began requesting additional features, including data types,

enumerations and the ability to define properties more rigorously. Meanwhile, other efforts in the research

community were already examining exactly these sorts of features. For instance, DAML (DARPA Agent

PrimaryStructure

Protein
Has-structure

39

Markup Language) [31] is an effort to add more features to RDF and therefore make it more expressive.

Others included the following:

• MCF - Meta Content Framework.

• Ontobroker

• On-To-Knowledge

• OIL - Ontology Inference Layer

• SHOE - Simple HTML Ontology Extensions

• XOL

Instead of continuing with separate ontology languages for the Semantic Web, a group of

researchers, including many of the main participants in both the OIL and DAML-ONT efforts, got

together in the Joint US/EU ad hoc Agent Markup Language Committee to create a new Web ontology

language. This language, DAML+OIL (DARPA Agent Markup Language in conjunction with the

Ontology Inference Layer [31]), is built on both OIL and DAML-ONT, was submitted to the W3C as a

proposed basis for OWL (Web Ontology Language) [32], and was subsequently selected as the starting

point for OWL.

Based on RDF and RDF Schema, OWL – the successor DAML+OIL – increases the level of

expressiveness with a richer vocabulary but retaining the decidability. However, it is primarily used to

describe content. To describe the semantics of services in order to facilitate their discovery, an upper

ontology for the description of Web services named DAML Services (DAML-S) had been introduced [9].

Using DAML-S, the capacity of the service can be completely described.

Recently DAML-S has been updated and renamed to OWL-Service (OWL-S) [11], which attracts

much of the attention and becomes the standard of describing the capacity of a given service [33]. More

specifically, OWL-S is an OWL-based Web service ontology, it supplies Web Service providers with a

core set of markup language constructs for describing the properties and capabilities of their Web

40

Services in unambiguous, computer-interpretable form. OWL-S leverages on OWL to accomplish the

following:

• support capability based discovery of Web services;

• Support automatic composition of Web Services;

• Support automatic invocation of Web services.

In this research, for the development of the prototype, several fictitious web service publishers are

assumed to agree on the small bioinformatics ontology, and each of them will provide some Web services

in the area of bioinformatics. OWL-S Upper ServiceProfile ontology [34] and concepts from the

small bioinformatics ontology (written in OWL) are used to "markup" these Web services, i.e., to add

semantics to these Web services. These details will be discussed in the next several sections.

5.2 A Simple Bioinformatics Ontology

One of the core components of semantic Web service infrastructure is a domain specific ontology.

The terms/concepts that are expressed in the advertisements and requests have to be defined in a domain

specific ontology. More specifically, an ontology is the attempt to formulate an exhaustive and rigorous

conceptual schema within a given domain, typically a hierarchical data structure containing all the

relevant entities and their relationship and rules within that domain. As the first step of the prototyping

development, a small ontology using the concepts from the area of bioinformatics is created. This section

presents details of this example ontology.

In recent years, bioinformatics emerged as a matured community in which computational

techniques are frequently applied to vast amount of data and knowledge resources in order to answer

complex biological questions. These data and resources are widely distributed, highly heterogeneous and

highly diverse; all these characteristics make this area an ideal candidate for Web based tools. Examples

along this direction can be found in [35-37].

41

As discussed in Section 5.1, RDFS can be used to create ontology, but OWL has become the

standard for developing ontologies. For this reason, the small ontology in this prototyping development is

created using OWL. It involves the basic and important concepts such as polymer, amino acids,

polypeptide, protein, primary/secondary/tertiary structure, RNA, DNA, protein functions etc. Figure 5 is a

segment of this ontology and the whole ontology written in OWL is given in Appendix A.

Fig. 5. A fragment of the example bioinformatics ontology

has-function

has-z has-y has-x

has-tertiary-structure
has-seconary-structure

has-primary-structure

equivalentClass

translated-from transcripted-from

Structure

BiologicalStructure

Sequence

DNA MessengerRNA AminoAcidSequence

Polypeptide

Protein

PrimaryStructure

TertiaryStructure SecondaryStructure

AlphaHelix BetaSheet TertiaryX TertiaryY TertiaryZ

ProteinFunction

42

5.3 Semantic Web Services Based on the Example Ontology

To develop the prototype, the next step is to create several hypothetical Web services. Semantic

information based on the example ontology has to be added to the service descriptions. To implement this,

OWL-S language is used. The details are described in this section.

5.3.1 Hypothetical Web Services

Once the domain specific ontology is created, hypothetical Web services can be advertised using

the terms that are defined in the ontology. Table 5 is a list of the hypothetical Web services that are

proposed for the prototype development.

Table 5. A list of hypothetical Web services based on the example ontology

Web service name Description and input/output terms

getSubSequence() [Description] get sub-sequence
[Input]
Sequence,SequenceLocation,SequenceLocation
[Output] Sequence

getSeqLength() [Desc] get sequence length
[Input] Sequence
[Output] SequenceLength

getSeqSimilarity() [Description] get sequence similarity
[Input] Sequence, Sequence
[Output] SequenceSimilarity

getGlobalAlignment() [Description] calculate global alignment
[Input] Sequence, Sequence
[Output] GlobalAlignment

getLocalAlignment() [Description] calculate local alignment
[Input] Sequence, Sequence

43

[Output] LocalAlignment

getProteinType() [Description] get protein type
[Input] DNA, AminoAcidSequence
[Output] Protein

getProteinType() [Description] get protein type
[Input] MessengerRNA, AminoAcidSequence
[Output] Protein

getProteinFunction() [Description] get protein function
[Input] PrimaryStructure
[Output] ProteinFunction

getProteinFunction() [Description] get protein function
[Input] SecondaryStructure
[Output] ProteinFunction

getProteinFunction() [Description] get protein function
[Input] TertiaryStructure
[Output] ProteinFunction

getMainStructure() [Description] get protein main structure
[Input] Protein
[Output] AminoAcidSequence

getSecondaryStructure() [Description] get protein secondary structure
[Input] AminoAcidSequence
[Output] SecondaryStructure

getSecondaryStructure() [Description] get protein secondary structure
[Input] AminoAcidSequence,SequenceLocation
[Output] SecondaryStructure

The next task is to add semantic information to the descriptions of these hypothetical services. A

brief introduction to OWL-S upper service ontology is presented first and example of adding semantics to

the services is discussed in Section 5.3.3.

5.3.2 OWL-S Upper Service Ontology

OWL-S is an OWL-based ontology for Web services (it is also called OWL-S upper ontology for

Web services). It provides a markup language that can be used to describe Web services’ properties and

44

capabilities in an unambiguous way that machine can interpret them. The aim of OWL-S is to provide

means for developing semantic Web in which services can be discovered and also executed automatically

without human interaction. Therefore, it satisfies the needs of this research perfectly.

OWL-S contains three major parts presenting the semantics of service: ServiceProfile,

ServiceModel and ServiceGrounding. In these parts are described, what service does, how

service works and how service is used. Among these three parts, the ServiceProfile is of particular

interest to the development of the prototype in this research. It is a concise description of service, which is

sent to the registry or service user like the broker. According to OWL-S Collation [11], the matchmaking

done by the broker is based on the ServiceProfile, which gives the type of information needed to

determine whether the service meets the needs of the service requester. Figure 6 shows the basic idea of

this process.

Fig. 6. ServiceProfile and service discovery

As the focus of this research is on the discovery and selection of Web services, let us concentrate

on the upper OWL-S ServiceProfile ontology.

advertise

Service

Provider

Registry

(ServiceProfiles)

Match

maker

search

Service

Requester

request

45

5.3.3 Using OWL-S ServiceProfile to Markup Service Descriptions

The ServiceProfile is divided into three main sections: (1) a textual description and contact

information, which is mainly intended for human users, (2) a functional description of the service. This

functional description describes the input and output of a service. Additionally, two sets of conditions are

defined, namely preconditions, which have to hold before the service can be executed properly, and

effects, which are conditions that hold after the successful execution of the service, i.e., postconditions.

These four functional descriptions are also referred to as IOPE (Input, Output, Precondition, and Effects).

The third type (3) is a set of additional properties that are used to describe the features of the service. For

instance, service category, which is used to classify the service with respect to some ontology or

taxonomy of services.

For a matchmaking engine, the most important part is the functional description part. More

specifically, the OWL-S specification defines the semantic elements for advertising the functional

description of a service with an instance of the class Profile. In the class Profile, RDF properties

point to the IOPE elements, Input, Output, Precondition and Effect. Each of the four classes

is a subclass of the class Parameter.

Figure 7 shows one example of using OWL-S ServiceProfile to create a profile of the

“getGlobalAlignment()” Web service (see Table 5). The format used in Figure 7 is also used by

“OWL-S/UDDI Matchmaker Web Interface” project developed by The Intelligent Software Agents Lab

in Carnegie Mellon University [38]. This format captures the main functional characteristics of the

service and it is also simple to implement and understand.

<?xml version='1.0' encoding='ISO-8859-1'?>

<!DOCTYPE uridef
[
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema">
 <!ENTITY owl "http://www.w3.org/2002/07/owl">
 <!ENTITY service "http://www.daml.org/services/owl-s/1.0/Service.owl">
 <!ENTITY process "http://www.daml.org/services/owl-s/1.0/Process.owl">

46

 <!ENTITY profile "http://www.daml.org/services/owl-s/1.0/Profile.owl">
 <!ENTITY actor "http://www.daml.org/services/owl-/1.0/ActorDefault.owl">
 <!ENTITY domainOnt
 "http://tinman.cs.gsu.edu/~lyu2/thesis/SimpleBioOntology.owl">
 <!ENTITY DEFAULT
 http://tinman.cs.gsu.edu/~lyu2/thesis/BioInformatics_ws_2_1.owl">
]>

<rdf:RDF
 xmlns:rdf= "&rdf;#"
 xmlns:rdfs= "&rdfs;#"
 xmlns:owl= "&owl;#"
 xmlns:service= "&service;#"
 xmlns:process= "&process;#"
 xmlns:profile= "&profile;#"
 xmlns:actor= "&actor;#"
 xmlns:domainOnt= "&domainOnt;#"
 xmlns= "&DEFAULT;#">

 <owl:Ontology about="">
 <owl:imports rdf:resource="&rdf;" />
 <owl:imports rdf:resource="&rdfs;" />
 <owl:imports rdf:resource="&owl;" />
 <owl:imports rdf:resource="&service;" />
 <owl:imports rdf:resource="&profile;" />
 <owl:imports rdf:resource="&process;" />
 <owl:imports rdf:resource="&actor;" />
 <owl:imports rdf:resource="&domainOnt;" />
 </owl:Ontology>

 <profile:Profile rdf:ID="BioInformatics_ws_4">

 <profile:serviceName>BioInformatics_ws_4</profile:serviceName>
 <profile:textDescription>some description</profile:textDescription>

 <profile:contactInformation>
 <actor:Actor rdf:ID="LiyangYu_WS4">
 <actor:name>liyang yu</actor:name>
 <actor:title>Research Programmer</actor:title>
 <actor:phone>404.395.1680</actor:phone>
 <actor:fax>na</actor:fax>
 <actor:email>lyu2@student.gsu.edu</actor:email>
 <actor:physicalAddress>cs,GSU</actor:physicalAddress>
 <actor:webURL>http://tinman.cs.gsu.edu/~lyu2/thesis
 </actor:webURL>
 </actor:Actor>
 </profile:contactInformation>

 <!-- Descriptions of the parameters that will be used by IOPEs -->
 <profile:hasInput rdf:resource="#input1-sequence"/>
 <profile:hasInput rdf:resource="#input2-sequence"/>
 <profile:hasOutput rdf:resource="#output1-globalAlignment"/>

 </profile:Profile>

 <process:Input rdf:ID="input1-sequence">
 <process:parameterType rdf:resource="&domainOnt;#Sequence"/>
 </process:Input>

 <process:Input rdf:ID="input2-sequence">
 <process:parameterType rdf:resource="&domainOnt;#Sequence"/>
 </process:Input>

47

 <process:UnConditionalOutput rdf:ID="output1-globalAlignment">
 <process:parameterType rdf:resource="&domainOnt;#GlobalAlignment"/>
 </process:UnConditionalOutput>

</rdf:RDF>

Fig. 7. Using OWL-S to describe getGlobalAlignment Web service

Other Web services listed in Table 5 have similar description profiles. Clearly, the description

presented in Figure 7 is relatively simple; however it is enough for the current version of the

matchmaking engine to work. More specifically, the inputs and outputs, together with the specific domain

ontology are included in the profile. For example, resource “input1-sequence” is mapping to the

term “&domainOnt;#Sequence” defined in the example ontology. For comparison, Figure 8 shows

an OWL-S service profile (bravoCarRental.owl) taken from the “OWL-S/UDDI Matchmaker Web

Interface” project:

<?xml version='1.0' encoding='ISO-8859-1'?>
<!DOCTYPE uridef
[
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema">
 <!ENTITY owl "http://www.w3.org/2002/07/owl">
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema">
 <!ENTITY service "http://www.daml.org/services/owl-s/1.0/Service.owl">
 <!ENTITY profile "http://www.daml.org/services/owl-s/1.0/Profile.owl">
 <!ENTITY actor "http://www.daml.org/services/owl-s/1.0/ActorDefault.owl">
 <!ENTITY process "http://www.daml.org/services/owl-s/1.0/Process.owl">
 <!ENTITY country "http://www.daml.org/services/owl-s/1.0/Country.owl">
 <!ENTITY concepts "http://www.daml.org/services/owl-s/1.0/Concepts.owl">
 <!ENTITY addParam
 "http://www.daml.org/services/owl-s/1.0/ProfileAdditionalParameters.owl">
 <!ENTITY profileHierarchy
 "http://www.daml.org/services/owl-s/1.0/ProfileHierarchy.owl">
 <!ENTITY bc_service
 "http://www.daml.org/services/owl-s/1.0/BravoCarService.owl">
 <!ENTITY bc_process
 "http://www.daml.org/services/owl-s/1.0/BravoCarProcess.owl">
 <!ENTITY DEFAULT
 "http://www.daml.org/services/owl-s/1.0/BravoCarProfile.owl">
]>

<!-- This document uses entity types as a shorthand for URIs.
Download the source for a version with unexpanded entities. -->

<rdf:RDF

48

 xmlns:rdf= "&rdf;#"
 xmlns:rdfs= "&rdfs;#"
 xmlns:owl= "&owl;#"
 xmlns:xsd= "&xsd;#"
 xmlns:service= "&service;#"
 xmlns:process= "&process;#"
 xmlns:profile= "&profile;#"
 xmlns:actor= "&actor;#"
 xmlns:addParam= "&addParam;#"
 xmlns:profileHierarchy= "&profileHierarchy;#"
 xml:base="&DEFAULT;#"
 xmlns="&DEFAULT;#">

<owl:Ontology rdf:about="">
 <owl:versionInfo>
 $Id: BravoAirProfile.owl,v 1.18 2003/12/11 01:57:41 martin Exp $
 </owl:versionInfo>
 <rdfs:comment>
 DAML-S Coalition: BravoAir Example for OWL-S Profile description
 </rdfs:comment>
 <owl:imports rdf:resource="&service;" />
 <owl:imports rdf:resource="&profile;" />
 <owl:imports rdf:resource="&process;" />
 <owl:imports rdf:resource="&actor;" />
 <owl:imports

rdf:resource="http://pericles.cimds.ri.cmu.edu:8080/owl/ProfileAdditionalParameters.owl"/>
 <owl:imports rdf:resource="&country;" />
 <owl:imports

rdf:resource="http://pericles.cimds.ri.cmu.edu:8080/owl/ProfileHierarchy.owl"/>
 <owl:imports

rdf:resource="http://pericles.cimds.ri.cmu.edu:8080/owl/matchmaker-test.owl"/>
 </owl:Ontology>

 <profile:Profile rdf:ID="Profile_BravoCar_ReservationAgent">
 <service:presentedBy
 rdf:resource="&bc_service;#BravoCar_ReservationAgent"/>
 <profile:has_process rdf:resource="&bc_process;#BravoCar_Process"/>

 <profile:serviceName>Bravo_Car_Rental</profile:serviceName>
 <profile:textDescription>
 This service provide Car rental service.
 </profile:textDescription>

 <profile:contactInformation>
 <actor:Actor rdf:ID="BravoCar-reservation">
 <actor:name>Bravocar Reservation department</actor:name>
 <actor:title>Reservation Representative</actor:title>
 <actor:phone>412 268 8780 </actor:phone>
 <actor:fax>412 268 5569 </actor:fax>
 <actor:email>Bravo@Bravoair.com</actor:email>
 <actor:physicalAddress>
 Airstrip 2, Teetering Cliff Hights,
 Florida 12321, USA
 </actor:physicalAddress>
 <actor:webURL>
 http://www.daml.org/services/daml-s/2001/05/BravoAir.html
 </actor:webURL>
 </actor:Actor>
 </profile:contactInformation>

 <profile:contactInformation>
 … another contact information is omitted here…
 </profile:contactInformation>

49

 <profile:serviceParameter>
 <addParam:GeographicRadius rdf:ID="BravoCar-geographicRadius">
 <profile:serviceParameterName>
 BravoAir Geographic Radius
 </profile:serviceParameterName>
 <profile:sParameter rdf:resource="&country;#UnitedStates"/>
 </addParam:GeographicRadius>
 </profile:serviceParameter>

 <profile:qualityRating>
 <profile:QualityRating rdf:ID="BravoCar-goodRating">
 <profile:ratingName>SomeRating</profile:ratingName>
 <profile:rating rdf:resource="&concepts;#GoodRating"/>
 </profile:QualityRating>
 </profile:qualityRating>

 <profile:serviceCategory>
 <addParam:NAICS rdf:ID="NAICS-category">
 <profile:value>Car Rental Service </profile:value>
 <profile:code>561599<profile:code>
 </addParam:NAICS>
 </profile:serviceCategory>

 <!-- Specification of the service category using UN-SPSC -->
 <profile:serviceCategory>
 <addParam:UNSPSC rdf:ID="UNSPSC-category">
 <profile:value>Car Rentals</profile:value>
 <profile:code>90121500</profile:code>
 </addParam:UNSPSC>
 </profile:serviceCategory>

 <!-- Descriptions of IOPEs -->
 <profile:hasInput rdf:resource="#RentalLocation"/>
 <profile:hasInput rdf:resource="#CarDescription"/>
 <profile:hasInput rdf:resource="#StartDate"/>
 <profile:hasInput rdf:resource="#Days"/>
 <profile:hasOutput rdf:resource="#RentalAgreement"/>

 </profile:Profile>

 <process:Input rdf:ID="RentalLocation">
 <process:parameterType rdf:resource="&concepts;#Airport"/>
 </process:Input>

 <process:Input rdf:ID="CarDescription">
 <process:parameterType rdf:resource="&concepts;#CarDescription"/>
 </process:Input>

 <process:Input rdf:ID="StartDate">
 <process:parameterType rdf:resource="&concepts;#RentalDate"/>
 </process:Input>

 <process:Input rdf:ID="Days">
 <process:parameterType rdf:resource="&xsd;#integer"/>
 </process:Input>

 <process:UnConditionalOutput rdf:ID="RentalAgreement">
 <process:parameterType rdf:resource="&concepts;#CarRentalAgreement"/>
 </process:UnConditionalOutput>

</rdf:RDF>

50

Fig. 8. bravoCarRental.owl from OWL-S/UDDI matchmaker Web interface project [38]

Besides the inputs and outputs, the profile in Figure 8 also includes the qualityRating and

serviceCategory (including both the NAICS and UNSPSC taxonomies) information, for the

purpose of the matchmaking algorithm that is presented in [23]. To extend the algorithm proposed in this

research, similar (or even more) information can be added in the service profile to make finer and more

accurate matchmaking results.

Now assume that some fictitious Web service providers decide to advertise the services listed in

Table 5 on their Web sites using the profile such as presented in Figure 7 (and ideally, some real service

providers also published their real Web services using OWL profile language), it is then up to the Web

crawler to find and collect the related information into the SWS repository. This is discussed in next

section.

5.4 Using Web Crawler to Build the SWS Repository

The role of the Web crawler is to find the advertisements such as those presented in Section 5.3.

It is different from the crawlers used in google.com and other search engines in that it only searches and

collects the service profiles that are written in OWL-S. For this reason, a better name therefore could be

OWL-S crawler. An example of a DAML crawler is given in [39], another crawler example, the SHOE

(Simple Html Ontology Extension) crawler called Expose, is available in [40]. This section discussed the

development of the OWL-S crawler in the prototype system and presents the searching results both from

the published sites and UDDI registries.

51

5.4.1 Developing the Crawler: Java and Jena APIs

The OWL-S crawler is a robot that searches for Web pages with OWL-S markup, reads the

relevant information from them and loads it into SWS repository. This multi-threaded OWL-S crawler is

written in Java and it is initialized by given it a starting URL as the current page. When the robot reads a

page, it decides whether this page is an owl page or not. If it is, the crawler extracts the necessary

information and stores it in SWS repository. When the crawler finishes extracting information (or if this

page is not an owl page), it then identifies all URLs within the current page and creates a new robot

(thread) for each page and repeats the same process again. This process is described in Figure 9.

Fig. 9. basic flow of OWL-S crawler

no

yes

use Jena to
parse the
page

 mainRegistry

SWS entry

SWS entry

SWS entry

…

…

service detail

service detail

service detail

serviceDetails

SWS Repository

find all
URLs in
this page

current
Web page

owl
file?

pages to be
visited

get next
page

52

There are several important issues that are needed to be discussed here. The first issue is the

parsing of an owl page: once the crawler recognizes that the current page is indeed an owl page, it needs

to read the OWL-S statements contained in this page to populate the SWS repository. More specifically,

the input and output terms have to be extracted and mapped to the given domain ontology. Jean [41] is

selected to implement the parsing of the owl profile: it is a Java framework for building semantic Web

applications; it provides a programmatic environment for RDF, RDFS and OWL/OWL-S, including a

rule-based inference engine. More details about Jean can be found in its official Web site at [41], and

the parsing details can be found in the code that is developed for this research.

Another important issue is the multithreading issue. Currently, the crawler finds all the URLs that

are contained in the current page, and for each one of these URLs, a new crawler is created as a new

thread to explore the page represented by the given URL. For this page, the crawler will again parse the

owl file (if this page is indeed an owl profile) and will extract all the URLs that are maintained by this

page and start to generate new crawlers (threads) for these URLs. Therefore, the very initial crawler will

in fact spawn many new crawlers to accomplish the final goal. An important problem of this

implementation is that the system will quick run out of resources, given the vast amount of information

on the Internet. In the current version, the number of threads that can exist simultaneously is limited by

some configuration parameter to control and manage the use of the system resources. This method is

relatively simple; however, many threads (new crawlers) will have to “sleep” to wait for their turns,

meaning that visiting the Web (i.e., updating the SWS repository) can potential take quite long to finish.

5.4.2 Building SWS Repository by Visiting the Internet

This section presents the results by running the OWL-S on the Internet. As discussed earlier,

given the limitation on the system resources and timing constraints, it is unrealistic to expect it to find

“all” the service profiles that are published on the Web. In order to find as many profiles as possible,

53

some profile examples presented in the “OWL-S/UDDI Matchmaker Web Interface” projects [38] are

moved to the Web site of this research (this Web site is used as the initial URL for the crawler,

http://tinman.cs.gsu.edu/~lyu2/thesis/research.html) to guarantee the crawler

will find them within a short period of time. Figure 10 shows a segment of the crawler log file; Table 6

and 7 show the resulting mainRegistry and the serviceDetail table in the SWS repository after

the crawler finishes the work.

Semantic Web Services Indexation and Discovery: OWL-S crawler log file
DATE: Thu Jan 05 09:32:41 EST 2006

>>> starting URL:http://tinman.cs.gsu.edu/~lyu2/thesis/research.html
>>> max number of pages to visit: 5000
>>> max number of existing threads: 4

>>> connecting to ORACLE database (jdbc:oracle:thin:@tinman.cs.gsu.edu:1521:sid9ir2)
>>> Connection to ORACLE is successful!

>>> [thread-0:http://tinman.cs.gsu.edu/~lyu2/thesis/research.html] has 3 links.
[thread-0] visiting-> http://tinman.cs.gsu.edu/~lyu2/thesis/title.html
[thread-0] visiting-> http://tinman.cs.gsu.edu/~lyu2/thesis/research_leftPane.html
[thread-0] visiting-> http://tinman.cs.gsu.edu/~lyu2/thesis/research_introduction.html

>>> [thread-3:http://tinman.cs.gsu.edu/~lyu2/thesis/research_introduction.html] has 8 links.
[thread-3] visiting-> http://uddi.org
[thread-3] visiting-> http://www.w3.org/2002/ws/desc/
[thread-3] visiting-> http://www.w3.org/2000/xp/Group/
[thread-3] visiting-> http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-
84A9809EC588EF21

>>> [thread-2:http://tinman.cs.gsu.edu/~lyu2/thesis/research_leftPane.html] has 4 links.
[thread-2] visiting-> http://tinman.cs.gsu.edu/~lyu2/thesis/research_background.html
[thread-2] visiting-> http://tinman.cs.gsu.edu/~lyu2/thesis/research_plan.html
[thread-2] visiting-> http://tinman.cs.gsu.edu/~lyu2/thesis/research_implementation.html

>>> [thread-1:http://tinman.cs.gsu.edu/~lyu2/thesis/title.html] has 1 links.
[thread-1] visiting-> http://tinman.cs.gsu.edu/~raj

>>> [thread-4:http://uddi.org] has 1 links.
[thread-4] visiting-> registry.oasis-open.org

>>> [thread-8:http://tinman.cs.gsu.edu/~lyu2/thesis/research_background.html] has 2 links.
[thread-8] visiting-> http://infomesh.net/2001/swintro/

>>> [thread-7:http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21] has
32 links.
[thread-7] visiting-> American.com
[thread-7] visiting-> http://www.sciam.com/xml/sciam.xml
[thread-7] visiting-> http://oas-central.realmedia.com/RealMedia/ads/

Fig. 10. Segment of the crawler log

54

Table 6. mainRegistry table

notice: 1. ~ is defined as http://tinman.cs.gsu.edu/~lyu2/thesis

 2. UDDIEntry field is omitted since all of them is null

serviceURL ontologyURL serviceName contactEmail

~/BioInformatics_ws_1_1.owl ~/SimpleBioOntology.owl BioInformatics_ws_1 …

~/BioInformatics_ws_1_3.owl ~/SimpleBioOntology.owl BioInformatics_ws_3 …

~/BioInformatics_ws_1_2.owl ~/SimpleBioOntology.owl BioInformatics_ws_2 …

~/BioInformatics_ws_2_1.owl ~/SimpleBioOntology.owl BioInformatics_ws_4 …

~/BioInformatics_ws_2_2.owl ~/SimpleBioOntology.owl BioInformatics_ws_5 …

~/BioInformatics_ws_3_1.owl ~/SimpleBioOntology.owl BioInformatics_ws_6 …

~/BioInformatics_ws_3_2.owl ~/SimpleBioOntology.owl BioInformatics_ws_7 …

~/BioInformatics_ws_3_3.owl ~/SimpleBioOntology.owl BioInformatics_ws_8 …

~/BioInformatics_ws_3_4.owl ~/SimpleBioOntology.owl BioInformatics_ws_9 …

~/BioInformatics_ws_3_5.owl ~/SimpleBioOntology.owl BioInformatics_ws_10 …

~/BioInformatics_ws_4_1.owl ~/SimpleBioOntology.owl BioInformatics_ws_11 …

~/BioInformatics_ws_4_2.owl ~/SimpleBioOntology.owl BioInformatics_ws_12 …

~/BioInformatics_ws_4_3.owl ~/SimpleBioOntology.owl BioInformatics_ws_13 …

~/BioInformatics_ws_2_3.owl ~/SimpleBioOntology.owl BioInf_ws_alignment1 …

~/BioInformatics_ws_2_4.owl ~/SimpleBioOntology.owl BioInf_ws_alignment2 …

~/congoStockBroker.owl http://www.daml.org/servi
ces/owl-
s/1.0/Concepts.owl

Bravo_Car_Rental John_Doe

@Bravoair.com

~/bravoAirline.owl null BravoAir_

ReservationAgent

Bravo

@Bravoair.com

~/abcBookFinder.owl http://www.daml.org/servi
ces/owl-
s/1.0/Concepts.owl

ABC_Books John_Doe

@Bravoair.com

~/bravoCarRental.owl http://www.daml.org/servi
ces/owl-
s/1.0/Concepts.owl

Bravo_Car_Rental John_Doe

@Bravoair.com

http://www.daml.org/services
/owl-
s/1.0/BravoAirProcess.owl

http://www.daml.org/servi
ces/owl-
s/1.0/Concepts.owl

null null

~/dreamInsurance.owl http://www.daml.org/servi
ces/owl-

Bravo_Car_Rental John_Doe

55

s/1.0/Concepts.owl @Bravoair.com

Table 7. serviceDetail table

serviceURL parameterType parameterClass

~/BioInformatics_ws_1_1.owl INPUT-0 SequenceLocation

~/BioInformatics_ws_1_1.owl INPUT-1 SequenceLocation

~/BioInformatics_ws_1_1.owl INPUT-2 Sequence

~/BioInformatics_ws_1_1.owl OUTPUT-0 Sequence

~/BioInformatics_ws_1_2.owl INPUT-0 Sequence

~/BioInformatics_ws_1_2.owl OUTPUT-0 SequenceLength

~/BioInformatics_ws_1_3.owl INPUT-0 Sequence

~/BioInformatics_ws_1_3.owl INPUT-1 Sequence

~/BioInformatics_ws_1_3.owl OUTPUT-0 SequenceSimilarity

~/BioInformatics_ws_2_1.owl INPUT-0 Sequence

~/BioInformatics_ws_2_1.owl INPUT-1 Sequence

~/BioInformatics_ws_2_1.owl OUTPUT-0 GlobalAlignment

~/BioInformatics_ws_2_2.owl INPUT-0 Sequence

~/BioInformatics_ws_2_2.owl INPUT-1 Sequence

~/BioInformatics_ws_2_2.owl OUTPUT-0 LocalAlignment

~/BioInformatics_ws_3_1.owl INPUT-0 DNA

~/BioInformatics_ws_3_1.owl INPUT-1 AminoAcidSequence

~/BioInformatics_ws_3_1.owl OUTPUT-0 Protein

~/BioInformatics_ws_3_2.owl INPUT-0 AminoAcidSequence

~/BioInformatics_ws_3_2.owl INPUT-1 MessengerRNA

~/BioInformatics_ws_3_2.owl OUTPUT-0 Protein

~/BioInformatics_ws_3_3.owl INPUT-0 PrimaryStructure

~/BioInformatics_ws_3_3.owl OUTPUT-0 ProteinFunction

56

~/BioInformatics_ws_3_4.owl INPUT-0 SecondaryStructure

~/BioInformatics_ws_3_4.owl OUTPUT-0 ProteinFunction

~/BioInformatics_ws_3_5.owl INPUT-0 TertiaryStructure

~/BioInformatics_ws_3_5.owl OUTPUT-0 ProteinFunction

~/BioInformatics_ws_4_1.owl INPUT-0 Protein

~/BioInformatics_ws_4_1.owl OUTPUT-0 AminoAcidSequence

~/BioInformatics_ws_4_2.owl INPUT-0 AminoAcidSequence

~/BioInformatics_ws_4_2.owl OUTPUT-0 SecondaryStructure

~/BioInformatics_ws_4_3.owl INPUT-0 SequenceLocation

~/BioInformatics_ws_4_3.owl INPUT-1 AminoAcidSequence

~/BioInformatics_ws_4_3.owl OUTPUT-0 SecondaryStructure

~/BioInformatics_ws_2_3.owl INPUT-0 Sequence

~/BioInformatics_ws_2_3.owl INPUT-1 Sequence

~/BioInformatics_ws_2_3.owl OUTPUT-0 Alignment

~/BioInformatics_ws_2_4.owl INPUT-0 AminoAcidSequence

~/BioInformatics_ws_2_4.owl INPUT-1 AminoAcidSequence

~/BioInformatics_ws_2_4.owl OUTPUT-0 GlobalAlignment

~/congoStockBroker.owl INPUT-0 CompanyTickerSymbol

~/congoStockBroker.owl INPUT-1 CreditCard

~/congoStockBroker.owl INPUT-2 Integer

~/congoStockBroker.owl OUTPUT-0 Stocks

~/abcBookFinder.owl INPUT-0 ISBN

~/abcBookFinder.owl OUTPUT-0 String

~/bravoCarRental.owl INPUT-0 Airport

~/bravoCarRental.owl INPUT-1 CarDescription

~/bravoCarRental.owl INPUT-2 Integer

~/bravoCarRental.owl INPUT-3 RentalDate

~/bravoCarRental.owl OUTPUT-0 CarRentalAgreement

~/dreamInsurance.owl INPUT-0 VIN

57

~/dreamInsurance.owl OUTPUT-0 CarInsurance

http://www.daml.org/services/

owl-s/1.0/BravoAirProcess.owl

INPUT-0 Password

http://www.daml.org/services/

owl-s/1.0/BravoAirProcess.owl

INPUT-1 Confirmation

http://www.daml.org/services/

owl-s/1.0/BravoAirProcess.owl

INPUT-2 FlightDate

http://www.daml.org/services/

owl-s/1.0/BravoAirProcess.owl

INPUT-3 RoundTrip

http://www.daml.org/services/

owl-s/1.0/BravoAirProcess.owl

INPUT-4 FlightItinerary

http://www.daml.org/services/

owl-s/1.0/BravoAirProcess.owl

INPUT-5 AcctName

http://www.daml.org/services/

owl-s/1.0/BravoAirProcess.owl

INPUT-6 FlightDate

http://www.daml.org/services/

owl-s/1.0/BravoAirProcess.owl

INPUT-7 ReservationNumber

http://www.daml.org/services/

owl-s/1.0/BravoAirProcess.owl

INPUT-8 Airport

http://www.daml.org/services/

owl-s/1.0/BravoAirProcess.owl

INPUT-9 Airport

http://www.daml.org/services/

owl-s/1.0/BravoAirProcess.owl

OUTPUT-0 ReservationNumber

http://www.daml.org/services/

owl-s/1.0/BravoAirProcess.owl

OUTPUT-1 FlightItineraryList

http://www.daml.org/services/

owl-s/1.0/BravoAirProcess.owl

OUTPUT-2 AcctName

http://www.daml.org/services/

owl-s/1.0/BravoAirProcess.owl

OUTPUT-3 FlightItinerary

58

5.4.3 Building the SWS Repository by Visiting UDDI Registries

Besides publishing the semantic Web service profiles on their Web sites, service providers can

also elect to register their services in public/private UDDI registries and the relevant semantic information

can be added to the UDDI entries to facilitate the discovery of these services. Therefore, the OWL-S

crawler not only has to collects the profiles from published Web sites, but also has to search for

semantically enhanced UDDI entries in public/private UDDI registries. This section presents the details of

developing such functionalities so the OWL-S crawler can visit UDDI entries in searching for semantic

Web service descriptions.

There have been a number of efforts that aim at adding semantic information to UDDI entries,

noticeably the work presented in [10] and others are discussed in Section 2.1. However, these different

methods are all research proposals – there have been no standards specifying how to add semantic

information into UDDI registries. Also, none of these published research work shows enough technical

details about how exactly the proposed method should be implemented; it is commonly true that the very

same idea can be implemented in a number of different ways. This indeed makes it difficult to develop a

robust crawler to collect the relevant information from UDDI entries.

Fortunately, these seemingly popular proposals (see Section 2.1 for details) share one common

idea: the UDDI’s tModel construct is used as the key enabler for adding semantic information. For

instance, the work presented in [10] suggests the use of input_tModel and output_tModel to

represent the input and output terms that are defined in some domain specific ontology. Therefore,

without the help of any existing standard(s) about adding semantic information to UDDI registries, the

UDDI registry crawler developed in this research uses the input_tModel and output_tModel as

the key reference to search for semantically enhanced service descriptions in UDDI entries.

Another important fact is that the UDDI registry crawler is not a “real” crawler: it does not need

to look for UDDI registries over the Internet, since all the public UDDI registries are known to the public.

59

Therefore, it is easier to implement the UDDI crawler than to implement a Web crawler described in

previous section. Table 8 shows these registries.

Table 8. public UDDI registries

Registry name URL

Microsoft's UDDI Business Registry Node uddi.microsoft.com

IBM's UDDI Business Registry Node uddi.ibm.com

SAP's UDDI Business Registry Node uddi.sap.com

NTT Com's UDDI Business Registry Node http://www.ntt.com/uddi/index-e.html

Microsoft's Test UDDI Registry test.uddi.microsoft.com

IBM's Test UDDI Registry uddi.ibm.com/testregistry/registry.html

SAP's Test UDDI Registry udditest.sap.com

For the purpose of proof of concept, the current implementation of the UDDI crawler is to search

only in IBM’s test UDDI registry, using the input_tModel and output_tModel as the key

references. In order to clearly illustrate the process of searching this UDDI registry, Figure 11 – 14 shows

a step-by-step manual process of searching the IBM test UDDI registry (including the search result), and

Figure 15 shows the result obtained by using the current UDDI crawler – the service key is correctly

reported by the crawler. This “CookingBook” service is clearly some testing work; it is therefore not

added to the SWS repository.

60

Fig. 11. IBM's test UDDI registry

61

Fig. 12. search by using input_tModel as reference

62

Fig. 13. a web service that has semantic information

63

Fig. 14. details of the semantic Web service

64

[~/public_html/thesis/code/myUDDIWalker][10:40am] java myUDDIWalker.Main

connection to registry is created...
got registry service, query manager, and life cycle manager...
services who used some input_tModel:
service key:CE7F9D50-81E6-11D7-9124-000629DC0A53
services who used some output_tModel:
service key:CE7F9D50-81E6-11D7-9124-000629DC0A53
services who used both input/output_tModel:
service key:CE7F9D50-81E6-11D7-9124-000629DC0A53

service detail:
service name: CookingBook
service key:CE7F9D50-81E6-11D7-9124-000629DC0A53
classification name: com.sun.xml.registry.uddi.infomodel.InternationalStringImpl@199939
classification name: com.sun.xml.registry.uddi.infomodel.InternationalStringImpl@9a9b65
[~/public_html/thesis/code/myUDDIWalker][10:40am]

Fig. 15. results obtained by using the current UDDI crawler

5.5 Examples of Matching Algorithm’s Results

After the SWS repository is created, the broker can search for candidate Web services in it. To do

so, the service request has to be also expressed in OWL-S language, and this request has to be read and

processed by the matchmaking engine. This section presents the details of this final process of the

proposed architecture.

5.5.1 Using OWL-S to Represent Service Requests

In order for the matchmaking engine to work, there should be a service request submitted to the

matchmaking algorithm. As discussed in earlier sections, these service requests should also be written in

OWL-S language. Figure 16 shows one of such service requests. This request is also used as example in

the following sections.

<?xml version='1.0' encoding='ISO-8859-1'?>

65

<!DOCTYPE uridef[
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema">
 <!ENTITY owl "http://www.w3.org/2002/07/owl">
 <!ENTITY service "http://www.daml.org/services/owl-s/1.0/Service.owl">
 <!ENTITY process "http://www.daml.org/services/owl-s/1.0/Process.owl">
 <!ENTITY profile "http://www.daml.org/services/owl-s/1.0/Profile.owl">
 <!ENTITY actor "http://www.daml.org/services/owl-s/1.0/ActorDefault.owl">
 <!ENTITY domainOnt

"http://tinman.cs.gsu.edu/~lyu2/thesis/SimpleBioOntology.owl">
 <!ENTITY DEFAULT "http://tinman.cs.gsu.edu/~lyu2/thesis/request2.owl">
]>

<rdf:RDF
 xmlns:rdf= "&rdf;#"
 xmlns:rdfs= "&rdfs;#"
 xmlns:owl= "&owl;#"
 xmlns:service= "&service;#"
 xmlns:process= "&process;#"
 xmlns:profile= "&profile;#"
 xmlns:actor= "&actor;#"
 xmlns:domainOnt= "&domainOnt;#"
 xmlns= "&DEFAULT;#">

 <owl:Ontology about="">
 <owl:imports rdf:resource="&rdf;" />
 <owl:imports rdf:resource="&rdfs;" />
 <owl:imports rdf:resource="&owl;" />
 <owl:imports rdf:resource="&service;" />
 <owl:imports rdf:resource="&profile;" />
 <owl:imports rdf:resource="&process;" />
 <owl:imports rdf:resource="&actor;" />
 <owl:imports rdf:resource="&domainOnt;" />
 </owl:Ontology>

 <profile:Profile rdf:ID="BioInformatics_ws_req2">

 <profile:hasInput rdf:resource="#input1-protein"/>
 <profile:hasInput rdf:resource="#input2-protein"/>
 <profile:hasOutput rdf:resource="#output1-alignment"/>

 </profile:Profile>

 <process:Input rdf:ID="input1-protein">
 <process:parameterType rdf:resource="&domainOnt;#Protein"/>
 </process:Input>

 <process:Input rdf:ID="input2-protein">
 <process:parameterType rdf:resource="&domainOnt;#Protein"/>
 </process:Input>

 <process:UnConditionalOutput rdf:ID="output1-alignment">
 <process:parameterType rdf:resource="&domainOnt;#GlobalAlignment"/>
 </process:UnConditionalOutput>

</rdf:RDF>

Fig. 16. an example of a service request written in OWL-S

66

It is clear from this service request that the user is looking for a service that will accept two

Protein sequences as input and output the GlobalAlignment back to the user. This example will

be used in the next few sections to show the work done by the matching algorithm.

5.5.2 Using Jean APIs to Understand OWL-S Profiles and Make References

As stated previously, this prototyping system is developed using Java. To “understand” the

ontology and OWL-S profiles (including both service descriptions and service requests), Jean is heavily

used – part of its APIs is designed and implemented to make ontologies and OWL-S profiles

understandable to machines. The development of the OWL-S crawler discussed in the previous section

shows the details about using Jean to parse OWL-S profiles. The logic used to understand OWL-S

profiles is quite similar to that used to parse the domain specific ontology file. Appendix B is the result of

using Jean to parse the example ontology, including all the classes that are defined in this ontology and

the relations between these classes.

The other part of its APIs is an inference engine, which is proved to be very useful in the

development of the matchmaking algorithm. To see this, consider the following typical scenario where

inference is needed. Suppose one is searching for a Web service that takes Protein as the input. The

search agent now finds one service that accepts AminoAcidSequence as the input. In this case, with

the help from the inference engine, the agent can quickly realize that Protein is in fact is a sub class of

AminoAcidSequence, therefore, the current web service is a potentially qualified candidate. In fact,

this is the most frequently used feature when the matchmaking engine in this search is developed.

Jena already has the inference engine embedded into its APIs. To activate this inference engine,

the OntModelSpec.OWL_MEM_RULE_INF parameter should be used. On the other hand,

OntModelSpec.OWL_MEM will disable the inference engine. For more information, see Jena’s office

site given in [41].

67

5.5.3 Using the Matching Algorithm to Find Candidate Set

This section presents one example of using the matchmaking engine to find the candidate service

set. When a service request is received by the broker, it will invoke the matchmaking algorithm to search

in the repository to find potential candidates. Figure 17 presents a screen shot of using this algorithm. The

service request is shown in Figure 16.

Clearly, the matchmaking engine first makes a connection with the SWS repository, and then it

reads in the service request file. In this example, the user is looking for a service that will accept two

Protein sequences as input parameters and output the GlobalAlignment back to the user. The

engine ignores several candidates since 1) they do not have the correct number of input parameters

(without the need to further check the output), 2) they use different domain ontologies.

In this example, the engine presents 3 candidates. The first one has an exact match for the output,

but it is using Sequence as the input, since Sequence is a super class of Protein, this match is a

Level-1 match. The second one is another Level-1 match: the output Alignment is again a super

class of the required output GlobalAlignment. The same is for the last match: the output matches

exactly, but AminoAcidSequence is a super class of Protein.

68

Fig. 17. a screen shot of the matchmaking result

69

CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH WORK

6.1 Conclusions and Summary of Contribution

Web services are playing an important role in business application integrations and other

application fields such as bioinformatics. With the development of the related technologies, there have

been more and more Web services available for use. Given this proliferation of available Web services, it

is therefore crucial for the service consumers to discover and select the desired services in an efficient and

even automated manner: only after the automated discovery and selection of the relevant Web services is

accomplished, one can further discuss other highly desirable capabilities such as automated service

invocation, composition and monitoring.

Given this background, this research proposed an indexation and discovery architecture for

semantic Web services, together with an application example in the area of bioinformatics. In this

approach, a semantic Web service repository is created and maintained by a Web crawler which collects

semantic Web service descriptions from both the ontology-oriented UDDI registries as well the Web sites

hosting these services. After receiving a service request, the broker in the system will invoke a matching

algorithm and a candidate set will be returned to the user. Different degree of matching is also considered

when the candidate set is created.

This proposed architecture is further implemented as a prototyping system in the area of

bioinformatics, using Java and Jena APIs. The running example of the prototyping system shows that

70

different components of the system can work together to collect the semantic Web service profiles, build

the SWS repository and finally present to the user the desired service candidates.

Some of the contributions of this research work are summarized in Section 3.3, which covers the

main benefits of the proposed architecture. To briefly reiterate, these benefits include the following:

• More comprehensive coverage

This follows from the fact that the Web crawler visits not only the public/private UDDI registries,

but also the Web to find all the Web sites hosting semantic Web services. Therefore, a search request

submitted to the system is satisfied by not only searching the UDDI registries, but also the potentially a

large number of Web sites.

• More flexibility to service publisher

Besides the option to register the service into UDDI registry (and insert relevant UDDI tModels

to add the semantic descriptions), the publisher can also elect to directly publish the service profiles on

their Web sites without adding any entry into the UDDI registries.

• More up-to-date repository

A centralized UDDI registry always suffers form the possibility of being obsolete. However, the

SWS repository can be updated periodically.

• More transparency to the client

In the proposed architecture, the broker hides the complexity of the matching algorithms. When a

particular service is requested, the effort on the client side can be minimized.

Besides the above contributions, the following can be further summarized here:

• The proposed architecture can be easily extended to include more desirable features.

For instance, more powerful matching algorithms can be used to replace the current one, and QoS

model can be built on top of the matching algorithm to further “screening” the candidate set (details can

be found in [21]).

71

• As a proof of concept, this research provides a concrete implementation of a working

semantic Web service discovery system.

This includes an example ontology written in OWL, Web service description markup using

OWL-S language, semantic Web service repository created by a Web crawler, and a matchmaking engine.

At the current stage of this research area and to our best knowledge, there are not many concrete

examples (even prototypes) that have all the necessary components working together to implement the

discovery of semantic Web services.

• As a proof of concept, this research also provides an example in the area of Bioinformatics to

illustrate the value that can be added by using semantic Web services in these important

application fields.

As discussed earlier, Bioinformatics involves vast amount of data and knowledge resources that

are widely distributed, highly heterogeneous and diverse, yet the biological questions to be answered are

computationally quite complex. This makes the Web based tools the ideal candidate. The implemented

system in this research, although a prototype, provides a concrete example of how the semantic Web

services can add more value to Web based application for Bioinformatics methods and discoveries.

6.2 Future Research Work

Possible future research work is discussed in this last Section. This includes the possible

improvements to the current prototype system and potential new research directions.

To improve the current prototyping system, the following can be considered:

• More sophisticated matching algorithms can be designed and implemented into the system.

For example, preconditions and effects can be considered in the matchmaking algorithm. The

description of preconditions and effects can be added easily to the OWL-S profiles using the OWL-S

72

ServiceProfile upper ontology. Other possible improvements, such as letting the service requester

express special “user-defined matching” rules [23], can also be explored. Another example is to introduce

QoS models into the matchmaking engine, detailed discuss about this approach and implementation can

be found in [21].

• More controls and improvements to the Web and UDDI crawler.

The performance of the proposed system not only depends on the matching algorithm, but also

the Web/UDDI crawler: the more semantic Web service descriptions the crawler can collect, the more

chance a given service request would be satisfied. Currently, the crawler may access large numbers of

pages that don't contain OWL-S profile descriptions, and precious system resources may be wasted. The

use of heuristics to focus on OWL-S pages may be desirable. In particular, we are looking at the so-called

“weighting algorithms” – some of the examples can be found in Expose [40].

Potential new research directions can include the following:

• Automatic service invocation.

Automatic invocation of the service can be considered as a future research direction. The current

indexation and discovery structure focus mainly on the discovery of the services, and the next logic step

would be to further let the system handle the service binding and execute the services on behalf of the

service requester. More specifically, a client will send the service parameters together with the service

discovery request, and receive the final results if candidate services have been found. For a detailed

introduction and discussion of service invocation, see [42].

• Automatic service composition

Following directly from the automatic invocation, another research direction is the composition

of Web services. Composition is the process of selecting, combining and executing Web services to

achieve a user’s object. Human beings perform manual Web service composition by exploring their

73

knowledge of what a Web service does, as well as information provided on the service’s Web pages, in

order to execute a collection of services to achieve some objective. To automate Web service composition,

al this information must be encoded explicitly in an unambiguous computer interpretable from. This issue

closely related to the service discovery and also seems to be a crucial feature in the Web of the future. For

a more comprehensive discussion of service composition, see [6].

74

REFERENCE

[1]. T. Berners-Lee, J. Hendler, O. Lassila, “The Semantic Web”, Scientific American, 284(5), 2001, 34-

43

[2]. F. Curbera, W. Nagy, S. Weerawarana, “Web services: Why and how”, Workshop on Object-

Oriented Web Services – OOPSLA 2001, Tampa, FL, 2001

[3] M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, H. Nielsen, “SOAP Version 1.2 Part 1” , W3C

Working Draft, June 2003, Available at http://www.w3.org/TR/2003/REC-soap12-part1-20030624/

[4] Chinnici, R., Gudgin, M., Moreau, J. and Weerawarana, S. “Web Services Description Language

(WSDL) Version 1.2", W3C Working Draft, January 2003, Available at

http://www.w3.org/TR/2003/WD-wsdl12-20030124/

[5] Universal Description, Discovery and Integration: UDDI Technical White paper. 2000.

http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf

[6] Sheila A. McIlraith and David L. Martin. “Bringing semantics to web services”, IEEE Intelligent

Systems, 18:90–93, January/February 2003.

[7] J. Hendler, “Agents and the semantic web”, IEEE Intelligent Systems 16(2), March/April, 2001

[8] K. Sivashanmugam, K. Verma, A. Sheth and J. Miller, “Adding Semantics to Web Services

Standards”, International Conference on Web Services (ICWS’03), pp. 395-401, 2003

[9] Ankolenkar, A., Burstein, M., Hobbs, J.R., Lassila, O., Martin, D.L., McDermott, D., McIlraith, S.A.,

Narayanan, S., Paolucci, M., Payne T.R., and Sycara, K. The DAML Services Coalition, "DAML-S: Web

Service Description for the Semantic Web", The First International Semantic Web Conference (ISWC),

Sardinia (Italy), June, 2002.

[10]. M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Importing the semantic web in uddi. In

Proceedings of E-Services and the Semantic Web Workshop, 2002.

http://citeseer.ist.psu.edu/article/paolucci02importing.html

[11] The OWL Services Coalition. OWL-S: Semantic Markup for Web Services. Technical report,

http://www.daml.org/services/, 2004

[12] Naveen Srinivasan, Massimo Paolucci and Katia Sycara, "An Efficient Algorithm for OWL-S based

Semantic Search in UDDI" First International Workshop on Semantic Web Services and Web Process

Composition (SWSWPC 2004) 6-9, 2004, San Diego, California, USA.

75

[13] Akkiraju, R., Goodwin, R., Doshi, P., and Roeder S., “A method for semantically enhancing the

service discovery capabilities of UDDI”, Proceedings of the Workshop on Information Integration on the

Web, 87-92, August 2003

[14] Verma, K., Sivashanmugam K., Sheth A., Patil A., “METEOR-S WSDL: A scalable P2P

infrastructure of registries for semantic publication and discovery of Web services”, Journal of

Information Technology and Management, in print.

[15] IRS-II A Framework and Infrastructure for Semantic Web Services Enrico Motta, John Dominigue,

Liliana Cabral, Mauro Gaspari, 2nd International Semantic Web Conference 2003 (ISWC 2003).

[16] B. Omelayenko, M. Crubezy, D. Fensel, R. Benjamins, UPML: the Language and Tool Support for

Making the Semantic Web Alive, in Spinning the Semantic Web: Bringing the WWW to Its Full Potential,

MIT Press, 2003, pp.141-170

[17] U. Thaden, W. Siberski, and W. Nejdl, A Semantic Web Based Peer-to-Peer Service Registry

Network, Technical Report, Learning Lab Lower Saxony, 2003

[18] Kaarthik Sivashanmugam, Kunal Verma, Amit P. Sheth: Discovery of Web Services in a Federated

Registry Environment. ICWS 2004: 270-278

[19] Chen Zhou, Liang-Tien Chia, Bilhanan Silverajan, Bu-Sung Lee: UX- An Architecture Providing

QoS-Aware and Federated Support for UDDI. ICWS 2003: 171-176

[20] Essafi, Tarek; Dorta, Neilze; Seret, Dominique; Makpangou, Mesaac (France): ''A Scalable Peer-To-

Peer Approach to Service Discovery Using Ontology'', The 9th World Multiconference on Systemics,

Cybernetics and Informatics, July 10 - 13, 2005 Orlando, Florida, USA

[21]. Wang, H., Smarandache, F., Zhang, Y. and Sunderraman R., “Interval Neutrosophic Sets and Logic:

Theory and Applications in Computing”, HEXIS, Neutrosophic Book Series, No.5, 2005

[22] M. Paolucci, T. Kawmura, T. Payne and K. Sycara. Semantic Matching of Web Services Capabilities.

In First Int. Semantic Web Conf., To appear 2002. http://citeseer.ist.psu.edu/paolucci02semantic.html

[23] Michael C. Jaeger, Gregor Rojec-Goldmann, Christoph Liebetruth, Gero Muhl and Kurt Geihs:

“Ranked Matching for Service Descriptions Using OWL-S”, KiVS 2005: 91-102

[24] D. Trastour, C. Bartolini and J. Gonzalez-Castillo, “A Semantic Web Approach to Service

Description for Matchmaking of Services”, Proceedings of the International Semantic Web Working

Symposium (SWWS), 2001

[25] Bansal S., Vidal J. M., “Matchmaking of web services based on the DAML-S service model”,

Proceedings of AAMAS’03, ACM Press, July 2003

[26] Anupriya Ankolenkar et al. DAML-S: A semantic markup language for web services. In Proceedings

of 1st Semantic Web Working Symposium (SWWS’ 01), pages 441–430, Stanford, USA, August 2001.

Stanford University.

[27] Booth D. et al, “Web services architecture”, Technical report, W3C, http://www.w3.org/TR/ws-arch/,

2004

76

[28] Mei Kobayashi and Koichi Takeda. Information retrieval on the web. ACM Computing Surveys,

(2):144–173, June 2000.

[29] Frank Manola et al. “RDF Primer: Technical report”, W3C, http://www.w3.org/TR/rdf-primer/, 2004.

[30] Brickley, D; Guha, R. V., “Resource Description Framework (RDF) Schema Specification 1.0”,

W3C Candidate Recommendation, March 2000; http://www.w3.org/TR/rdf-schema/.

[31] Hendler, J., McGuinness, D. L.; “The DARPA Agent Markup Language”, IEEE Intelligent Systems,

Vol.16, No. 6, Jan./Feb., 2000, pp. 67-74

[32] Deborah L. McGuinness and Frank van Harmelen. “Owl web ontology language overview”.

Technical report, W3C, http://www.w3.org/TR/owl-features/, 2004.

[33] The OWL Services Coalition. OWL-S Example Description for Bravo Air. Technical report,

http://www.daml.org/services/owl-s/1.0/BravoAirProfile.owl.

[34] “Describing Web Services using OWL-S and WSDL”, DAML-S Coalition working document,

October 2003

[35] Robert Stevens, Carole A. Goble, and Sean Bechhofer. Ontology-based knowledge representation

for bioinformatics. Briefings in Bioinformatics, 1(4):398--414, Nov 2000.

[36] McCray A. “An upper level ontology for the biomedical domain”, Comp Functional Genomics 2003;

4: 80-84.

[37] Chris Wroe, Robert Stevens, Carole A. Goble, Angus Roberts, R. Mark Greenwood: “A Suite of

Daml+Oil Ontologies to Describe Bioinformatics Web Services and Data”, International Journal of

Cooperative Information Systems, 12(2): 197-224 (2003)

[38] “OWL-S/UDDI Matchmaker Web Interface” Project, the Software Agents Group of the Robotics

Institute at Carnegie Mellon University, available at

http://www.daml.ri.cmu.edu/matchmaker/webinterface.htm

[39] DAML crawler, available at http://www.daml.org/crawler/

[40] Expose, A SHOE crawler, available at http://www.cs.umd.edu/projects/plus/SHOE/Expose.html

[41] Jena Semantic Web Framework, available at http://Jena.sourceforge.net/

[42] S. Lu, M. Dong, and F. Fotouhi. The semantic web: Opportunities and challenges for next-generation

web applications. International Journal of Information Research, 7(4), 2002. Special Issue on the

Semantic Web. http://citeseer.csail.mit.edu/lu02semantic.html

77

APPENDICES

A. A small ontology in the area of Bioinformatics

<?xml version='1.0' encoding='ISO-8859-1'?>
<!-- this is a experimental ontology in the area of bioinformatics -->
<!-- for my master research in Dept of Computer Science -->
<!-- created by Liyang Yu, August 6, 2005 -->

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns="http://www.yuchen.net/#"
 xmlns:simpleBioOntology="http://www.yuchen.net/#"
 xml:base="http://www.yuchen.net/">

<!--
 xml:base identifies the default namespace used in this ontology
 model, sometimes, it is used to identify ewhere this xml document
 is placed. also notice that this base URL does not have the "#",
 therefore, all the concepts that are in this namespace will have
 to have prefixed by a "#".

 for example, if you want to access class Protein using Jena, the
 namespace we should use is

 http://tinman.cs.gsu.edu/~lyu2/thesis/SimpleBioOntology

 the full class name will be:

 http://tinman.cs.gsu.edu/~lyu2/thesis/SimpleBioOntology#Protein

-->

<!-- add label and comments to these classes and properties -->
<!-- so we can remember them -->

 <!-- ################### -->
 <!-- top level classes -->
 <!-- ################### -->

 <owl:Class rdf:ID="Structure">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 </owl:Class>

 <owl:Class rdf:ID="SequenceCharacteristics">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 </owl:Class>

 <owl:Class rdf:ID="Alignment">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 </owl:Class>

 <owl:Class rdf:ID="Function">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 </owl:Class>

 <owl:Class rdf:ID="Chromosome">
 <rdfs:label>chromosome</rdfs:label>
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 </owl:Class>

78

 <owl:Class rdf:ID="Gene">
 <rdfs:label>chromosome</rdfs:label>
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 </owl:Class>

 <owl:Class rdf:ID="ProteinName">
 <rdfs:label>proteinName</rdfs:label>
 <rdfs:comment>the name of a given protein structure</rdfs:comment>
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 </owl:Class>

 <!-- ################### -->
 <!-- all sub classes -->
 <!-- ################### -->

 <owl:Class rdf:ID="BiologicalStructure">
 <rdfs:subClassOf rdf:resource="#Structure"/>
 </owl:Class>

 <owl:Class rdf:ID="Sequence">
 <rdfs:subClassOf rdf:resource="#BiologicalStructure"/>
 </owl:Class>

 <owl:Class rdf:ID="SecondaryStructure">
 <rdfs:subClassOf rdf:resource="#BiologicalStructure"/>
 </owl:Class>

 <owl:Class rdf:ID="TertiaryStructure">
 <rdfs:subClassOf rdf:resource="#BiologicalStructure"/>
 </owl:Class>

 <!-- this identifies a location within a given sequence -->
 <!-- so later on, we can use this to do subsequence operations -->
 <owl:Class rdf:ID="SequenceLocation">
 <rdfs:subClassOf rdf:resource="#SequenceCharacteristics"/>
 </owl:Class>

 <!-- this identifies the "similarity" of two sequences -->
 <owl:Class rdf:ID="SequenceSimilarity">
 <rdfs:subClassOf rdf:resource="#SequenceCharacteristics"/>
 </owl:Class>

 <!-- this identifies the length of a given sequence -->
 <!-- we can use this to do sequenceLength opertions -->
 <owl:Class rdf:ID="SequenceLength">
 <rdfs:subClassOf rdf:resource="#SequenceCharacteristics"/>
 </owl:Class>

 <owl:Class rdf:ID="GlobalAlignment">
 <rdfs:subClassOf rdf:resource="#Alignment"/>
 </owl:Class>

 <owl:Class rdf:ID="LocalAlignment">
 <rdfs:subClassOf rdf:resource="#Alignment"/>
 </owl:Class>

 <owl:Class rdf:ID="DNA">
 <rdfs:label>dna</rdfs:label>
 <rdfs:subClassOf rdf:resource="#Sequence"/>
 </owl:Class>

 <owl:Class rdf:ID="MessengerRNA">
 <rdfs:label>dna</rdfs:label>
 <rdfs:subClassOf rdf:resource="#Sequence"/>
 </owl:Class>

 <owl:Class rdf:ID="AminoAcidSequence">
 <rdfs:label>dna</rdfs:label>
 <rdfs:subClassOf rdf:resource="#Sequence"/>
 </owl:Class>

79

 <owl:Class rdf:ID="Polypeptide">
 <rdfs:label>dna</rdfs:label>
 <rdfs:subClassOf rdf:resource="#AminoAcidSequence"/>
 </owl:Class>

 <owl:Class rdf:ID="Protein">
 <rdfs:label>dna</rdfs:label>
 <rdfs:subClassOf rdf:resource="#Polypeptide"/>
 </owl:Class>

 <owl:Class rdf:ID="PrimaryStructure">
 <owl:equivalentClass rdf:resource="#Polypeptide"/>
 </owl:Class>

 <owl:Class rdf:ID="AlphaHelix">
 <rdfs:subClassOf rdf:resource="#SecondaryStructure"/>
 </owl:Class>

 <owl:Class rdf:ID="BetaSheet">
 <rdfs:subClassOf rdf:resource="#SecondaryStructure"/>
 </owl:Class>

 <owl:Class rdf:ID="TertiaryX">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 </owl:Class>

 <owl:Class rdf:ID="TertiaryY">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 </owl:Class>

 <owl:Class rdf:ID="TertiaryZ">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 </owl:Class>

 <owl:Class rdf:ID="BiologicalFunction">
 <rdfs:subClassOf rdf:resource="#Function"/>
 </owl:Class>

 <owl:Class rdf:ID="ProteinFunction">
 <rdfs:subClassOf rdf:resource="#BiologicalFunction"/>
 </owl:Class>

 <!-- ##################### -->
 <!-- property definition -->
 <!-- ##################### -->

 <owl:ObjectProperty rdf:ID="organized-into">
 <rdfs:domain rdf:resource="#DNA"/>
 <rdfs:range rdf:resource="#Chromosome"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="strings-of">
 <rdfs:domain rdf:resource="#Chromosome"/>
 <rdfs:range rdf:resource="#Gene"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="transcribed-from">
 <rdfs:domain rdf:resource="#MessengerRNA"/>
 <rdfs:range rdf:resource="#DNA"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="translated-from">
 <rdfs:domain rdf:resource="#AminoAcidSequence"/>
 <rdfs:range rdf:resource="#MessengerRNA"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="has-name">
 <rdfs:domain rdf:resource="#Protein"/>
 <rdfs:range rdf:resource="#ProteinName"/>
 </owl:ObjectProperty>

80

 <owl:DatatypeProperty rdf:ID="protein-name-type">
 <rdfs:domain rdf:resource="#ProteinName" />
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="sequence-type">
 <rdfs:domain rdf:resource="#Sequence" />
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="sequenceLocation-type">
 <rdfs:domain rdf:resource="#SequenceLocation" />
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#integer" />
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="sequenceLength-type">
 <rdfs:domain rdf:resource="#SequenceLength" />
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#integer" />
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="sequenceSimilarity-type">
 <rdfs:domain rdf:resource="#SequenceSimilarity" />
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float" />
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="x-type">
 <rdfs:domain rdf:resource="#TertiaryX" />
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float" />
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="y-type">
 <rdfs:domain rdf:resource="#TertiaryY" />
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float" />
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="z-type">
 <rdfs:domain rdf:resource="#TertiaryZ" />
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float" />
 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:ID="start-location">
 <rdfs:domain rdf:resource="#Sequence"/>
 <rdfs:range rdf:resource="#SequenceLocation"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="end-location">
 <rdfs:domain rdf:resource="#Sequence"/>
 <rdfs:range rdf:resource="#SequenceLocation"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="length">
 <rdfs:domain rdf:resource="#Sequence"/>
 <rdfs:range rdf:resource="#SequenceLength"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="similarity">
 <rdfs:domain rdf:resource="#Sequence"/>
 <rdfs:range rdf:resource="#SequenceSimilarity"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="alignment">
 <rdfs:domain rdf:resource="#Sequence"/>
 <rdfs:range rdf:resource="#Alignment"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="has-primary-structure">
 <rdfs:domain rdf:resource="#Protein"/>
 <rdfs:range rdf:resource="#PrimaryStructure"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="has-secondary-structure">

81

 <rdfs:domain rdf:resource="#Protein"/>
 <rdfs:range rdf:resource="#SecondaryStructure"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="has-tertiary-structure">
 <rdfs:domain rdf:resource="#Protein"/>
 <rdfs:range rdf:resource="#TertiaryStructure"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="has-x">
 <rdfs:domain rdf:resource="#TertiaryStructure"/>
 <rdfs:range rdf:resource="#TertiaryX"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="has-y">
 <rdfs:domain rdf:resource="#TertiaryStructure"/>
 <rdfs:range rdf:resource="#TertiaryY"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="has-z">
 <rdfs:domain rdf:resource="#TertiaryStructure"/>
 <rdfs:range rdf:resource="#TertiaryZ"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="has-function">
 <rdfs:domain rdf:resource="#Protein"/>
 <rdfs:range rdf:resource="#ProteinFunction"/>
 </owl:ObjectProperty>

</rdf:RDF>

82

B. Classes and Their Relations Parsed by Using Jena APIs

===== all the classes that are defined ===

 --- classes in this ontology file ---
http://www.w3.org/2002/07/owl#Nothing
http://www.w3.org/2002/07/owl#Thing
http://www.yuchen.net/#GlobalAlignment
http://www.yuchen.net/#Function
http://www.yuchen.net/#Protein
http://www.yuchen.net/#ProteinFunction
http://www.yuchen.net/#BiologicalStructure
http://www.yuchen.net/#TertiaryY
http://www.yuchen.net/#Alignment
http://www.yuchen.net/#TertiaryX
http://www.yuchen.net/#SequenceLocation
http://www.yuchen.net/#AminoAcidSequence
http://www.yuchen.net/#Chromosome
http://www.yuchen.net/#Structure
http://www.yuchen.net/#SequenceLength
http://www.yuchen.net/#ProteinName
http://www.yuchen.net/#Gene
http://www.yuchen.net/#LocalAlignment
http://www.yuchen.net/#MessengerRNA
http://www.yuchen.net/#SequenceSimilarity
http://www.yuchen.net/#TertiaryStructure
http://www.yuchen.net/#Sequence
http://www.yuchen.net/#TertiaryZ
http://www.yuchen.net/#Polypeptide
http://www.yuchen.net/#PrimaryStructure
http://www.yuchen.net/#BiologicalFunction
http://www.yuchen.net/#BetaSheet
http://www.yuchen.net/#SecondaryStructure
http://www.yuchen.net/#DNA
http://www.yuchen.net/#SequenceCharacteristics
http://www.yuchen.net/#AlphaHelix
http://www.w3.org/2001/XMLSchema#short
http://www.w3.org/2001/XMLSchema#int
http://www.w3.org/2001/XMLSchema#long
http://www.w3.org/2001/XMLSchema#byte
http://www.w3.org/2001/XMLSchema#unsignedInt
http://www.w3.org/2001/XMLSchema#unsignedByte
http://www.w3.org/2001/XMLSchema#unsignedLong
http://www.w3.org/2001/XMLSchema#nonNegativeInteger
http://www.w3.org/2001/XMLSchema#unsignedShort
http://www.w3.org/1999/02/22-rdf-syntax-ns#List
http://www.w3.org/2000/01/rdf-schema#Class
http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement
http://www.w3.org/2002/07/owl#Property
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/1999/02/22-rdf-syntax-ns#Property
http://www.w3.org/2002/07/owl#Ontology
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2001/XMLSchema#integer
http://www.w3.org/2002/07/owl#Restriction
http://www.w3.org/2001/XMLSchema#float
http://www.w3.org/2002/07/owl#Class
http://www.w3.org/2000/01/rdf-schema#Literal
http://www.w3.org/2001/XMLSchema#date
http://www.w3.org/2001/XMLSchema#boolean
http://www.w3.org/2001/XMLSchema#decimal
http://www.w3.org/2001/XMLSchema#duration
http://www.w3.org/2001/XMLSchema#nonPositiveInteger
http://www.w3.org/2001/XMLSchema#dateTime
http://www.w3.org/2001/XMLSchema#time
 ---------- end of classes -----------
===== class structure in the model ====

83

Class: owl:Nothing
 is a sub-class of Class: owl:Thing
 is a sub-class of Class: rdfs:Resource
Class: owl:Thing
 is a sub-class of Class: rdfs:Resource
 is a super-class of Class: simpleBioOntology:AlphaHelix
 is a super-class of Class: owl:Nothing
 is a super-class of Class: simpleBioOntology:TertiaryStructure
 is a super-class of Class: simpleBioOntology:Sequence
 is a super-class of Class: simpleBioOntology:SequenceLength
 is a super-class of Class: simpleBioOntology:AminoAcidSequence
 is a super-class of Class: simpleBioOntology:BiologicalFunction
 is a super-class of Class: simpleBioOntology:SequenceLocation
 is a super-class of Class: simpleBioOntology:DNA
 is a super-class of Class: simpleBioOntology:BetaSheet
 is a super-class of Class: simpleBioOntology:LocalAlignment
 is a super-class of Class: simpleBioOntology:ProteinFunction
 is a super-class of Class: simpleBioOntology:PrimaryStructure
 is a super-class of Class: simpleBioOntology:Polypeptide
 is a super-class of Class: simpleBioOntology:SequenceSimilarity
 is a super-class of Class: simpleBioOntology:GlobalAlignment
 is a super-class of Class: simpleBioOntology:SecondaryStructure
 is a super-class of Class: simpleBioOntology:BiologicalStructure
 is a super-class of Class: simpleBioOntology:Protein
 is a super-class of Class: simpleBioOntology:MessengerRNA
 is a super-class of Class: simpleBioOntology:Chromosome
 is a super-class of Class: simpleBioOntology:Alignment
 is a super-class of Class: simpleBioOntology:TertiaryY
 is a super-class of Class: simpleBioOntology:TertiaryX
 is a super-class of Class: simpleBioOntology:Gene
 is a super-class of Class: simpleBioOntology:Structure
 is a super-class of Class: simpleBioOntology:ProteinName
 is a super-class of Class: simpleBioOntology:SequenceCharacteristics
 is a super-class of Class: simpleBioOntology:TertiaryZ
 is a super-class of Class: simpleBioOntology:Function
Class: simpleBioOntology:GlobalAlignment
 is a sub-class of Class: rdfs:Resource
 is a sub-class of Class: owl:Thing
 is a sub-class of Class: simpleBioOntology:Alignment
Class: simpleBioOntology:Function
 is a sub-class of Class: rdfs:Resource
 is a sub-class of Class: owl:Thing
 is a super-class of Class: simpleBioOntology:BiologicalFunction
 is a super-class of Class: simpleBioOntology:ProteinFunction
Class: simpleBioOntology:Protein
 is a sub-class of Class: rdfs:Resource
 is a sub-class of Class: owl:Thing
 is a sub-class of Class: simpleBioOntology:Polypeptide
 is a sub-class of Class: simpleBioOntology:Sequence
 is a sub-class of Class: simpleBioOntology:BiologicalStructure
 is a sub-class of Class: simpleBioOntology:AminoAcidSequence
 is a sub-class of Class: simpleBioOntology:Structure
 is a sub-class of Class: simpleBioOntology:PrimaryStructure
Class: simpleBioOntology:ProteinFunction
 is a sub-class of Class: owl:Thing
 is a sub-class of Class: rdfs:Resource
 is a sub-class of Class: simpleBioOntology:BiologicalFunction
 is a sub-class of Class: simpleBioOntology:Function
Class: simpleBioOntology:BiologicalStructure
 is a sub-class of Class: rdfs:Resource
 is a sub-class of Class: owl:Thing
 is a sub-class of Class: simpleBioOntology:Structure
 is a super-class of Class: simpleBioOntology:TertiaryStructure
 is a super-class of Class: simpleBioOntology:Sequence
 is a super-class of Class: simpleBioOntology:SecondaryStructure
 is a super-class of Class: simpleBioOntology:BetaSheet
 is a super-class of Class: simpleBioOntology:AlphaHelix
 is a super-class of Class: simpleBioOntology:PrimaryStructure
 is a super-class of Class: simpleBioOntology:DNA
 is a super-class of Class: simpleBioOntology:Protein
 is a super-class of Class: simpleBioOntology:Polypeptide

84

 is a super-class of Class: simpleBioOntology:AminoAcidSequence
 is a super-class of Class: simpleBioOntology:MessengerRNA
Class: simpleBioOntology:TertiaryY
 is a sub-class of Class: rdfs:Resource
 is a sub-class of Class: owl:Thing
Class: simpleBioOntology:Alignment
 is a sub-class of Class: rdfs:Resource
 is a sub-class of Class: owl:Thing
 is a super-class of Class: simpleBioOntology:LocalAlignment
 is a super-class of Class: simpleBioOntology:GlobalAlignment
Class: simpleBioOntology:TertiaryX
 is a sub-class of Class: rdfs:Resource
 is a sub-class of Class: owl:Thing
Class: simpleBioOntology:SequenceLocation
 is a sub-class of Class: owl:Thing
 is a sub-class of Class: rdfs:Resource
 is a sub-class of Class: simpleBioOntology:SequenceCharacteristics
Class: simpleBioOntology:AminoAcidSequence
 is a sub-class of Class: owl:Thing
 is a sub-class of Class: rdfs:Resource
 is a sub-class of Class: simpleBioOntology:Sequence
 is a sub-class of Class: simpleBioOntology:BiologicalStructure
 is a sub-class of Class: simpleBioOntology:Structure
 is a super-class of Class: simpleBioOntology:Polypeptide
 is a super-class of Class: simpleBioOntology:PrimaryStructure
 is a super-class of Class: simpleBioOntology:Protein
Class: simpleBioOntology:Chromosome
 is a sub-class of Class: rdfs:Resource
 is a sub-class of Class: owl:Thing
Class: simpleBioOntology:Structure
 is a sub-class of Class: rdfs:Resource
 is a sub-class of Class: owl:Thing
 is a super-class of Class: simpleBioOntology:BiologicalStructure
 is a super-class of Class: simpleBioOntology:SecondaryStructure
 is a super-class of Class: simpleBioOntology:BetaSheet
 is a super-class of Class: simpleBioOntology:TertiaryStructure
 is a super-class of Class: simpleBioOntology:AlphaHelix
 is a super-class of Class: simpleBioOntology:PrimaryStructure
 is a super-class of Class: simpleBioOntology:DNA
 is a super-class of Class: simpleBioOntology:Protein
 is a super-class of Class: simpleBioOntology:Polypeptide
 is a super-class of Class: simpleBioOntology:Sequence
 is a super-class of Class: simpleBioOntology:AminoAcidSequence
 is a super-class of Class: simpleBioOntology:MessengerRNA
Class: simpleBioOntology:SequenceLength
 is a sub-class of Class: owl:Thing
 is a sub-class of Class: rdfs:Resource
 is a sub-class of Class: simpleBioOntology:SequenceCharacteristics
Class: simpleBioOntology:ProteinName
 is a sub-class of Class: rdfs:Resource
 is a sub-class of Class: owl:Thing
Class: simpleBioOntology:Gene
 is a sub-class of Class: rdfs:Resource
 is a sub-class of Class: owl:Thing
Class: simpleBioOntology:LocalAlignment
 is a sub-class of Class: owl:Thing
 is a sub-class of Class: rdfs:Resource
 is a sub-class of Class: simpleBioOntology:Alignment
Class: simpleBioOntology:MessengerRNA
 is a sub-class of Class: rdfs:Resource
 is a sub-class of Class: owl:Thing
 is a sub-class of Class: simpleBioOntology:Sequence
 is a sub-class of Class: simpleBioOntology:BiologicalStructure
 is a sub-class of Class: simpleBioOntology:Structure
Class: simpleBioOntology:SequenceSimilarity
 is a sub-class of Class: owl:Thing
 is a sub-class of Class: rdfs:Resource
 is a sub-class of Class: simpleBioOntology:SequenceCharacteristics
Class: simpleBioOntology:TertiaryStructure
 is a sub-class of Class: owl:Thing
 is a sub-class of Class: rdfs:Resource

85

 is a sub-class of Class: simpleBioOntology:BiologicalStructure
 is a sub-class of Class: simpleBioOntology:Structure
Class: simpleBioOntology:Sequence
 is a sub-class of Class: owl:Thing
 is a sub-class of Class: rdfs:Resource
 is a sub-class of Class: simpleBioOntology:BiologicalStructure
 is a sub-class of Class: simpleBioOntology:Structure
 is a super-class of Class: simpleBioOntology:AminoAcidSequence
 is a super-class of Class: simpleBioOntology:DNA
 is a super-class of Class: simpleBioOntology:MessengerRNA
 is a super-class of Class: simpleBioOntology:PrimaryStructure
 is a super-class of Class: simpleBioOntology:Protein
 is a super-class of Class: simpleBioOntology:Polypeptide
Class: simpleBioOntology:TertiaryZ
 is a sub-class of Class: rdfs:Resource
 is a sub-class of Class: owl:Thing
Class: simpleBioOntology:Polypeptide
 is a sub-class of Class: simpleBioOntology:PrimaryStructure
 is a sub-class of Class: owl:Thing
 is a sub-class of Class: rdfs:Resource
 is a sub-class of Class: simpleBioOntology:AminoAcidSequence
 is a sub-class of Class: simpleBioOntology:Sequence
 is a sub-class of Class: simpleBioOntology:BiologicalStructure
 is a sub-class of Class: simpleBioOntology:Structure
 is a super-class of Class: simpleBioOntology:PrimaryStructure
 is a super-class of Class: simpleBioOntology:Protein
Class: simpleBioOntology:PrimaryStructure
 is a sub-class of Class: simpleBioOntology:Polypeptide
 is a sub-class of Class: rdfs:Resource
 is a sub-class of Class: owl:Thing
 is a sub-class of Class: simpleBioOntology:Sequence
 is a sub-class of Class: simpleBioOntology:BiologicalStructure
 is a sub-class of Class: simpleBioOntology:AminoAcidSequence
 is a sub-class of Class: simpleBioOntology:Structure
 is a super-class of Class: simpleBioOntology:Polypeptide
 is a super-class of Class: simpleBioOntology:Protein
Class: simpleBioOntology:BiologicalFunction
 is a sub-class of Class: owl:Thing
 is a sub-class of Class: rdfs:Resource
 is a sub-class of Class: simpleBioOntology:Function
 is a super-class of Class: simpleBioOntology:ProteinFunction
Class: simpleBioOntology:BetaSheet
 is a sub-class of Class: owl:Thing
 is a sub-class of Class: rdfs:Resource
 is a sub-class of Class: simpleBioOntology:SecondaryStructure
 is a sub-class of Class: simpleBioOntology:BiologicalStructure
 is a sub-class of Class: simpleBioOntology:Structure
Class: simpleBioOntology:SecondaryStructure
 is a sub-class of Class: owl:Thing
 is a sub-class of Class: rdfs:Resource
 is a sub-class of Class: simpleBioOntology:BiologicalStructure
 is a sub-class of Class: simpleBioOntology:Structure
 is a super-class of Class: simpleBioOntology:AlphaHelix
 is a super-class of Class: simpleBioOntology:BetaSheet
Class: simpleBioOntology:DNA
 is a sub-class of Class: rdfs:Resource
 is a sub-class of Class: owl:Thing
 is a sub-class of Class: simpleBioOntology:Sequence
 is a sub-class of Class: simpleBioOntology:BiologicalStructure
 is a sub-class of Class: simpleBioOntology:Structure
Class: simpleBioOntology:SequenceCharacteristics
 is a sub-class of Class: rdfs:Resource
 is a sub-class of Class: owl:Thing
 is a super-class of Class: simpleBioOntology:SequenceLocation
 is a super-class of Class: simpleBioOntology:SequenceSimilarity
 is a super-class of Class: simpleBioOntology:SequenceLength
Class: simpleBioOntology:AlphaHelix
 is a sub-class of Class: rdfs:Resource
 is a sub-class of Class: owl:Thing
 is a sub-class of Class: simpleBioOntology:SecondaryStructure
 is a sub-class of Class: simpleBioOntology:BiologicalStructure

86

 is a sub-class of Class: simpleBioOntology:Structure
Class: xsd:short
 is a sub-class of Class: xsd:integer
 is a sub-class of Class: xsd:long
 is a sub-class of Class: xsd:int
 is a super-class of Class: xsd:unsignedShort
 is a super-class of Class: xsd:unsignedByte
 is a super-class of Class: xsd:byte
Class: xsd:int
 is a sub-class of Class: xsd:integer
 is a sub-class of Class: xsd:long
 is a super-class of Class: xsd:unsignedShort
 is a super-class of Class: xsd:unsignedByte
 is a super-class of Class: xsd:unsignedInt
 is a super-class of Class: xsd:byte
 is a super-class of Class: xsd:short
Class: xsd:long
 is a sub-class of Class: xsd:integer
 is a super-class of Class: xsd:unsignedShort
 is a super-class of Class: xsd:unsignedLong
 is a super-class of Class: xsd:unsignedByte
 is a super-class of Class: xsd:unsignedInt
 is a super-class of Class: xsd:byte
 is a super-class of Class: xsd:int
 is a super-class of Class: xsd:short
Class: xsd:byte
 is a sub-class of Class: xsd:integer
 is a sub-class of Class: xsd:long
 is a sub-class of Class: xsd:int
 is a sub-class of Class: xsd:short
 is a super-class of Class: xsd:unsignedByte
Class: xsd:unsignedInt
 is a sub-class of Class: xsd:nonNegativeInteger
 is a sub-class of Class: xsd:integer
 is a sub-class of Class: xsd:unsignedLong
 is a sub-class of Class: xsd:long
 is a sub-class of Class: xsd:int
 is a super-class of Class: xsd:unsignedShort
 is a super-class of Class: xsd:unsignedByte
Class: xsd:unsignedByte
 is a sub-class of Class: xsd:unsignedShort
 is a sub-class of Class: xsd:byte
 is a sub-class of Class: xsd:nonNegativeInteger
 is a sub-class of Class: xsd:integer
 is a sub-class of Class: xsd:unsignedLong
 is a sub-class of Class: xsd:long
 is a sub-class of Class: xsd:int
 is a sub-class of Class: xsd:unsignedInt
 is a sub-class of Class: xsd:short
Class: xsd:unsignedLong
 is a sub-class of Class: xsd:nonNegativeInteger
 is a sub-class of Class: xsd:integer
 is a sub-class of Class: xsd:long
 is a super-class of Class: xsd:unsignedShort
 is a super-class of Class: xsd:unsignedByte
 is a super-class of Class: xsd:unsignedInt
Class: xsd:nonNegativeInteger
 is a sub-class of Class: xsd:integer
 is a super-class of Class: xsd:unsignedShort
 is a super-class of Class: xsd:unsignedLong
 is a super-class of Class: xsd:unsignedByte
 is a super-class of Class: xsd:unsignedInt
Class: xsd:unsignedShort
 is a sub-class of Class: xsd:nonNegativeInteger
 is a sub-class of Class: xsd:integer
 is a sub-class of Class: xsd:unsignedLong
 is a sub-class of Class: xsd:long
 is a sub-class of Class: xsd:int
 is a sub-class of Class: xsd:unsignedInt
 is a sub-class of Class: xsd:short
 is a super-class of Class: xsd:unsignedByte

87

Class: rdf:List
 is a sub-class of Class: rdfs:Resource
Class: rdfs:Class
 is a sub-class of Class: rdfs:Resource
 is a super-class of Class: owl:Class
 is a super-class of Class: rdfs:Datatype
Class: rdf:Statement
 is a sub-class of Class: rdfs:Resource
Class: owl:Property
 is a sub-class of Class: rdfs:Resource
Class: xsd:string
 is a sub-class of Class: rdfs:Resource
Class: rdf:Property
 is a sub-class of Class: rdfs:Resource
 is a super-class of Class: owl:DatatypeProperty
 is a super-class of Class: owl:ObjectProperty
 is a super-class of Class: owl:FunctionalProperty
 is a super-class of Class: rdfs:ContainerMembershipProperty
 is a super-class of Class: owl:OntologyProperty
Class: owl:Ontology
 is a sub-class of Class: rdfs:Resource
Class: rdfs:Resource
 is a super-class of Class: simpleBioOntology:TertiaryZ
 is a super-class of Class: simpleBioOntology:Alignment
 is a super-class of Class: simpleBioOntology:MessengerRNA
 is a super-class of Class: simpleBioOntology:Gene
 is a super-class of Class: simpleBioOntology:Chromosome
 is a super-class of Class: simpleBioOntology:BetaSheet
 is a super-class of Class: simpleBioOntology:GlobalAlignment
 is a super-class of Class: rdf:List
 is a super-class of Class: owl:Thing
 is a super-class of Class: simpleBioOntology:DNA
 is a super-class of Class: simpleBioOntology:SequenceLocation
 is a super-class of Class: rdf:Statement
 is a super-class of Class: simpleBioOntology:Structure
 is a super-class of Class: rdfs:Class
 is a super-class of Class: owl:Nothing
 is a super-class of Class: simpleBioOntology:AminoAcidSequence
 is a super-class of Class: simpleBioOntology:Sequence
 is a super-class of Class: xsd:integer
 is a super-class of Class: simpleBioOntology:SecondaryStructure
 is a super-class of Class: simpleBioOntology:AlphaHelix
 is a super-class of Class: simpleBioOntology:Protein
 is a super-class of Class: owl:Ontology
 is a super-class of Class: rdf:Property
 is a super-class of Class: simpleBioOntology:TertiaryY
 is a super-class of Class: simpleBioOntology:TertiaryX
 is a super-class of Class: owl:Class
 is a super-class of Class: simpleBioOntology:ProteinName
 is a super-class of Class: xsd:string
 is a super-class of Class: simpleBioOntology:PrimaryStructure
 is a super-class of Class: rdfs:Literal
 is a super-class of Class: simpleBioOntology:Function
 is a super-class of Class: xsd:float
 is a super-class of Class: simpleBioOntology:SequenceCharacteristics
 is a super-class of Class: simpleBioOntology:ProteinFunction
 is a super-class of Class: simpleBioOntology:SequenceLength
 is a super-class of Class: owl:Property
 is a super-class of Class: simpleBioOntology:SequenceSimilarity
 is a super-class of Class: simpleBioOntology:LocalAlignment
 is a super-class of Class: simpleBioOntology:Polypeptide
 is a super-class of Class: simpleBioOntology:BiologicalStructure
 is a super-class of Class: simpleBioOntology:BiologicalFunction
 is a super-class of Class: owl:Restriction
 is a super-class of Class: simpleBioOntology:TertiaryStructure
Class: xsd:integer
 is a sub-class of Class: xsd:decimal
 is a sub-class of Class: rdfs:Resource
 is a super-class of Class: xsd:unsignedShort
 is a super-class of Class: xsd:nonNegativeInteger
 is a super-class of Class: xsd:unsignedLong

88

 is a super-class of Class: xsd:unsignedByte
 is a super-class of Class: xsd:unsignedInt
 is a super-class of Class: xsd:byte
 is a super-class of Class: xsd:long
 is a super-class of Class: xsd:int
 is a super-class of Class: xsd:short
Class: owl:Restriction
 is a sub-class of Class: owl:Class
 is a sub-class of Class: rdfs:Resource
Class: xsd:float
 is a sub-class of Class: rdfs:Resource
Class: owl:Class
 is a sub-class of Class: rdfs:Class
 is a sub-class of Class: rdfs:Resource
 is a super-class of Class: owl:Restriction
Class: rdfs:Literal
 is a sub-class of Class: rdfs:Resource
Class: xsd:date
Class: xsd:boolean
Class: xsd:decimal
 is a super-class of Class: xsd:integer
Class: xsd:duration
Class: xsd:nonPositiveInteger
Class: xsd:dateTime
Class: xsd:time

	An Indexation and Discovery Architecture for Semantic Web Services and its Application in Bioinformatics
	Recommended Citation

	Microsoft Word - current master thesis latest.doc

