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ABSTRACT 

 
The U.S. Army’s Chemical Demilitarization are designed to store, treat and destroy 

the nation’s aging chemical weapons. It operates Near-Real-Time Monitors and Deport Area 

Monitoring Systems to detect chemical agent at concentrations before they become 

dangerous to workers, public health and the environment. CDC recommends that the 

sampling and analytical methods measure within ±25% of the true concentration 95% of the 

time, and if this criterion is not met the alarm set point or reportable level should be adjusted. 

Two methods were provided by Army’s Programmatic Laboratory and Monitoring Quality 

Assurance Plan to evaluate the monitoring systems based on CDC recommendations. This 

thesis addresses the potential problems associated with these two methods and proposes the 

Bayesian method in an effort to improve the assessment. Comparison of simulation results 

indicates that Bayesian method produces a relatively better estimate for verifying monitoring 

system performance as long as the prior given is correct. 
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Chapter One: Background Introduction 

 

In 1997, the United States along with 65 other countries signed the Chemical 

Weapons Convention (CWC) treaty, which prohibits the development, production, 

stockpiling and use of chemical weapons. Additionally, the stockpiles of chemical weapons 

are aging and, in some cases, leaking their chemical agent contents. The United States 

ratified the treaty in April 1997. According to the terms outlined, it provides the United 

States until April 2007 to destroy its declared stockpile of chemical weapons. And a one-

time, five-year extension is allowed.  

The U.S. Army has the responsibility to store, treat and dispose of chemical weapons 

safely and effectively. Originally the task was operated separately under the Army’s 

Chemical Demilitarization Program (CDP) and the Soldier Biological and Chemical 

Command (SBCCOM). In year 2003, the U.S. Army created a new organization, the 

Chemical Materials Agency (CMA), which incorporates the CDP and portions of the 

SBCCOM to streamlines the operations and to allow for greater integration of these 

programs. The new agency, CMA, combines the demilitarization and storage functions under 

a single director and is responsible for safe storage and destruction the nation’s aging 

chemical weapons, effective recovering of the nation’s chemical warfare materiel and 

enhancing national security. It develops and uses technologies to safely store and eliminate 

chemical weapons while protecting the public, its workers and the environment. 

CMA’s Chemical Demilitarization Facilities (CDF) are designed to destroy the 

chemical agent in these munitions while minimizing risk to workers, the general public and 
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the environment. One type of demilitarization disposal facility uses high-temperature 

incineration technology to destroy weapons, a technology employed by the Army for more 

than a decade to safely and successfully dispose of more than a quarter of the nation’s 

original chemical weapons. Multiple safety features are designed into the process, along with 

automated backup systems for each feature, to prevent agent or hazardous material release. In 

addition CDF Laboratories operate Near-Real-Time monitors (NRT), i.e. Automatic 

Continuous Air Monitoring System (ACAMS) or MINICAMS, to detect chemical agent at 

certain concentrations before they become dangerous to public health and the environment, 

and to provide real-time warning to the workers if these levels are approached or exceeded, 

so that evacuation and masking is accomplished. Depot Area Monitoring Systems (DAAMS) 

are also operated by the CDF Laboratories as chemical agent detection and confirmation 

systems. 

NRT monitors are used for the detection of airborne concentrations of agents during 

disposal operations at CDF. NRT systems consist of an automatic gas chromatograph 

equipped with a detector, analytical column, and a pre-concentration tube. The system 

samples the environment every 3 to 15 minutes and provides a response to chemical agents. 

DAAMS consists of a field sampling tube filled with sorbent, a transfer tube filled with 

sorbent and a gas chromatograph equipped with a flame photometric or a mass selective 

detector. The DAAMS field tubes are either collocated with a NRT unit or used 

independently. When it is collocated with a NRT unit at a sampling station and an alarm 

occurs, the DAAMS tubes are retrieved and used to confirm or refute the presence of 

chemical agents by analyzing on a gas chromatograph. When only DAAMS tubes are located 

at a sampling station, the first tube is used to detect the presence of agent and a second tube 
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that is collocated is used to confirm or refute the presence of chemical agent by analyzing on 

a gas chromatograph configured with a dissimilar analytical column type and/or a different 

detector. 

The Army’s disposal activities are operated under congressional direction. Federal 

agencies and the independent National Academy of Sciences’ National Research Council, 

together with equivalent agencies at the state and local level, are also involved in regulation 

of the type of oversight conducted by associated agencies, like Department of Defense, U.S. 

Environmental Protection Agency (EPA), Department of Health and Human Services 

(DHHS), Centers for Disease Control and Prevention (CDC), Congress, General Accounting 

Office and National Research Council. 

The CMA’s Programmatic Laboratory and Monitoring Quality Assurance Plan 

(LMQAP) has been developed to provide specific guidance to address requirements from the 

Department of the Army, environmental regulatory agencies, and DHHS. The CDC Public 

Health Service has responsibility to oversee the Demilitarization Program and make 

recommendations for protecting human health and safety. CDC recommendation “assumes 

that the sampling and analytical methods are measuring within ±25% of the true 

concentration 95% of the time. If this criterion is not met, an alarm level or action level 

below the exposure limit may be required.” CDC also requires that a 95% confidence must 

be maintained at all conditions. 

The CMA Programmatic LMQAP is required to be implemented at all CMA’s CDF 

laboratories and monitoring teams to produce acceptable quality of monitoring and 

laboratory data. To ensure proper system operation and generation of technically defensible 

data, a precision and accuracy study is conducted through the use of quality plant (QP) 
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samples. QP sample is a sample media that has been spiked with a solution of dilute chemical 

standard analytical reference material (SARM) prior to being placed in the field or following 

aspiration of the blank tube in the field. The sample is spiked and then carried out to the 

sample collection point and exposed to the sample collection point atmosphere. The QP 

found concentration is recorded along with the exact amount of SARM. Information from the 

study is used to determine whether or not the method may reliably detect agent prior to its 

implementation in the field. 

QP data were collected at CMA’s Demilitarization sites. The system operations are 

verified through QP challenges at least daily and evaluated on a 28-day period. When NRT 

systems are being verified, they are injected with a known concentration of agent. All 

challenges are injected at the distal end of the sample line or directly into the instrument. For 

DAAMS methods, DAAMS tubes are either spiked with known concentrations of agent and 

placed in the field or spiked with a known concentration of agent after aspirating in the field. 

Those QP data are then evaluated by system, method, agent and/or station to determine 

whether certain agent may be detected with a 95% confidence at a specific alarm set point or 

reportable level.  

Georgia State University’s Demilitarization Group (GSUDG) is subcontracted with 

the Shaw Environment, Inc. Our team in Georgia State University Department of 

Mathematics and Statistics was given the task of assessing and verifying the statistical 

approach as defined by the LMQAP and currently used by CMA’s CDF Laboratories.  

In this thesis, the focus is on the evaluations of NRT systems and studies on several 

cases of NRT systems are presented. Two statistical approaches that are defined in LMQAP 

for evaluation of the system are introduced. A theoretically sound approach, Bayesian 
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method, is proposed and compared with the other two approaches in an effort to improve our 

assessment. Conclusions are drawn through Simulation studies. This thesis is organized in 

the following order. In Chapter 2, the two methods that are defined in the LMQAP and 

currently used by CMA’s CDF are first introduced followed by the introduction of the 

concept and methodologies for Bayesian approach. In Chapter 3, the computational method 

for Bayesian estimation and construction of confidence intervals are detailed. Examples 

using CDF’s ACAMS QP challenge data are illustrated in Chapter 4. In Chapter 5, 

simulation studies are conducted and results from different approaches are compared. 

Conclusion from the studies is presented in the last Chapter. 
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Chapter Two: Methodologies 

 

 To verify whether the monitoring systems are operated within CDC’s criteria and to 

ensure that technical defensible data are generated, continuous baseline study is conducted 

for both NRT systems and DAAMS systems. In this chapter, data obtained from NRT 

systems are analyzed. The statistical evaluation of NRT system is divided into two main 

categories-- i.e. ASC (Allowable Stack Concentration) ACAMS station and non-ASC 

ACAMS station. These categories are further subdivided and evaluated by agent, station and 

monitoring level. 

QP data are collected at least daily and evaluated every 28 days at each site to assess 

the system performance. The LMQAP requires that the performance of NRT QP challenges 

follow the following guidance-- Perform first challenge and if it meets the acceptance 

criteria, it is recorded as P1. If the first challenge fails, F1 is recorded and second challenge is 

performed. If the second challenge passed the acceptance criteria, it is recorded as P2. 

Otherwise it is recorded as F2 and corrective actions, like recalibration, changing pad etc., are 

performed until a passing QP is observed. Along with the pass/fail challenge, target 

concentration, found concentration, percentage recovery, instrument ID number, station 

location, ID number of the operator, date, time, corrective action performed etc., are also 

recorded.  

 Two statistical approaches (i.e., pass rate and normal) have been defined in LMQAP 

to verify whether CDC’s requirements of ±25% of the true concentration 95% of the time are 

being met, or whether the system can meet CDC’s requirements of maintaining a 95% 

confidence at a lower alarm set point. 
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2.1 Pass Rate Approach 

 Three types of pass rates are defined in LMQAP. However only the first-challenge 

pass rate is used to assess the “true” unit or system performance. The second-challenge pass 

rate is used to determine the performance after failure. The either-challenge pass rate is used 

to determine the performance in highly agent contaminated areas. A challenge passes if the 

concentration is ±25% of the true concentration. 

 The first-challenge pass rate (PR1) is the percent of challenges that pass on the first 

attempt for each day or challenge cycle or event.  

)100(
11

1
1 FP

PPR
+

=      (2.1) 

 where 

  P1  = number of challenges that passed on the first challenge 

F1  = number of challenges that failed on the first challenge 

 The second-challenge pass rate (PR2) is the percent of challenges that pass on the 

second-challenge attempt for each day.  

)100(
22

2
2 FP

PPR
+

=      (2.2) 

 where 

  P2  = number of challenges that passed on the second challenge 

F2  = number of challenges that failed on the second challenge 

 The either-challenge pass rate (PRT) is the total percent of challenges that pass. It 

combines the first- and second-challenge passes and divides it by the total number of 

challenge events. 
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)100(
221

21

FPP
PPPRT ++

+
=     (2.3) 

 where 

  P1  = number of challenges that passed on the first challenge 

F2  = number of challenges that failed on the second challenge 

  P2  = number of challenges that passed on the second challenge 

 Note, F1 is not included in the denominator. This is because the pass rates are based 

on events and not the number of challenges. Events consist of two challenges. Therefore, the 

total number of events in this case is defined as the sum of first pass challenge and total 

second challenge, which is P1 + P2 + F2. 

 

2.2 Normal Approach 

 This approach assumes normal distribution for the challenge data grouped by method, 

agent and station.  

The statistical response rate at the alarm level (SRRAL) is the probability that a 

first challenge to the NRT monitor will generate a response greater than or equal to the alarm 

level. 

)()(
SD

XALZPALYPSRRAL
−

≥=≥=              (2.4) 

where 

 AL = alarm level 

 X  = average response to the first QP challenges 

 SD = standard deviation of the response to the first QP challenges 
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These two approaches—pass rate and response rate, are currently used by CDF 

laboratories to evaluate the performance of NRT monitoring systems. However the reliability 

of these two approaches depends on the actual conditions. For example, pass rate is not 

reliable in case of small sample size; while response rate will not be valid when normality 

assumption is violated. Since QP data are collected daily and evaluated on a 28-day base, 

most of the ACAMS stations have only 28 observations for evaluation period. Thus pass rate 

may not be a reliable measurement for system evaluation purpose. And carefully examination 

of the ACAMS QP data revealed that most of the ACAMS station’s QP first challenge 

response, i.e. found concentration, do not follow a normal distribution. Some are heavy tailed 

and some are slightly skewed. Furthermore, none of the above measurements take into 

account the relations among stations and sites.  

Here, Bayesian method is proposed for modeling the probability that a ACAMS 

station will generate a response greater than or equal to the alarm level. In other words, the 

pass rate for each station is assumed to be a random variable from a certain prior distribution. 

The exchangeability of NRT which are configured the same (i.e., same column types and 

detectors) is also assumed. In this way, certain dependency among stations is considered. 

This is certainly a reasonable assumption because all monitors of the same kind were 

produced from either the same assembly line or using the same manufacture procedures. 

 

2.3 Bayesian Method 

Many statistical applications involve multiple parameters that are often related or 

connected in some way by the structures of the problem. A joint probability model for these 

parameters indicates the dependence among them. For this instance, the study object is the 
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response xij from station j having probability θj to be within a certain range. It is reasonable 

to expect that θj’s of all stations are from a certain unknown prior distribution. 

A key feature of such applications is that the observed data xij with each observations 

indexed by i, within groups indexed by j, j=1,…, J, can be used to estimate aspects of the 

distribution of the θjs even though the values of θjs are not themselves observed. It is natural 

to model such a problem with observable outcomes modeled conditionally on certain 

parameters, which themselves are given a probabilistic specification in terms of further 

parameters of some hyperprior distribution. The advantage of using this model is to use a 

prior distribution to structure some dependency into the parameters. 

Considering the problem of estimating θj-- the probability of a response to be within 

the assigned range for station j, observed found concentration xij and a prior distribution 

constructed from stations in the same analytical group are used for the estimation. θjs shall be 

treated as random samples from a common population. Since in the same analytical group, 

there is no ordering or special characteristic available to distinguish any of the station from 

any of the others, the exchangeability among θjs is assumed in their prior distribution. That is 

p(θ1,…, θJ) is invariant to permutations of the indexes (1,…, J) and parameters (θ1,…, θJ) are 

exchangeable in their joint distribution. Using a simple exchangeable model for θjs, which 

treat each θj as an independent sample from a prior distribution governed by some unknown 

parameter vector, the conditional probability of θ under φ is: 

∏
=

=
J

j
jpp

1

)|()|( φθφθ     (2.5) 

Since φ is unknown, it has its own prior distribution, p(φ). The joint prior distribution is: 

)|()(),( φθφθφ ppp =      (2.6) 
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, and the appropriate Bayesian joint posterior distribution is:  

⇒∝ ),|(),()|,( θφθφθφ yppyp    

)|(),()|,( θθφθφ yppyp ∝ , substitute in (2.6) ⇒  

)|()|()()|,( θφθφθφ ypppyp ∝     (2.7) 

Where y denotes the number of passes for each station. p(y| φ, θ) is simplified by p(y| 

θ) since data distribution  p(y| φ, θ) depends only on θ and φ affect y only through θ. 

φ is estimated by obtaining its marginal posterior distribution, p(φ|y). For many 

standard models, this marginal posterior distribution can be computed algebraically using the 

conditional probability formula, 

),|(
)|,()|(

yp
ypyp

φθ
θφφ =        (2.8) 

For this study, yj, the number of passes for station j, is assumed to follow independent 

binomial distribution, denoted by yj ~ Bin(nj, θj), where nj is the sample size for station j, j=1, 

2, …, J. And parameters θjs are assumed to be independent samples from a beta distribution, 

denoted by θj  ~ Beta(α, β). Beta distribution is chosen for θjs because Beta distribution has a 

bell-shaped probability density and takes values only on the interval 0 to 1, which are 

probability values. Now the analytic form of the joint posterior distribution, p(α, β, θ| y), can 

be determined by substituting appropriate joint density functions into the formula (2.7). It is 

not hard to see the resulting posterior distribution is: 

⇒∝ )|(),|(),()|,,( θβαθβαθβα ypppyp   

jjj yn
j

J

j

y
jj

J

j
jpyp −

=

−

=

− ∏∏ −−
ΓΓ
+Γ

∝ )1()1(
)()(
)(),()|,,(

1

1

1

1 θθθθ
βα
βαβαθβα βα  (2.9) 
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Next, to obtain the marginal posterior density of (α, β), first the conditional joint 

density, p(θ| α, β, y), need to be find out. Since given (α, β), θjs have independent posterior 

density and follow beta distribution, the joint density for θjs is: 

 1

1

1 )1(
)()(

)(
),,|( −−+

=

−+∏ −
−+Γ+Γ

++Γ
= jjj yn

j

J

j

y
j

jjj

j

yny
n

yp βα θθ
βα
βα

βαθ      (2.10) 

Then the marginal posterior distribution of (α, β) can be determined by substituting 

(2.9), (2.10) into the conditional probability formula (2.8), and the result is: 

∏
= ++ΓΓΓ

−+Γ+Γ+Γ
∝

J

j j

jjj

n
yny

pyp
1 )()()(

)()()(
),()|,(

βαβα
βαβα

βαβα    (2.11) 

 Now a hyperprior distribution must be assigned to (α, β). Since little is known about 

(α, β), one would seek a relatively diffuse hyperprior distribution for (α, β). It would seem 

reasonable to assign independent hyperprior distribution to the prior mean and ‘sample size’. 

(α, β) is reparameterized in terms of )log()(log
β
α

βα
α

=
+

it and log(α + β), which are the 

logit of the mean and logarithm of the ‘sample size’ in the beta distribution for θjs.  Logistic 

and logarithm transformation are used to put each on a (-∞, ∞) scale. Since a uniform prior 

density on these transformed parameters yields an improper posterior density, a diffuse 

hyperprior density of uniform on ))(,( 2/1−+
+

βα
βα

α  is chosen. The appropriate Jacobians 

are computed to obtain the density p(α, β) and p[log(α/ β), log(α+β)]. Steps are shown below: 

Let 
βα

αα
+

=0  and , then 2/1
0 )( −+= βαβ
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β
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By now the full probability model for data and parameters has been established, the 

marginal posterior distribution of the hyperparameters, p(α, β| y), can be calculated easily for 

any specified value of (α, β). The Bayesian estimate for (α, β) and θjs can then be obtained 

and confidence interval for estimate of θjs can be computed through simulation process.  

 

 

 



   14

Chapter Three: Computational Method 

 

Since simple algebraic expression of the Bayesian estimate seems to be unobtainable, 

the actual calculation of the Bayesian estimate for (α, β) is obtained by computation on grid. 

To set up the grid, the first step is to choose the center of the grid. The mean and standard 

deviation of the population distribution are set to the sample mean and standard deviation and 

(α, β) is solved using simple algebra (see appendix A). This is a crude point estimate of (α, β) 

and denotes by . To get the grid center, it is transformed to . 

And the effective range of the grid is obtained by plus/minus certain factors to this grid 

center. In the second step, the marginal posterior densities of the hyperparameters, p(α, β| y), 

for each point on the grid are computed using function (2.11) with prior density (2.12). 

Multiplied them by the appropriate Jacobian, the log densities p[log(α/β), log(α + β)|y] are 

obtained. These are the relative posterior densities. They are finally normalized by 

approximating the distribution as a step function over the grid and setting the total probability 

to 1. Then the posterior moments can be computed using the following formula, 

)ˆ,ˆ( βα )]ˆˆlog(),ˆ/ˆ[log( βαβα +

E(α| y) is estimated by  ∑
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

)log(),log(

)log(),log(.~

βα
β
α

βα
β
ααα yp   (3.1) 

E(β| y) is estimated by  ∑
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

)log(),log(

)log(),log(.~

βα
β
α

βα
β
αββ yp   (3.2) 

Since for each j = 1,…, J, θj| α, β, y follow Beta(α + yj, β + nj - yj), then 

E(θj|α, β, y) is estimated by   
j

j
j n

y

++

+
=

βα

α
θ ~~

~~
               (3.3) 
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 Now, the Bayesian estimates for (α, β) and θjs are obtained, the confidence intervals 

for jθ~ s can be computed through simulation.  

First, find the marginal posterior distribution of log(α/β) using, 

∑ += ]|)log(),/[log(]|)/[log( ypyp βαβαβα    (3.4) 

where sum is over values of log(α+β). Using this marginal posterior distribution, a 

conditional cumulative distribution of log(α/β) given by y can be obtained. With this 

cumulative distribution and using the inverse distribution function technique, random 

samples from this conditional distribution of log(α/β) can be drawn.  

Secondly, obtain the conditional distribution of log(α+β) given log(α/β) by, 

]|)/[log(
]|)log(),/[log(]),/log(|)[log(

yp
ypyp

βα
βαβαβαβα +

=+
   (3.5) 

Again the conditional cumulative distribution can be found. The inverse distribution function 

technique is applied with already sampled log(α/β). Therefore pairs of draws of [log(α/β), 

log(α+β)] are obtained from their marginal posterior distribution and then can be 

transformed to (α, β). 

Finally, for each j = 1, …, J, sample θj from its conditional posterior distribution, p(θj| 

α, β, y), by drawing random samples from Beta(α + yj, β + nj - yj) using a standard random 

sample generating procedure for Beta distribution. 

 Repeat this procedure to generate k random samples of (α, β) and θjs, and compute 

the 100α th and 100(1- α)th percentile to obtain 100(1-2 α) percent confidence intervals for 

θjs. An example from this study is provided in the next chapter to illustrate the idea. 



   16

Chapter Four: A Study of  ACAMS Challenge Data 

 

To ensure proper system operation, QP data were generated at CMA’s CDF on a 

daily bases. It is reported and evaluated every 28 days. The data of 3 time periods—from 

May 3, 2005 to July 25, 2005, was recorded for analysis. The data consist of both ACAMS 

stations and DAAMS stations. ACAMS stations are further divided into GB-ASC, GB-STEL 

and GB-ECL stations. There are 6, 86 and 4 stations for each type of the ACAMS stations. 

Alarm level ±25% is chosen for this analysis. It is corresponding to CDC’s recommendation 

of “measurement within ±25% of the true concentration 95% of the time”.  

Although many analyses have been done to this project, in this thesis the focus is on 

the Bayesian analysis for GB-STEL stations. The analysis is done for each of the stations for 

three 28-day time periods and for the whole time period.  

 

4.1 Compute Bayesian Estimates of (α, β) and θjs 

First, stations were grouped into four groups according to their time period. Then, the 

first-challenge pass rate (PR1), the proportion of first pass, were calculated at ±25% alarm 

level for each station in each group (see Table 4.2-4.5). yj denotes the total number of first 

pass for station j at alarm level, where j = 1, …, J, and J is the total number of stations in 

analytical group. nj denotes the total number of first challenges for the jth station. Then pass 

rate is 
j

j
j n

y
PR =1  for the jth station. 

θj, the pass probability of the jth station, varies from station to station because of 

differences in each individual monitor and operation conditions among systems. Beta 
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distribution with parameters α, β, denoted by Beta(α, β),  were chosen as the prior 

distribution for θ, and its mean and variance are 
βα

αμ
+

=  and 
)1()( 2

2

+++
=

βαβα
αβσ . Next, 

the estimates  were obtained using method of moments, i.e. equating sample mean and 

variance of PR

)ˆ,ˆ( βα

1js with 
βα

α
+

 and 
)1()( 2 +++ βαβα

αβ , respectively, and solving for α and β. 

The solutions yield the point estimates of (α, β) for each group (see Table 4.1). Independent 

hyperprior distributions were assigned to the prior mean and ‘sample size’, i.e. 
βα

α
+

and 

βα + , and they were transformed to )log()(log
β
α

βα
α

=
+

it  and log(α+β). Using previous 

point estimates  as starting point, the grid center was set up to  

and a factor of log2 was added to the grid center to obtain an effective range of the grid. Then 

it was divide evenly into an n*n grid. For each point on the grid, the value of the point was 

converted to its corresponding (α, β) for the next step. 

)ˆ,ˆ( βα )]ˆˆlog(),ˆ/ˆ[log( βαβα +

Next, the posterior densities p(α, β| y) for each point on the grid were calculated 

using function (2.11) with prior density (2.12). The results were further multiplied by the 

appropriate Jacobian, i.e. α*β, to obtain the densities p[log(α/β), log(α+β)| y]. Contour plots 

of these unnormalized marginal posterior densities showed whether the effective range of the 

grid included all the important parts of the marginal posterior distribution. If not, the grid 

range would need to be adjusted and p[log(α/β), log(α+β)| y] need to be recomputed until all 

the contour lines fall in the grid range. The resulting graphs are shown in Figure 4.1-4.4. 
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Figure 4.1. Contour plot for GB_STEL Total    Figure4.2. Contour plot for GB_STEL Time 1 
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Figure 4.3. Contour plot for GB_STEL Time 2    Figure4.4. Contour plot for GB_STEL Time 3 
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The obvious feature of the contour plots is that the mode lay not far from the point 

estimate as expected.  

These relative posterior densities were then normalized by dividing each value of 

p[log(α/β), log(α+β)| y] the sum of p[log(α/β), log(α+β)| y] from all grid points. Thus the 

total posterior density is set to 1. 

Finally, Bayesian expected value of (α, β), denoted by )~,~( βα , were computed using 

formula (3.1) and (3.2). The expected value of θjs, denoted by jθ~ , j=1, …, J, were computed 

using formula (3.3). The resulting Bayesian estimates of )~,~( βα and jθ~ are presented in Table 

4.1-4.5. Response rate SRRAL at alarm set point 0.5 for each station and time period were 

also computed using formula (2.4) and presented in Table 4.2-4.5 for comparison. A graph 

was drawn and shown in Figure 4.5 to compare the three different approaches for assessing 

the pass probability. 
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Figure 4.5. First challenge pass rate, response rate vs. Bayesian probability estimation for  

GB_STEL stations from May 3, 2005 to July 25, 2005. 

 

The figure above shows that the response rates have the biggest station variations 

among the three methods while Bayesian estimates are the smoothest one. It is clear that 

Bayesian probability estimates are shrunk from their sample point estimates toward the 

population distribution. Results from Table 4.2-4.5 also show that the three estimates are 

close to each other when found concentration follows normal distribution, while response 

rates lay far from the other two when data distribution failed the normality tests. 

 

 



Finally, sort these 1000 random samples for each θj in ascending order and compute 

the (5th, 95th) and (2.5th, 97.5th) percentile to get 90% and 95% confidence intervals for θjs. 

Confidence intervals for this study were computed using the above method and are presented 

in Table 4.2-4.5.  

Next, transform these1000 pairs of [log(α/β), log(α+β)] to (α, β) using simple 

algebra to yield 1000 pairs of random draws of the hyperparameters. Then use written 

functions in any computer software package, like SAS, to generate random sample from Beta 

(α + yj, β + nj - yj) for each θj, j=1, …, J, and for each draw of (α, β). Therefore obtain 1000 

random samples for each θj. 
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jθ4.2 Compute Confidence Interval for 

Confidence intervals for 

~ s 

jθ~ s can be computed through simulation. First, find the 

marginal posterior distribution of log(α/β) using formula (3.4) and obtain the conditional 

cumulative distribution. Then draw 1000 random samples of log(α/β) from its conditional 

distribution using inverse distribution function technique. Second, obtain the conditional 

distribution of log(α+β) given log(α/β) using formula (3.5) and find the conditional 

cumulative distribution. Using the same technique, draw random sample of log(α+β) given 

already sampled log(α/β). This procedure is illustrated in Table 4.6. 
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Table 4.1. Point estimate vs. Bayesian estimate of (α, β) and grid centers for GB_STEL challenge data.         

Time Period α̂  β̂  
)ˆ

ˆ
log(

β
α  )ˆˆlog( βα +

 α~  β~  
)~

~
log(

β
α  )~~log( βα +

 

Total Time Period 27.866 0.863 3.474 3.358 45.113 1.420 3.458 3.840 

Time Period 1 13.148 0.348 3.631 2.602 29.060 0.793 3.601 3.396 

Time Period 2 12.413 0.399 3.437 2.550 29.098 0.793 3.603 3.398 

Time Period 3 11.683 0.401 3.371 2.492 20.576 0.726 3.345 3.059 

Note: [ )ˆ
ˆ

log(
β
α , ] is the original grid center; [)ˆˆlog( βα + )~

~
log(

β
α , ] is the center for the contour plot. )~~log( βα +

 

Table 4.2. First challenge pass rate, response rate and Bayesian estimate of θjs for GB_STEL challenge data (Total).         

Station PR1 SRR0.75 θ~  Lb_95 Ub_95 Lb_90 Ub_90 Normal Test

104 96.4% 90.8% 96.6% 92.3% 99.0% 93.2% 98.8% N 

107 98.8% 98.4% 98.1% 95.2% 99.7% 95.8% 99.6% Y 

152 100.0% 98.3% 98.9% 96.7% 100.0% 97.2% 99.9% Y 

153 100.0% 99.2% 98.9% 96.4% 100.0% 96.9% 99.9% Y 

155 86.9% 82.6% 90.5% 83.9% 95.0% 85.0% 94.3% N 

156 100.0% 98.9% 98.9% 96.5% 100.0% 97.1% 99.9% Y 

203 96.4% 98.7% 96.6% 92.8% 98.9% 93.7% 98.7% N 

204 100.0% 99.9% 98.9% 96.6% 99.9% 97.2% 99.9% Y 
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Station PR1 SRR0.75 θ~  Lb_95 Ub_95 Lb_90 Ub_90 Normal Test

205 98.8% 96.3% 98.1% 95.6% 99.7% 96.1% 99.6% Y 

208 96.4% 93.7% 96.6% 93.1% 98.9% 93.7% 98.7% N 

221 98.8% 98.3% 98.1% 95.1% 99.7% 95.8% 99.6% Y 

222 94.0% 92.7% 95.1% 90.9% 98.2% 91.6% 97.9% N 

257 100.0% 99.4% 98.9% 96.1% 99.9% 97.0% 99.9% Y 

258 100.0% 97.1% 98.9% 96.7% 100.0% 97.2% 99.9% Y 

262 100.0% 99.3% 98.9% 96.6% 100.0% 97.3% 99.9% Y 

302 100.0% 94.5% 98.9% 96.3% 99.9% 97.0% 99.9% N 

303 86.9% 87.6% 90.5% 84.7% 94.7% 85.6% 94.3% Y 

311 90.5% 95.0% 92.8% 87.9% 96.6% 88.7% 96.0% N 

312 97.6% 96.6% 97.4% 93.8% 99.3% 94.6% 99.0% Y 

352 97.6% 96.9% 97.4% 94.1% 99.4% 94.6% 99.2% Y 

354 97.6% 96.3% 97.4% 94.0% 99.3% 94.6% 99.2% Y 

355 98.8% 95.9% 98.1% 95.3% 99.7% 96.0% 99.6% N 

356 98.8% 99.1% 98.1% 95.3% 99.8% 95.9% 99.6% Y 

359 97.6% 96.8% 97.4% 94.3% 99.4% 94.8% 99.2% N 

362 97.6% 96.3% 97.4% 94.1% 99.4% 94.8% 99.2% Y 

403 96.4% 93.5% 96.6% 92.8% 99.0% 93.5% 98.8% Y 

404 98.8% 99.8% 98.1% 95.2% 99.7% 95.9% 99.6% N 

407 97.6% 87.0% 97.4% 93.9% 99.4% 94.8% 99.2% N 
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Station PR1 SRR0.75 θ~  Lb_95 Ub_95 Lb_90 Ub_90 Normal Test

408 97.6% 95.3% 97.4% 93.8% 99.4% 94.5% 99.2% N 

416 100.0% 99.1% 98.9% 96.4% 99.9% 97.1% 99.9% Y 

427 98.8% 98.6% 98.1% 95.2% 99.7% 95.7% 99.6% N 

428 98.8% 95.7% 98.1% 95.6% 99.7% 96.1% 99.6% Y 

429 97.6% 91.7% 97.4% 93.8% 99.4% 94.6% 99.2% N 

430 100.0% 99.5% 98.9% 96.5% 100.0% 97.1% 99.9% Y 

450 86.9% 73.9% 90.5% 84.2% 95.1% 85.4% 94.3% N 

451 96.4% 90.7% 96.6% 93.0% 99.0% 93.7% 98.7% N 

453 98.8% 91.3% 98.1% 95.2% 99.7% 96.0% 99.6% N 

454 100.0% 96.5% 98.9% 96.7% 100.0% 97.1% 99.9% N 

456 97.6% 94.6% 97.4% 94.0% 99.4% 94.7% 99.2% Y 

457 97.6% 87.9% 97.4% 93.8% 99.4% 94.9% 99.2% N 

458 100.0% 97.6% 98.9% 96.6% 100.0% 97.2% 99.9% N 

459 92.8% 87.6% 94.3% 89.2% 97.8% 90.4% 97.3% Y 

460 96.4% 94.3% 96.6% 93.0% 99.0% 93.7% 98.7% N 

463 97.6% 98.1% 97.4% 94.1% 99.3% 94.8% 99.1% N 

465 100.0% 98.1% 98.9% 96.6% 99.9% 97.2% 99.9% N 

468 96.4% 96.0% 96.6% 92.7% 98.9% 93.5% 98.7% N 

469 98.8% 94.5% 98.1% 95.1% 99.7% 95.9% 99.6% N 

471 94.0% 94.6% 95.1% 90.6% 98.0% 91.6% 97.7% Y 
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Station PR1 SRR0.75 θ~  Lb_95 Ub_95 Lb_90 Ub_90 Normal Test

472 98.8% 95.1% 98.1% 95.2% 99.7% 96.1% 99.6% N 

473 95.2% 95.0% 95.8% 91.6% 98.5% 92.5% 98.2% Y 

474 92.9% 86.5% 94.3% 89.6% 97.6% 90.6% 97.1% N 

551 97.6% 98.5% 97.4% 94.0% 99.4% 94.6% 99.2% Y 

552 98.8% 98.6% 98.1% 94.9% 99.7% 95.4% 99.6% Y 

560 88.1% 76.7% 91.3% 85.7% 95.2% 86.4% 94.9% N 

562 96.4% 96.4% 96.6% 93.0% 99.0% 93.7% 98.8% Y 

563 95.2% 97.5% 95.8% 91.8% 98.5% 92.6% 98.3% Y 

564 96.4% 87.5% 96.6% 93.0% 99.0% 93.8% 98.8% N 

565 95.2% 93.1% 95.8% 91.6% 98.5% 92.6% 98.3% N 

566 100.0% 99.6% 98.9% 96.4% 99.9% 97.0% 99.9% Y 

567 98.8% 98.4% 98.1% 95.3% 99.7% 96.0% 99.6% N 

568 91.7% 77.4% 93.5% 88.8% 97.3% 89.7% 96.7% N 

569 100.0% 99.8% 98.9% 96.6% 99.9% 97.2% 99.9% N 

570 97.6% 96.5% 97.4% 93.9% 99.4% 94.7% 99.2% Y 

572 94.0% 89.5% 95.1% 90.5% 98.1% 91.3% 97.7% N 

601 96.4% 96.1% 96.6% 93.3% 98.9% 93.8% 98.7% N 

611 96.4% 95.2% 96.6% 92.8% 99.0% 93.5% 98.7% Y 

621 92.9% 88.8% 94.3% 89.6% 97.7% 90.4% 97.2% Y 

631 92.9% 94.5% 94.3% 89.4% 97.7% 90.7% 97.2% Y 
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θStation PR1 SRR0.75
~  Lb_95 Ub_95 Lb_90 Ub_90 Normal Test

641 98.8% 99.7% 98.1% 95.4% 99.7% 95.9% 99.7% Y 

651 100.0% 98.4% 98.9% 96.7% 99.9% 97.1% 99.9% Y 

661 94.0% 92.4% 95.1% 90.5% 98.1% 91.4% 97.8% Y 

671 97.6% 91.0% 97.4% 93.5% 99.5% 94.5% 99.3% N 

681 100.0% 96.7% 98.9% 96.6% 100.0% 97.3% 99.9% Y 

691 92.9% 93.7% 94.3% 89.1% 97.5% 90.2% 97.1% N 

901 97.6% 91.4% 97.4% 93.9% 99.4% 94.5% 99.2% N 

904 98.8% 91.7% 98.1% 95.1% 99.8% 96.1% 99.7% N 

953 95.2% 83.0% 95.8% 91.9% 98.6% 92.6% 98.3% N 

954 100.0% 97.8% 98.9% 96.4% 99.9% 97.1% 99.9% Y 

956 96.4% 98.5% 96.6% 92.6% 98.9% 93.4% 98.8% N 

957 97.6% 97.5% 97.4% 93.9% 99.4% 94.8% 99.2% Y 

959 98.8% 99.9% 98.1% 95.3% 99.7% 96.0% 99.6% N 

960 98.8% 99.0% 98.1% 95.2% 99.8% 95.7% 99.6% Y 

961 96.4% 92.4% 96.6% 92.9% 98.9% 93.5% 98.7% Y 

962 100.0% 99.4% 98.9% 96.4% 100.0% 97.2% 99.9% N 

955A 98.8% 98.9% 98.1% 95.3% 99.8% 96.1% 99.6% Y 

955B 95.2% 88.2% 95.8% 91.5% 98.6% 92.0% 98.3% N 

PR1: First challenge pass rate;  SRR0.75 : Responds rate; : Bayesian’s pass probability;  Lb_95: Lower bound of 95% C.I. for ;  

Ub_95: Upper bound of 95% C.I. for ;  Lb_90: Lower bound of 90% C.I. for ; Ub_90: Upper bound of 90% C.I. for ;   

θ̂ θ̂

θ̂ θ̂ θ̂
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Table 4.3-4.5 with results for time period 1 to 3 can be found in Appendix E. 

Time 1: May 3, 2005 to May 30, 2005; Time 2: May 31, 2005 to Jun. 20, 2005; Time 3: Jun. 21, 2005 to Jul. 25, 2005. 

 

Table 4.6. Illustration for computing marginal posterior distribution. 

α β log(α/ β) log(α+ β)
p[log(α/ β),  

log(α+ β)| y] 
p[log(α/ β)| y] ∑p[log(α/ β)| y] 

p[log(α+ β)| 

log(α/ β),  y] 

∑p[log(α+ β)| 

log(α/ β),  y] 

14.24 0.64 3.1 2.7 8.05148E-05 0.092493 0.092493 

19.22 0.87 3.1 3 0.000610026 0.700779 0.793272 

31.69 1.43 3.1 3.5 0.000177423 0.203818 0.997091 

52.25 2.35 3.1 4 2.5327E-06 

0.00087 0.00087 

0.002909 1 

14.25 0.63 3.12 2.7 9.51621E-05 0.070205 0.070205 

19.24 0.85 3.12 3 0.000915058 0.675075 0.74528 

31.72 1.40 3.12 3.5 0.000338813 0.249956 0.995237 

52.29 2.31 3.12 4 6.45681E-06 

0.001355 0.002226 

0.004763 1 

14.26 0.62 3.14 2.7 0.0001808983 0.052572 0.052572 

19.25 0.83 3.14 3 0.001327445 0.640348 0.692921 

31.74 1.37 3.14 3.5 0.000621037 0.299583 0.992504 

  3.14 4 1.55397E-05 

0.002073 0.004299 

0.007496 1 
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0.000120992 

. 

. 

0.003109 

. 

. 

0.007408 

. 

. 

0.038915 

. 

. 

0.038915 

. 

. 



   28

Chapter Five: Simulation Study 

 

 Simulation studies were conducted to compare the performance between Bayesian 

estimates and pass rate. Different values of (α, β) were studied, including (2, 0.5), (0.4, 0.1), 

(0.2, 0.05); (4.5, 0.5), (0.9, 0.1), (0.45, 0.05); (9.5, 0.5), (1.9, 0.1), and (0.95, 0.05),  which 

represent mean values of 80%, 90%, and 95%, and relatively small to large standard 

deviations for beta distributions. Beta mean of 80%, 90%, and 95% was chosen to reflect the 

majority first challenge pass rate values in this project. Two sets of sample size chosen are 

30x30 and 100x100 for small and large samples. The simulation results are presented through 

Table 5.1-5.2. Each entry of the Table is based on 100 simulated data sets. 

 To begin the simulation process, first random samples of size k were drawn from 

Beta distribution for each selected values of the parameter (α, β), where k=30 or 100. The k 

proportions, denoted by θj, j = 1, …, k, are the k probability values. In the second step, for 

each θj, proportion of success was simulated out of n trails, where n = 30 or 100. Next, point 

estimate of  was computed by jθ̂
n
y j

j =θ̂ . Point estimate of (α, β), denoted by , was 

estimated by setting its mean and variance to the sample mean and variance of s. Then use 

the computational method described in chapter 3, Bayesian estimate of and 

)ˆ,ˆ( βα

jθ̂

)~,~( βα jθ~ s were 

obtained. This procedure was repeated 100 times and sum of squared errors (SSE) were 

computed using the following formulae, 

2
100

1
)ˆ()ˆ( jj

i
jSSE θθθ −= ∑

=

    (5.1) 
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2
100

1
)~()~( jj

i
jSSE θθθ −= ∑

=

    (5.2) 

 SSE of jθ̂ s and jθ~ s for each choice of (α, β) are compared in Table 5.1-5.2. 

 

Table 5.1. Compare the sum of squared errors of  vs.θ̂ θ~ (I). n=30*30 

E(θ) σ2 (α, β) )ˆ(θSSE  )~(θSSE  

0.0457 (2, 0.5) 17.8835 16.7437 

0.1067 (0.4, 0.1) 8.5194 8.4961 0.8 

0.128 (0.2, 0.05) 5.0518 5.0476 

0.015 (4.5, 0.5) 11.9084 9.7708 

0.045 (0.9, 0.1) 7.8706 7.5145 0.9 

0.06 (0.45, 0.05) 4.5315 4.4686 

0.0043 (9.5, 0.5) 6.9413 5.0749 

0.0158 (1.9, 0.1) 5.1954 4.7591 0.95 

0.0238 (0.95, 0.05) 4.3073 4.1809 

  

Table 5.2. Compare the sum of squared errors of  vs.θ̂ θ~ (II). n=100*100 

E(θ) σ2 (α, β) )ˆ(θSSE  )~(θSSE  

0.0457 (2, 0.5) 13.2286 12.9257 

0.1067 (0.4, 0.1) 5.8213 5.7952 0.8 

0.128 (0.2, 0.05) 3.8157 3.8176 

0.015 (4.5, 0.5) 8.7964 8.3283 

0.045 (0.9, 0.1) 5.4189 5.3889 0.9 

0.06 (0.45, 0.05) 3.6556 3.6290 

0.0043 (9.5, 0.5) 4.8955 4.3985 

0.0158 (1.9, 0.1) 3.5955 3.4761 0.95 

0.0238 (0.95, 0.05) 2.8954 2.8760 
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This simulation results showed that Bayesian estimate of pass probability has 

relatively small sum of squares than pass rate method. This result is much clear with small 

sample size and sample variance.  
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Chapter Six: Conclusion 

 

The use of Bayesian analysis is a theoretical sound estimation. It reflects the 

dependence among parameters. Hence, it may furnish a more reasonable estimate of the true 

underlying parameters. And the simulation studies show that Bayesian estimates have 

relative better estimates in terms of sum of squared errors and especially in case of small 

sample size, where pass rate may not be reliable.  

Although our study shows that Bayesian method performs better, the biggest 

disadvantage of Bayesian method is that we have to assume the prior distribution is correct. 

Besides the computation of Bayesian estimate is much more complicate than that of the other 

two approaches—pass rate and response rate. And there are two major difficulties associated 

with the computation of Bayesian estimates using the computational method illustrated in 

this thesis. One is computational overflow, and the other is computation limitation for 

Gamma function. The computational overflow occurs when computing the marginal 

posterior density of (α, β). It is relatively easy to overcome by multiplying a constant to the 

density function. The other difficulty is the computation of Gamma function. In SAS, 

Gamma function can only take values less than 172. For problems with large observed 

number of xij or large value of estimated , it can post a problem for getting the desired 

range of computable grid, thus affect the estimation of the parameters.  

)ˆ,ˆ( βα

Other computational methods for calculating Bayesian posterior densities, like Gibbs 

sampler, importance sampling, Monte Carlo sampling etc., have been discussed in many 

papers and may be potentially more efficient.  They may assist in future studies and make 

some improvements. 
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Appendix A: Binomial and Beta distribution 

A.1 Binomial Distribution 

xx

x
n

nxb −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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  Parameters:   n is a positive integer and 0 < θ < 1 

Mean and variance:   μ = nθ   and   σ2 = nθ(1-θ) 

 

A.2 Beta Distribution 
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A.3 Point Estimate for (α , β) 
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Appendix B: Main SAS Code for Parameter Estimation of Challenge Data 

libname datlib 'C:\Documents and Settings\Administrater\My Documents\qq\paper\acams'; 

%inc "C:\Documents and Settings\Administrater\My Documents\qq\paper\macro\center.sas"; 

%inc "C:\Documents and Settings\Administrater\My Documents\qq\paper\macro\grid.sas"; 

%inc "C:\Documents and Settings\Administrater\My Documents\qq\paper\macro 

\contour.sas"; 

%inc "C:\Documents and Settings\Administrater\My Documents\qq\paper\macro\ctable.sas"; 

%inc "C:\Documents and Settings\Administrater\My Documents\qq\paper\macro 

\search.sas"; 

%inc "C:\Documents and Settings\Administrater\My Documents\qq\paper\macro\CI.sas"; 

/************************************************************************** 

*                                         Macro for preparing data for estimation                                         * 

**************************************************************************/ 

%macro get_data; 

data study1; 

 set datlib.&dat;   

 if station=. then delete;  

 if found_concentration>=0.75 & found_concentration<=1.25 then p25=1; else p25=0; 

 if found_concentration>=0.5 & found_concentration<=1.5 then p50=1; else p50=0; 

run; 

proc sql; 

 create table study2  

 as select station, count(station) as total, sum(p25) as succ25, sum(p50) as succ50,  

 calculated succ25/calculated total as th25, calculated succ50/calculated total as th50 

 from study1 group by station; 

quit; 

%center(study2, th25, center); *compute the grid center; 

proc sort data=study1; by station; run; 

proc means data=study1 noprint; 

 var found_concentration; 
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 by station; 

 output out=study3 mean=mn std=sd; 

run; 

data response (keep=station mn sd SRR); 

 set study3; 

 z=(0.75-mn)/sd; 

 SRR=1-probnorm(z); 

run; 

%mend get_data; 

/************************************************************************** 

*                                         Macro to compute confidence interval                                           * 

**************************************************************************/ 

%macro comp_ci; 

%ctable(contour, table1, table2); 

data sample(drop=i seed_1 seed_2 x);  

 retain seed_1 435256 seed_2 527490;  

 do i=1 to 1000; 

  call ranuni(seed_1, x); p1=round(x,0.0001); 

  call ranuni(seed_2, x); p2=round(x,0.0001);  

  output sample; 

 end; 

run; 

%search(table1, table2, sample, draws);  *search table, draw 1000 alph, beta; 

%CI(draws, study2, succ25, total, th25, CI); *simulate 1000 draws of theta, compute CI; 

%mend comp_ci; 

/************************************************************************** 

*                                         Macro to export computation results                                              * 

**************************************************************************/ 

%macro out_result; 

data estimate1a; 
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 merge center(keep=alph_head beta_head) est_a; 

data estimate1b; 

 merge study2(keep=station th25) est_b(keep=col1 rename=(col1=th_dhead)) CI; 

run; 

proc export data=estimate1a 

 outfile='C:\Documents and Settings\Administrater\My Documents\qq\paper\ann 

\&out._a.xls'; run; 

proc export data=estimate1b  

 outfile='C:\Documents and Settings\Administrater\My Documents\qq\paper\ann 

\&out._b.xls'; run; 

proc export data=response  

 outfile='C:\Documents and Settings\Administrater\My Documents\qq\paper\ann 

\&out._c.xls'; run; 

%mend out_result; 

/************************************************************************** 

*                                         Computation for GB_STEL total                                                   * 

**************************************************************************/ 

%let dat= GB_stel; 

%get_data;  *prepare data; 

%grid(center, 1.5, 2, 35, 89, grid);  *set grid; 

%contour(study1, succ25, total, grid, 6, contour, est_a, est_b);  *parameter estimation; 

proc gcontour data=contour; plot col4*col3=col5; run;  

%comp_ci;  *compute CI; 

%let out= est1; 

%out_result;  *export result; 

/************************************************************************** 

*                                         Computation for GB_STEL time 1                                                 * 

**************************************************************************/ 

%let dat= GB_stel1; 

%get_data;  *prepare data; 
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%grid(center, 2, 2, 60, 140, grid);  *set grid; 

%contour(study1, succ25, total, grid, 4, contour, est_a, est_b);  *parameter estimation; 

proc gcontour data=contour; plot col4*col3=col5; run;  

%comp_ci;  *compute CI; 

%let out= est2; 

%out_result;  *export result; 

/************************************************************************** 

*                                         Computation for GB_STEL time 2                                                 * 

**************************************************************************/ 

%let dat= GB_stel2; 

%get_data;  *prepare data; 

%grid(center, 1.5, 2, 60, 140, grid);  *set grid; 

%contour(study1, succ25, total, grid, 4, contour, est_a, est_b);  *parameter estimation; 

proc gcontour data=contour; plot col4*col3=col5; run;   

%comp_ci;  *compute CI; 

%let out= est3; 

%out_result;  *export result; 

/************************************************************************** 

*                                         Computation for GB_STEL time 3                                                 * 

**************************************************************************/ 

%let dat= GB_stel3; 

%get_data;  *prepare data; 

%grid(center, 2, 2, 60, 140, grid);  *set grid; 

%contour(study1, succ25, total, grid, 4, contour, est_a, est_b);  *parameter estimation; 

proc gcontour data=contour; plot col4*col3=col5; run;   

%comp_ci;  *compute CI; 

%let out= est4;   

%out_result;  *export result; 
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Appendix C: Main SAS Code for Simulation Study 

libname datalib 'C:\Documents and Settings\Administrater\My Documents\qq\paper\data30a'; 

%inc "C:\Documents and Settings\Administrater\My Documents\qq\paper\macro\center.sas"; 

%inc "C:\Documents and Settings\Administrater\My Documents\qq\paper\macro\grid.sas"; 

%inc "C:\Documents and Settings\Administrater\My Documents\qq\paper\macro 

\contour.sas"; 

%inc "C:\Documents and Settings\Administrater\My Documents\qq\paper\macro 

\g_sample.sas"; 

%inc "C:\Documents and Settings\Administrater\My Documents\qq\paper\macro\main.sas"; 

*------------------------------------------------------------------------------------------------------------; 

%main(2, 0.5, 2.5, 4, 50, 75, 9, mg_a, mg_b, sse); 

data datalib.mg1a;  set mg_a; 

data datalib.mg1b;  set mg_b; 

data datalib.sse1;  set sse;  run; 

*-------------------------------------------------------------------------------------------------------------; 

%main(4.5, 0.5, 3, 5, 50, 75, 9, mg_a, mg_b, sse); 

data datalib.mg2a;  set mg_a; 

data datalib.mg2b;  set mg_b; 

data datalib.sse2;  set sse;  run; 

*------------------------------------------------------------------------------------------------------------; 

%main(9.5, 0.5, 3.5, 5.5, 40, 75, 8, mg_a, mg_b, sse); 

data datalib.mg3a;  set mg_a; 

data datalib.mg3b;  set mg_b; 

data datalib.sse3;  set sse;  run; 

*-------------------------------------------------------------------------------------------------------------; 

%main(0.4, 0.1, 3.5, 5.5, 50, 75, 6, mg_a, mg_b, sse); 

data datalib.mg4a;  set mg_a;  

data datalib.mg4b;  set mg_b; 

data datalib.sse4;  set sse;  run; 

*-----------------------------------------------------------------------------------------------------------; 
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%main(0.9, 0.1, 4.5, 6.5, 75, 85, 6, mg_a, mg_b, sse); 

data datalib.mg5a;  set mg_a; 

data datalib.mg5b;  set mg_b; 

data datalib.sse5;  set sse; run;  

*----------------------------------------------------------------------------------------------------------; 

%main(1.9, 0.1, 10, 18, 75, 90, 6, mg_a, mg_b, sse); 

data datalib.mg6a; set mg_a;  

data datalib.mg6b; set mg_b; 

data datalib.sse6; set sse; run;  

*---------------------------------------------------------------------------------------------------------; 

%main(0.2, 0.05, 5, 6.5, 65, 75, 5, mg_a, mg_b, sse); 

data datalib.mg7a; set mg_a; 

data datalib.mg7b; set mg_b; 

data datalib.sse7; set sse; run; 

*-----------------------------------------------------------------------------------------------------------; 

%main(0.45, 0.05, 7.5, 8.5, 70, 80, 5, mg_a, mg_b, sse); 

data datalib.mg8a; set mg_a;  

data datalib.mg8b; set mg_b;  

data datalib.sse8; set sse; run;  

*-----------------------------------------------------------------------------------------------------------; 

%main(0.95, 0.05, 12, 19.5, 75, 95, 5, mg_a, mg_b, sse); 

data datalib.mg9a; set mg_a;  

data datalib.mg9b; set mg_b;  

data datalib.sse9; set sse; run;  
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Appendix D: SAS Macros Called by both Programs 

/************************************************************************** 

*                                         MAIN – computation for simulation study                                     * 

**************************************************************************/ 

%macro main(alph, beta,  * selected alph, beta values; 

fact1, fact2,  * grid start point; 

range1, range2,   *grid range; 

factor,   * constant to avoid computation overflow; 

merge1, merge2, SSE  * output dataset; 

); 

%do i=1 %to 100; 

 %g_sample(&alph, &beta, dat); 

 %center(dat, th_head, cent);  

 %grid(cent, &fact1, &fact2, &range1, &range2, grid); 

 %let voild=F; 

 %contour(dat, y, n, grid, &factor, contour, est1, est2); 

 %if &voild=T %then %do; %let i=%eval(&i-1); %end; 

 %else %do; 

  data temp1; 

   merge cent est1; 

  data temp2; 

   merge dat est2(rename=(col1=th_dhead)); 

  run; 

  %if &i=1 %then %do; 

   data &merge1; 

    set temp1; 

   data &merge2; 

    set temp2; 

   run; 

  %end; 
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  %else %do; 

   data &merge1; 

    set &merge1 temp1; 

   data &merge2; 

    set &merge2 temp2; 

   run; 

  %end; 

 %end; 

%end; 

 

proc iml; 

use &merge1; 

read all var{alph_head beta_head alph_dhead beta_dhead} into X;  

close &merge1; 

SSE_alph_head=sum((X[,1]-&alph)##2); 

SSE_beta_head=sum((X[,2]-&beta)##2); 

SSE_alph_dhead=sum((X[,3]-&alph)##2); 

SSE_beta_dhead=sum((X[,4]-&beta)##2); 

 

use &merge2; 

read all var{th th_head th_dhead} into Y;  

close &merge2; 

SSE_th_head=sum((Y[,2]-Y[,1])##2); 

SSE_th_dhead=sum((Y[,3]-Y[,1])##2); 

 

create &SSE var{SSE_alph_head SSE_beta_head SSE_alph_dhead SSE_beta_dhead 

SSE_th_head SSE_th_dhead}; 

append; 

close &SSE; 

quit; 
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%mend main; 

/************************************************************************** 

*                                              CENTER --- calculate grid center                                              * 

**************************************************************************/ 

%macro center(in_dat, *input dataset; 

 th_head, *variable name for theta head; 

 g_center *output grid center; 

); 

proc means data=&in_dat noprint;  

 var &th_head; 

 output out=tmp mean=mu std=sigma; 

run; 

data &g_center; 

 set tmp; 

 alph_head=(mu**2-mu**3)/sigma**2-mu; 

 beta_head=(1/mu-1)*alph_head; 

 center1=log(alph_head/beta_head); 

 center2=log(alph_head+beta_head);  

run; 

%mend center; 

/************************************************************************** 

*                                                GRID --- set up grid                                                                * 

**************************************************************************/ 

%macro grid (g_center, *input dataset for grid center; 

  fact1, fact2, *input factor for lower left corner of the grid; 

range1, range2, *set the grid range; 

grid *output dataset for the grid; 

); 

data &grid(keep=g_alph g_beta par1 par2); 

 set &g_center; 
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 par1=round((center1-log(&fact1)),0.1); 

 star2=round((center2-log(&fact2)),0.1); 

 do i=1 to &range1; 

  par2=star2; 

  do j=1 to &range2; 

   x=exp(par1); y=exp(par2); 

   g_alph=x*y/(1+x); g_beta=y/(1+x); 

   drop x y i j; output; 

   par2=par2+0.02; 

  end; 

  par1=par1+0.02; 

 end; 

run; 

%mend grid; 

/************************************************************************** 

*                                                                CONTOUR                                                              * 

*   --- calculate the posterior density for points on the grid, E(alph), E(beta) and E(theta).     * 

**************************************************************************/ 

%macro contour (in_dat, *input dataset; 

     succ, *variable name for # of pass challenges; 

     total, *variable name for total # of challenges; 

     grid, *dataset for grid center; 

     factor, *Constance to avoid computation overflow; 

     contour, *output dataset of posterior density; 

     estimate1, *output Bayesian estimates of E(alph) and E(beta).  

     estimate2 *output Bayesian estimate of E(theta).      

     ); 

proc iml; 

start mod1(a, b, X, n); 

 ans=1; const=gamma(a+b)/(gamma(a)*gamma(b)); 
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 do i=1 to n; 

  tmp=gamma(a+X[i,1])*gamma(b+X[i,2]-

X[i,1])/gamma(a+b+X[i,2])*10**&factor; 

  ans=ans*const*tmp; 

 end; 

 return (ans); 

finish mod1; 

 

use &in_dat; 

read all var{&succ &total} into X;  

n=nrow(X); 

close &in_dat; 

 

use &grid; 

setin &grid point 0; 

do data; 

 read next var{g_alph g_beta par1 par2}; 

 prob1=(g_alph+g_beta)**(-5/2)*mod1(g_alph, g_beta, X, n); 

 prob2=g_alph*g_beta*prob1; 

 tmp=g_alph||g_beta||par1||par2||prob2; 

 Z=Z//tmp; 

end; 

close &grid; 

 

summ=Z[+,5];  

if summ^=0 then do;  

 Z[,5]=Z[,5]/summ; 

 alph_dhead=t(Z[,1])*Z[,5]; beta_dhead=t(Z[,2])*Z[,5]; 

 th_dhead=(X[,1]+alph_dhead)/(X[,2]+alph_dhead+beta_dhead); 
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 create &estimate1 var{alph_dhead beta_dhead}; 

 append; 

 close &estimate1; 

 

 create &estimate2 from th_dhead; 

 append from th_dhead; 

 close &estimate2; 

 

 create &contour from Z; 

 append from Z; 

 close &contour; 

 end; 

else call symput('voild','T'); 

quit; 

%mend contour; 

/************************************************************************** 

*                               CTABLE --- create tables of joint densities for drawing samples           * 

**************************************************************************/ 

%macro ctable(contour, * dataset of computed posterior density; 

table1, table2 * joint density tables for drawing samples;           

); 

proc sql; 

 create table out1 as select col3 as par1, sum(col5) as pp from &contour 

 group by col3; 

 create table out2 as select a.col3 as par1, a.col4 as par2, a.col5/b.pp as pp 

 from &contour a, out1 b where a.col3=b.par1; 

quit; 

data tmp1(drop=F); 

 set out1; 

 F+pp; FF1=round(F, 0.0001); 
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 if FF1>0 & FF1<1 then output; 

run; 

data tmp2(drop=F); 

 set out2; 

 F+pp; FF2=mod(round(F,0.0001),1); 

 if FF2^=0 then output; 

run; 

proc sql; 

 create table &table1 as select round(mean(par1),0.01) as parr1, FF1 from tmp1 group 

by FF1; 

 create table &table2 as select par1 as parr1, mean(par2) as parr2, FF2 from tmp2 

group by par1, FF2; 

quit; 

%mend ctable; 

/************************************************************************** 

*                                      SEARCH --- search tables and draw samples                                   * 

**************************************************************************/ 

%macro search(table1, table2, sample, draws); 

proc iml; 

use &table1; 

read all var{parr1 FF1} into X;  

n1=nrow(X); 

close &table1; 

 

use &table2; 

read all var{parr1 parr2 FF2} into Y;  

n2=nrow(Y); 

close &table2; 

 

use &sample; 
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setin &sample point 0; 

do data; 

 read next var{p1 p2}; 

 stop=0; i=1; 

 do until (stop=1); 

  i=i+1; 

  if p1<=X[i,2] then do; 

   a=abs(p1-X[i-1,2]); b=abs(p1-X[i,2]); stop=1; 

   if a<b then tmp1=X[i-1,1]; else tmp1=X[i,1]; 

  end; 

  if i=n1 then do; tmp1=X[i,1]; stop=1; end; 

 end; 

 stop=0; i=1; 

 do until (stop=1); 

  i=i+1; 

  if abs(tmp1-Y[i,1])<0.01 & p2<=Y[i,3] then do;  

a=abs(p2-Y[i-1,3]); b=abs(p2-Y[i,3]); stop=1;  

FF2a=Y[i-1,3]; FF2b=Y[i,3]; 

   if a<b then tmp2=Y[i-1,2]; else tmp2=Y[i,2]; 

  end; 

  if i=n2 then do; stop=1; tmp2=.; end; 

 end; 

 a=exp(tmp1); b=exp(tmp2); 

 alph=round(a*b/(1+a),0.001); beta=round(b/(1+a),0.001); 

 tmp=alph||beta; 

 Z=Z//tmp; 

end; 

close &sample; 

 

create &draws from Z; 
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append from Z; 

close &draws; 

 

quit; 

%mend search; 

/************************************************************************** 

*                      CI --- compute confidence intervals for Bayesian estimate of theta                 * 

**************************************************************************/ 

%macro CI(draws, *input sample dataset of alph, beta; 

        in_dat, *input dataset; 

        succ, *input variable name for # of pass challenges; 

        total, *input variable name for total # of challenges; 

        th_draws, *output theta sample drawn; 

        CI *output confidence intervals; 

         ); 

proc iml; 

use &draws; 

read all var{col1 col2} into X;  

close &draws; 

n=nrow(X); 

 

use &in_dat; 

setin &in_dat point 0; 

do data; 

 read next var{&succ &total}; 

 th=j(1,n,.); 

 do i=1 to n; 

  th[i]=round(rand('beta', X[i,1]+&succ, X[i,2]+&total-&succ),0.001);  

 end; 

 Y=Y//th; 
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end; 

close &in_dat; 

 

create &th_draws from Y; 

append from Y; 

close &th_draws; 

quit; 

 

data &CI(keep=Lb_95 Ub_95 Lb_90 Ub_90 means median); 

 set &th_draws; 

 Lb_95=ordinal(25, of col1-col1000); 

 Ub_95=ordinal(975, of col1-col1000); 

 Lb_90=ordinal(50, of col1-col1000); 

 Ub_90=ordinal(950, of col1-col1000); 

 median=ordinal(500, of col1-col1000); 

 means=mean(of col1-col1000); 

run; 

%mend CI; 

/************************************************************************** 

*                                              G_SAMPLE --- generate simulation dataset                             * 

**************************************************************************/ 

%macro g_sample(alph, beta,  *input designed alph, beta value; 

       sample_dat  *output drawn samples; 

        ); 

data tmp(drop=i); 

 do i=1 to 30; 

  th=round(rand('beta', &alph, &beta),0.001);  

  if th=1 then th=0.999; 

  if th=0 then th=0.001; 

  output; 
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 end; 

run; 

data &sample_dat(drop=seed); 

 set tmp; 

 retain seed 45; n=30;  

 call ranbin(seed, n, th, y); 

 th_head=y/n; 

run; 

%mend g_sample; 
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Appendix E: Table 4.3-4.5 

Table 4.3. First challenge pass rate, response rate and Bayesian estimate of θjs for GB_STEL challenge data (Time 1).         

Station PR1 SRR0.75 θ~  Lb_95 Ub_95 Lb_90 Ub_90 

104 96.4% 96.5% 96.9% 92.7% 99.1% 93.5% 98.9% 

107 98.8% 97.6% 98.6% 95.2% 99.9% 96.0% 99.8% 

152 100.0% 99.5% 98.6% 97.2% 100.0% 97.8% 100.0% 

153 100.0% 98.1% 98.6% 97.1% 100.0% 97.7% 100.0% 

155 86.9% 91.5% 91.7% 82.8% 94.4% 84.0% 93.8% 

156 100.0% 99.5% 98.6% 97.2% 100.0% 97.7% 100.0% 

203 96.4% 98.4% 95.2% 92.7% 99.1% 93.9% 98.8% 

204 100.0% 99.5% 98.6% 97.1% 100.0% 97.7% 100.0% 

205 98.8% 98.0% 96.9% 95.2% 99.9% 95.9% 99.8% 

208 96.4% 97.3% 96.9% 92.9% 99.1% 93.6% 98.8% 

221 98.8% 99.7% 98.6% 95.4% 99.8% 96.2% 99.8% 

222 94.0% 90.7% 98.6% 89.7% 97.9% 90.7% 97.6% 

257 100.0% 99.6% 98.6% 97.1% 100.0% 97.8% 100.0% 

258 100.0% 98.5% 98.6% 97.3% 100.0% 97.7% 100.0% 

262 100.0% 98.2% 98.6% 97.0% 100.0% 97.6% 100.0% 

302 100.0% 95.7% 98.6% 97.3% 100.0% 97.8% 100.0% 

303 86.9% 90.6% 88.3% 82.8% 94.7% 84.1% 93.9% 
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311 90.5% 97.7% 96.9% 86.9% 96.5% 87.8% 96.0% 

312 97.6% 98.6% 96.9% 94.1% 99.6% 94.7% 99.4% 

352 97.6% 98.9% 96.9% 93.9% 99.5% 94.8% 99.3% 

354 97.6% 97.1% 95.2% 94.2% 99.5% 94.9% 99.4% 

355 98.8% 98.7% 96.9% 95.6% 99.8% 96.3% 99.8% 

356 98.8% 98.4% 96.9% 95.6% 99.9% 96.1% 99.8% 

359 97.6% 94.7% 98.6% 94.2% 99.5% 94.8% 99.4% 

362 97.6% 97.3% 98.6% 93.9% 99.6% 95.0% 99.4% 

403 96.4% 93.4% 98.6% 92.1% 99.2% 93.1% 98.9% 

404 98.8% 100.0% 96.9% 95.1% 99.8% 95.8% 99.8% 

407 97.6% 95.9% 95.2% 93.9% 99.5% 94.7% 99.4% 

408 97.6% 97.4% 98.6% 94.1% 99.5% 94.8% 99.4% 

416 100.0% 98.6% 98.6% 97.1% 100.0% 97.7% 100.0% 

427 98.8% 99.3% 96.9% 95.5% 99.9% 96.1% 99.8% 

428 98.8% 96.1% 98.6% 95.8% 99.9% 96.3% 99.8% 

429 97.6% 75.5% 98.6% 94.2% 99.6% 94.8% 99.4% 

430 100.0% 99.7% 98.6% 97.1% 100.0% 97.8% 100.0% 

450 86.9% 68.4% 98.6% 83.2% 94.6% 84.2% 94.0% 

451 96.4% 94.7% 95.2% 92.5% 99.1% 93.4% 98.9% 

453 98.8% 85.4% 98.6% 95.2% 99.9% 95.8% 99.8% 

454 100.0% 95.1% 98.6% 97.3% 100.0% 97.8% 100.0% 
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456 97.6% 95.0% 98.6% 94.1% 99.6% 94.9% 99.4% 

457 97.6% 71.5% 98.6% 94.0% 99.6% 94.7% 99.4% 

458 100.0% 97.5% 98.6% 97.0% 100.0% 97.7% 100.0% 

459 92.8% 90.2% 95.1% 88.8% 97.7% 89.5% 97.2% 

460 96.4% 94.2% 98.6% 92.6% 99.2% 93.3% 99.0% 

463 97.6% 98.4% 98.6% 93.9% 99.5% 94.6% 99.4% 

465 100.0% 98.6% 98.6% 97.0% 100.0% 97.6% 100.0% 

468 96.4% 99.3% 95.2% 92.5% 99.3% 93.3% 98.9% 

469 98.8% 97.7% 96.9% 95.1% 99.9% 96.1% 99.7% 

471 94.0% 96.5% 93.4% 90.5% 97.9% 91.1% 97.7% 

472 98.8% 95.3% 96.9% 95.3% 99.8% 96.3% 99.8% 

473 95.2% 96.3% 96.9% 91.4% 98.7% 92.3% 98.4% 

474 92.9% 94.3% 90.0% 88.8% 97.7% 89.7% 97.4% 

551 97.6% 97.9% 98.6% 94.5% 99.5% 95.0% 99.3% 

552 98.8% 96.6% 98.6% 95.4% 99.8% 96.2% 99.7% 

560 88.1% 66.0% 96.9% 84.1% 95.3% 85.1% 94.6% 

562 96.4% 92.7% 98.6% 92.3% 99.1% 93.1% 98.9% 

563 95.2% 95.1% 98.6% 91.5% 98.6% 92.3% 98.3% 

564 96.4% 97.5% 95.2% 92.3% 99.1% 93.1% 98.8% 

565 95.2% 99.2% 95.2% 91.2% 98.6% 92.2% 98.3% 

566 100.0% 99.0% 98.6% 97.3% 100.0% 97.9% 100.0% 
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567 98.8% 97.6% 98.6% 95.4% 99.8% 96.3% 99.7% 

568 91.7% 82.0% 98.6% 87.4% 97.0% 88.3% 96.7% 

569 100.0% 99.9% 98.6% 96.8% 100.0% 97.7% 100.0% 

570 97.6% 96.9% 98.6% 94.0% 99.5% 94.7% 99.4% 

572 94.0% 97.9% 93.4% 90.0% 98.1% 90.9% 97.6% 

601 96.4% 88.6% 98.6% 91.9% 99.1% 92.8% 98.8% 

611 96.4% 89.8% 98.6% 92.7% 99.2% 93.5% 99.0% 

621 92.9% 89.4% 98.6% 88.5% 97.7% 89.9% 97.2% 

631 92.9% 96.0% 93.4% 88.6% 97.3% 89.9% 97.0% 

641 98.8% 99.6% 98.6% 95.5% 99.9% 96.0% 99.8% 

651 100.0% 99.0% 98.6% 96.9% 100.0% 97.5% 100.0% 

661 94.0% 92.9% 98.6% 90.4% 98.1% 91.0% 97.8% 

671 97.6% 85.9% 96.9% 94.2% 99.5% 94.9% 99.3% 

681 100.0% 96.4% 98.6% 97.2% 100.0% 97.7% 100.0% 

691 92.9% 85.0% 95.2% 88.9% 97.5% 90.0% 97.1% 

901 97.6% 94.6% 96.9% 94.0% 99.6% 94.7% 99.4% 

904 98.8% 99.6% 96.9% 95.4% 99.8% 96.3% 99.7% 

953 95.2% 74.7% 98.6% 91.3% 98.6% 92.1% 98.3% 

954 100.0% 98.7% 98.6% 96.9% 100.0% 97.5% 100.0% 

956 96.4% 99.2% 98.6% 92.4% 99.0% 93.3% 98.8% 

957 97.6% 92.4% 98.6% 94.1% 99.6% 94.8% 99.4% 
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959 98.8% 99.7% 98.6% 95.7% 99.8% 96.2% 99.7% 

960 98.8% 99.4% 96.9% 95.5% 99.9% 96.3% 99.8% 

961 96.4% 92.7% 98.6% 92.7% 99.1% 93.6% 98.9% 

962 100.0% 100.0% 98.6% 97.0% 100.0% 97.5% 100.0% 

955A 98.8% 99.1% 96.9% 95.2% 99.8% 95.9% 99.8% 

955B 95.2% 84.4% 96.8% 91.5% 98.5% 92.1% 98.2% 

 

 

Table 4.4. First challenge pass rate, response rate and Bayesian estimate of θjs for GB_STEL challenge data (Time 2).         

Station PR1 SRR0.75 θ~  Lb_95 Ub_95 Lb_90 Ub_90 

104 96.4% 96.5% 96.9% 92.7% 99.1% 93.5% 98.9% 

107 98.8% 97.6% 98.6% 95.2% 99.9% 96.0% 99.8% 

152 100.0% 99.5% 98.6% 97.2% 100.0% 97.8% 100.0% 

153 100.0% 98.1% 98.6% 97.1% 100.0% 97.7% 100.0% 

155 86.9% 91.5% 91.7% 82.8% 94.4% 84.0% 93.8% 

156 100.0% 99.5% 98.6% 97.2% 100.0% 97.7% 100.0% 

203 96.4% 98.4% 95.2% 92.7% 99.1% 93.9% 98.8% 

204 100.0% 99.5% 98.6% 97.1% 100.0% 97.7% 100.0% 

205 98.8% 98.0% 96.9% 95.2% 99.9% 95.9% 99.8% 

208 96.4% 97.3% 96.9% 92.9% 99.1% 93.6% 98.8% 

221 98.8% 99.7% 98.6% 95.4% 99.8% 96.2% 99.8% 
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Station PR1 SRR0.75 θ~  Lb_95 Ub_95 Lb_90 Ub_90 

222 94.0% 90.7% 98.6% 89.7% 97.9% 90.7% 97.6% 

257 100.0% 99.6% 98.6% 97.1% 100.0% 97.8% 100.0% 

258 100.0% 98.5% 98.6% 97.3% 100.0% 97.7% 100.0% 

262 100.0% 98.2% 98.6% 97.0% 100.0% 97.6% 100.0% 

302 100.0% 95.7% 98.6% 97.3% 100.0% 97.8% 100.0% 

303 86.9% 90.6% 88.3% 82.8% 94.7% 84.1% 93.9% 

311 90.5% 97.7% 96.9% 86.9% 96.5% 87.8% 96.0% 

312 97.6% 98.6% 96.9% 94.1% 99.6% 94.7% 99.4% 

352 97.6% 98.9% 96.9% 93.9% 99.5% 94.8% 99.3% 

354 97.6% 97.1% 95.2% 94.2% 99.5% 94.9% 99.4% 

355 98.8% 98.7% 96.9% 95.6% 99.8% 96.3% 99.8% 

356 98.8% 98.4% 96.9% 95.6% 99.9% 96.1% 99.8% 

359 97.6% 94.7% 98.6% 94.2% 99.5% 94.8% 99.4% 

362 97.6% 97.3% 98.6% 93.9% 99.6% 95.0% 99.4% 

403 96.4% 93.4% 98.6% 92.1% 99.2% 93.1% 98.9% 

404 98.8% 100.0% 96.9% 95.1% 99.8% 95.8% 99.8% 

407 97.6% 95.9% 95.2% 93.9% 99.5% 94.7% 99.4% 

408 97.6% 97.4% 98.6% 94.1% 99.5% 94.8% 99.4% 

416 100.0% 98.6% 98.6% 97.1% 100.0% 97.7% 100.0% 

427 98.8% 99.3% 96.9% 95.5% 99.9% 96.1% 99.8% 
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Station PR1 SRR0.75 θ~  Lb_95 Ub_95 Lb_90 Ub_90 

428 98.8% 96.1% 98.6% 95.8% 99.9% 96.3% 99.8% 

429 97.6% 75.5% 98.6% 94.2% 99.6% 94.8% 99.4% 

430 100.0% 99.7% 98.6% 97.1% 100.0% 97.8% 100.0% 

450 86.9% 68.4% 98.6% 83.2% 94.6% 84.2% 94.0% 

451 96.4% 94.7% 95.2% 92.5% 99.1% 93.4% 98.9% 

453 98.8% 85.4% 98.6% 95.2% 99.9% 95.8% 99.8% 

454 100.0% 95.1% 98.6% 97.3% 100.0% 97.8% 100.0% 

456 97.6% 95.0% 98.6% 94.1% 99.6% 94.9% 99.4% 

457 97.6% 71.5% 98.6% 94.0% 99.6% 94.7% 99.4% 

458 100.0% 97.5% 98.6% 97.0% 100.0% 97.7% 100.0% 

459 92.8% 90.2% 95.1% 88.8% 97.7% 89.5% 97.2% 

460 96.4% 94.2% 98.6% 92.6% 99.2% 93.3% 99.0% 

463 97.6% 98.4% 98.6% 93.9% 99.5% 94.6% 99.4% 

465 100.0% 98.6% 98.6% 97.0% 100.0% 97.6% 100.0% 

468 96.4% 99.3% 95.2% 92.5% 99.3% 93.3% 98.9% 

469 98.8% 97.7% 96.9% 95.1% 99.9% 96.1% 99.7% 

471 94.0% 96.5% 93.4% 90.5% 97.9% 91.1% 97.7% 

472 98.8% 95.3% 96.9% 95.3% 99.8% 96.3% 99.8% 

473 95.2% 96.3% 96.9% 91.4% 98.7% 92.3% 98.4% 

474 92.9% 94.3% 90.0% 88.8% 97.7% 89.7% 97.4% 
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Station PR1 SRR0.75 θ~  Lb_95 Ub_95 Lb_90 Ub_90 

551 97.6% 97.9% 98.6% 94.5% 99.5% 95.0% 99.3% 

552 98.8% 96.6% 98.6% 95.4% 99.8% 96.2% 99.7% 

560 88.1% 66.0% 96.9% 84.1% 95.3% 85.1% 94.6% 

562 96.4% 92.7% 98.6% 92.3% 99.1% 93.1% 98.9% 

563 95.2% 95.1% 98.6% 91.5% 98.6% 92.3% 98.3% 

564 96.4% 97.5% 95.2% 92.3% 99.1% 93.1% 98.8% 

565 95.2% 99.2% 95.2% 91.2% 98.6% 92.2% 98.3% 

566 100.0% 99.0% 98.6% 97.3% 100.0% 97.9% 100.0% 

567 98.8% 97.6% 98.6% 95.4% 99.8% 96.3% 99.7% 

568 91.7% 82.0% 98.6% 87.4% 97.0% 88.3% 96.7% 

569 100.0% 99.9% 98.6% 96.8% 100.0% 97.7% 100.0% 

570 97.6% 96.9% 98.6% 94.0% 99.5% 94.7% 99.4% 

572 94.0% 97.9% 93.4% 90.0% 98.1% 90.9% 97.6% 

601 96.4% 88.6% 98.6% 91.9% 99.1% 92.8% 98.8% 

611 96.4% 89.8% 98.6% 92.7% 99.2% 93.5% 99.0% 

621 92.9% 89.4% 98.6% 88.5% 97.7% 89.9% 97.2% 

631 92.9% 96.0% 93.4% 88.6% 97.3% 89.9% 97.0% 

641 98.8% 99.6% 98.6% 95.5% 99.9% 96.0% 99.8% 

651 100.0% 99.0% 98.6% 96.9% 100.0% 97.5% 100.0% 

661 94.0% 92.9% 98.6% 90.4% 98.1% 91.0% 97.8% 
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Station PR1 SRR0.75 θ~  Lb_95 Ub_95 Lb_90 Ub_90 

671 97.6% 85.9% 96.9% 94.2% 99.5% 94.9% 99.3% 

681 100.0% 96.4% 98.6% 97.2% 100.0% 97.7% 100.0% 

691 92.9% 85.0% 95.2% 88.9% 97.5% 90.0% 97.1% 

901 97.6% 94.6% 96.9% 94.0% 99.6% 94.7% 99.4% 

904 98.8% 99.6% 96.9% 95.4% 99.8% 96.3% 99.7% 

953 95.2% 74.7% 98.6% 91.3% 98.6% 92.1% 98.3% 

954 100.0% 98.7% 98.6% 96.9% 100.0% 97.5% 100.0% 

956 96.4% 99.2% 98.6% 92.4% 99.0% 93.3% 98.8% 

957 97.6% 92.4% 98.6% 94.1% 99.6% 94.8% 99.4% 

959 98.8% 99.7% 98.6% 95.7% 99.8% 96.2% 99.7% 

960 98.8% 99.4% 96.9% 95.5% 99.9% 96.3% 99.8% 

961 96.4% 92.7% 98.6% 92.7% 99.1% 93.6% 98.9% 

962 100.0% 100.0% 98.6% 97.0% 100.0% 97.5% 100.0% 

955A 98.8% 99.1% 96.9% 95.2% 99.8% 95.9% 99.8% 

955B 95.2% 84.4% 96.8% 91.5% 98.5% 92.1% 98.2% 
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Table 4.5. First challenge pass rate, response rate and Bayesian estimate of θjs for GB_STEL challenge data (Time 3).         

Station PR1 SRR0.75 θ̂  Lb_95 Ub_95 Lb_90 Ub_90 

104 96.4% 97.0% 96.5% 88.9% 99.6% 90.8% 99.3% 

107 98.8% 99.5% 96.5% 89.6% 99.7% 91.2% 99.5% 

152 100.0% 96.3% 98.5% 94.0% 100.0% 95.4% 100.0% 

153 100.0% 99.9% 98.5% 94.2% 100.0% 95.5% 100.0% 

155 86.9% 69.5% 90.4% 80.7% 96.9% 82.1% 96.1% 

156 100.0% 98.7% 98.5% 93.8% 100.0% 94.8% 100.0% 

203 96.4% 99.3% 98.5% 93.1% 100.0% 94.8% 100.0% 

204 100.0% 100.0% 98.5% 93.6% 100.0% 94.9% 100.0% 

205 98.8% 97.6% 98.5% 93.0% 100.0% 94.6% 100.0% 

208 96.4% 90.3% 94.5% 86.0% 98.9% 87.7% 98.6% 

221 98.8% 95.9% 96.5% 89.3% 99.7% 91.3% 99.5% 

222 94.0% 89.7% 94.5% 86.2% 99.1% 88.0% 98.6% 

257 100.0% 98.1% 98.5% 93.3% 100.0% 95.1% 100.0% 

258 100.0% 93.8% 98.5% 93.5% 100.0% 95.2% 100.0% 

262 100.0% 99.8% 98.5% 93.9% 100.0% 95.1% 100.0% 

302 100.0% 98.0% 98.5% 93.0% 100.0% 94.7% 100.0% 

303 86.9% 92.6% 92.4% 82.0% 97.8% 84.3% 97.3% 

311 90.5% 94.6% 86.4% 73.5% 94.3% 75.3% 93.6% 

312 97.6% 94.2% 96.5% 89.5% 99.7% 91.3% 99.5% 
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Station PR1 SRR0.75 θ̂  Lb_95 Ub_95 Lb_90 Ub_90 

352 97.6% 96.8% 96.5% 89.4% 99.6% 91.1% 99.4% 

354 97.6% 99.4% 98.5% 93.8% 100.0% 94.9% 100.0% 

355 98.8% 98.6% 98.5% 93.5% 100.0% 94.8% 100.0% 

356 98.8% 99.5% 98.5% 93.9% 100.0% 95.4% 100.0% 

359 97.6% 97.8% 96.5% 89.4% 99.6% 91.1% 99.4% 

362 97.6% 91.8% 94.5% 86.9% 99.0% 88.2% 98.7% 

403 96.4% 96.0% 96.5% 89.3% 99.6% 91.2% 99.4% 

404 98.8% 99.3% 98.5% 94.1% 100.0% 95.0% 100.0% 

407 97.6% 98.1% 98.5% 93.8% 100.0% 95.2% 100.0% 

408 97.6% 85.9% 94.5% 86.3% 99.0% 88.5% 98.7% 

416 100.0% 99.9% 98.5% 94.1% 100.0% 95.1% 100.0% 

427 98.8% 98.0% 98.5% 93.8% 100.0% 95.0% 100.0% 

428 98.8% 96.4% 98.5% 93.3% 100.0% 94.8% 100.0% 

429 97.6% 99.9% 98.5% 93.8% 100.0% 94.7% 100.0% 

430 100.0% 99.9% 98.5% 93.5% 100.0% 95.0% 100.0% 

450 86.9% 67.2% 92.4% 82.2% 97.9% 84.6% 97.5% 

451 96.4% 99.2% 98.5% 93.7% 100.0% 95.2% 100.0% 

453 98.8% 94.7% 98.5% 93.8% 100.0% 94.8% 100.0% 

454 100.0% 97.9% 98.5% 94.2% 100.0% 95.2% 100.0% 

456 97.6% 96.6% 96.5% 89.4% 99.6% 91.1% 99.5% 
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Station PR1 SRR0.75 θ̂  Lb_95 Ub_95 Lb_90 Ub_90 

457 97.6% 97.8% 98.5% 93.8% 100.0% 94.9% 100.0% 

458 100.0% 97.7% 98.5% 93.5% 100.0% 94.7% 100.0% 

459 92.8% 85.7% 94.5% 86.8% 98.9% 88.3% 98.6% 

460 96.4% 91.4% 96.5% 90.0% 99.7% 91.3% 99.5% 

463 97.6% 95.5% 94.5% 86.2% 98.8% 88.4% 98.5% 

465 100.0% 98.4% 98.5% 93.3% 100.0% 95.0% 100.0% 

468 96.4% 88.5% 96.5% 90.6% 99.7% 91.8% 99.6% 

469 98.8% 99.3% 98.5% 94.1% 100.0% 95.5% 100.0% 

471 94.0% 98.3% 96.5% 89.3% 99.6% 90.6% 99.5% 

472 98.8% 96.1% 98.5% 94.0% 100.0% 95.1% 100.0% 

473 95.2% 94.2% 94.5% 85.7% 99.0% 88.1% 98.6% 

474 92.9% 85.7% 96.5% 89.7% 99.6% 91.3% 99.5% 

551 97.6% 99.7% 96.5% 89.6% 99.7% 91.2% 99.5% 

552 98.8% 99.9% 98.5% 93.7% 100.0% 94.8% 100.0% 

560 88.1% 73.6% 90.4% 80.3% 96.8% 82.7% 96.3% 

562 96.4% 98.1% 98.5% 94.0% 100.0% 95.2% 100.0% 

563 95.2% 97.0% 92.4% 83.6% 97.9% 85.7% 97.4% 

564 96.4% 99.5% 98.5% 93.7% 100.0% 95.0% 100.0% 

565 95.2% 97.7% 94.5% 86.5% 99.0% 88.0% 98.5% 

566 100.0% 99.7% 98.5% 93.7% 100.0% 95.0% 100.0% 
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Station PR1 SRR0.75 θ̂  Lb_95 Ub_95 Lb_90 Ub_90 

567 98.8% 98.7% 98.5% 93.6% 100.0% 94.9% 100.0% 

568 91.7% 64.0% 86.4% 74.8% 94.5% 76.7% 93.6% 

569 100.0% 99.2% 98.5% 93.4% 100.0% 94.7% 100.0% 

570 97.6% 95.8% 94.5% 85.6% 98.9% 87.6% 98.5% 

572 94.0% 80.8% 96.5% 89.3% 99.6% 91.6% 99.5% 

601 96.4% 99.5% 98.5% 93.7% 100.0% 94.9% 100.0% 

611 96.4% 96.1% 98.5% 94.2% 100.0% 95.2% 100.0% 

621 92.9% 77.5% 88.4% 76.2% 95.7% 78.7% 94.8% 

631 92.9% 97.3% 98.5% 93.5% 100.0% 94.9% 100.0% 

641 98.8% 99.8% 96.5% 90.5% 99.6% 91.7% 99.4% 

651 100.0% 99.6% 98.5% 93.3% 100.0% 95.0% 100.0% 

661 94.0% 86.3% 90.4% 79.6% 96.8% 81.7% 96.1% 

671 97.6% 97.1% 98.5% 92.9% 100.0% 95.0% 100.0% 

681 100.0% 98.1% 98.5% 93.9% 100.0% 94.9% 100.0% 

691 92.9% 99.8% 96.5% 89.6% 99.7% 91.5% 99.6% 

901 97.6% 81.5% 96.5% 89.7% 99.7% 91.2% 99.5% 

904 98.8% 99.3% 98.5% 93.6% 100.0% 94.8% 100.0% 

953 95.2% 80.6% 94.5% 86.3% 98.9% 88.0% 98.6% 

954 100.0% 98.7% 98.5% 94.0% 100.0% 95.0% 100.0% 

956 96.4% 95.5% 94.5% 86.2% 98.9% 88.1% 98.4% 
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θ̂  Lb_95 Ub_95 Lb_90 Ub_90 Station PR1 SRR0.75

957 97.6% 99.0% 98.5% 93.7% 100.0% 95.1% 100.0% 

959 98.8% 100.0% 98.5% 94.2% 100.0% 94.9% 100.0% 

960 98.8% 99.7% 98.5% 94.1% 100.0% 95.3% 100.0% 

961 96.4% 85.7% 96.5% 89.1% 99.6% 90.4% 99.4% 

962 100.0% 99.9% 98.5% 94.2% 100.0% 95.4% 100.0% 

955A 98.8% 99.0% 98.5% 93.4% 100.0% 94.9% 100.0% 

955B 95.2% 97.1% 94.5% 85.4% 98.9% 87.6% 98.5% 

PR1: First challenge pass rate; SRR0.75 : Responds rate; : Bayesian’s pass probability;  Lb_95: Lower bound of 95% C.I. for ;  

Ub_95: Upper bound of 95% C.I. for ;  Lb_90: Lower bound of 90% C.I. for ; Ub_90: Upper bound of 90% C.I. for ;   

θ̂ θ̂

θ̂ θ̂ θ̂

 

Time 1: May 3, 2005 to May 30, 2005; Time 2: May 31, 2005 to Jun. 20, 2005; Time 3: Jun. 21, 2005 to Jul. 25, 2005. 


